RoHS 2 Compliant

Wireless-to-Ethernet Receiver
UWTC-REC3
OMEGA

OMEGAnet® Online Service
omega.com

Internet e-mail
info@omega.com

Servicing North America:
U.S.A.: Omega Engineering, Inc., One Omega Drive, P.O. Box 4047
ISO 9001 Certified
Stamford, CT 06907-0047 USA
Toll Free: 1-800-826-6342 TEL: (203) 359-1660
FAX: (203) 359-7700 e-mail: info@omega.com

Canada:
976 Berar
Laval (Quebec), H7L 5A1, Canada
Toll-Free: 1-800-826-6342 TEL: (514) 856-6928
FAX: (514) 856-6886 e-mail: info@omega.ca

For immediate technical or application assistance:
U.S.A. and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA®
Customer Service: 1-800-622-2378 / 1-800-622-BEST®
Engineering Service: 1-800-872-9436 / 1-800-USA-WHEN®

Mexico/
Latin America:
et: 001 (203) 359-1660 FAX: 001 (203) 359-7700

Servicing Asia:
China:
1698 Yi Shan Road, Unit 102
Min Hang District
Shanghai, China 201103 P.R.C.
Hotline: 800 819 0559 / 400 619 0559
e-mail: info@cn.omega.com

Servicing Europe:
Benelux:
Toll-Free: 0800 099 3344 TEL: +31 20 347 21 21
FAX: +31 20 643 46 43 e-mail: sales@omegaeng.nl

Czech Republic:
Frystatska 184
733 01 Karviná, Czech Republic
TEL: +420-59-6311899
FAX: +420-59-6311114
e-mail: info@omega.cz

France:
Toll-Free: 0805 541 038 TEL: 01 57 32 48 17
FAX: 01 57 32 48 18 e-mail: esales@omega.fr

Germany/ Austria:
Daimlerstrasse 26
D-75392 Deckenpfronn, Germany
Toll-Free: 0800 8266342 TEL: +49 (0) 7056 9398-0
FAX: +49 (0) 7056 9398-29 e-mail: info@omega.de

United Kingdom:
OMEGA Engineering Ltd.
ISO 9001 Certified
One Omega Drive, River Bend Technology Centre, Northbank
Irlam, Manchester M44 5BD United Kingdom
Toll-Free: 0800-488-488 TEL: +44 (0) 161 777-6611
FAX: +44 (0) 161 777-6622 e-mail: sales@omega.co.uk

It is the policy of OMEGA Engineering, Inc. to comply with all worldwide safety and EMC/EMI
regulations that apply. OMEGA is constantly pursuing certification of its products to the European New
Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.
The information contained in this document is believed to be correct, but OMEGA accepts no liability for any
errors it contains, and reserves the right to alter specifications without notice.
WARNING: These products are not designed for use in, and should not be used for, human applications.
TABLE OF CONTENTS

Part 1: Introduction
1.1 Safety and EMC Considerations ... 2
1.2 Before You Begin .. 2
1.3 Description .. 2

Part 2: Hardware
2.1 Parts of the Receiver .. 4
2.2 Mounting - Receiver ... 5
2.3 DIP Switch Setup - Receiver .. 6
 2.3.1 Wireless Settings ... 6
 2.3.2 Ethernet Settings .. 6
2.4 Network Communication Interfaces ... 7
 2.4.1 10Base-T RJ-45 Pinout ... 7
 2.4.2 10Base-T Crossover Wiring ... 7

Part 3: Network Configuration
3.1 Ethernet (MAC) Address ... 8
3.2 Network Protocols ... 8
3.3 DHCP ... 8
3.4 DNS ... 9
3.5 IP Address .. 9
 3.5.1 Default IP Address .. 9
 3.5.2 Changing TCP/IP Properties on Your Computer 10

Part 4: Operations
4.0 Testing the Connection .. 11
4.1 iConnect Software ... 12
4.2 Setting a new IP Address over the Network .. 14
4.3 Receiver’s Configurations and Operations .. 15
 4.3.1 Power Up Device .. 16
 4.3.2 Get Readings from the Connector/Transmitter 17
 4.3.3 Java Runtime Environment Setup .. 19
 4.3.3.1 Java Runtime Environment 1.7 Setup Instructions 19
 4.3.3.2 Browser Proxy Selection .. 20
 4.3.4 Chart ... 21
 4.3.5 Diagnostic ... 23
 4.3.6 Configuration .. 24
 4.3.7 Sensor Setup ... 25
 4.3.8 Access Control .. 28
4.4 Telnet Setup ... 29
4.5 HTTPget Program ... 29
 4.5.1 HTTPget using Port 2000 .. 30
 4.5.2 HTTPget and ARP to Setup Device IP Address 31
4.6 ARP Protocol ... 31
4.7 iLog Software .. 33
4.8 Mail Notifier Software ... 35
 4.8.1 Installation ... 35
 4.8.2 Program Options Setup and Configuration 36
 4.8.3 Device Setting Setup and Configuration .. 37
 4.8.4 Sending Text Messages to a Cell Phone .. 38
Part 5: Environment / Operating Conditions
5.1 General Deployment Guidelines
5.2 With Line-of-Sight
5.3 Without Line-of-Sight
5.4 Casing and Closure Around the Antenna

Part 6: Specifications

Part 7: Factory Preset Values

Appendix A Glossary
Appendix B IP Address
Appendix C IP Netmask
Appendix D ASCII Chart
Appendix E iLog Error Messages
Appendix F ASCII/Telnet Commands Table
Appendix G Frequently Asked Questions (FAQ)
Appendix H Warnings and Regulatory Information
LIST OF FIGURES:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Temperature Wireless System on the Ethernet Network</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Parts of the Receiver</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Mounting the Receiver</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>8 Position DIP Switch Setup</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Ethernet - 4 Position DIP Switch Setup</td>
<td>6</td>
</tr>
<tr>
<td>2.5</td>
<td>RJ45 Pinout</td>
<td>7</td>
</tr>
<tr>
<td>2.6</td>
<td>10Base-T Crossover Cable Wiring</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>4 Position DIP Switch on Bottom Side of Receiver</td>
<td>8</td>
</tr>
<tr>
<td>3.2</td>
<td>Network Connections</td>
<td>10</td>
</tr>
<tr>
<td>3.3</td>
<td>Network Connections</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Pinging the Receiver from MS-DOS Prompt</td>
<td>11</td>
</tr>
<tr>
<td>4.2</td>
<td>Assigning an IP Address using iConnect</td>
<td>12</td>
</tr>
<tr>
<td>4.3</td>
<td>Accessing the Wireless System for Configuration</td>
<td>13</td>
</tr>
<tr>
<td>4.4</td>
<td>Access Control</td>
<td>14</td>
</tr>
<tr>
<td>4.5</td>
<td>Wireless System Home Page Menu</td>
<td>15</td>
</tr>
<tr>
<td>4.6</td>
<td>Login and Administrator Password</td>
<td>15</td>
</tr>
<tr>
<td>4.7</td>
<td>Select Readings by Group</td>
<td>17</td>
</tr>
<tr>
<td>4.8</td>
<td>Readings</td>
<td>17</td>
</tr>
<tr>
<td>4.9</td>
<td>Comma Separated Value Format</td>
<td>18</td>
</tr>
<tr>
<td>4.10</td>
<td>Java 1.7 Screen Shot</td>
<td>19</td>
</tr>
<tr>
<td>4.11</td>
<td>Select Chart by Group</td>
<td>21</td>
</tr>
<tr>
<td>4.12</td>
<td>Chart</td>
<td>21</td>
</tr>
<tr>
<td>4.13</td>
<td>Diagnostic</td>
<td>23</td>
</tr>
<tr>
<td>4.14</td>
<td>Configuration</td>
<td>24</td>
</tr>
<tr>
<td>4.15</td>
<td>Sensor Setup by Group</td>
<td>25</td>
</tr>
<tr>
<td>4.16</td>
<td>Sensor Setup</td>
<td>26</td>
</tr>
<tr>
<td>4.17</td>
<td>Sensor Parameters</td>
<td>27</td>
</tr>
<tr>
<td>4.18</td>
<td>Access Control</td>
<td>28</td>
</tr>
<tr>
<td>4.19</td>
<td>HTTPget Example of Polling Connector/Transmitter #6,7,8,9,10</td>
<td>30</td>
</tr>
<tr>
<td>4.20</td>
<td>ARP Commands and Responses</td>
<td>32</td>
</tr>
<tr>
<td>4.21</td>
<td>iLog Software Logging Data for Connector/Transmitter #6,7,8</td>
<td>33</td>
</tr>
<tr>
<td>4.22</td>
<td>Wireless System Mail Notifier Main Window</td>
<td>35</td>
</tr>
<tr>
<td>4.23</td>
<td>Wireless System Mail Notifier Profile Setup</td>
<td>36</td>
</tr>
<tr>
<td>4.24</td>
<td>Wireless System Mail Notifier Device Setting</td>
<td>38</td>
</tr>
<tr>
<td>5.1</td>
<td>Operation in Buildings</td>
<td>40</td>
</tr>
<tr>
<td>5.2</td>
<td>Fresnel Zone</td>
<td>41</td>
</tr>
<tr>
<td>5.3</td>
<td>Materials in Buildings</td>
<td>42</td>
</tr>
<tr>
<td>1.1</td>
<td>Dimensions of the Receiver</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>iLog Excel Applications</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Mail Notifier Commands</td>
<td>37</td>
</tr>
</tbody>
</table>
NOTES, WARNINGS and CAUTIONS

Information that is especially important to note is identified by the following labels:

• NOTE
• WARNING or CAUTION
• IMPORTANT
• TIP

NOTE: Provides you with information that is important to successfully setup and use the Wireless System.

CAUTION or WARNING: Tells you about the risk of electrical shock.

CAUTION, WARNING or IMPORTANT: Tells you of circumstances or practices that can affect the instrument’s functionality and must refer to accompanying documents.

TIP: Provides you helpful hints.

FEATURES

✓ Temperature
✓ Humidity
✓ Email Alarms
✓ Web Server
✓ No Special Software Required
PART 1
INTRODUCTION

1.1 Safety and EMC Considerations

⚠️ Refer to the Environment/Operating Conditions Section

EMC Considerations

• Whenever EMC is an issue, always use shielded cables.
• Never run signal and power wires in the same conduit.
• Use twisted-pair wires for signal connections.
• Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.

Failure to follow all instructions and warnings may result in injury!

1.2 Before You Begin

Inspecting Your Shipment: Remove the packing slip and verify that you have received everything listed. Inspect the container and equipment for signs of damage as soon as you receive the shipment. Note any evidence of rough handling in transit. Immediately report any damage to the shipping agent. The carrier will not honor damage claims unless all shipping material is saved for inspection. After examining and removing the contents, save the packing material and carton in the event reshipment is necessary.

Customer Service: If you need assistance, please contact the Customer Service Department nearest you.

Manuals, Software: The latest Operation Manual as well as free configuration software (iConnect), data-logging software (iLog) and Mail Notifier are available at the website listed on the cover pages of this manual, or on the CD-ROM enclosed with your shipment.

1.3 Description

The UWTC-REC3 Wireless Receiver provides Web-based monitoring of Temperature and Humidity. Each Receiver can directly support up to thirty-two (32) Thermocouples, RTD, Infrared and Humidity wireless Connectors / Transmitters.

The Receiver allows you to monitor and record Temperature and Relative Humidity over an Ethernet network or the Internet without any special software-just your Web Browser. The Receiver includes AC adapters to operate on any voltage worldwide from 100 to 240 Vac and 50 to 60Hz. The Receiver connects directly to an Ethernet Network or the Internet. Unlike an RS232 or USB device, it does not require a host computer.

The Receiver also provides error detection mechanism for inactive communication and diagnostic information including signal strength and data transmission success rate to help trouble shooting potential wireless system installation issues.

The Receiver is an independent node on the network sending and receiving data in standard TCP/IP packets. It is easily configured from a Web Browser and can be password protected. From within an Ethernet LAN or over the Internet, the user simply types the IP address (such as 192.168.1.200) or an easy to remember name (such as "ServRoom" or "Chicago5") and the Receiver serves a Web Page with the current readings.

The device can trigger an alarm if variables go above or below a set point that you determine. Your alarm can be sent by email to a single user or to a group distribution list, including text messages to Internet enabled cell phones and PDA's. The "Mail Notifier" software is free and easy to use program for this application.
1.3 Description (continued)

The Receiver is easy to install, simple to operate, and features award-winning iServer technology with an Embedded Web Server that requires no special software. The Receiver serves Active Web Pages to display real-time readings and charts of Temperature and Humidity. You can also log data in standard data formats for use in a spreadsheet or data acquisition program such as Excel or Visual Basic. iLog is a free and easy-to-use program for logging data to Excel.

The virtual chart viewed on the web page is a Java™ Applet that records a chart over the LAN or Internet in real time. With the Receiver, there is no need to invest time and money learning a proprietary software program to log or chart the data.

Chart scales are fully adjustable on the fly. For example, the chart can display one minute, one hour, one day, one week, one month, or one year. Temperature and humidity can be charted across the full span (-40 to 125°C, and 0 to 100% RH) or within any narrow range such as (20 to 30°C).

The OPC Server software makes it easy to integrate the Receiver with many popular Data Acquisition and Automation programs offered by Omega, Wonderware, iConics, Intellution, Rockwell Automation, and National Instruments, among others.

The following example illustrates how you can hook up a wireless system to your network:

Figure 1.1 Wireless System on the Ethernet Network

The wireless system consists of a single Receiver and one or more Connector / Transmitters. Transmitter will send data periodically to the Receiver where it serves as a gateway between the users and the Transmitter. The users can access the data through the Receiver’s web server and provided data acquisition software.

