DMD1080, DMD1080-DC
DC Input Alarm Trips
M-5245/1114

Description
The DMD1080 accepts a DC voltage or current input and provide visual alarm indication and alarm relay contact outputs. 15 voltage and 9 current input ranges can be field-configured via external rotary and slide switches. Offset ranges such as 1-5 VDC and 4-20 mA are also included.

Heavy-duty relay contacts allow the module to directly control high capacity loads. Front-accessible potentiometers are used to adjust the alarm setpoint from 0 to 100% and the deadband from 1 to 100%.

The DMD1080 provides a single setpoint adjustment of the two DPST relay contacts. The alarm output can be field configured for Hi or LO operation, latching or non-latching, and normal or reverse acting. Deadband control can be adjusted from 1 to 100% and the alarm setpoint from 0 to 100%.

Sink/Source Input and Loop Supply
For maximum versatility, a current input can be selectively wired for sinking or sourcing. This allows the DMD1080 to work with powered or unpowered mA inputs. A regulated 15 VDC loop excitation supply can be used to power passive input devices eliminating the need for an additional DC loop supply.

Input and Alarm Status LEDs
The input LED varies in intensity with changes in the process input signal. A red/green bi-color alarm status LED visually indicate alarm status. These LEDs provide a quick visual status of your process at all times.

Output Test / Unlatch
A functional test button can be used to verify the alarm and system operation and also provides the additional function of unlatching the alarm when the latching mode has been selected. The output test button greatly aids in saving time during initial startup and troubleshooting.

Input Ranges
24 field selectable ranges via switch settings
See chart on next page
Voltage: 0-50 mVDC to 0-10 VDC
Bipolar Voltage: ±5 VDC or ±10 VDC
Current: 0-1 mA to 0-20 mA, 4-20 mA

Input Impedance and Burden
Voltage: 250 kΩ minimum
Current: 50 Ω typical
Voltage burden: 1 VDC at 20 mA current input

Isolation
1200 V isolation: power to input
600 VAC or 600 VDC common mode protection

Input Loop Power Supply
15 VDC ±10%, regulated, 25 mA
Max. ripple, less than 10 mVAC
May be selectively wired for sinking or sourcing mA input

LED Indicators
Variable brightness LED indicates input level and status
Bi-color red/green alarm LED indicates alarm status

Setpoint
12 turn potentiometer adjustable from 0 to 100% of span

Deadband
12 turn potentiometer adjustable from 1 to 100% of span

Response Time
70 milliseconds typical

Relay Output
Single setpoint dual DPST contact sets, field configurable
2 Form A (NO) and 2 Form B (NC) contact sets (8 terminals)
May be field wired for Form C operation

Relay Configurations
Switch selectable, any combination of Hi or LO
Latching or non-latching
Normal or reverse acting

Relay Contact Ratings
8 A @ 240 VAC resistive load (cos φ = 0.4)
8 A @ 30 VDC resistive load
3.5 A @ 30 VDC inductive load (L/R = 7 ms)
An RC snubber is recommended for inductive loads

Functional Test/Reset Button
Toggles relay to opposite state when pressed
Resets latching relay if latching relay mode is selected

Ambient Temperature Range and Stability
-10°C to +60°C operating ambient
Better than 1% of span over operating temperature range
Better than 0.02% of span per °C

Power
85-265 VAC, 50/60 Hz or 60-300 VDC, 2 W maximum
DC version: 9-30 VDC or 10-32 VAC 50/60 Hz, 2 W maximum

Housing
Mounts to standard 35 mm DIN rail
IP 40

Connectors
Four 4-terminal removable connectors
14 AWG max wire size

Dimensions
0.89” W x 4.62” H x 4.81” D
(22.5 x 117 x 122 mm)
Height includes connectors
Range Selection

It is generally easier to select ranges before installation. See the model/serial number label for module information, options, or if a custom range was specified.

Set input selector switch A to “I” for a current input or to “V” for a voltage input.

Switch settings B and C determine the input range.

Switch D determines the alarm configuration.

Electrical Connections

WARNING! All wiring must be performed by a qualified electrician or instrumentation engineer. See diagrams for terminal designations and wiring examples.

Avoid shock hazards! Turn power off to signal input, relay wiring, and module power before connecting or disconnecting wiring.

Module Power Terminals

Check white model/serial number label for module operating voltage to make sure it matches available power.

When using DC power, either polarity is acceptable, but for consistency with similar products, positive (+) can be wired to terminal 13 and negative (−) can be wired to terminal 16.

