FCC INFORMATION TO RADAR USERS

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

WARNING—Changes or Modifications not expressly approved by the Manufacturer could void the user's authority to operate the equipment.

Wiring Information
- Ground shield at one end only.
- All terminal block wiring must be rated for 250V.
- Power input wiring must be protected by a 15A double pole circuit breaker.
- Terminal is for use only with equipment which has no live parts which are accessible.
- Terminal is for use with equipment which maintains basic insulation from hazardous voltage under normal and single fault conditions.
- Connection used at the remote end of external circuit.

Recommended Wiring
For AC Sensor—
Power 3 Wire unshielded 22 AWG, 300 V
Current Output 1 Pair shielded 24 AWG, 300 V
Communication 1 Pair shielded 24 AWG, 300 V
For DC Sensor—
Power & Current output 3 Wire shielded 24 AWG, 300 V

Calibration — 4 -20 or 20 - 4 mA Output
FULL — Calibrate 20 mA or 4mA (Set Near Target)
1. Calibration mode LED color is Green.
 (for Radar Low Dielectric Materials has to be off)
2. Push button and hold until LED turns yellow (20 mA) or push button and hold until LED turns Red (4 mA)
3. Release button, observe LED flashes to acknowledge the calibration.

EMPTY — Calibrate 4 mA or 20 mA (Set Far Target)
1. Calibration mode LED color is Green.
 (for Radar Low Dielectric Materials has to be off)
2. Push button and hold until LED turns Red (4 mA) or push button and hold until LED turns Yellow (20 mA)
3. Release button, observe LED flashes to acknowledge the calibration.

For Radar to turn the Low Dielectric Materials operation mode ON and OFF (this mode is recommended for materials with dielectric constant lower than 4.)
1) To turn the Low Dielectric Materials ON. Push button and hold until LED goes OFF after the sequence of Yellow, Red and Turns OFF. The Low Dielectric Material operation is ON when the LED'S Green light blinks constantly.
2) To turn the Low Dielectric Materials OFF. Push button and hold until LED goes OFF after the sequence of Yellow, Red and Turns OFF. The Low Dielectric Material operation is OFF when LED is continuously Green.

Operation - An ultrasonic/electromagnetic pulse is transmitted from the sensor. The pulse travels to the surface being monitored and is reflected off this surface back to the sensor. The time of flight is divided by 2 and converted to an output signal directly proportional to the material level.
1) Load “Gateway PC Software” into your PC .
 (Select SETUP.EXE from installation CD and follow instructions on the screen.)
2) Click on START and under PROGRAMS select “Gateway PC”.
3) Select “Start Data Link”. You will see two bar graphs, displaying the last 8
 echoes & the current output . When PC is connected to the probe, the application header displays
 the Probe ID and Freq. For PC connected to the Radar the application header displays the radar range. Traffic light icon at the
 bottom of the screen indicates communication status to probe.
4) Pick “Tools” and select “Show Calibration Data”.
 Screen displays the following parameters,
 :Reset Max. Temperature (for ultrasonic probes)
 :Empty Tank Distance calibration
 :Full Tank Distance calibration-programmable with accuracy of 0.1"
 :Temperature Scale (for ultrasonic probes)
 :Low Dielectric Material (choose for low dielectric constant materials <4)
 :Pipe On/Off (select this for microwave probes operating in metal pipes)
 :Select Pipe Diameter (for microwave probes only)
5) Show Calibration Data
 Screen displays the following parameters,
 :Sensor I.D. with single probe is 2
 :Current Frequency -shows the operating frequency
 :Empty Tank Distance
 :Full Tank Distance
 :Probe Software Rev.
 :D. Link Protocol
 :Max Temperature - shows the max. temperature of environment (for ultrasonic sensors only)
 :Ntemp
6) Select Protocol :RS485/232
 :MODBUS RTU (Holding Register address is 40109 for Radar Probes and 40080 for Ultrasonic Probes.)
7) Fix point Calibration (the same as using the probe calibration Switch) is in the top left corner of the screen.
8) By selecting “Diagnostic” the screen displays all information on “errors”. Unhappy face icon at the screen bottom indicates sensor errors.
9) Echo chart displays information on stability of the echoes.
10) Echo Profile displays profiles of your ultrasonic probe . NOTE- when using this feature the probe is not in the measurement mode . To return to
 “measurement mode” exit the echo profile (select x). Wait until you get the Data Link OK (green light on the Probe Status LED). On the “echo profile” you
 will see a marker where the software picked up an echo and the distance to the target. To change target for different measurement, exit profile screen, wait
 for updated data, and go to echo profile. The marker will pick up the new target . Freeze screen and select any point on the graph by clicking mouse to
 display the distance to selected target.
11) Select Data Logging Excel format (default) on FILE menu to collect history data for current and temperature in MS Excel format. Path for data collection:
 C:\Program Files\um_probe\GATEWAYPC\DATA\yyyy mm \dd\sensorID\Data is collected for each sensor ID. The current is collected in 1 hour data
 files and temperature is collected in 24 hours data files. Use chart wizard in MS Excel to create the graph and view current and temperature data. The cur-
 rent data is collected every 0.5 second and temperature is collected every 1 minute.
Select Data Logging (for Sensor Viewer) on FILE menu to collect history data for current and temperature for Sensor Viewer display. Follow instruction on
Sensor Viewer Help menu.
12) Select AutoScan (only for networks) to collect data for all sensors connected in the network. Scanning time for one sensor is 30 seconds. Echo Profile display is disabled in Auto Scan mode.
13) For low dielectric constant materials such as oils choose Low Dielectric Material “On”.
14) Select PIPE ON in Tools for microwave propagation in metal pipes, after that click on Select Pipe Diameter in Tools to choose proper diameter of metal pipe.
RETURN REQUESTS / INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:
1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2005 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.