A standard web browser can be used to monitor and chart temperature and humidity. The browser can also be used to configure the device’s IP address, passwords for access and overall configuration parameters.
PART 2 HARDWARE

2.1 Parts of the Receiver

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wall mounting bracket clip holes (3 places)</td>
</tr>
<tr>
<td>2</td>
<td>Label with model and serial numbers</td>
</tr>
<tr>
<td>3</td>
<td>Receiver’s firmware revision on label</td>
</tr>
<tr>
<td>4</td>
<td>8 position DIP switch, only the 1st position is used (see Section 4.3.1 for details)</td>
</tr>
<tr>
<td>5</td>
<td>Ethernet: RJ45 interface for 10BASE-T connection.</td>
</tr>
<tr>
<td>6</td>
<td>Case’s tray, where the PCB is mounted</td>
</tr>
<tr>
<td>7</td>
<td>4 position DIP switch, sets the DHCP and Factory Defaults</td>
</tr>
<tr>
<td>8</td>
<td>Receiver’s radio module firmware revision on label</td>
</tr>
<tr>
<td>9</td>
<td>Label with default IP address, remove and then write your IP address, in the space provided</td>
</tr>
<tr>
<td>10</td>
<td>Label with MAC address (in hex code)</td>
</tr>
<tr>
<td>11</td>
<td>Wall mounting bracket</td>
</tr>
<tr>
<td>12</td>
<td>Case’s cover mounting screw (2 places)</td>
</tr>
<tr>
<td>13</td>
<td>Power LED: (Green) Solid: Indicates Power-ON</td>
</tr>
<tr>
<td>14</td>
<td>Power supply: Plus (+) power supply wire connection inside the plug; Minus (-) power supply wire connection outside the plug</td>
</tr>
<tr>
<td>15</td>
<td>Reset button: Used for power resetting the Ethernet board</td>
</tr>
<tr>
<td>16</td>
<td>Case’s cover</td>
</tr>
</tbody>
</table>

Figure 2.1 Parts of the Receiver
2.1 Parts of the Receiver (continued)

17 **Diagnostics LED**: (Yellow and Green) Diagnostics: at boot-up they light up for 2 seconds, then turn off; DHCP: if DHCP is enabled, they blink and stay solid periodically. **Network Link LED**: (Green) Solid: Indicates good network link. **Activity LED**: (Red) Blinking: Indicates network activities (receiving or sending packets).

18 **Receive LED** (blue): Indicates the Receiver is ready to receive data from the Connector/Transmitter(s).

19 **Antenna connector**

2.2 Mounting - Receiver

Position unit where required. Mark and drill the two screw holes. Once the bracket is mounted to the wall: align back of unit over the three bracket clips, when engaged, slide downward, the unit will snap in place.

![Diagram of Mounting Receiver]

Version A: Metal Enclosure
- Drill 2 HOLES
- 3.17 [0.125]
- Use #4 Screws (Provided) to Mount the Bracket
- Bracket Clips (3)

Version B: New Plastic Enclosure
- Drill 2 HOLES
- Ø 3.6 [0.14]
- Use #6 Screws (Provided) to Mount the Bracket
- Bracket Clips (3)

Figure 2.2 Mounting the Receiver

Attach antenna (refer to Section 5 for Environmental/Operating Conditions) and attach power supply.

Note: If unit is to be mounted on a flat surface, you may take the bottom rubber feet off the unit.
2.3 DIP Switch Setup - Receiver
2.3.1 Wireless Settings

Once the End Devices and the Receiver start communicating, make sure to push DIP switch #1, located on the back of the Receiver to the ON position.

2.3.2 Ethernet Settings

To set the Receiver to factory default settings:
1) Slide DIP switch #2 to ON position.
2) Power the Receiver on and wait about 10 seconds until the Receiver fully boots up.
3) Set the DIP switch #2 back to OFF position (it does not matter if the Receiver is powered ON or OFF, just make sure that the DIP switch is set to OFF, otherwise, every time the unit is power-cycled the factory settings will take over).
2.4 Network Communication Interfaces

2.4.1 10Base-T RJ-45 Pinout

The 10BASE-T Ethernet network (RJ-45) system is used in the Receiver for network connectivity. The 10 Mbps twisted-pair Ethernet system operates over two pairs of wires. One pair is used for receiving data signals and the other pair is used for transmitting data signals. This means that four pins of the eight-pin connector are used.

![ETHERNET Diagram](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+Tx</td>
<td>+ Transmit Data</td>
</tr>
<tr>
<td>2</td>
<td>-Tx</td>
<td>- Transmit Data</td>
</tr>
<tr>
<td>3</td>
<td>+RX</td>
<td>+ Receive Data</td>
</tr>
<tr>
<td>4</td>
<td>N/C</td>
<td>Not Connected</td>
</tr>
<tr>
<td>5</td>
<td>N/C</td>
<td>Not Connected</td>
</tr>
<tr>
<td>6</td>
<td>-Rx</td>
<td>- Receive Data</td>
</tr>
<tr>
<td>7</td>
<td>N/C</td>
<td>Not Connected</td>
</tr>
<tr>
<td>8</td>
<td>N/C</td>
<td>Not Connected</td>
</tr>
</tbody>
</table>

Figure 2.5 RJ45 Pinout

2.4.2 10Base-T Crossover Wiring

When connecting the Receiver directly to the computer, the transmit data pins of the computer should be wired to the receive data pins of the Receiver, and vice versa. The 10Base-T crossover cable with pin connection assignments are shown below.

![Crossover Wiring Diagram](image)

Figure 2.6 10Base-T Crossover Cable Wiring

Use straight through cable for connecting the Receiver to an Ethernet hub. The ports on the hub are already crossed.
PART 3
NETWORK CONFIGURATION

3.1 Ethernet (MAC) Address

MAC (Media Access Control) address is your computer's unique hardware number. When you're connected to the LAN from your computer, a correspondence table relates your IP address to your computer's physical (MAC) address. The MAC address can be found on the label of your device and contains 6 bytes (12 characters) of hexadecimal numbers XX:XX:XX:XX:XX:XX hex

For Example: 0A:0C:3D:0B:0A:0B

Remove the small label with the default IP address and there will be room to put your IP address. See Figure 2.5.

3.2 Network Protocols

The Receiver can be connected to the network using standard TCP/IP protocols. It also supports ARP, HTTP (WEB server), DHCP, DNS and Telnet protocols.

3.3 DHCP

DHCP, Dynamic Host Configuration Protocol enables computers and devices to extract their IP configurations from a server (DHCP server).

If DHCP is enabled on your Receiver, as soon as the Receiver is connected to the network, there is an exchange of information between DHCP server and the Receiver. During this process the IP address, the Gateway address, and the Subnet Mask will be assigned to the Receiver by the DHCP server. Note that the DHCP server must be configured correctly to do such assignment.

The Receiver is shipped with DHCP disabled (factory default).

If fixed or static IP address is desired, the DHCP must be disabled.

The DHCP can be enabled by setting the DIP switch #3 to the "ON" position

![DIP switch #3 shown in "ON" position](image)

Figure 3.1 4 Position DIP Switch on the Bottom Side of Receiver

Note: Setting the Receiver's IP address to 0.0.0.0 will also enable DHCP.
3.4 DNS
DNS, Domain Name System enables computers and devices to be recognized over a network based on a specific name instead of IP addresses.

For example, instead of having to use http://192.168.1.200 (IP address), you would use only http://z03ec or any sixteen character name stored as Host Name under Access Control menu in the Wireless System Home Page.

The default DNS name for the Receiver is "z" followed by the last four digits of the MAC address of that particular Receiver.

1. It is very important to communicate with the network administrator in order to understand DHCP and its existing configurations on the host server, before enabling DHCP on the Receiver.
2. The Receivers are shipped with a default static IP address of 192.168.1.200 and Subnet Mask of 255.255.255.0.
3. On Windows servers where DHCP and DNS are separate functions it is very important to configure the DHCP server to communicate with DNS in order for the iServer’s Host Name to correctly respond. If you cannot access the iServer using its Host Name, please contact your network administrator to make sure the DHCP and DNS servers are linked together.

3.5 IP Address
Every active device connected to the TCP/IP network must have a unique IP address. This IP address is used to establish a connection to the Receiver. Every computer using TCP/IP should have a unique 32-bit address which is divided into two portions, the network ID and the host ID. For instance, every computer on the same network uses the same network ID. At the same time, all of them have a different host ID. For more details about the IP address see Appendix B.

3.5.1 Default IP Address
The Receiver is shipped with a default IP address of 192.168.1.200 and Subnet Mask of 255.255.255.0. If you are going to use a Web browser or Telnet program to access the Receiver using its default IP address, make sure that the PC from which you’re establishing the connection has an IP address that is in the same range as the Receiver’s IP address (192.168.1.x, where x can be any number from 1 to 254). See Section 3.5.2.

Your PC’s IP address cannot be the same as the Receiver’s IP address.

You also need to make sure that your PC’s Subnet Mask is 255.255.255.0. This is a good way to access the Receiver over the network and make any configuration changes needed. If 192.168.1.200 is already in use on your network, use an Ethernet crossover cable between your computer and the Receiver to change the IP address or any other settings within the Receiver.
3.5.2 Changing TCP/IP Properties on Your Computer

Go to your computer’s Control Panel then Network Connections. Pick the network with the proper Ethernet card. Right click and choose Properties.

Figure 3.3 Network Connections

Setup the IP address (in this case, 192.168.1.1) as shown below and press OK.

You can access the Coordinator’s web server via any internet browser using IP address of 192.168.1.200.

Once you log into the Coordinator’s web server, you will be able to change its IP configuration according to Section 4.2.

After you configure the Coordinator’s IP configurations, you should go back and set your PC’s previous IP settings.

Figure 3.3 Network Connections
PART 4
OPERATIONS

This Receiver can be used and configured in several ways, depending on user’s preference and network setup. It can be configured using a Web browser, like Internet Explorer. It can also be configured using the iConnect Configuration Software.

If DHCP and DNS servers are configured to exchange information, the connection will be very simple. All you need to do is to enable DHCP on the Receiver (see Section 3.3) and use a straight through network cable to connect the Receiver to an Ethernet hub or switch and power it up. Now, you can use the Receiver’s default Host (Domain) Name, which is zxxxx (where xxxx are the last four characters of its MAC address) to access the Receiver’s Web Server.

If DHCP is not the preferred method, you can configure your PC’s network connection with an IP address of 192.168.1.x that is in the same range as the Receiver’s default IP address (192.168.1.200) and connect to the Receiver using a cross-over network cable between your PC’s network port and the Receiver. After you’re done with configuring the Receiver, you can always set your PC back to its original settings. See Section 3.5.2 for more details.

On your computer, from the MS-DOS Prompt window type "ping 192.168.1.200" and press Enter. If DHCP and DNS servers are used type "ping zxxxx", where xxxx are the last four digits of the Receiver’s MAC address, located on the back of the device. You should get a reply as shown in Figure 4.1.

4.0 Testing the Connection

Figure 4.1 Pinging the Receiver from MS-DOS Prompt

This proves that the connection is proper and you can get into configuration or run mode using the Telnet or Web browser.
4.1 iConnect Software
The Receiver may also be assigned an IP Address by using the iConnect software.

a) Download the iConnect software from the website listed in this manual.

b) Install iConnect software on a networked PC. This software is compatible with Windows 95, 98, NT, 2000, and XP.

c) Use iConnect to assign an IP address to the Receiver and access its web pages for configuration. You can also use any standard web browser to access the Wireless System' web pages. Consult with your IT department for obtaining an IP address.

Figure 4.2 Assigning an IP Address using iConnect

1) Place the IP address in this box
2) Take the MAC address from the label attached to the bottom of the Receiver and place it in this box
3) Click here to send the above IP address to the Receiver
4) After the IP address is assigned to the Receiver, click here to access it’s web pages
5) Click here to Ping the Receiver whose IP address is shown in the IP address box
6) Click here to find all the Receivers on your network
7) The IP addresses for the Receivers found by the iConnect will be listed here
8) These fields indicate the IP address and the subnet mask of the PC on which the iConnect is running
4.1 iConnect Software (continued)

d) To access the Wireless System for Configuration:
Click on the "View Webpage" button, you will access the Wireless System’ home page, refer to Section 4.3 for details.

![Wireless Sensors Home Page]

Figure 4.3 Accessing the Wireless System for Configuration
4.2 Setting a New IP Address over the Network

Besides using the iConnect software, you may use the Receiver’s default IP address to access it and assign a new IP address to it.

The Receiver is shipped with a default IP address of 192.168.1.200 and Subnet Mask of 255.255.255.0. You can configure your PC’s Network connection with an IP address that is in the same range as the Receiver’s IP address (192.168.1.x) and connect to the Receiver using a crossover network cable between your PC and the Receiver.

With this completed, you can go to the DOS-Prompt and ping 192.168.1.200. If you receive responses back (Figure 4.1), you can go to the Web browser and type in http://192.168.1.200 and it will take you to the Wireless System’ Home Page.

Select [Access Control] button, you'll be asked for the password. You should be on the Access Control page were you can simply type in the desired Static IP address, and click Save.

For more details about the "Access Control" page refer to Section 4.3.9.

For the IP address to take effect, the Receiver needs to be turned OFF and ON using the "Network Reset" button. Pressing the physical button marked "RESET" on the Receiver does the same thing.

You can now connect the Receiver to an Ethernet hub using a straight through cable, power it up, and follow the ping routine mentioned in the previous section.
4.3 Receiver’s Configurations and Operations

Using a web browser, you should be able to view the Receiver’s homepage.

• Start your web browser.
• From the browser you type http://zxxxx using the last four-digits from the MAC address label located on the device if DHCP and DNS are used. If a static IP address is used, then simply type http://x.x.x.x, where x.x.x.x is the Receiver’s IP address.
• The Home Page, will be displayed.

![Wireless System Home Page Menu](image)

In order to access certain menu items of the Home Page, users may be prompted for a password, as shown in the two figures below.

