DPG1000ADA Series

Digital Pressure Gauges with Alarms

M3362/0213 USET'S GUIDE

DPG1000DAR Series

Digital Pressure Gauges with Alarms M3363/0213

Ranges and Resolution

See table below. Call for special engineering units. Resolution is fixed for each engineering unit

	9		
Dual Alarms	Range		
DPG1000ADA-30V100	-30.0 inHg to 100.0 psig		
DPG1000ADA-30INHGVAC	0.00-30.00 InHg Vac		
DPG1000ADA-05G 0.00-5.000 psig			
DPG1000ADA-15A	0.00-15.00 psia		
DPG1000ADA-15G	0.00-15.00 psig		
DPG1000ADA-30A	0.0-30.00 psia		
DPG1000ADA-30G	0.0-30.00 psig		
DPG1000ADA-60G	0.0-60.00 psig		
DPG1000ADA-100A	0.0-100.0 psia		
DPG1000ADA-100G	0.0-100.0 psig		
DPG1000ADA-300G	0-300.0 psig		
DPG1000ADA-500G	0-500.0 psig		
DPG1000ADA-1KG	0-1000 psig		
DPG1000ADA-2KG	0-2000 psig		
DPG1000ADA-3KG	0-3000 psig		
DPG1000ADA-5KG	0-5000 psig		
Dual Alarms, 4-20 mA Output	Range		
DPG1000DAR-30V100	-30.0 inHg to 100.0 psig		
DPG1000DAR-30INHGVAC	0.00-30.00 InHg Vac		

DPG1000ADA-5KG	U-5000 psig		
Dual Alarms, 4-20 mA Output	Range		
DPG1000DAR-30V100	-30.0 inHg to 100.0 psig		
DPG1000DAR-30INHGVAC	0.00-30.00 InHg Vac		
DPG1000DAR-05G	0.00-5.000 psig		
DPG1000DAR-15A	0.00-15.00 psia		
DPG1000DAR-15G	0.00-15.00 psig		
DPG1000DAR-30A	0.0-30.00 psia		
DPG1000DAR-30G	0.0-30.00 psig		
DPG1000DAR-60G	0.0-60.00 psig		
DPG1000DAR-100A	0.0-100.0 psia		
DPG1000DAR-100G	0.0-100.0 psig		
DPG1000DAR-300G	0-300.0 psig		
DPG1000DAR-500G	0-500.0 psig		
DPG1000DAR-1KG	0-1000 psig		
DPG1000DAR-2KG	0-2000 psig		
DPG1000DAR-3KG	0-3000 psig		
DPG1000DAR-5KG	0-5000 psig		
Default Alaum Catting	Alaum Tura		

Default Alarm Setting	Alarm Type
-1N (default if not specified)	HI/LO Normal action
-2N	HI/HI Normal action
-3N	LO/LO Normal action
-1R	HI/LO Reverse action
-2R	HI/HI Reverse action
-3R	LO/LO Reverse action

Includes linearity, hysteresis, repeatability ±0.25% of full scale ±1 least significant digit

Display

4 readings per second nominal display update rate

4 digit LCD, 0.5" H main display

5 character 0.25" H alphanumeric lower display

Alarm 1 and Alarm 2 LCD indicators and bi-color (red/green) LEDs

Controls & Functions

SEL Select and display alarm trip points

TEST Alarm acknowledge, or toggle alarms when in test mode

Increase alarm setpoint when in setpoint adjust mode

Decrease alarm setpoint when in setpoint adjust mode Multi-level pass code protection for set-up and calibration

ADA and DAR Alarm Outputs

Programmable dual form C (SPDT) relay contacts for HI/LO, HI/HI, LO/LO, normal or reverse acting with 1% deadband, or adjustable trip and reset points for each relay, manual or auto acknowledge. 1A/24VDC, 0.5A/115VAC, non-inductive 120 milliseconds typical response time

DAR Retransmission Output

Updated approximately 16 times per second

4-20 mA DC current output

Output drive (compliance) determined by power source 6,553 counts (2.4 μA resolution) over sensor range

Calibration

Non-interactive, ±10% of range

All pressure and absolute models: zero, midpoint, span

All vacuum models: -span, -midpoint, zero

Vacuum/pressure models: -span, zero, +midpoint, +span

Power

8 to 24 VAC 50/60 Hz or 9 to 32 VDC

Gauge is on whenever power is applied

Designed for continuous operation

1.0 watt maximum power consumption

Use DPG1000-PS 12 VDC power supply kit to operate on 115 VAC

Gauge: 10 ounces, shipping wt.: 1 pound (approximately)

Extruded aluminum case, epoxy powder coated, ABS/ polycarbonate bezel (aluminum bezel optional), front and rear gaskets, polycarbonate label

Connection, Material, Media Compatibility

1/4" NPT male fitting, 316L stainless steel All wetted parts are 316L stainless steel