Signal Input Terminals

Polarity must be observed for input wiring connections. If the input does not function, check switch settings and wiring polarity.

Voltage inputs are connected as shown in the table below.

The input can be used with either sinking or sourcing milliamp devices. Only one device must provide power to the current loop.

For a transmitter with a current output, determine if it provides power to the current loop or if it must be powered by the DMD 1080 module. Use a multi-meter to check for voltage at the transmitter’s output terminals. Typical voltage may be in the range of 9 to 24 VDC. In this case, wire the device to terminals 9 and 11.

Relay Output Terminals

See wiring diagrams for connections. The module does not provide power to the relay contacts.

Inductive loads (motors, solenoids, contactors, etc.) will greatly shorten relay contact life unless an appropriate RC snubber is installed.

The DMD1080 operates two sets of relays in unison with a single setpoint. The dual DPST contact sets are in a Form A (NO) and a Form B (NC) configuration.

They may be field wired for Form C operation as required.

Alarm Configuration Settings

<table>
<thead>
<tr>
<th>Alarm Type</th>
<th>Latch</th>
<th>Action</th>
<th>Switch D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>No</td>
<td>Normal</td>
<td>2</td>
</tr>
<tr>
<td>HI</td>
<td>No</td>
<td>Reverse</td>
<td>6</td>
</tr>
<tr>
<td>HI</td>
<td>Yes</td>
<td>Normal</td>
<td>0</td>
</tr>
<tr>
<td>HI</td>
<td>Yes</td>
<td>Reverse</td>
<td>4</td>
</tr>
<tr>
<td>LO</td>
<td>No</td>
<td>Normal</td>
<td>3</td>
</tr>
<tr>
<td>LO</td>
<td>No</td>
<td>Reverse</td>
<td>7</td>
</tr>
<tr>
<td>LO</td>
<td>Yes</td>
<td>Normal</td>
<td>1</td>
</tr>
<tr>
<td>LO</td>
<td>Yes</td>
<td>Reverse</td>
<td>5</td>
</tr>
</tbody>
</table>

Input Configuration Settings

<table>
<thead>
<tr>
<th>Input Range</th>
<th>Switch</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50 mV</td>
<td>V</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-100 mV</td>
<td>V</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-200 mV</td>
<td>V</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-250 mV</td>
<td>V</td>
<td>C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-400 mV</td>
<td>V</td>
<td>B</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-500 mV</td>
<td>V</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-1 V</td>
<td>V</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-2 V</td>
<td>V</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-2.5 V</td>
<td>V</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-4 V</td>
<td>V</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1-5 V</td>
<td>V</td>
<td>3</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>0-5 V</td>
<td>V</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-10 V</td>
<td>V</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>±5 mV</td>
<td>V</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>±10 V</td>
<td>V</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0-1 mA</td>
<td>I</td>
<td>C</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0-2 mA</td>
<td>I</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-4 mA</td>
<td>I</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-8 mA</td>
<td>I</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-10 mA</td>
<td>I</td>
<td>2</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>0-10 mA</td>
<td>I</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0-16 mA</td>
<td>I</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4-20 mA</td>
<td>I</td>
<td>3</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>0-20 mA</td>
<td>I</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Type of Input Device

<table>
<thead>
<tr>
<th>Type of Input Device</th>
<th>− Terminal</th>
<th>+ Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor or transmitter with a voltage output.</td>
<td>9 (−)</td>
<td>11 (+)</td>
</tr>
<tr>
<td>Transmitter with a mA (current) output that provides power to the current loop. Typically a 3 or 4-wire device.</td>
<td>9 (−)</td>
<td>11 (+)</td>
</tr>
<tr>
<td>Transmitter with a mA (current) output that is unpowered. Typically a 2-wire device. DMD module provides loop power.</td>
<td>11 (−) Signal</td>
<td>10 (+15 V)</td>
</tr>
</tbody>
</table>

Relay Output Terminals

See wiring diagrams for connections. The module does not provide power to the relay contacts.

Inductive loads (motors, solenoids, contactors, etc.) will greatly shorten relay contact life unless an appropriate RC snubber is installed.

The DMD1080 operates two sets of relays in unison with a single setpoint. The dual DPST contact sets are in a Form A (NO) and a Form B (NC) configuration.

They may be field wired for Form C operation as required.

Test: Push to toggle relays to opposite state

Input LED: Variable brightness green LED indicates input level

Bi-Color Alarm LED

Green = non-alarm condition

Red = alarm condition

Deadband: Smaller = counterclockwise. Symmetrical about setpoint

Setpoint: Higher = clockwise

Current Sourcing Input

DMD1080 provides power to input loop. Typical when using a passive or unpowered transmitter or sensor.