![LOGIN and ADMINISTRATOR Passwords](image)

There are 2 different access levels:

1. **ADMINISTRATOR Password** (administrator) allows certain groups and individual users to access and modify "entire" parameters without any restrictions.

 The default password is 00000000. This password can be up to 16 alphanumeric case-sensitive characters.

2. **LOGIN Password** (operator) allows users to access and modify all of the parameters, except "Access Control" which requires an Administrator password.

 The default password is 12345678. This password can be up to 16 alphanumeric case-sensitive characters.
4.3.1 Power Up Device

To verify that a Connector/Transmitter is working before deploying remotely, install the battery and power it on right next to the Receiver. When the Connector/Transmitter is powered on, the green LED (TX) will blink continuously. This indicates the Connector/Transmitter is broadcasting its data to the Receiver on selected RF channel. The LED will blink only when the Connector/Transmitter sends data to the Receiver. If the Receiver is not powered on, or it’s out of reach, the Connector/Transmitter will not receive the acknowledgment packet from the Receiver and therefore to save battery power it will go to sleep.

The sleeping period can be defined by the users via the USB port (PC Configuration software) on the Connector/Transmitter. The Connector/Transmitter sends new data for a short period of time after every sleep period is over, until it can establish the connection back with the Receiver. For a list of battery life versus the transmit time, please refer to the UWTC Connector/Transmitter manual Section 6.11.

- **Note:** Once the Connector/Transmitter and the Receiver start communicating, make sure to push DIP switch # 1 located on the back of the Receiver to ON position if success calculation and lost detection features are enabled. This will lock the wireless settings (eg. update, transmission power) on the Receiver in case of a power outage.

- **Note:** When there are two Connector/Transmitters with the same Device ID/address, both will be transmitting data every sampling period with their LEDs blinking. The Receiver will receive data from both Connector/Transmitters and will display their data alternately. To avoid this please turn the Connector/Transmitter one by one and verify that the Receiver is displaying the correct data.

- **Note:** Make sure the Connector/Transmitter is configured to use the same Network ID and RF channel as the Receiver. Also, make sure receiver address for the Connector/Transmitter is set to 0.
4.3.2 Get Readings from the Connector/Transmitter

Once you see the Connector/Transmitter’s LED blinking periodically, it means it is sending data which will appear on the "Readings" page. To view the data in a chart format, you can use the "Chart" page.

Click on [Readings] from the Home Page, the following page will appear. Select the proper Group to view the readings.

![Select Readings by Groups](image)

Figure 4.7 Select Readings by Groups

In a few seconds the following page will appear, showing updates of the Process and Ambient Temperature.

![Readings](image)

Figure 4.8 Readings
4.3.2 Get Readings from the Connector/Transmitter (continued)

While accessing the "Readings" page, if a blank screen appears without any "Java application running" or image of a "Java logo", please verify you have the latest Java Runtime Environment installed and configured according to the Section 4.3.3.1. If you do not have Java Runtime Environment, you may download it from our website or contact the Customer Service Department nearest you.

The "Readings" fields are defined as follows:

Title: Receiver's name, assigned in "Configuration" page.

Name: Connector/Transmitter’s name, assigned in "Sensor Parameters" page.

ID: Device ID/address

Sequence: Sequence number [0-255, Lost].

The Sequence number is incremented for each newly received data. Therefore, it indicates if the sensor is transmitting data successfully.

This area also will display error messages:

Lost Receiver has not received data from the Connector/Transmitter.

Reading Values: The order from left to right is: Process, Ambient, then Dewpoint.

First Reading Process - reading with temperature or humidity unit.

Second Reading Ambient - ambient temperature reading with temperature unit.

Third Reading Dewpoint - dewpoint calculated only if humidity sensor is present.

Reading "Open" indicates that no sensing device is detected.

Data Logging: Press to activate/deactivate data logging. When it is pressed to activate data logging, a file browser pops up to ask for which file data will be saved.

Data is in Comma Separated Value (csv) format, which can also be opened in Excel. Please name file with .csv extension.

![Figure 4.9 Comma Separated Value Format](image)
4.3.2 Get Readings from the Connector/Transmitter (continued)
Columns from left to right: Date and time, Device ID, Sequence number, Device type, Reading 1, Unit 1, Reading 2, Unit 2, (up to 3 readings and units), next Device ID, next Sequence number, ... (up to 8 Connector/Transmitter's).

ACTIVE data is currently being logged in the specified file.

INACTIVE data logging is not executed.

Refresh: How often the current applet asks for data from embedded server.

Ensure Java Runtime Environment is setup. Refer to Section 4.3.3 before activating data logging.

4.3.3 Java Runtime Environment Setup
If your computer does not have Java installed, please download from java.sun.com. You can change the Java setting by clicking its icon in Control Panel. To load the applet, you have to enable the web browser and disable cache.

4.3.3.1 Java Runtime Environment 1.7 Setup instructions
1. Go to your computer's Control Panel. Open the Java Plug-in.

![Figure 4.10 Java 1.7 Screen Shot]

Verify that the path is correct.

Figure 4.10 Java 1.7 Screen Shot
4.3.3.2 Browser Proxy Selection

Accessing Receiver units within your internal network

- Usually when the computer and Receivers are on an internal network, you will not use Proxy server access.
- You should un-check the "Use Browser Settings" option on the "Proxy" tab.

Accessing Receiver units using the internet

- Often the web browser will use Proxy server access to the internet. In such cases, the default Java runtime settings on the "Proxy" tab should suffice. The default setting is the "Use Browser Settings" option.
- If the default proxy setting doesn't work, then you may have a situation where the proxy settings of the web browser are incorrect.

Diagnostics:
If the web page of the Wireless System appears, then the HTTP Proxy is working fine. If the data isn't updated on the Wireless System upon selecting the "Readings" web page, there may be a problem with access through a winsock proxy server. In such cases your network administrator will need to provide the winsock proxy server and port #s. (The TCP ports Receiver uses for Java applets are 1000 and 1001). These values should be entered into the Socks line on the "Proxy" tab (of the Java Plugin control panel) or into the "connections" tab on the View,Internet Options dialog and make sure that the Proxy tab shows that the "Use Browser Settings" option is not selected (i.e. when you specify proxy connections in the Java Plugin control panel).

Accessing Receiver units over Peer-to-Peer network

A simple peer-to-peer network is setup by disconnecting from the main network (as users will often do when trying to do initial setup of the Receiver) and then connecting the Receiver to another computer using an ethernet hub, an ethernet switch, or a Cross-over cable connection. Often when using a peer-to-peer network, the Java plugin and the web browser (such as Internet Explorer) have internet connections configured to connect through proxy servers. In such case, you will need to simply assign the final IP address on this peer to peer network and then view the Wireless System’s charts after connecting the Receiver into the regular network. Otherwise you can disable the Java plug-in’s "Use Browser Settings" temporarily and then reconfigure the Java plug-in settings for regular network access after testing the Wireless System’s chart access on your peer-to-peer network. The "Use Browser Settings" should not be selected. And the HTTP and Socks proxy entries should be blank. Also, setup the internet browser so that proxy servers are disabled.

Java and the Java Coffee Cup Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries."
4.3.4 Chart

Click on [Chart], from the Home Page, the following page will appear. Select the proper Group to view the Chart.

In a few seconds the following page will appear. The Java™ Applet graph displays Process Readings and Ambient Temperature. It can be charted across the full span (-40 to 124°C and 0 to 100% RH) or within any narrow range (such as 20 to 30°C).

If a blank screen appears without any "java application running" or image of a "Java logo", please verify you have the latest Java Runtime Environment installed and configured according to the instructions (refer to Section 4.3.3.1). If you do not have Java Runtime Environment, you may download it from our website or contact the Customer Service Department nearest you.

Figure 4.11 Select Chart by Groups

Figure 4.12 Chart
4.3.4 Chart (continued)

Title: Receiver’s name, assigned in "Configuration" page.

Save Current Graph: Save the current graph in PNG (Portable Network Graphics) format. The filename has the extension .png.

Max/Min Temperature: Maximum and minimum temperature of the current graph. If a sensor is selected (trend line and sensor name turns bold), its most current temperature reading is shown here.

Temperature Unit Drop-down List: Temperature unit to be used, either ºC or ºF.

Max/Min Humidity: Maximum and minimum humidity of the current graph. If a sensor is selected (trend line and sensor name turns bold), it’s most current humidity reading is shown here.

Note: Reading "Open" indicates that no sensing device is detected.

P# button (Process): P# shows the sensor name and controls the process readings.
When clicked once, it turns bold, highlights the process sensor trend line and displays current sensor readings.
When clicked twice, it turns white and the trend line will disappear.
When clicked again, it comes back to normal operation.

Chart Area: Display the trend lines of the sensors.
Range of temperature can be controlled by the upper and lower boxes on the left.

A# button (Ambient): A# shows the sensor name, displays error messages [Lost] and controls the ambient sensor readings.
When clicked once, it turns bold, highlights ambient sensor trend line and displays current sensor readings.
When clicked twice, it turns white and the trend line will disappear.
When clicked again, it comes back to normal operation.

Applet Start Date and Time: Activates when the "Chart" page opens up.

X-axis Drop-down List: Time scale for the chart.
The chart area can be shown based on 1 min, 1 hour, 1 day, 1 week, 1 month, or 1 year time intervals.

Last Update Date and Time: The last date and time when data arrived.
4.3.5 Diagnostic
Click on Diagnostic, the following page will appear.

Figure 4.13 Diagnostic

- **Date and Time:** Most recent time when data is received.
- **Save Current Graph:** Save the current graph in PNG format. The filename has extension .png.
- **Parameters Logging:** Click to activate/deactivate parameters logging. When it is activated, a file browser screen will allow you to name and save the logging file. The file is in Comma Separated Value (.csv) format.
 - **ACTIVE** – parameters are currently being logged in the specified file.
 - **INACTIVE** – parameters logging is not activated.
- **Receiver (yellow box):** Receiver is always at the top of the wireless network hierarchy (star topology).
- **Sensor:** Name of the sensor.
- **Success Rate:** (0-100%), a low success rate indicates a longer data delay, shorter battery lifetime and high network traffic. Any error message (LOST, OPEN) will be shown here as well.
- **Radio Signal Strength:** (0-100%), the higher the better.
 - The blue line and blue triangle (roof) connecting to the Receiver indicates the radio signal strength. Darker blue means a stronger radio signal.
 - *Dark Blue*: between 100% and 79%; *Medium Blue*: 78% to 11%; *Light Blue*: 10% to 0%
- **Update Rate:** The time interval the Receiver received data from the Connector/Transmitter.
- **Battery Voltage:** The total voltage of the battery in the Connector/Transmitter. Once the voltage gets to 3.0V, it’s recommended to change the battery (full battery is 3.6V).
 - The box (house) color indicates battery voltage. *Green*: >3.0V; *Red*: <3.0V
4.3.6 Configuration
Click on [Configuration] from the Home Page, the following page will appear.

![Configuration Interface](image)

Name: Receiver name [maximum of 16 alphanumeric characters]

Temperature: Unit of temperature readings, [°C or °F].

TCP Connections: Number of TCP connections available for data query. If "0" is selected no TCP connection can be made to the indicated port number [0 through 5].

Port: Port number for TCP connections. [invalid ports: <500, >65536, 1000, 1001].

Save: Saves any changes for above settings.

Network ID: The Personal Network ID (0 to 65535).

- The Receiver always has an address of 0.

Channel: Choose the operation channel defined in IEEE 802.15.4 for the sensor network.

Transmission Power: This determines the signal power transmitted by the Receiver. The options are 10 dBm and 20 dBm.

- Refer to your local regulations for the allowed maximum transmission power.

Save: Saves changes for Transmission Power.

Radio Reset: Power resets the radio module in the Receiver.

Radio Version: Firmware version of the radio module, also shown on model/serial label.
4.3.7 Sensor Setup
Click on Sensor Setup from the Home Page, the following page will appear. Select the proper Group.

Figure 4.15 Sensor Setup by Groups
The Sensor Setup Page is for configuring the Connector/Transmitter parameters such as Name and Update Rate.
4.3.7 Sensor Setup (continued)

Figure 4.16 Sensor Setup

#: Sensor ID/address configured on the Connector/Transmitter. Click on the number to view and modify Sensor Parameters. See Figure 4.17.

Check: Each check box controls whether or not readings from the Connector/Transmitter will be outputted. If unchecked, the readings from the Connector/Transmitter will not be displayed on the "Readings", "Chart" and "Diagnostic" pages nor it will be reported through Telnet.

Sensor Name: Name of a Connector/Transmitter shows on the "Readings" and "Chart" pages, this is a text field and can take up to 8 alphanumeric characters.

Updates Seconds: How often a Connector/Transmitter sends its data to the Receiver.

Units: Type of data and the corresponding units. Units of measurement from sensors inside a Connector/Transmitter that has joined the network will be displayed. [°C, °F or %].

Update Checked Box: After checking/unchecking the boxes, make sure this is clicked to save the changes.
4.3.7 Sensor Setup (continued)

Figure 4.17 Sensor Parameters

Sensor Name: Name of this Connector/Transmitter.

Update (Seconds): How often this sensor is sending its data to the Receiver. This update corresponds to the sampling rate configured by using the Configuration Wizard. For detailed steps on how to configure the sampling rate, please refer to Section 4.1 of the UWTC Manual. Non zero update rate will enable success calculation and lost detection features. Update rate should reflect the actual blinking interval in order to enhance the accuracy of success calculation and lost detection.

Note: Update on the webpage means how often the Receiver expects a reading coming from a Connector/Transmitter. The Receiver uses this Update to detect lost condition and calculate success rate. It is purely used by the Receiver only, and the Connector/Transmitter does not recognize the Update on the webpage. Therefore, changing Update will not change the actual sample rate stored on the Connector/Transmitter.