Overpressure

2 X pressure range for 3 psi to 2000 psi sensors 5000 psig for ranges using 3000 psig sensor 7500 psig for ranges using 5000 psig sensor Over-range display 112.5% FS: I - - - or I - - -Vacuum service: all 15 psi, 30 psia, all 100 psi, all 200 psi sensors Under-range display (non-vacuum sensors): -Err

Burst Pressure

4 X sensor pressure rating or 10,000 psi, whichever is less

Environmental

Storage temperature: -40 to 203°F (-40 to 95°C) -4 to 185°F (-20 to 85°C) Operating temperature: Compensated temperature: 32 to 158°F (0 to 70°C)

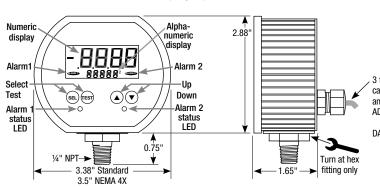
Shop online at

omega.com®

∩EOMEGA®.

omega.com e-mail: info@omega.com

For latest product manuals: omegamanual.info


ISO 9002 CERTIFIED CORPORATE QUALITY

MANCHESTER, UK

3 ft long, 22 AWG cables with stripped and tinned wire ends

ADA: 2 conductor and 6 conductor

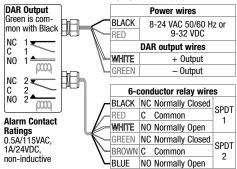
DAR: 4 conductor and

6 conductor

Installation Precautions

- Read these instructions before using the gauge. Configuration may be easier before installation. Contact the factory for assistance.
- These products do not contain user-serviceable parts. Contact us for repairs, service, or refurbishment.
- Gauges must be operated within specified ambient temperature ranges.
- Outdoor or wash down applications require a NEMA 4X gauge or installation in a NEMA 4X housing.
- ✓ Use a pressure or vacuum range appropriate for the application.
- $\ensuremath{\checkmark}$ Use fittings appropriate for the pressure range of the gauge.
- Due to the hardness of 316 stainless steel, it is recommended that a thread sealant be used to ensure leak-free operation.
- For contaminated media use an appropriate screen or filter to keep debris out of gauge port.
- Remove system pressures before removing or installing gauge.
- Install or remove gauge using a wrench on the hex fitting only. Do not attempt to turn gauge by forcing the housing.
- Do not exceed relay current and voltage ratings. Use an appropriate contactor for larger loads. Inductive inrush currents may be up to 5x normal current and may require an RC snubber.
- Good design practice dictates that positive displacement liquid pumps include protection devices to prevent sensor damage from pressure spikes, acceleration head, and vacuum extremes.
- 🗷 Avoid permanent sensor damage! Do not apply vacuum to nonvacuum gauges or hydraulic vacuum to any gauges.
- Avoid permanent sensor damage! NEVER insert objects into gauge port or blow out with compressed air.
- A Gauges are not for oxygen service. Accidental rupture of sensor diaphragm may cause silicone oil inside sensor to react with oxygen.
- NEVER connect the gauge wires directly to 115 VAC or permanent damage will result.

Types of Gauges


Gauge reference models read zero with the gauge port open. Compound ranges read vacuum in inches of Mercury, pressure in psig, and zero with the gauge port open.

1000 psi and higher sensors are a sealed reference type. They read zero with the gauge port open are internally referenced to 14.7 psi. They are functionally similar to gauge reference sensors.

Absolute reference gauges read zero at full vacuum and atmospheric pressure with the gauge port open. Note that readings of atmospheric pressure vary continuously.

Electrical Connections

The ADA 2-conductor cable or the DAR 4-conductor cable with the RED and BLACK leads is for the gauge power supply.

Connect to 8-24 VAC, 50/60Hz or 9-32 VDC. The gauge will operate on either AC or DC power and there is no need to observe polarity. An unregulated power supply can be used. Note that standard 24 VAC transformers with small loads may operate at voltages over the 24 VAC limit. The supply voltage, when within the stated ranges, has negligible effect on the gauge calibration. Operation below 9 VDC or 8 VAC may cause erratic or erroneous readings or output.

When operating multiple gauges from the same power supply, refer to the mA rating in the specifications to ensure adequate power. Route the wires away from heat sources and moving equipment.

Contact Rating and Protection

The alarm contacts are rated at 1A/24VDC or 0.5A/115VAC. Using mechanical relay contacts above their rating, or with large inductive loads, will shorten their life. For inductive loads, RC snubbers or arc suppression devices are required to protect the contacts. For large loads a higher capacity contactor is required.

No internal fusing is included in the alarm contact circuits. The alarm outputs should be externally fused by the user in applications where good design practice dictates.

Power

The gauge is powered on whenever a supply voltage is applied. Warm-up time is negligible. The gauge may be left on at all times. All configuration information is stored in non-volatile memory.