Current Sinking Input

Typical of a system using a transmitter that is externally powered and provides power to the loop.

Current Sinking Input with Separate Power Supply

Typical of a system using a passive transmitter and a loop power supply to power the loop.

Voltage Input

Typical of a system using a transmitter that has a voltage output.

Module Power Terminals

- **13:** Power AC or DC +
- **14:** Earth Ground
- **16:** Power AC or DC −

DMD1080:

- 85-265 VAC, 50/60 Hz or 60-300 VDC

DMD1080-DC:

- 9-30 VDC or 10-32 VAC 50/60 Hz
Mounting
The housing clips to a standard 35 mm DIN rail. The housing is IP40 rated and should be mounted inside a panel or enclosure. See illustration below.

Precautions
WARNING! Avoid shock hazards! Turn signal input, output, and power off before connecting or disconnecting wiring, or removing or installing module.

Installation
1. Tilt front of module downward and position the lower mounts and spring clips against the bottom edge of DIN rail.
2. Clip Lower Mount to bottom edge of DIN rail.
3. Push front of module upward until upper mount snaps into place.

Removal
1. Push up on bottom back of module.
2. Tilt front of module downward to release upper mount from top edge of DIN rail.
3. The module can now be removed from the DIN rail.

Setup and Calibration
The input ranges are factory calibrated and do not require adjustment.

The Setpoint potentiometer allows the operator to adjust the level at which the alarm is activated. This control is adjustable from 0 to 100% of the input range.
The Deadband potentiometer allows the alarm trip and reset window to be adjusted symmetrically about the setpoint from 1 to 100% of the span. This allows the operator to fine tune the point at which the alarm trips and resets.
The deadband is typically used to prevent chattering of the relays or false trips when the process signal is unstable or changes rapidly.
To calibrate the alarm section, set the deadband control to the minimum (counterclockwise).
Set the signal source to a reference that represents the desired trip point.
Adjust the setpoint control to the point at which the relay changes state from a non-alarm to an alarm condition. The deadband will be 1.0% of span in this case.

If a larger amount of deadband is desired turn the deadband potentiometer clockwise. The deadband is symmetrical about the setpoint; both transition points will change as deadband is increased.

Output Test Function
When the test button is depressed it will drive the relays to their opposite state. This can be used as a diagnostic aid during initial start-up or troubleshooting. When released, the relays will return to their prior states.

Operation
The green input LED provides a visual indication that a signal is being sensed by the input circuitry of the module. It also indicates the input signal strength by changing in intensity as the process changes from minimum to maximum.
If the LED fails to illuminate, or fails to change in intensity as the process changes, check the module power or signal input wiring. Note that it may be difficult to see the LEDs under bright lighting conditions.
The bi-color alarm LED provides a visual indication of the alarm status. In all configurations, a green LED indicates a non-alarm condition and a red LED indicates an alarm condition.
In the normal mode of operation, the relay coil is energized in a non-alarm condition and de-energized in an alarm condition. This will create an alarm condition if the module loses power.

For a normal acting, non-latching configuration, the alarm will activate when the input signal exceeds the setpoint (HI alarm) or falls below the setpoint (LO alarm), then will automatically reset when the alarm condition no longer exists.
For a reverse acting alarm, the relay coil is de-energized in a non-alarm condition and energized in an alarm condition. The alarm activates when the input signal exceeds the setpoint (HI alarm) or falls below the setpoint (LO alarm), then automatically resets when the alarm condition no longer exists.
When the latching mode is selected, it will be necessary to push the functional test button or remove power from the module to reset the alarm. The alarm will only reset if the alarm condition no longer exists.
For immediate technical or application assistance:

USA and Canada:
Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA®
Customer Service: 1-800-622-2378 / 1-800-622-BEST®
Engineering Service: 1-800-872-9436 / 1-800-USA-WHEN®
Tel: (203) 359-1660 FAX: (203) 359-7700
Toll Free in Canada: 1-888-998-3887

Mexico:
Tel: (514) 856-6928 FAX: (514) 856-6886

Canada:
976 Bergar
Laval (Quebec) HTL 5A1, Canada
Tel: (514) 856-6928 FAX: (514) 856-6886

For NON-WARRANTY REPAIRS, consult OMEGA for current repair charges.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges.

Have the following information available BEFORE contacting OMEGA:
1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2004 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.