For a more accurate success rate and lost packet information, it is necessary to change the default "update second" to the actual sampling rate of the Connector/Transmitter. If you desire to lock this information in your Receiver, DIP switch #1 should be turned ON. Otherwise, in the case of a power outage the default "update second" will go back to default.

Offset: If it is determined that the readings are slightly off, the user can manually assign numerical values to adjust the readings for temperature (in °C), humidity (in percentage), and dewpoint (in °C). The offset value can either be a positive or a negative number with one decimal point.

If there is an RH sensor, this section is slightly different.
Update: Saves changes.

Reset Value: Ignores changes and puts previous values back in the fields.

Cancel: Ignores all the changes and goes back to the "Sensor Setup" page.

Reset Sensor: Reset the Connector/Transmitter readings and status. Its data will be cleared immediately.

Select Another Group: Go back to the group selection page to setup sensors.

4.3.8 Access Control

This section describes the "Access Control" page of the Wireless System Web interface. This page allows the users to set up the network and security parameters of the Wireless System.

At the initial entrance to the "Access Control" page you may be prompted for the LOGIN Password (see **Figure 4.6**) prior to an ADMINISTRATOR Password.

Figure 4.18 Access Control

Login Password: This allows users to access and modify all of the Wireless System Home Page menu items, except "Access Control", which requires an Administrator password. The default Login password is **12345678**. This password can be up to 16 alpha-numeric case-sensitive characters.

If there is no Login Password assigned (blank box) the Wireless System will not require a password to access and modify the Wireless System Home page menu items.

Admin (administrator) Password: This allows users to access and modify the "Access Control" page. The default password is **00000000**. This password can be up to 16 alpha-numeric case-sensitive characters.

If there is no Administrator Password assigned (blank box) the Wireless System will not require password to access and modify "Access Control" page.

Host Name: Name of the server (DNS) max 16 characters, default is "z" and the last 4 digits of the MAC address. Refer to **Section 3.4**, DNS.
4.3.8 Access Control (continued)

MAC Address: This is also called Hardware address or Ethernet address, which is assigned to the Receiver at production. The MAC (Media Access Control) address is the Receiver's unique hardware number and is not changeable.

IP Address: The IP (Internet Protocol) address is a 32-bit number that identifies each sender or receiver of information that is sent in packets across the Ethernet or the Internet. The Receiver's default IP address is **192.168.1.200**. The Receiver's IP address should be changed to fit user's networking environment. Consult with your IT department for obtaining an IP address.

The DHCP will be enabled in the Receiver if its IP address is set to **0.0.0.0**. The DHCP can also be enabled by setting the DIP switch #3 to **ON** position.

Gateway Address: A gateway is a network point that acts as an entrance to another network. A gateway is often associated with a router, which knows where to direct a given packet of data that arrives at the gateway. If the Receiver is sending packets to another network node that is not on the same network on which the Receiver is connected, a gateway address needs to be given to the Receiver. The gateway address should be the IP address of the router connected to the same LAN to which the Receiver is connected. The Receiver default gateway address is **0.0.0.0**. Consult with your IT department for obtaining a gateway address.

Subnet Mask: It's a 32-bit number that is used to determine which part of the IP address is the network portion and which part is the host portion. The Receiver default subnet mask is **255.255.255.0**. Consult with your IT department for obtaining a subnet mask.

Save: Saves any changes for above settings.

Reset: Pressing the Reset button will set all the fields back to their original values.

Network Reset: Reboots the embedded server. Note that all updated network parameters take effect after reboot.

Changes made in the "Access Control" page can be saved permanently by pressing the **Save** button and power recycling the Receiver (press **Network Reset** button).

4.4 Telnet Setup

In the Configuration page, set the TCP Connections to 1 - 5 other than 0, and use a telnet simulation program to connect to the Receiver (using Port 2000). The command can be sent to query the Receiver and you will get a response back.

For a list of commands refer to ASCII/TELNET commands Table in **Appendix F**.

4.5 HTTPget Program

The Httpget software is used to send a single HTTP or TCP request to the Receiver. In contrast, the telnet or Hyperterminal programs allow a continuous connection with multiple requests to be sent to the Receiver.

Generally HTTPget is used for simply programming an IP address to the Receiver or for quickly obtaining a reading from a Connector/Transmitter.

The Receiver must be configured from the configuration web page so that the "TCP Connections" indicates any number between 1 and 5. Make sure that the Port Field number indicates 2000.
4.5 HTTPget Program (continued)

Whenever Terminal Server service (using Port 2000 by default) is required, the # of connections must be set to a value from 1 to 5. The Terminal Server mode is the recommended mode for the most reliable connection when operating with NEWPORT software or with other programs supporting TCP/IP communications. The Port 2000 access can be used with NEWPORT software and may be needed with some Receivers when you need to view readings from the web page while simultaneously collecting data through TCP/IP communications.

4.5.1 HTTPget using Port 2000

You can setup and read the information from the Receiver by using the HTTPget program. The following program can be used to read data from the embedded server firmware by using TCP port 2000. The command string is sent to this TCP port, then the response can be read back from the same socket.

The HTTPget.exe file is used to setup and read information from the Receiver. This file will be automatically installed when you install the MailNotifier software available on our website and CD.

Notes on using HTTPget:

The Httpget.exe program is installed to the windows directory (usually c:\winnt or c:\windows) when installing the Mail Notifier software.

1. Open up a command window (or have a DOS window)
 a) Click on start menu
 b) Click on "Run"
 c) In the dialog box that appears, type "cmd" or "command" and click on "OK" button.
 d) A command window should now appear.
2. If you now type "httpget" and press the "enter", the program options should be displayed.
3. Next run HTTPget with the options displayed below
 httpget -r -S ERDGALL 192.168.1.135:2000 -C1 -q

 where:
 -r –S are parameters needed for the the command string
 ERDGALL is the Telnet command (refer to Appendix F)
 192.168.1.135 is an IP address
 2000 is a socket port number
 -C1 closes the TCP connection after 1 second
 -q displays no error messages once the connection is closed

Figure 4.19 HTTPget Example of Polling Connector/Transmitter #6,7,8,9,10
4.5.2 HTTPget and ARP to Setup Device IP Address

Use the iConnect software, which may be downloaded from our website, to do these IP changes whenever possible.

Use ARP first to assign the mac address to a static IP address in computer arp table by this command:

```
arp –s 192.168.1.200 00-03-34-00-06-b6
```

Then use the following command to assign new IP to the device:

```
Httpget –r –S "00000000" 192.168.1.200:1
```

where:

"00000000" is admin. password. If the password is wrong, the unit will ignore the new IP. If the new IP is taken, you will get the message "New IP is Assigned" after the HTTPget command. The device will reset automatically.

"192.168.1.200" is an example of an IP address. It is replaced with IP address suitable for your network.

"00-03-34-00-06-b6" is replaced with your Receiver's MAC address.

4.6 ARP Protocol

ARP is the Internet layer protocol responsible for matching or obtaining the MAC (hardware) address that corresponds to a particular IP address. The ARP command allows the user to view the current contents of the ARP cache of the local computer (residing on the same network). Microsoft includes the ARP.EXE utility for viewing and modifying the ARP cache with its Windows products. The following ARP commands can be used to view cache entries:

- **arp –a** → Use this command to view all ARP cache entries.
- **arp –a** plus **IP address** → Use this command to view ARP cache entries associated with one particular interface on a network with multiple adapters.
- **arp –g** → Same as arp –a.
- **arp –N** → Use this command to display ARP entries for specific network interface.
- **arp –s** plus **IP address** plus **Physical address** → Use this command to manually add a permanent static entry to the ARP cache.
- **arp –d** plus **IP address** → Use this command to manually delete a static entry.
4.6 ARP Protocol (continued)

The following window shows examples of arp commands and responses.
• Your computer has an IP address of 192.168.1.118
• The destination computer has an IP address of 192.168.1.96

```
C:\>ping 192.168.1.96
Pingging 192.168.1.96 with 32 bytes of data:

Reply from 192.168.1.96=bytes=32 time=5ms TTL=32
Reply from 192.168.1.96=bytes=32 time=3ms TTL=32
Reply from 192.168.1.96=bytes=32 time=3ms TTL=32
Reply from 192.168.1.96=bytes=32 time=4ms TTL=32

C:\>arp -a 192.168.1.96
Internet Address  Physical Addresss  Type
   192.168.1.96     00-03-34-00-00-23  dynamic
                    00-03-34-00-00-23

C:\>arp -d 192.168.1.96
C:\>arp -a 192.168.1.96
No ARP Entries Found
C:\>
```

Figure 4.20 ARP Commands and Responses
4.7 iLog Software
This is an Excel application software that can log temperature and humidity from the Receiver over the local network (Ethernet) or the internet.

a) Download the iLog software from the website listed in this manual.

b) Install iLog software on a networked PC. This software is compatible with Windows 95, 98, NT, 2000, XP, Windows Vista and Windows 7 (32 and 64-bit).

c) If you have Excel 2007 or higher, when installing iLog choose “Custom” installation option and on the next window check the box for “Excel 2007 Apps” and continue the installation to the end.

d) For complete information of how to use the iLog software, click on the HELP button.

e) There is a list of Error Messages in Appendix E.

Figure 4.21 iLog Software Logging Data for Connector/Transmitter #6,7,8
To log dewpoint from a RH sensor, use Wireless zSeries AutoDetect/Full Device Access.
4.7 iLog Software (continued)

Table 4.1 iLog Excel Applications

<table>
<thead>
<tr>
<th>Networked Product</th>
<th>iLog File</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>iTHX-W, iTHX-2</td>
<td>3 column</td>
<td></td>
</tr>
<tr>
<td>iTHX-M, iTHX-SD</td>
<td>3 column</td>
<td></td>
</tr>
<tr>
<td>iTHX-W Dual Probe</td>
<td>1st probe / 3 column</td>
<td>6 column</td>
</tr>
<tr>
<td>iSE-TC, iSD-TC</td>
<td>3 column</td>
<td>5 column</td>
</tr>
<tr>
<td>iSE-TH, iSD-TH</td>
<td>3 column</td>
<td>5 column</td>
</tr>
<tr>
<td>iBTHX-W, iBTHX-D</td>
<td>3 column</td>
<td>4 column</td>
</tr>
<tr>
<td>iBTHX-M, iBTHX-SD</td>
<td>2 column</td>
<td></td>
</tr>
<tr>
<td>iPWX-W</td>
<td>2 column</td>
<td></td>
</tr>
<tr>
<td>iTX</td>
<td>3 column</td>
<td></td>
</tr>
<tr>
<td>iTH Controller</td>
<td>3 column</td>
<td></td>
</tr>
<tr>
<td>iVI</td>
<td>3 column</td>
<td>4 column</td>
</tr>
<tr>
<td>iSeries</td>
<td>1 column</td>
<td></td>
</tr>
<tr>
<td>IDRX/iDRN</td>
<td>1 column</td>
<td></td>
</tr>
<tr>
<td>INF-B</td>
<td>1 column</td>
<td></td>
</tr>
</tbody>
</table>

Wireless Devices

The "Auto" column shows number of columns per remote device that are possibly displayed.

The Full column shows number of columns allocated per device for the "Full" spreadsheet, which will be able to display all data for all active devices.

<table>
<thead>
<tr>
<th>Networked Product</th>
<th>Auto</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>zSeries Receiver and Remotes</td>
<td>1 to 4 column / device</td>
<td>4 column / 32 device</td>
</tr>
<tr>
<td>wiSeries with zED Remotes</td>
<td>1 to 2 column / device</td>
<td>2 column / 32 device</td>
</tr>
<tr>
<td>UWTC REC-3 and Remotes</td>
<td>1 or 2 column / device</td>
<td>2 column / 32 device</td>
</tr>
<tr>
<td>wiSeries with UWTC Remotes</td>
<td>1 to 2 column / device</td>
<td>2 column / 32 device</td>
</tr>
</tbody>
</table>

The active wireless devices, when shown in the Excel application, will be shown with the device number and the units returned.
4.8 Mail Notifier Software
For complete information of how to use the Mail Notifier software, click on the Help menu of the main window.

The Mail Notifier software generates email notifications for alarm conditions. Users can be notified automatically of alarm conditions monitored via internet connections throughout the world. By use of the email forwarding of alarm conditions, alarm conditions can be monitored on a network isolated from the internet and forwarded to connections on the Internet.

The Mail Notifier utility operates under Windows 98, NT 4.0, 2000, and XP in conjunction with existing email that supports the MAPI messaging interface. If MS Outlook™ has been loaded, the MAPI support should be available.

4.8.1 Installation
The Mail Notifier must be loaded on a computer running Microsoft™ Windows (versions specified earlier) using an email program that provides MAPI access. Network access must be available between this computer and the Receiver. Network access must also be available from this computer to the appropriate email server and from the email server to the recipient's email server.

![Figure 4.22 Mail Notifier Main Window](image-url)
4.8.2 Program Options Setup and Configuration

Complete program setup requires:

- Entering a recipient for the email
- Specifying connection details to MAPI services.
- Defining alarms for devices, and selecting how and when the email will be active.

Figure 4.23 Mail Notifier Profile Setup

Email Address Setup

The email addresses must be entered using individual addresses or alias. Select "Options" from the "View" menu and enter the email addresses on the "Send To" screen. This will be the list of email addresses to which alarm notifications will be sent.

Email Setup

The Mail Notifier is compatible with original MS Outlook™ and Outlook™ 2002 to 2005. The Mail Notifier will attempt to automatically identify whether the Outlook is a newer version. A red bar appears under the Mail Notifier splash window to confirm that the detection of the 2002 or newer version is acceptable. With the newer versions, no additional steps should be taken to enable the connection between the Mail Notifier and the Email server.

MS Outlook tends to require that the users respond to a "login box" in order for email access to be activated for Mail Notifier. Some other email clients may allow for Mail Notifier to gain access without user login, as may be desired for a system recovering from a power outage. See the Help files for more information.
4.8.3 Device Setting and Configuration

Make sure that the Receiver is configured (using web access, see Figure 4.17) to the settings below.