When power is first applied, the gauge proceeds through a startup sequence. During the startup sequence, relays are de-energized, the status LEDs are off, and the retransmission output is low (0 mA).

- 1. The firmware version number is displayed briefly
- 2. All active display segments are turned on for approx. 1 second.
- The full scale pressure is indicated for approx. 1 second while the engineering units and FS (full scale) are indicated for 1/2 second on the character display.
- 4. The display is tested again for approximately 1 second.

The gauge then proceeds to the normal operating mode.

For DAR models the retransmission output corresponds to the applied pressure.

Alarm Types

The factory default configuration is 1% fixed deadband mode, zero tare enabled, and no pass code required for test function.

Alarms may be configured to operate in fixed deadband mode or adjustable hysteresis mode.

In the fixed deadband mode, the alarm set/reset point deadband is factory set to 1% of full-scale. Each alarm may be configured as either HI or LO with a user adjustable alarm set point for each relay. In the adjustable hysteresis mode, two independent set and reset trip points are user adjustable for each relay. The set or reset state

at power up when between trip points is user configurable. Operation with Fixed Deadband Alarms

Each relay may be independently configured as a high or low alarm in User Set-up and operate as shown in the table below.

Normal acting, High alarm SP_H				
Pressure	< Set point – 1%FS	> Set point		
Relay coil	On	Off		
Alarm 1 continuity	C-NO (Red-White)	C-NC (Red-Black)		
Alarm 2 continuity	C-NO (Brown-Blue)	C-NC (Brown-Green)		
LED	Green	Red		
Nor	mal acting, Low alarm	SP_L		
Pressure	< Set point	> Set point + 1%FS		
Relay coil	Off	On		
Alarm 1 continuity	C-NC (Red-Black)	C-NO (Red-White)		
Alarm 2 continuity	C-NC (Brown-Green)	C-NO (Brown-Blue)		
LED	Red	Green		
Reve	erse acting, High alarm	SP_H		
Pressure	< Set point – 1%FS	> Set point		
Relay coil	Off	On		
Alarm 1 continuity	C-NC (Red-Black)	C-NO (Red-White)		
Alarm 2 continuity	C-NC (Brown-Green)	C-NO (Brown-Blue)		
LED	Green	Red		
Reverse acting, Low alarm SP_L				
Pressure	< Set point	> Set point + 1%FS		
Relay coil	On	Off		
Alarm 1 continuity	C-NO (Red-White)	C-NC (Red-Black)		
Alarm 2 continuity	C-NO (Brown-Blue)	C-NC (Brown-Green)		
LED	Red	Green		

The relevant LCD alarm icon will indicate an alarm condition.

The relevant bi-color LED will be illuminated green for a normal condition or red for an alarm condition.

The LED will blink at a slow rate until the alarm is acknowledged unless the annunciator mode was disabled in set-up.

Alarms may be configured to be automatically acknowledged when the alarm condition clears or configured to be manually acknowledged by pressing the TEST button.

The applied pressure, the value of Trip Point 1, and the value of Trip Point 2 may be selected for display as follows:

When the applied pressure is being displayed, press and release the SEL button. The Trip Point 1 value will be displayed with TRIP1 on the lower display.

When the Trip Point 1 value is being displayed, press and release the SEL button. The upper display will indicate the Trip Point 2 value with TRIP2 on the lower display.

When the Trip Point 2 value is being displayed, press and release the SEL button. The upper display will indicate the applied pressure with engineering units on the lower display.

Operation with Adjustable Hysteresis Alarms

In the adjustable hysteresis mode, two independent set and reset trip points used for each relay and operate as shown below.

	, ,				
Normal (Fail-safe) acting, RESET value less than SET					
Pressure	Low RESET point	≥ High SET point			
Relay coil	On	Off			
Alarm 1 continuity	C-NO (Red-White)	C-NC (Red-Black)			
Alarm 2 continuity	C-NO (Brown-Blue)	C-NC (Brown-Green)			
LED	Green	Red			
Normal (Fail-sa	afe) acting, SET value l	less than RESET			
Pressure	Low SET point	≥ High RESET point			
Relay coil	Off	On			
Alarm 1 continuity	C-NC (Red-Black)	C-NO (Red-White)			
Alarm 2 continuity	C-NC (Brown-Green)	C-NO (Brown-Blue)			
LED	Red	Green			
Reverse a	acting, RESET value les	s than SET			
Pressure	≤ Low RESET point	≥ High SET point			
Relay coil	Off	On			
Alarm 1 continuity	C-NC (Red-Black)	C-NO (Red-White)			
Alarm 2 continuity	C-NC (Brown-Green)	C-NO (Brown-Blue)			
LED	Green	Red			
Reverse acting, SET value less than RESET					
Pressure	Low SET point	≥ High RESET point			
Relay coil	On	Off			
Alarm 1 continuity	C-NO (Red-White)	C-NC (Red-Black)			
Alarm 2 continuity	C-NO (Brown-Blue)	C-NC (Brown-Green)			
LED	Red	Green			
Power-up relay state when between SET and RESET					
Config. set to SP_L	RESET				
Config. set to SP_H	SET				

The LEDs indicate green for a RESET state and red for a SET state. Refer to the table for output states as a function of applied pressure. If the gauge is configured for alarms, ALARM1 and ALARM2 will be

indicated when alarm conditions exist, and the associated LEDs will blink to indicate unacknowledged alarm conditions.