TCP Connection = any value from 1 to 5

Port number = 2000 (other values may be acceptable as long as Mail Notifier is setup with the same Port number).

Then on the Mail Notifier Alarm Editor:

1) Set the "IP address" (for example **192.168.1.200**).
2) Specify "Socket Number" **2000**.
3) Set the "Address/RS485 Unit" to the Device ID number for a Connector/Transmitter.
4) Set the "Reading Cmd" using general commands in the Table below.
5) Define the **Alarm Configuration** (High/Low, High value, or Low value).

 Specify **Email Interval**. This determines how many seconds each subsequential alarm notification will be sent.

 Determine **Monitor interval**. This establishes the interval or time resolution in seconds for which readings will be obtained from the device.

<table>
<thead>
<tr>
<th>Desired Value to Monitor</th>
<th>Reading Cmd string</th>
<th>Actual Command String (see Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading A</td>
<td>zRdgA</td>
<td>ERDB003</td>
</tr>
<tr>
<td>Reading B</td>
<td>zRdgB</td>
<td>ERDB003</td>
</tr>
<tr>
<td>Reading C</td>
<td>zRdgC</td>
<td>ERDB003</td>
</tr>
<tr>
<td>Battery voltage (mV)</td>
<td>zBatt</td>
<td>EQPE003</td>
</tr>
<tr>
<td>Signal Level</td>
<td>zSignal</td>
<td>EQPE003</td>
</tr>
</tbody>
</table>

1. The devices are configured in Mail Notifier with symbolic commands rather than actual device commands.
2. zRdgA with RS485 Device Unit # as 3, for example, is sent as ERDB003.
3. "Reading A" will be the first value returned for a device in response to a command such as ERDB003.
4.8.3 Device Setting and Configuration (continued)

![Figure 4.24 Mail Notifier Device Setting](image)

4.8.4 Sending Text Messages to a Cell Phone

Once you install the Mail Notifier Software and configure it to work with any of our networking products, you can use the following format to have Mail Notifier send a text message to your cell phone. Since most cell phones are capable of receiving text messages you just need to find the correct email format for your cell phone provider and use it within the Mail Notifier environment.

- T-Mobile phone_number@tmomail.net
- Virgin Mobile phone_number@vmobl.com
- AT&T phone_number@txt.att.net
- Sprint phone_number@messaging.sprintpcs.com
- Verizon phone_number@vtext.com
- Nextel phone_number@messaging.nextel.com

“phone_number” is your 10 digit cell phone number.
PART 5
ENVIRONMENT / OPERATING CONDITIONS

The Connector/Transmitter/Receiver are designed to be fixed mounted and operated in a clean and dry environment. Care should be taken to prevent the components of your wireless system from being exposed to moisture, toxic chemicals, extreme cold or hot temperature that are outside the specification listed in this manual.

The following is a list of basic good practice you should apply when operating this Wireless System.

1. Do not operate the wireless device in flammable or explosive environments.
2. Do not use the wireless device in medical, nuclear or other critical application where failure can cause damage or harm.
3. Always operate the wireless device within the recommended environmental limits specified in the manual.
4. Do not operate the wireless device with a battery or AC adapter other than what’s supplied or specified in this manual or on the battery compartment label.
5. Keep each wireless device at least 8 inches (20 cm) from other radio transmitters, antennas, and people.
6. The FCC approval for this device specifies the specific antenna supplied with this device.

5.1 General Deployment Guidelines

1. Position Receiver in a central location. When multiple Connector/Transmitters are in operation, position your Receiver in a central space if possible in equal distance to each Connector/Transmitter.
2. Test your system before permanent mounting. Try to move the devices to different location around and mounting angles to determine what installation achieves the best signal strength before permanently mounting the Connector/Transmitter.
3. Move your system components higher off the floor and away from exterior walls. The closer the Connector/Transmitter/Receiver are, the greater the interference and lose of signal strength will be.
4. Maintain a line-of-sight between antennas and keep Fresnel zone free of obstruction. See Figure 5.2.
5. Maintain a constant ambient temperature environment. Exposing your system components to extreme cold or hot temperatures, or sudden changes in ambient conditions will have an effect on the performance of your system.
6. As a general rule in buildings, head height or above is preferred. On the other hand, Connector/Transmitter which stays close to the floor may have their range reduced by 50% to 90%.
5.1 General Deployment Guidelines (continued)

7. Where possible, try to ensure an uninterrupted line-of-sight between nodes. Avoid obscuring objects (e.g. metal pillars, posts, sign) near the antenna. A close object obscures a wider range of solid angle.

8. It is important to understand that the environment may change over time due to new equipment or machinery being installed, building construction, etc. If new obstacles exist between the Connector/Transmitter and Receiver, antenna angle may need to be re-adjusted and/or the unit has to be relocated.

9. An IEEE 802.15.4 wireless network will not work under water. Wet condition (e.g. in heavy rainfall) may exhibit some degradation. In most cases, water droplets on or close to the antenna are more serious than the rain itself. Humidity can affect radio performance as well.

10. Reduced performance scenario:
 a. A large building may have few obstructions between nodes but large amount of metallic paneling that cause reflections.
 b. A small domestic installation may have numerous brick walls between nodes in individual rooms.
 c. An office building may have metalized dry-wall partitions together with mezzanine ceilings.

![Figure 5.1 Operation in Buildings](image)

Data is sent through radio signal at 2.4 GHz. Radio signals are electromagnetic waves, hence the signal becomes weaker the further it travels.

While radio waves can penetrate some solid materials like a wall, they can diminish more than when a direct line-of-sight between the transmitting and receiving antenna exist.

Therefore, it is generally a good idea to place Receiver at the center while Connector/Transmitters are located about the same distance away from it. If possible, keeping clearance around the line of site will improve performance as well.
5.2 With Line-of-Sight

When installing the Receiver it is important to position your device in such a way to optimize the antenna location within what’s known as the "Fresnel Zone". The Fresnel Zone can be thought of as a football-shaped invisible tunnel between two locations that provides a path for RF signals between the Connector/Transmitter and the Receiver.

In order to achieve maximum range, the football-shaped path in which radio waves travel must be free of obstructions. Obstacles in the path (especially metal) will decrease the communication range between the Connector/Transmitter and Receiver.

Also, if the antennas are mounted just barely off the ground or below the ceiling, over half of the Fresnel zone ends up being obstructed resulting in significant reduction in range.

Below is the calculated radius of the football-shaped tunnel for different distance range:

<table>
<thead>
<tr>
<th>Distance (feet)</th>
<th>Radius (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3.2</td>
</tr>
<tr>
<td>200</td>
<td>4.5</td>
</tr>
<tr>
<td>300</td>
<td>5.5</td>
</tr>
</tbody>
</table>

It is recommended that within the tunnel of the above radius, at least 60% of space is free of obstruction.

Since signal reaches destination directly in a line-of-sight situation, it is important to adjust antenna properly to achieve maximum performance.

Antenna for the Receiver and Connector/Transmitter should be perpendicular to the plane where Receiver and Connector/Transmitter is located.
5.3 Without Line-of-Sight
When line-of-sight is not possible, signal penetrates and is reflected by different objects to reach the destination. Therefore, it is important to learn about how these materials would affect signal propagation.

Depending on the thickness, moisture content and angle of incidence, a wall may allow between 1% and 25% of the radio power to pass through.

Metal panel or metalized glass window will not allow much radio power to pass through. Signal will be reflected if the panel is a mirror.

Some radio power may propagate through small holes in the panel or around metal edges through the process of diffraction.

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Possible Signal Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood, Plaster, Sheetrock, Fiberglass</td>
<td>0 to 10%</td>
</tr>
<tr>
<td>Uncoated Glass w/out Metal</td>
<td></td>
</tr>
<tr>
<td>Brick, Pressboard</td>
<td>5 to 35%</td>
</tr>
<tr>
<td>Reinforced Concrete</td>
<td>10 to 90%</td>
</tr>
<tr>
<td>Metal Walls, Metal Doors, Elevators, Metal Piping, Metal Stair Cases, Metal Mesh, Metal Screening</td>
<td>90 to 100%</td>
</tr>
</tbody>
</table>

Figure 5.3 Materials in Buildings

In a non-line-of-sight situation at 2.45 GHz, it is possible to move the receive antenna only 1 to 1 1/2” (3 to 4 cm) and see signal strength varies from 6 dB to -20 dB due to multiple signal reflection path. Therefore, there should be about 20 dB path loss margin to take signal fading into account.

5.4 Casing and Closure Around the Antenna
1. Metallic structure should be kept at least 0.8” (2 cm), although 2.4” (6 cm) is recommended away from the antenna.
2. Any casing that encloses the antenna should be plastic. In addition, it is also wise to avoid plastic case with dark fillers or colorants.
PART 6
SPECIFICATIONS

INTERFACE SPECIFICATIONS
Ethernet: Standards Compliance IEEE 802.3 10Base-T (RJ45)
Supported Protocols: TCP/IP, ARP, ICMP, DHCP, DNS, HTTP, and Telnet
LED Indicators: Network Activity, Network Link, Diagnostics, Receive and Power
Management: Device configuration and monitoring through embedded WEB server
Embedded WEB Server: Serves WEB pages (Java™ Applets) containing real-time data and live updated charts within definable time intervals.

WIRELESS COMMUNICATION
Standard: IEEE 802.15.4, DSSS
Frequency: 2.4 GHz (2410 MHz), 12 Channels
Network Topology: Star Topology
Radio Power Output: 100 mW (20 dBm), 10 mW (10 dBm)

Limitations on Equivalent Isotropic Radiated Power (EIRP) levels in the European Community and other countries applies. An improper combination of power level can result in an EIRP above the allowed amount per regulations. See Appendix H.

Data Rate: Bit rate 250 Kp/s; Symbol rate 62.5 Symbol/s; Chip rate 2000 kchip/s
Modulation: Orthogonal Quaternary Phase Shift Keying (O-QPSK)
Receiver Sensitivity: -100 dBm
Range: The range depends on the specific Connector/Transmitter used. Refer to the UWTC Manual for more specifications.

The range assume a Line-of-Sight (LOS) between the Receiver and Connector/Transmitter without obstructions or interference at which the diagnostic signal strength web interface registers approximately 25%.

Antenna Frequency: 2400 to 2500 Mhz
Impedance: 50 ohm
Connector: Reverse Polarity SMA Plug

POWER
Power Input: 9 to 12 Vdc
Consumption: 2.5 W max.
Safety Qualified ac Power Adapter (included)
Nominal Output: 9 Vdc @ 0.5 A
Input: 100 to 240 Vac, 50/60 Hz
ENVIRONMENT

Operating Temperature: 0º to 70ºC (32º to 158ºF) 90% RH, non-condensing
AC Power Adapter: 0º to 40ºC (32º to 104ºF)
Storage Temperature: -40º to 125ºC (-40º to 257ºF)
Antenna, AC Adapter: -20º to 70ºC (-4º to 158ºF)

SAFETY & REGULATORY COMPLIANCE

Safety requirements under article 3.1a of the R&TTE

EMC: EN 301 489-1 V1.6.1:2005-09
Electromagnetic compatibility article 3.1.b of the R&TTE;
EN 301 489-17 V1.2.1:2002-08
Electromagnetic compatibility article 3.1.b of the R&TTE
EN 55022:2006 + A1:2007, Class B,
(CISPR 22 +A1:2005)

Radio: EN 300 328 V1.7.1:2006-10
Spectrum article 3(2) of the R&TTE

FCC: Part 15C, Class DTS Intentional radiator tested for 15.205,
15.209, 15.247(d), 15.215(c), 15.247(a)(2), 15.247(b),
15.247(e).
See Appendix H.

This device complies with part 15 of the FCC Rules.
Operation is subject to the following two conditions:
(1) This device may not cause harmful interference, and (2)
this device must accept any interference received, including
interference that may cause undesired operation.

The product herewith complies with the essential
requirements and other relevant provisions of the R&TTE
Directive 1999/5/EC, the EMC Directive 2004/108/EC, and
the Low Voltage Directive 2006/95/EC, and carries the CE-
marking accordingly.

The following Mark is affixed to this equipment.
See Appendix H. The declaration is available at the
website listed on the cover page of this manual.

GENERAL

Software: The software packages available for the Wireless System products are
iConnect (configuration software for the Ethernet interface), iLog (Excel-based software
for automatic data logging), and Mail Notifier (email alarm notification software).
PACKAGING

Figure 6.1 Dimensions of the Receiver

Version A: Metal Enclosure

Version B: New Plastic Enclosure
PART 7
FACTORY PRESET VALUES

<table>
<thead>
<tr>
<th>PRESET PARAMETERS</th>
<th>FACTORY DEFAULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>192.168.1.200</td>
</tr>
<tr>
<td>Gateway Address</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Device Host Name</td>
<td>z and last 4 digits from the MAC address</td>
</tr>
<tr>
<td>Login Password</td>
<td>12345678</td>
</tr>
<tr>
<td>Admin Password</td>
<td>000000000</td>
</tr>
<tr>
<td>DHCP</td>
<td>Disabled</td>
</tr>
<tr>
<td>Web Server</td>
<td>Enabled</td>
</tr>
<tr>
<td>TCP Connections</td>
<td>1</td>
</tr>
<tr>
<td>Port #</td>
<td>2000</td>
</tr>
<tr>
<td>Network ID</td>
<td>13106 (0x3332)</td>
</tr>
<tr>
<td>Channel</td>
<td>12</td>
</tr>
<tr>
<td>Name</td>
<td>UWTC-REC3</td>
</tr>
<tr>
<td>Connector/Transmitter Name</td>
<td>ABCDEFGH</td>
</tr>
<tr>
<td>Check Box</td>
<td>Checked</td>
</tr>
<tr>
<td>Update readings (seconds)</td>
<td>120 seconds</td>
</tr>
<tr>
<td>Temperature Unit</td>
<td>C</td>
</tr>
<tr>
<td>Offset1, Offset2, Offset3</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix A GLOSSARY

User of this manual should be familiar with following definitions:

ARP (Address Resolution Protocol) is a protocol for mapping an Internet Protocol address (IP address) to a physical machine address that is recognized in the local network. For example, the IP address in use today is an address that is 32-bits long. In an Ethernet local area network, however, addresses for attached devices are 48-bits long. (The physical machine address is also known as a Media Access Control or MAC address.) A table, usually called the ARP cache, is used to maintain a correlation between each MAC address and its corresponding IP address. ARP provides the protocol rules for making this correlation and providing address conversion in both directions.

Ethernet is a network protocol defined by the IEEE 802.3 standard. Ethernet-based networks use MAC Address rather than IP Address to exchange data between computers.

By using ARP and adding TCP/IP support, Ethernet devices may be connected as part of the Internet. An Ethernet LAN typically uses coaxial cable or special grades of twisted pair wires. The most commonly installed Ethernet systems are called 10BASE-T and provide transmission speeds up to 10 Mbps. Devices are connected to the cable and compete for access using a Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol.

IP (Internet Protocol) is the method or protocol by which data is sent from one computer to another on the Internet.

IP address (Internet Protocol address) is a 32-bit number that identifies each sender or receiver of information that is sent in packets across the Internet.

IP Netmask is a 32-bit pattern of bits used to determine which part of the IP address is the network portion and which part is the host portion.

MAC (Media Access Control) Address is your computer's unique hardware number. When you're connected to the Internet from your computer, a correspondence table relates your IP address to your computer's physical (MAC) address on the LAN.

Ping is a utility that tests the network connectivity. It is used to determine if the host is capable of exchanging information with another host.

Port number/Socket number is a way to identify a specific process to which an Internet or other network message is to be forwarded when it arrives at a server. It is a predefined address that serves as a route from the application to the Transport layer or from the Transport layer to the application of the TCP/IP system.

Sockets are a method for communication between a client program and a server program in a network and defined as "the endpoint in a connection." Information transferred across the Internet primarily occurs between sockets.

SMTP is the Simple Mail Transfer Protocol, an Internet standard for electronic mail (email) transfer across the Internet. SMTP clients usually use SMTP to send email messages by specifying the SMTP server. The email server uses SMTP to both send and receive email messages.

SNMP is the Simple Network Management Protocol to monitor devices connected to an Ethernet Network.

TCP/IP (Transmission Control Protocol/Internet Protocol) is the basic communication language or protocol of the Internet. When you are set up with direct access to the Internet, your computer is provided with a copy of the TCP/IP program just as every other computer that you may send messages to or get information from also has a copy of TCP/IP. TCP/IP often is used as a general term to indicate generic access to the Internet.

UDP/IP (User Datagram Protocol/Internet Protocol) is the TCP/IP standard protocol that allows an application program on one machine to send a datagram to an application program on another. The UDP can be either in Broadcast or Directed form. The Broadcast UDP transmits data to every node on the same network. The Directed UDP transmits data to one node only.
Appendix B

IP Address

An IP address is a unique 32-bit address assigned to a computer and includes:

- A network ID number identifying a network.
- A host ID number identifying a computer on the network.

All IP addresses have been divided into three smaller groups (classes) A, B and C

- **Class A** addresses have 8-bits of network ID and 24-bits of host ID. They can support a large number of hosts, approximately $2^{24} = 16,777,216$ computers per network.

 The IP addresses range in binary from $00000001.xxxxxxxx.xxxxxxxx.xxxxxxxx$ to $01111111.xxxxxxxx.xxxxxxxx.xxxxxxxx$

 The IP addresses range in decimal from 1.x.x.x to 127.x.x.x

 Class A network ID’s support a very large number of hosts.

- **Class B** addresses have 16-bits of network ID and 16-bits of host ID. They can support approximately $2^{16} = 65,536$ computers per network.

 The IP addresses range in binary from $10000000.00000000.xxxxxxxx.xxxxxxxx$ to $10111111.11111111.xxxxxxxx.xxxxxxxx$

 The IP addresses range in decimal from 128.0.x.x to 191.255.xxx.xxx

 Class B network ID’s support a medium number of hosts.

- **Class C** addresses have 24-bits of network ID and 8-bits of host ID. They can support approximately $2^8 = 256$ computers per network.

 The IP addresses range in binary from $11000000.00000000.00000000.xxxxxxxx$ to $11011111.11111111.11111111.xxxxxxxx$

 The IP addresses range in decimal from 192.0.0.xxx to 223.255.255.xxx

 Class C network ID’s support a small number of hosts.

The rest of the addresses are divided into two classes, D and E.

Class D networks are not assigned to the host. They are used for multicasting. The address range from 224.x.x.x to 239.x.x.x

Class E networks are experimental or reserved addresses. The address range from 240.x.x.x to 247.x.x.x
Appendix C IP Netmask

IP Netmask or Subnet Mask is a 32-bit pattern of ones and zeros used to determine network portion of an IP address from the host portion of the IP address. Subnet mask is a network ID that is created by borrowing bits from host portion of IP address and using them as part of a network ID. The table below shows a default subnet mask for address Classes A, B, and C. Each bit that is set to "1" in the subnet mask corresponds to the bit in the IP address that is to be used as the network ID. Each bit that is set to "0" in the subnet mask corresponds to a bit in the IP address that is to be used as the host ID.

<table>
<thead>
<tr>
<th>Address Class</th>
<th>Mask Binary Value</th>
<th>Mask Decimal Value or Dotted Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>11111111 00000000 00000000 00000000</td>
<td>255.0.0.0</td>
</tr>
<tr>
<td>Class B</td>
<td>11111111 11111111 00000000 00000000</td>
<td>255.255.0.0</td>
</tr>
<tr>
<td>Class C</td>
<td>11111111 11111111 11111111 00000000</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

If your network requires more network ID’s, you can extend the default subnet mask to include additional bits from the host ID. This allows for additional network ID’s within the network. The table below shows some examples of subnet masks and bits moved from the hosts ID to create a new subnet.

<table>
<thead>
<tr>
<th>Mask Dotted Notation</th>
<th>Mask Binary</th>
<th>Mask Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.0.0.0 (Default)</td>
<td>11111111 00000000 00000000 00000000</td>
<td>0</td>
</tr>
<tr>
<td>255.192.0.0</td>
<td>11111111 11000000 00000000 00000000</td>
<td>2</td>
</tr>
<tr>
<td>255.224.0.0</td>
<td>11111111 11100000 00000000 00000000</td>
<td>3</td>
</tr>
<tr>
<td>255.240.0.0</td>
<td>11111111 11110000 00000000 00000000</td>
<td>4</td>
</tr>
<tr>
<td>255.248.0.0</td>
<td>11111111 11111000 00000000 00000000</td>
<td>5</td>
</tr>
<tr>
<td>255.252.0.0</td>
<td>11111111 11111100 00000000 00000000</td>
<td>6</td>
</tr>
<tr>
<td>255.254.0.0</td>
<td>11111111 11111110 00000000 00000000</td>
<td>7</td>
</tr>
<tr>
<td>255.255.0.0</td>
<td>11111111 11111111 00000000 00000000</td>
<td>8</td>
</tr>
<tr>
<td>255.255.128.0</td>
<td>11111111 11111111 10000000 00000000</td>
<td>9</td>
</tr>
<tr>
<td>255.255.192.0.0</td>
<td>11111111 11111111 11000000 00000000</td>
<td>10</td>
</tr>
<tr>
<td>255.255.252</td>
<td>..................</td>
<td>.</td>
</tr>
<tr>
<td>255.255.255.252</td>
<td>11111111 11111111 11111111 11111100</td>
<td>22</td>
</tr>
<tr>
<td>Class B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.255.0.0 (Default)</td>
<td>11111111 11111111 00000000 00000000</td>
<td>0</td>
</tr>
<tr>
<td>255.255.192.0</td>
<td>11111111 11111111 11000000 00000000</td>
<td>2</td>
</tr>
<tr>
<td>255.255.252</td>
<td>..................</td>
<td>.</td>
</tr>
<tr>
<td>255.255.255.252</td>
<td>11111111 11111111 11111111 11111100</td>
<td>14</td>
</tr>
<tr>
<td>Class C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.255.255.0 (Default)</td>
<td>11111111 11111111 11111111 00000000</td>
<td>0</td>
</tr>
<tr>
<td>255.255.255.192</td>
<td>11111111 11111111 11111111 11111100</td>
<td>2</td>
</tr>
<tr>
<td>255.255.255.254</td>
<td>..................</td>
<td>.</td>
</tr>
</tbody>
</table>

To determine the number of valid hosts ID’s remaining after subnetting, use the following equation: $2^n – 2$, where n is the number of octet digits left after the subnet mask.

49
<table>
<thead>
<tr>
<th>ASCII Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Binary No Parity</th>
<th>ASCII Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Binary No Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUL</td>
<td>00</td>
<td>00</td>
<td>00000000</td>
<td>@</td>
<td>64</td>
<td>40</td>
<td>01000000</td>
</tr>
<tr>
<td>SOH</td>
<td>01</td>
<td>01</td>
<td>00000001</td>
<td>A</td>
<td>65</td>
<td>41</td>
<td>01000001</td>
</tr>
<tr>
<td>STX</td>
<td>02</td>
<td>02</td>
<td>00000010</td>
<td>B</td>
<td>66</td>
<td>42</td>
<td>01000010</td>
</tr>
<tr>
<td>ETX</td>
<td>03</td>
<td>03</td>
<td>00000011</td>
<td>C</td>
<td>67</td>
<td>43</td>
<td>01000011</td>
</tr>
<tr>
<td>EOT</td>
<td>04</td>
<td>04</td>
<td>00000100</td>
<td>D</td>
<td>68</td>
<td>44</td>
<td>01000100</td>
</tr>
<tr>
<td>ENQ</td>
<td>05</td>
<td>05</td>
<td>00000101</td>
<td>E</td>
<td>69</td>
<td>45</td>
<td>01000101</td>
</tr>
<tr>
<td>ACK</td>
<td>06</td>
<td>06</td>
<td>00001010</td>
<td>F</td>
<td>70</td>
<td>46</td>
<td>01001010</td>
</tr>
<tr>
<td>BEL</td>
<td>07</td>
<td>07</td>
<td>00001011</td>
<td>G</td>
<td>71</td>
<td>47</td>
<td>01001011</td>
</tr>
<tr>
<td>BS</td>
<td>08</td>
<td>08</td>
<td>00010000</td>
<td>H</td>
<td>72</td>
<td>48</td>
<td>01001000</td>
</tr>
<tr>
<td>HT</td>
<td>09</td>
<td>09</td>
<td>00010001</td>
<td>I</td>
<td>73</td>
<td>49</td>
<td>01001001</td>
</tr>
<tr>
<td>LF</td>
<td>10</td>
<td>0A</td>
<td>00010010</td>
<td>J</td>
<td>74</td>
<td>4A</td>
<td>01001010</td>
</tr>
<tr>
<td>VT</td>
<td>11</td>
<td>0B</td>
<td>00010011</td>
<td>K</td>
<td>75</td>
<td>4B</td>
<td>01001011</td>
</tr>
<tr>
<td>FF</td>
<td>12</td>
<td>0C</td>
<td>00010100</td>
<td>L</td>
<td>76</td>
<td>4C</td>
<td>01001000</td>
</tr>
<tr>
<td>CR</td>
<td>13</td>
<td>0D</td>
<td>00010101</td>
<td>M</td>
<td>77</td>
<td>4D</td>
<td>01001011</td>
</tr>
<tr>
<td>SO</td>
<td>14</td>
<td>0E</td>
<td>00010110</td>
<td>N</td>
<td>78</td>
<td>4E</td>
<td>01001010</td>
</tr>
<tr>
<td>SI</td>
<td>15</td>
<td>0F</td>
<td>00010111</td>
<td>O</td>
<td>79</td>
<td>4F</td>
<td>01001011</td>
</tr>
<tr>
<td>DLE</td>
<td>16</td>
<td>10</td>
<td>00010100</td>
<td>P</td>
<td>80</td>
<td>50</td>
<td>01010000</td>
</tr>
<tr>
<td>DC1</td>
<td>17</td>
<td>11</td>
<td>00010101</td>
<td>Q</td>
<td>81</td>
<td>51</td>
<td>01010001</td>
</tr>
<tr>
<td>DC2</td>
<td>18</td>
<td>12</td>
<td>00010110</td>
<td>R</td>
<td>82</td>
<td>52</td>
<td>01010010</td>
</tr>
<tr>
<td>DC3</td>
<td>19</td>
<td>13</td>
<td>00010111</td>
<td>S</td>
<td>83</td>
<td>53</td>
<td>01010011</td>
</tr>
<tr>
<td>DC4</td>
<td>20</td>
<td>14</td>
<td>00011000</td>
<td>T</td>
<td>84</td>
<td>54</td>
<td>01010100</td>
</tr>
<tr>
<td>NAK</td>
<td>21</td>
<td>15</td>
<td>00011001</td>
<td>U</td>
<td>85</td>
<td>55</td>
<td>01010101</td>
</tr>
<tr>
<td>SYM</td>
<td>22</td>
<td>16</td>
<td>00011010</td>
<td>V</td>
<td>86</td>
<td>56</td>
<td>01010110</td>
</tr>
<tr>
<td>ETB</td>
<td>23</td>
<td>17</td>
<td>00011011</td>
<td>W</td>
<td>87</td>
<td>57</td>
<td>01010111</td>
</tr>
<tr>
<td>CAN</td>
<td>24</td>
<td>18</td>
<td>00011100</td>
<td>X</td>
<td>88</td>
<td>58</td>
<td>01011000</td>
</tr>
<tr>
<td>EM</td>
<td>25</td>
<td>19</td>
<td>00011101</td>
<td>Y</td>
<td>89</td>
<td>59</td>
<td>01011001</td>
</tr>
<tr>
<td>SUB</td>
<td>26</td>
<td>1A</td>
<td>00011110</td>
<td>Z</td>
<td>90</td>
<td>5A</td>
<td>01011010</td>
</tr>
<tr>
<td>ESC</td>
<td>27</td>
<td>1B</td>
<td>00011111</td>
<td>[</td>
<td>91</td>
<td>5B</td>
<td>01011100</td>
</tr>
<tr>
<td>FS</td>
<td>28</td>
<td>1C</td>
<td>00011110</td>
<td>\</td>
<td>92</td>
<td>5C</td>
<td>01011101</td>
</tr>
<tr>
<td>GS</td>
<td>29</td>
<td>1D</td>
<td>00011101</td>
<td>]</td>
<td>93</td>
<td>5D</td>
<td>01011101</td>
</tr>
<tr>
<td>RS</td>
<td>30</td>
<td>1E</td>
<td>00011110</td>
<td>^</td>
<td>94</td>
<td>5E</td>
<td>01011110</td>
</tr>
<tr>
<td>US</td>
<td>31</td>
<td>1F</td>
<td>00011111</td>
<td>_</td>
<td>95</td>
<td>5F</td>
<td>01011111</td>
</tr>
<tr>
<td>SP</td>
<td>32</td>
<td>20</td>
<td>00100000</td>
<td>`</td>
<td>96</td>
<td>60</td>
<td>01100000</td>
</tr>
<tr>
<td>!</td>
<td>33</td>
<td>21</td>
<td>00100001</td>
<td>a</td>
<td>97</td>
<td>61</td>
<td>01100001</td>
</tr>
<tr>
<td>"</td>
<td>34</td>
<td>22</td>
<td>00100010</td>
<td>b</td>
<td>98</td>
<td>62</td>
<td>01100010</td>
</tr>
<tr>
<td>#</td>
<td>35</td>
<td>23</td>
<td>00100011</td>
<td>c</td>
<td>99</td>
<td>63</td>
<td>01100011</td>
</tr>
<tr>
<td>$</td>
<td>36</td>
<td>24</td>
<td>00100100</td>
<td>d</td>
<td>100</td>
<td>64</td>
<td>01100100</td>
</tr>
<tr>
<td>%</td>
<td>37</td>
<td>25</td>
<td>00100101</td>
<td>e</td>
<td>101</td>
<td>65</td>
<td>01100101</td>
</tr>
<tr>
<td>&</td>
<td>38</td>
<td>26</td>
<td>00100110</td>
<td>f</td>
<td>102</td>
<td>66</td>
<td>01100110</td>
</tr>
<tr>
<td>’</td>
<td>39</td>
<td>27</td>
<td>00100111</td>
<td>g</td>
<td>103</td>
<td>67</td>
<td>01100111</td>
</tr>
<tr>
<td>(</td>
<td>40</td>
<td>28</td>
<td>00101000</td>
<td>h</td>
<td>104</td>
<td>68</td>
<td>01101000</td>
</tr>
<tr>
<td>)</td>
<td>41</td>
<td>29</td>
<td>00101001</td>
<td>i</td>
<td>105</td>
<td>69</td>
<td>01101001</td>
</tr>
<tr>
<td>+</td>
<td>42</td>
<td>2A</td>
<td>00101010</td>
<td>j</td>
<td>106</td>
<td>6A</td>
<td>01101010</td>
</tr>
<tr>
<td>,</td>
<td>43</td>
<td>2B</td>
<td>00101100</td>
<td>k</td>
<td>107</td>
<td>6B</td>
<td>01101011</td>
</tr>
<tr>
<td>-</td>
<td>44</td>
<td>2C</td>
<td>00101101</td>
<td>l</td>
<td>108</td>
<td>6C</td>
<td>01101100</td>
</tr>
<tr>
<td>.</td>
<td>45</td>
<td>2D</td>
<td>00101110</td>
<td>m</td>
<td>109</td>
<td>6D</td>
<td>01101101</td>
</tr>
<tr>
<td>/</td>
<td>46</td>
<td>2E</td>
<td>00101111</td>
<td>n</td>
<td>110</td>
<td>6E</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Appendix D ASCII Chart Continuation