Alarms may be configured to be automatically acknowledged when

the alarm condition clears or configured to be manually acknowledged by pressing the TEST button.

The applied pressure, the SET trip points, and the RESET trip points may be selected for display as follows.

While the applied pressure is being displayed, press and release the SEL button. The upper display will indicate the value of set point 1 with 'SET_1' on the lower display.

While set point 1 is being displayed, press and release the SEL button. The upper display will indicate the value of reset point 1 with 'RST_1' on the lower display.

While reset point 1 is being displayed, press and release the SEL button. The upper display will indicate the value of set point 2 with 'SET_2' on the lower display.

While set point 2 is being displayed, press and release the SEL button. The upper display will indicate the value of reset point 2 with 'RST_2' on the lower display.

While the reset point 2 is being displayed, press and release the SEL button. The upper display will indicate the applied pressure and engineering units.

DAR Output Types

DAR models have a 4-20 mA retransmission output that corresponds to the applied pressure, except when in zero/tare mode, test mode, or during setup. Characteristics of the output types are listed below.

Sensor	Full vacuum	"0" on display	Full pressure
Gauge ref. pressure	n/a	4 mA	20 mA
Gauge ref. vacuum	20 mA	4 mA	n/a
Absolute reference	4 mA	4 mA	20 mA

See specifications for output resolution. Note that analog output resolution is always over the entire sensor range and is updated approximately 16 times per second.

The 4-20 mA output provides power to the current loop and output drive is determined by power source.

Pass Code Entry

A pass code is required to calibrate and configure the gauge. Additional levels of security may be enabled by defining separate pass codes for calibration, user configuration, and output test and set point adjust modes. See Changing the User-Defined Pass Code at the end of this manual to change pass codes.

Functions in user configuration mode

Restore original factory configuration

Enable/disable zero tare function

Fixed 1% deadband or adjustable hysteresis mode of operation Operation for blinking alarm LEDs

Set point modes (high alarm/low alarm or state at power-up) Relay action mode (normal/reverse)

DAR model retransmission output upper and lower limits Enable/disable a pass code for output test and set point adjust

When the gauge enters a mode requiring a pass code, the display indicates ____ with the first underscore blinking, and either TSTPC, CFGPC, CALPC on the lower display. All three pass codes are initially set to the factory default of 3510.

Note: During pass code entry the LEDs will be off and the gauge will not respond to changes in applied pressure. The relays will maintain their prior state. The gauge will automatically revert to the normal operation if no buttons are operated for approximately 15 seconds.

Use the \blacktriangle and \blacktriangledown buttons to set the left-most digit to 3.

Press and release the SEL button to index to the next position. The 3 will remain, and the second position will be blinking.

Use the ▲ and ▼ buttons to select 5.

Press and release the SEL button to index to the next position. 3 5 will remain, and the third position will be blinking.

Use the \blacktriangle and \blacktriangledown buttons to select 1.

Press and release the SEL button to index to the next position. 3 5 1 will remain, and the fourth position will be blinking.

Use the ▲ and ▼ buttons to select 0.

Press and release the SEL button to proceed.

If an incorrect pass code was entered, the gauge will to exit to the normal operating mode. Upon successful pass code entry, follow the steps in the appropriate section of this manual.

Note: To exit a mode at any time, press and hold the SEL button until the display indicates $\,---$.

Zero Tare Mode

If the gauge is not indicating zero with zero pressure applied but is within approximately 3% of full scale pressure of zero, you may tare the gauge to zero. This feature may be enabled or disabled. Absolute ranges are configured with this feature turned off.

From the normal operating mode with the gauge port open to atmosphere, press and hold both the \triangle and ∇ buttons and press the SEL button. The relay outputs and the retransmission output will hold the last value, and the visual indicators will be deactivated. Release all buttons when the display indicates 0 o 0 o 0.

The display will indicate a newly calculated zero tare value with Z OFF on the lower display. Note: If not within approximately 3% of zero, ErrO will be displayed. Press the SEL button to cancel the operation and return to normal operating mode without affecting any existing zero tare value.

To cancel and remove any existing zero tare value, press and release the \blacktriangledown button. The display will indicate zero. To restore the newly calculated zero tare value, press and release the \blacktriangle button.

To exit the Zero/Tare mode, press and release the SEL button. The gauge will return to normal operation.

Output Test Mode

From the normal operating mode, press and hold the TEST button and press the SEL button. Release both buttons when the display indicates ---- or $_$ $_$ $_$.

If pass code protection is enabled, the display indicates $_$ $_$ $_$ with the left-most underscore blinking, and TSTPC.

Enter the pass code as described in the Pass Code Entry section. While in the Test mode with no buttons pressed, the display will indicate the pressure with the engineering units blinking at a slow rate.

When the TEST button is pressed, the LED indicators and the relays will toggle to their opposite states. The display will indicate the preset test value with TEST on the lower display, and the retransmission output on DAR models will correspond to the test value.

Pressing the ▲ or the ▼ button while holding the TEST button will raise or lower the test value. Note that the gauge will not respond to changes in applied pressure while the TEST button is held.

When the TEST button is released, the display, the LED indicators, and the relay outputs will correspond to the applied pressure. Press and release the SEL button to exit the Output Test mode and return to normal operation.

Adjust Setpoint, Fixed Deadband Mode

"Set Point" is defined as the pressure value that will result in a change of state only from a normal to an alarm condition.

"Trip Point" is defined as the pressure value that will result in a change of state of alarm condition, and includes the effect of dead-band when returning from an alarm to a normal condition.

Set Point 1

From the normal operating mode press the SEL button to display Trip Point 1.

Press and hold the TEST button and press the SEL button. Release both buttons when the display indicates $\,-\,-\,-\,$

If pass code protection is enabled, before the unit enters the Set Point 1 Adjust Mode, the display initially indicates ____ with the left-most underscore blinking, and with TSTPC on the display. Enter the pass code as described in the Pass Code Entry section.

While in the Set Point 1 Adjust mode with no buttons pressed, the display will indicate Trip Point 1 with TRIP1 blinking at a slow rate on the lower display, and the alarm indicators and the retransmission output will correspond to the applied pressure.

To adjust the Set Point 1 value, press and hold the TEST button. The display will indicate Set Point 1 with SP1 on the lower display. Operate the ▲ and ▼ buttons to adjust Set Point 1 to the desired value. Release the TEST button to store the Set Point 1 value.

Note: The gauge will not respond to changes in applied pressure while the TEST button is pressed. The alarm relays, LEDs, LCD alarm icons, and the DAR output will maintain their prior states until the TEST button is released.

To exit the Set Point 1 Adjust mode and return to the normal operating mode, press and release the SEL button.

Set Point 2

From the normal operating mode press the SEL button twice to display Trip Point 2.

Press and hold the TEST button and press the SEL button. Release both buttons when the display indicates ----.

If pass code protection is enabled, before the unit enters the Set Point 2 Adjust Mode, the display initially indicates ____ with the left-most underscore blinking, and with TSTPC on the display. Enter the pass code as described in the Pass Code Entry section.

While in the Set Point 2 Adjust mode with no buttons pressed, the display will indicate Trip Point 2 with TRIP2 blinking at a slow rate on the lower display, and the alarm indicators and the retransmission output will correspond to the applied pressure.

To adjust the Set Point 2 value, press and hold the TEST button. The display will indicate Set Point 2 with SP2 on the lower display. Operate the ▲ and ▼ buttons to adjust Set Point 2 to the desired

value. Release the TEST button to store the Set Point 2 value.

Note: The gauge will not respond to changes in applied pressure while the TEST button is pressed. The alarm relays, LEDs, LCD alarm icons, and the DAR output will maintain their prior states until the TEST button is released.

To exit the Set Point 2 Adjust mode and return to normal operation, press and release the SEL button.

Adjust Trip Point, Adjustable Hysteresis Mode

From the normal operating mode press the SEL button to display the desired trip point (SET_1, RST_1, SET_2, or RST_2).

Press and hold the TEST button and press the SEL button. Release both buttons when the display indicates ---.

If pass code protection is enabled, before the unit enters the Set Point Adjust Mode, the display initially indicates ____ with the left-most underscore blinking, and with TSTPC on the lower display. Enter the pass code as described in the Pass Code Entry section.

While in the Trip Point Adjust mode with no buttons pressed, the display will indicate the trip point value with its designator (SET_1, RST 1, SET 2, or RST 2) blinking at a slow rate.

To adjust the displayed trip point value, press and hold the TEST button. The display will continue to indicate the trip point value.

Operate the ▲ and ▼ buttons to adjust the trip point to the desired value. The trip point value is stored when the TEST button is released. Note: The relays and indicators will not correspond to the applied pressure value until the TEST button is released.

To exit the Trip Point Adjust mode and return to the normal operating mode, press and release the SEL button.

User Configuration

From the normal operating mode, press and hold the TEST and the ${\color{red}\blacktriangle}$ buttons.

Then press the SEL button.

Release all buttons when the display indicates CFG.

Before the gauge enters the Configuration mode, the display initially

User Configuration—cont.

indicates $____$ with the first underscore blinking, and with CFGPC on the lower display.

Enter the pass code as described in the Pass Code Entry section.