<table>
<thead>
<tr>
<th>ASCII Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Ctrl Key Equiv.</th>
<th>Definition</th>
<th>ASCII Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Ctrl Key Equiv.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>47</td>
<td>2F</td>
<td></td>
<td>00101111 o</td>
<td>111</td>
<td></td>
<td>6F</td>
<td>01101111</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>48</td>
<td>30</td>
<td></td>
<td>00110000 p</td>
<td>112</td>
<td>70</td>
<td></td>
<td>01110000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>49</td>
<td>31</td>
<td></td>
<td>00110001 q</td>
<td>113</td>
<td>71</td>
<td></td>
<td>01110001</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>32</td>
<td></td>
<td>00110100 r</td>
<td>114</td>
<td>72</td>
<td></td>
<td>01110010</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>33</td>
<td></td>
<td>00110011 s</td>
<td>115</td>
<td>73</td>
<td></td>
<td>01110011</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>34</td>
<td></td>
<td>00110100 t</td>
<td>116</td>
<td>74</td>
<td></td>
<td>01110100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>35</td>
<td></td>
<td>00110101 u</td>
<td>117</td>
<td>75</td>
<td></td>
<td>01110101</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>54</td>
<td>36</td>
<td></td>
<td>00110110 v</td>
<td>118</td>
<td>76</td>
<td></td>
<td>01110110</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>37</td>
<td></td>
<td>00110111 w</td>
<td>119</td>
<td>77</td>
<td></td>
<td>01110111</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>38</td>
<td></td>
<td>00111000 x</td>
<td>120</td>
<td>78</td>
<td></td>
<td>01110000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>57</td>
<td>39</td>
<td></td>
<td>00111001 y</td>
<td>121</td>
<td>79</td>
<td></td>
<td>01110010</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>58</td>
<td>3A</td>
<td></td>
<td>00111010 z</td>
<td>122</td>
<td>7A</td>
<td></td>
<td>01110101</td>
<td></td>
</tr>
<tr>
<td>;</td>
<td>59</td>
<td>3B</td>
<td></td>
<td>00111101 {</td>
<td>123</td>
<td>7B</td>
<td></td>
<td>01111011</td>
<td></td>
</tr>
<tr>
<td><</td>
<td>60</td>
<td>3C</td>
<td></td>
<td>00111100</td>
<td></td>
<td>124</td>
<td>7C</td>
<td></td>
<td>01111100</td>
</tr>
<tr>
<td>=</td>
<td>61</td>
<td>3D</td>
<td></td>
<td>00111101</td>
<td></td>
<td>125</td>
<td>7D</td>
<td></td>
<td>01111101</td>
</tr>
<tr>
<td>></td>
<td>62</td>
<td>3E</td>
<td></td>
<td>00111110 ~</td>
<td>126</td>
<td>7E</td>
<td></td>
<td>01111110</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>63</td>
<td>3F</td>
<td></td>
<td>00111111 DEL</td>
<td>127</td>
<td>7F</td>
<td></td>
<td>01111111</td>
<td></td>
</tr>
</tbody>
</table>

ASCII Control Codes

<table>
<thead>
<tr>
<th>ASCII Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Ctrl Key Equiv.</th>
<th>Definition</th>
<th>ASCII Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Ctrl Key Equiv.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUL</td>
<td>00</td>
<td>00</td>
<td>Crtl @</td>
<td>Null Character</td>
<td>DC1</td>
<td>17</td>
<td>11</td>
<td>Crtl Q</td>
<td>Data Control 1 - XON</td>
</tr>
<tr>
<td>SOH</td>
<td>01</td>
<td>01</td>
<td>Crtl A</td>
<td>Start of Header</td>
<td>DC2</td>
<td>18</td>
<td>12</td>
<td>Crtl R</td>
<td>Data Control 2</td>
</tr>
<tr>
<td>STX</td>
<td>02</td>
<td>02</td>
<td>Crtl B</td>
<td>Start of Text</td>
<td>DC3</td>
<td>19</td>
<td>13</td>
<td>Crtl S</td>
<td>Data Control 3 - XOFF</td>
</tr>
<tr>
<td>ETX</td>
<td>03</td>
<td>03</td>
<td>Crtl C</td>
<td>End of Text</td>
<td>DC4</td>
<td>20</td>
<td>14</td>
<td>Crtl T</td>
<td>Data Control 4</td>
</tr>
<tr>
<td>EOT</td>
<td>04</td>
<td>04</td>
<td>Crtl D</td>
<td>End of Transmission</td>
<td>NAK</td>
<td>21</td>
<td>15</td>
<td>Crtl U</td>
<td>Negative Acknowledge</td>
</tr>
<tr>
<td>ENQ</td>
<td>05</td>
<td>05</td>
<td>Crtl E</td>
<td>Inquiry</td>
<td>SYN</td>
<td>22</td>
<td>16</td>
<td>Crtl V</td>
<td>Synchronous Idle</td>
</tr>
<tr>
<td>ACK</td>
<td>06</td>
<td>06</td>
<td>Crtl F</td>
<td>Acknowledge</td>
<td>ETB</td>
<td>23</td>
<td>17</td>
<td>Crtl W</td>
<td>End of Trans Block</td>
</tr>
<tr>
<td>BEL</td>
<td>07</td>
<td>07</td>
<td>Crtl G</td>
<td>Bell</td>
<td>CAN</td>
<td>24</td>
<td>18</td>
<td>Crtl X</td>
<td>Cancel</td>
</tr>
<tr>
<td>BS</td>
<td>08</td>
<td>08</td>
<td>Crtl H</td>
<td>Back Space</td>
<td>EM</td>
<td>25</td>
<td>19</td>
<td>Crtl Y</td>
<td>End of Medium</td>
</tr>
<tr>
<td>HT</td>
<td>09</td>
<td>09</td>
<td>Crtl I</td>
<td>Horizontal Tabulation</td>
<td>SUB</td>
<td>26</td>
<td>1A</td>
<td>Crtl Z</td>
<td>Substitute</td>
</tr>
<tr>
<td>LF</td>
<td>10</td>
<td>0A</td>
<td>Crtl J</td>
<td>Line Feed</td>
<td>ESC</td>
<td>27</td>
<td>1B</td>
<td>Crtl [</td>
<td>Escape</td>
</tr>
<tr>
<td>VT</td>
<td>11</td>
<td>0B</td>
<td>Crtl K</td>
<td>Vertical Tabulation</td>
<td>FS</td>
<td>28</td>
<td>1C</td>
<td>Crtl \</td>
<td>File Separator</td>
</tr>
<tr>
<td>FF</td>
<td>12</td>
<td>0C</td>
<td>Crtl L</td>
<td>Form Feed</td>
<td>GS</td>
<td>29</td>
<td>1D</td>
<td>Crtl]</td>
<td>Group Separator</td>
</tr>
<tr>
<td>CR</td>
<td>13</td>
<td>0D</td>
<td>Crtl M</td>
<td>Carriage Return</td>
<td>RS</td>
<td>30</td>
<td>1E</td>
<td>Crtl</td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>14</td>
<td>0E</td>
<td>Crtl N</td>
<td>Shift Out</td>
<td>US</td>
<td>31</td>
<td>1F</td>
<td>Crtl _</td>
<td>Unit Separator</td>
</tr>
<tr>
<td>SI</td>
<td>15</td>
<td>0F</td>
<td>Crtl O</td>
<td>Shift In</td>
<td>SP</td>
<td>32</td>
<td>20</td>
<td>Space</td>
<td></td>
</tr>
<tr>
<td>DLE</td>
<td>16</td>
<td>10</td>
<td>Crtl P</td>
<td>Data Link Escape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix E
iLog Error Messages

<table>
<thead>
<tr>
<th>Error #</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8003</td>
<td>User stopped logging readings.</td>
<td></td>
</tr>
<tr>
<td>-10005</td>
<td>Failed to find the Receiver.</td>
<td>Ethernet cable is disconnected, Receiver is powered off, connections across the firewall require longer “connection to socket time out” setting.</td>
</tr>
<tr>
<td>-10006</td>
<td>Windows socket was closed.</td>
<td></td>
</tr>
<tr>
<td>-10007</td>
<td>Windows socket error.</td>
<td>Wrong IP or wrong Port number was used.</td>
</tr>
<tr>
<td>-10008</td>
<td>The Receiver failed to respond to a request.</td>
<td>Wrong IP or wrong Port number was used.</td>
</tr>
<tr>
<td>-10011</td>
<td>Response came empty.</td>
<td>No data was sent.</td>
</tr>
<tr>
<td>-10012</td>
<td>Device responded with "Serial Time Out" string.</td>
<td>Possibly the iLog is configured for wrong product model.</td>
</tr>
<tr>
<td>-10014</td>
<td>Terminal Server Mode when the Port is 1000.</td>
<td>Try Port 2000 in iLog configuration.</td>
</tr>
<tr>
<td>-15100</td>
<td>Error on obtaining the temperature reading.</td>
<td>Possibly the iLog is configured for wrong product model.</td>
</tr>
</tbody>
</table>
ASCII / TELNET COMMANDS TABLE