Restore Factory Configuration

The upper display will be blank, and the lower display will display either USER_ or FCTRY.

If USER_ is selected, the existing user configuration will be retained and will be accessible for modification in the following steps. To select USER_, press and release the ▼ button. The lower display will indicate USER_.

If FCTRY is selected, the existing user configuration will be replaced by the configuration as it left the factory and will be accessible for modification in the following steps. To select FCTRY, press and release the \blacktriangle button. The lower display will indicate FCTRY.

Press and release the SEL button to move on to the next parameter.

Zero Tare Configuration

The upper display will be blank, and the lower display will indicate either ZTARE or NOZTR.

If ZTARE is selected, the user will be able to manually zero the gauge from the normal operating mode.

To select ZTARE, press and release the \blacktriangle button. The lower display will indicate ZTARE.

If NOZTR is selected the user will be prevented from zeroing the gauge from the normal operating mode. This is default setting for absolute reference ranges.

To select NOZTR, press and release the ▼ button. The lower display will indicate NOZTR.

Press and release the SEL button to move on to the next parameter.

Setpoint Type Configuration

The lower display will either indicate DBAND or ADJ_H.

If DBAND is selected, each output relay will operate with a 1% of full-scale deadband between set and reset.

To select DBAND, press and release the \blacktriangle button. The lower display will indicate DBAND.

If ADJ_H is selected, each output relay will have an adjustable SET point and an adjustable RESET point.

To select ADJ_H, press and release the ▼ button. The lower display will indicate ADJ_H.

Press and release the SEL button to move on to the next parameter.

Alarm Annunciator Function Selection

The lower display will indicate either A_ACK, M_ACK or NO_AN.

If A_ACK is selected, an alarm condition will be automatically acknowledged when the alarm condition clears. When an alarm condition occurs, the LED for that alarm will begin to blink red and will continue to blink red until it has been manually acknowledged or until the alarm condition clears. If an alarm is manually acknowledged, the LED will be steadily red while the alarm condition continues to exist. The LED will be steadily green whenever no alarm condition exists.

If M_ACK is selected, an alarm condition must be manually acknowledged. When an alarm condition occurs, the LED for that alarm will blink red if the alarm condition exists or green if the alarm condition no longer exists. The LED will continue to blink until it has been manually acknowledged by a pressing the TEST button. Once an alarm has been acknowledged, the LED will be steadily red while the alarm condition exists or green when the alarm no longer exists.

If NO_AN is selected, the LEDs will not blink. When an alarm condition occurs, the LED associated with that alarm will be illuminated steadily red if the alarm condition exists or green if the alarm condition no longer exists. In addition, the LCD display for ALARM1 and ALARM2 will not be displayed during alarm conditions.

Use the \triangle or ∇ buttons to cycle through the three choices. When the lower display indicates the desired annunciator action, press and release the SEL button to move on to the next parameter.

Alarm Action Selection (Fixed Deadband Configuration)

The lower display will display either SP1_L or SP1_H.

If SP1_L is selected Alarm 1 will be a low alarm. Alarm 1 will be SET when the pressure falls below Setpoint 1. Alarm 1 will be RESET when the pressure rises above Setpoint 1 plus the preset deadband. To select SP1_L, press and release the ▼ button. The lower display will indicate SP1_L.

If SP1_H is selected Alarm 1 will be a high alarm. Alarm 1 will be SET when the pressure rises above Setpoint 1. Alarm 1 will be RESET when the pressure falls below Setpoint 1 minus the preset deadband. To select SP1_H, press and release the ▲ button. The lower display will indicate SP1_H.

Press and release the SEL button to move to Alarm 2.

The upper display will be blank, and the lower display will display either SP2_L or SP2_H.

If SP2_L is selected Alarm 2 will be a low alarm. Alarm 2 will be SET

User Configuration—cont.

when the pressure falls below Setpoint 2. Alarm 2 will be RESET when the pressure rises above Setpoint 2 plus the preset deadband. To select SP2_L, press and release the ▼ button. The lower display will indicate SP2 L.

If SP2_H is selected Alarm 2 will be a high alarm. Alarm 2 will be SET when the pressure rises above Setpoint 2. Alarm 2 will be RESET when the pressure falls below Setpoint 2 minus the preset deadband. To select SP2_H, press and release the ▲ button. The lower display will indicate SP2_H.

Press and release the SEL button to move to the next parameter.

Relay Action Selection (Fixed Deadband Configuration)

The lower display will display either _NOR_ or _REV_.

If _NOR_ is selected, the output relay coils will be energized in the RESET state and de-energized in the SET state (normal action). To select _NOR_, press and release the ▼ button. The lower display will indicate _NOR_.

If _REV_ is selected, the output relay coils will be de-energized in the RESET state and energized in the SET state (reverse action). To select _REV_, press and release the \blacktriangle button. The lower display will indicate REV .

Press and release the SEL button to move on to the next parameter.