<table>
<thead>
<tr>
<th>Command</th>
<th>Device / Group ID</th>
<th>Description (see notes below if *)</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERDB</td>
<td>Device ID: 000 – 031</td>
<td>Get sensor readings of Connector/Transmitter</td>
<td>Get reading for sensor 15, ERDB015</td>
</tr>
<tr>
<td>ERDR</td>
<td>Device ID: 000 – 031</td>
<td>Get individual reading or parameter: a-s *4</td>
<td>Get the first temp. reading for sensor 1, ERDR001c</td>
</tr>
<tr>
<td>ERDG</td>
<td>Group ID: 00A-00D, ALL *5</td>
<td>Get sensor readings of a group / groups of sensors</td>
<td>Get readings for all group B, ERDG00B</td>
</tr>
<tr>
<td>EQNF</td>
<td>Device ID: 000 – 031</td>
<td>Get name, status of Connector / Transmitter</td>
<td>Get name, for sensor 15, EQNF015</td>
</tr>
<tr>
<td>EQNG</td>
<td>Group ID00A-00D, ALL</td>
<td>Get name, status of a group / all groups of sensors</td>
<td>Get name, for all sensors, EQNGALL</td>
</tr>
<tr>
<td>EQPE</td>
<td>Device ID: 000 – 031</td>
<td>Get sleep period, battery voltage, signal strength, success, network address and parent address of Connector/Transmitter</td>
<td>Get sleep period, for sensor 15, EQPE015</td>
</tr>
<tr>
<td>EQPG</td>
<td>Group ID: 00A-00D</td>
<td>Get sleep period, battery voltage, signal strength, success, network address and parent address of a group / all groups of sensors</td>
<td>Get sleep period, of group B, EQPG00B</td>
</tr>
<tr>
<td>ESPD</td>
<td>Device ID: 000-031, ALL *1</td>
<td>Set the sleep period for Connector/Transmitter / all sensors</td>
<td>Set sensor 15’s sleep period to 30 seconds, ESPD015 30</td>
</tr>
<tr>
<td>ESNM</td>
<td>Device ID: 000 – 031 *2</td>
<td>Set the name of Connector/Transmitter</td>
<td>Set the name of sensor 15, ESNM015 z15</td>
</tr>
<tr>
<td>ERST</td>
<td>Device ID: 000 – 031, ALL</td>
<td>Reset Connector/Transmitter/all sensors</td>
<td>Reset all sensors, ERSTALL</td>
</tr>
<tr>
<td>CRST</td>
<td></td>
<td>Reset wireless network</td>
<td>Reset network, CRST</td>
</tr>
<tr>
<td>CSTS</td>
<td></td>
<td>Get personal network ID, channel, and the state of network stack</td>
<td>Get network information, CSTS</td>
</tr>
<tr>
<td>FACTORY AdminPassword</td>
<td></td>
<td>Sets the Receivers Ethernet configurations to Factory Defaults</td>
<td>FACTORY xxxxxxxxx xxxxxxxxx is the Admin Password</td>
</tr>
</tbody>
</table>

*1 Argument: 1 – 32767 (1 seconds to about 9 hours)
*2 Argument: xxxxxxxx (8 characters)
*3 and *4 See the following page
*5 Refer to Section 4.5.1 HTTPget using Port 2000
Appendix F ASCII / TELNET COMMANDS TABLE (continued)

* An example of the status of a Connector/Transmitter
Command: **EQNG00A**
Response: 7 EngrLAB 01000000 2.0

7 is the Device ID (DID) of the Connector/Transmitter.
EngrLAB is the name for the Connector/Transmitter.
“01000010” is the bitmap representation of the internal state. The meaning for each bit is described below (bit 7 starts from the left).

Bit 7 shows if the sensor is plugged into the Connector/Transmitter. ‘1’ means there is no sensing device detected.

Bit 6 shows if the communication to the Connector/Transmitter is lost. ‘1’ means there has not been any data received from that particular Connector/Transmitter for 1 minute or 4 times the update rate, whichever is a longer time interval.

Based on the above information, Connector/Transmitter # 7 has not been communicating with the Receiver.

Reading/parameter for ERDR commands

<table>
<thead>
<tr>
<th>Options (lower case)</th>
<th>Reading/parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Sequence number</td>
</tr>
<tr>
<td>b</td>
<td>Device type</td>
</tr>
<tr>
<td>c</td>
<td>First reading</td>
</tr>
<tr>
<td>d</td>
<td>Second reading</td>
</tr>
<tr>
<td>e</td>
<td>Third reading</td>
</tr>
<tr>
<td>i</td>
<td>Update rate</td>
</tr>
<tr>
<td>j</td>
<td>Battery voltage</td>
</tr>
<tr>
<td>k</td>
<td>Signal strength</td>
</tr>
<tr>
<td>l</td>
<td>Success rate</td>
</tr>
<tr>
<td>q</td>
<td>Name</td>
</tr>
<tr>
<td>r</td>
<td>Status</td>
</tr>
</tbody>
</table>

Connector/Transmitter Types

<table>
<thead>
<tr>
<th>Connector/Transmitter Types</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWTC B Type TC</td>
<td>221</td>
</tr>
<tr>
<td>UWTC C Type TC</td>
<td>222</td>
</tr>
<tr>
<td>UWTC E Type TC</td>
<td>224</td>
</tr>
<tr>
<td>UWRC</td>
<td>227</td>
</tr>
<tr>
<td>UWIR</td>
<td>228</td>
</tr>
<tr>
<td>UWTC J Type TC</td>
<td>229</td>
</tr>
<tr>
<td>UWTC K Type TC</td>
<td>230</td>
</tr>
<tr>
<td>UWTC N Type TC</td>
<td>233</td>
</tr>
<tr>
<td>UWRTD</td>
<td>235</td>
</tr>
<tr>
<td>UWTC R Type TC</td>
<td>237</td>
</tr>
<tr>
<td>UWTC S Type TC</td>
<td>238</td>
</tr>
<tr>
<td>UWTC T Type TC</td>
<td>2</td>
</tr>
</tbody>
</table>
Appendix G Frequently Asked Questions (FAQ)

Q: Java applet is not loaded?
A: Check Java Setting (icon in Control Panel). Make sure cache is disabled and your web browser is enabled for Java.

Q: I do not see any readings even if the applet is loaded, what could be wrong?
A:
1) Check if the battery is still good. You should be able to see the LED when you power the Connector/Transmitter on.
2) Make sure that there is no Connector/Transmitter with the same Device ID.

Q: What are the error messages that appear on the “Reading”, “Chart”, and “Diagnostic” pages?
Open
A: It means that the Connector/Transmitter cannot detect any process sensors. Check the connections for the process sensor.

Lost
A: It means that the Connector/Transmitter found the Receiver when it was powered on, but it cannot communicate with it currently.
Make sure the Receiver is powered on, DIP switch #1 (of the 8-DIP switch) on the Receiver is ON, and there is no obstructive objects blocking the communications path (see Section 5 for more details). If the obstructive object is only temporary, you will get the sensor readings once the path is open.

Q: Nothing happens when I click on the Data Logging button, what could be wrong?
A: The Java policy file is not setup properly. Make sure you get a Java policy file and copy it to a folder in the host computer. Then input the java runtime argument in Java Setup (Control Panel) with the appropriate path to the policy file. Close all web browser and re-open the applet again. See Java Setup Section.

Q: The Chart trend line for all the variables are broken, what could be wrong?
A: It indicates that a TCP connection to the Receiver was timed-out and no data was obtained. Make sure the Receiver is still on in the network and powered up. If there are too many broken lines, it may indicate that the network load is too heavy.

Q: The trend line for one of my sensors inside one Connector/Transmitter is broken, what could be wrong?
A: It indicates that TCP connection to the Receiver is good but the Receiver did not have any readings from the corresponding Connector/Transmitter. Make sure Connector/Transmitter is still blinking according to the update rate. It could be caused by a reset/power cycling of the Receiver as well.
Appendix G Frequently Asked Questions (FAQ) (continued)

Q: Nothing happens when I click on the Save Current Graph button, what could be wrong?
A: The Java policy file is not setup properly. Make sure you get a Java policy file and copy it to a folder in the host computer. Then input the java runtime argument in Java Setup (Control Panel) with the appropriate path to the policy file. Close all web browser and re-open the applet again. See Java Setup Section.

Q: Nothing is shown inside the Diagnostic page/applet, what could be wrong?
A: The first thing you want to try is to click your mouse right inside the box. Then minimize and restore the web browser. Try to move the scrollbar as well. If nothing works after about a minute, check the TCP connection to the Receiver.
Appendix H Warnings and Regulatory Information

In order to comply with FCC radio frequencies (RF) exposure limits, dipole antennas should be located at a minimum 7.9” (200mm) or more from the body of all persons. This device complies with part 15 rules. Operation is subject to the following two conditions:
1) this device may not cause harmful interference, and
2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits of a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and radiates radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference. However, there is no guarantee that interference will not occur. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase separation between the equipment and receiver.
- Connect the equipment to an outlet on a circuit different from which the receiver is connected.
- Consult dealer or an experienced radio/TV technician.

The following alert sign indicates that there are restrictions on usage of the equipment in regards to power limitations on Equivalent Isotropic Radiated Power (EIRP) levels in the European Community.

The following are user restrictions:

- Wideband Data Transmission Systems on the band 2400 to 2483.5 MHz in Europe is limited to a Maximum of 10 mW (10 dBm) for Direct Sequence Spread Spectrum (DSSS). See Annex 3 of ERC/REC 70-03, decision ERC/DEC/ (01)07.

- Combinations of power levels and antennas resulting in a radiated power level above 10 mW - EIRP for Direct Sequence Spectrum (DSSS) devices are considered as not compliant, and are not allowed for use within the European Community and other countries that have adopted the European R&TTE directive 1995/5/EC or the CEPT recommendation ERC/REC 70-03 or both.

- The users in Europe are instructed to change the default 20 dBm level to 10 dBm via the Web Interface of the Meter/Receiver.

<table>
<thead>
<tr>
<th>UNIT’S MAXIMUM POWER LEVELS AND ANTENNA GAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A (Regulatory 1000mW (30dBm))</td>
</tr>
<tr>
<td>2.0 - 2.2 dBi</td>
</tr>
<tr>
<td>EUROPE (Regulatory 10mW (10dBm)) (DSSS)</td>
</tr>
<tr>
<td>2.0 - 2.2 dBi</td>
</tr>
</tbody>
</table>

The default 20 dBm must be changed to 10 dBm to comply with power level regulations. The 0.5 dBm variation depends on the internal DC power used (3V, 3.3V, 3.7V max) of the different models.

Note: The following alert sign indicates that there are restrictions on usage of the equipment in regards to power limitations on Equivalent Isotropic Radiated Power (EIRP) levels in the European Community.

The following are user restrictions:

- Wideband Data Transmission Systems on the band 2400 to 2483.5 MHz in Europe is limited to a Maximum of 10 mW (10 dBm) for Direct Sequence Spread Spectrum (DSSS). See Annex 3 of ERC/REC 70-03, decision ERC/DEC/ (01)07.

- Combinations of power levels and antennas resulting in a radiated power level above 10 mW - EIRP for Direct Sequence Spectrum (DSSS) devices are considered as not compliant, and are not allowed for use within the European Community and other countries that have adopted the European R&TTE directive 1995/5/EC or the CEPT recommendation ERC/REC 70-03 or both.

- The users in Europe are instructed to change the default 20 dBm level to 10 dBm via the Web Interface of the Meter/Receiver.

<table>
<thead>
<tr>
<th>UNIT’S MAXIMUM POWER LEVELS AND ANTENNA GAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A (Regulatory 1000mW (30dBm))</td>
</tr>
<tr>
<td>2.0 - 2.2 dBi</td>
</tr>
<tr>
<td>EUROPE (Regulatory 10mW (10dBm)) (DSSS)</td>
</tr>
<tr>
<td>2.0 - 2.2 dBi</td>
</tr>
</tbody>
</table>

The default 20 dBm must be changed to 10 dBm to comply with power level regulations. The 0.5 dBm variation depends on the internal DC power used (3V, 3.3V, 3.7V max) of the different models.
WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of one (1) year from the date of purchase. In addition to OMEGA’s standard warranty period, OMEGA Engineering will extend the warranty period for one (1) additional year if the warranty card enclosed with each instrument is returned to OMEGA.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA'S Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA'S WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA’s control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:
1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of product, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

© Copyright 2013 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

TRADEMARK NOTICE: ®, omega.com®, OMEGA®, and ™ are Trademarks of OMEGA ENGINEERING, INC.

PATENT NOTICE: This product is covered by one or more of the following patents: U.S. Pat. No. Des. 336,895; 5,274,577/ CANADA 2052599; 2052600 / ITALY 1249456; 1250938 / FRANCE BREVET No. 91 12756 / SPAIN 2039150; 2048066 / UK PATENT No. GB2 249 837; GB2 248 954 / GERMANY DE 41 34398 C2. Other US and International Patents pending or applied for.
Where Do I Find Everything I Need for Process Measurement and Control?
OMEGA...Of Course!
Shop on line at omega.com

TEMPERATURE
☑ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
☑ Wire: Thermocouple, RTD & Thermistor
☑ Calibrators & Ice Point References
☑ Recorders, Controllers & Process Monitors
☑ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
☑ Transducers & Strain Gauges
☑ Load Cells & Pressure Gauges
☑ Displacement Transducers
☑ Instrumentation & Accessories

FLOW/LEVEL
☑ Rotameters, Gas Mass Flowmeters & Flow Computers
☑ Air Velocity Indicators
☑ Turbine/Paddlewheel Systems
☑ Totalizers & Batch Controllers

pH/CONDUCTIVITY
☑ pH Electrodes, Testers & Accessories
☑ Benchtop/Laboratory Meters
☑ Controllers, Calibrators, Simulators & Pumps
☑ Industrial pH & Conductivity Equipment

DATA ACQUISITION
☑ Data Acquisition & Engineering Software
☑ Communications-Based Acquisition Systems
☑ Plug-in Cards for Apple, IBM & Compatibles
☑ Datalogging Systems
☑ Recorders, Printers & Plotters

HEATERS
☑ Heating Cable
☑ Cartridge & Strip Heaters
☑ Immersion & Band Heaters
☑ Flexible Heaters
☑ Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL
☑ Metering & Control Instrumentation
☑ Refractometers
☑ Pumps & Tubing
☑ Air, Soil & Water Monitors
☑ Industrial Water & Wastewater Treatment
☑ pH, Conductivity & Dissolved Oxygen Instruments