Relay Power Up State (Adjustable Hysteresis configuration) The lower display will display either SP1_L or SP1_H.

If SP1_L is selected and the gauge is powered up while the applied pressure is between the Output 1 SET and RESET trip points, Output 1 will begin in the RESET state. To select SP1_L, press and release the ▼ button. The lower display will indicate SP1_L.

If SP1_H is selected and the gauge is powered up while the applied pressure is between the Output 1 SET and RESET trip points, Output 1 will begin in the SET state. To select SP1_H, press and release the ▲ button. The lower display will indicate SP1_H.

Press and release the SEL button to move to Relay 2.

The upper display will be blank, and the lower display will display either SP2 L or SP2 H.

If SP2_L is selected and the gauge is powered up while the applied pressure is between the Output 2 SET and RESET trip points, Output 2 will begin in the RESET state. To select SP2_L, press and release the ▼ button. The lower display will indicate SP2_L.

If SP2_H is selected and the gauge is powered up while the applied pressure is between the Output 2 SET and RESET trip points, Output 2 will begin in the SET state. To select SP2_H, press and release the **\(\Delta\)** button. The lower display will indicate SP2_H.

Press and release the SEL button to move on to the next parameter.

Relay Action Selection (Adjustable Hysteresis Configuration) The upper display will be blank, and the lower display will display

either _NOR1 or _REV1.

If _NOR1 is selected, the Output 1 relay coil will be energized in the

HESET state and de-energized in the SET state (normal action). To select _NOR1, press and release the ▼ button. The lower display will indicate _NOR1.

If _REV1 is selected, the Output 1 relay coil will be de-energized in the RESET state and energized in the SET state (reverse action). To select _REV1, press and release the ▲ button. The lower display will indicate _REV1.

Press and release the SEL button to move on to Relay 2.

The upper display will be blank, and the lower display will display either $_NOR2$ or $_REV2$.

If _NOR2 is selected, the Output 2 relay coil will be energized in the RESET state and de-energized in the SET state (normal action). To select _NOR2, press and release the ▼ button. The lower display will indicate NOR2.

If _REV2 is selected, the Output 2 relay coil will be de-energized in the RESET state and energized in the SET state (reverse action). To select _REV2, press and release the ▲ button. The lower display will indicate _REV2.

Press and release the SEL button to move on to the next parameter.

Analog Output Range Lower Limit Adjust (DAR only)

The upper display will indicate the pressure value corresponding to the 4 mA retransmission output. The lower display will display RNGLO.

Use the ▲ and ▼ buttons to adjust the display to the desired value.

Press and release the SEL button to move on to the next parameter.

Analog Output Range Upper Limit Adjust (DAR only)

The upper display will indicate the pressure value corresponding to the 20 mA retransmission output. The lower display will display RNGHI

Use the ▲ and ▼ buttons to adjust the display to the desired value. Press and release the SEL button to move to the next parameter.

User Configuration—cont.

Output Test and Set Point Adjust Modes Pass Code Protection
The upper display section will be blank, and the lower section will
display either TSTPC or NOTPC.

To enable Output Test and Set Point Adjust Modes pass code protection, press and release the ▲ button. The lower display will indicate TSTPC.

To disable Output Test and Set Point Adjust Modes pass code protection, press and release the ▼ button. The lower display will indicate NOTPC.

Press and release the SEL button to save the configuration parameters and restart the unit. Note: The configuration parameters will not be saved if the procedure is interrupted before completion.

Calibration Preparation

The gauge is calibrated at the factory using equipment traceable to NIST. There is no need to calibrate the gauge before putting it in service. Calibration should only be performed by qualified individuals using appropriate calibration standards and procedures.

The calibration equipment should be at least four times more accurate than the gauge being calibrated. The calibration system must be able to generate and measure pressure/vacuum over the full range of the gauge. A vacuum pump able to produce a vacuum of 100 microns (0.1 torr or 100 millitorr) or lower is required for vacuum and absolute gauges.

For DAR models use an accurate volt or mA meter for calibration of the retransmission output.

Allow the gauge to equalize to normal room temperature (about 20 minutes minimum) before calibration.

Calibration

To enter the calibration mode from the normal operating mode with applied pressure being displayed, press and hold the TEST and the \blacktriangledown buttons. Then press the SEL button. Release all buttons when the display indicates CAL.

When the gauge enters the calibration mode, the display initially indicates ____ with the first underscore blinking, and with CALPC on the lower display.

Enter the pass code as described in the Pass Code Entry section.

Upon successful calibration pass code entry, the upper display will indicate the applied pressure in the configured engineering units.

The lower display of the display will alternate between CAL and the calibration region corresponding to the applied pressure (ZERO, +MID, +SPAN, MID, or SPAN).

Note: To store the calibration parameters and exit calibration mode at any time, press and hold the SEL button until the display indicates ----

Calibration of the Retransmission Output (DAR only)

Calibration of the retransmission output coordinates the retransmission output to the display indication, and is performed independently of applied pressure. It requires a direct physical measurement of the retransmission output.

Retransmission Output Low Value (DAR only)

Press and release the SEL button to step to the retransmission output low value calibration sequence, indicated by LCAL on the display.

Note: If the SEL button is held depressed for longer than 2 seconds, the display will change to indicate ———, and the gauge will exit the calibration mode when all buttons are released.

The upper display will indicate the pre-configured pressure corresponding to the retransmission output low value. The lower display will alternate between CAL and 4 mA.

Use the \blacktriangle and \blacktriangledown buttons to adjust the actual retransmission output to its low value.

Retransmission Output High Value (DAR only)

Press and release the SEL button to step to the retransmission output high value calibration sequence, indicated by HCAL on the display.

Note: If the SEL button is held depressed for longer than 2 seconds, the display will change to indicate ----, and the gauge will exit the calibration mode when all buttons are released.

The upper display will indicate the pre-configured pressure corresponding to the retransmission output high value. The lower display will alternate between CAL and 20 mA.

Use the ▲ and ▼ buttons to adjust the actual loop current to its high value.

Pressure Calibration

The pressure calibration procedure adjusts the display indication, and for DAR models also the retransmission output, to correspond to the actual applied pressure.

If the applied pressure is not being displayed, press and release the SEL button to step to the pressure calibration sequence, indicated by CAL on the display.

Calibration—cont.

Note: If the SEL button is held depressed for longer than 2 seconds, the display will change to indicate ----, and the gauge will exit the calibration mode when all buttons are released.

Zero calibration: Apply zero pressure. The lower display will alternate between CAL and ZERO. Use the ▲ and ▼ buttons to adjust the upper display to indicate zero.

Span calibration: Apply full-scale pressure. The lower display will alternate between CAL and +SPAN. Use the \blacktriangle and \blacktriangledown buttons to adjust the upper display to indicate the applied pressure value.

Midpoint Non-Linearity calibration: Apply 50% full-scale positive pressure. The lower display will alternate between CAL and +MID. Use the \blacktriangle and \blacktriangledown buttons to adjust the upper display to indicate the applied pressure value.

Negative Span calibration (bipolar and compound ranges only):
Apply full-scale negative pressure. The lower display will alternate between CAL and SPAN. Use the ▲ and ▼ buttons to adjust the upper display to indicate the applied pressure value.

Negative Midpoint Non-Linearity calibration (bipolar ranges only):
Apply 50% full-scale negative pressure. The lower display will alternate between CAL and MID. Use the ▲ and ▼ buttons to adjust the upper display to indicate the applied pressure value.

To store the calibration parameters and exit calibration mode, press and hold the SEL button until the display indicates ----

Changing the User-Defined Pass Codes

Configuration Pass Code

From the normal operating mode, press and hold the TEST and the buttons. Then press the SEL button. Release all buttons when the display indicates CFG.

Calibration Pass Code

From the normal operating mode, press and hold the TEST and the ▼ buttons. Then press the SEL button. Release all buttons when the display indicates CAL.

Test and Set Point Adjust Pass Code (optional)

From the normal operating mode, press and hold the TEST button. Then press the SEL button. Release all buttons when the display indicates ----

Before the unit enters the view or change pass code mode, the display initially indicates ____ with the first underscore blinking, and with CFGPC, CALPC, or TSTPC on the lower display.

Note: during pass code entry, the LEDs will be off and the gauge will not respond to changes in applied pressure. The output relays will maintain their prior states and the retransmission output will maintain its prior value. The gauge will automatically revert to normal operation if no buttons are operated for approximately 15 seconds.

Enter Factory Pass Code 1220

Use the ▲ and ▼ buttons to set the left-most digit to 1.

Press and release the SEL button to index to the next position. The 1 will remain, and the second position will be blinking.

Use the ▲ and ▼ buttons to select 2.

Press and release the SEL button to index to the next position. 1 2 will remain, and the third position will be blinking.

Use the ▲ and ▼ buttons to select 2.

Press and release the SEL button to index to the next position. 1 2 2 will remain, and the fourth position will be blinking.

Use the ▲ and ▼ buttons to select 0.

Press and release the SEL button to proceed. Note: If an incorrect pass code was entered, the gauge will exit to the normal operating mode.

Once the correct password has been entered, the display will indicate the existing pass code with CFGPC, CALPC, or TSTPC on the character segments.

Note: while in the pass code change mode, the LEDs will extinguish and the unit will not respond to changes in applied pressure and the output relays will be de-energized.

Operate the lacktriangle or lacktriangle button to select the first character of the calibration password.

When the correct first character is being displayed, press and release the SEL button to proceed to the next password character.

Repeat 1 & 2 above until the entire password is complete

To exit the User-Defined Pass Code change mode, press and hold the SEL button. Release the button when the display indicates --- and restarts in the normal operating mode.