E:T•N Cutler-Hammer

EZ Applications

Application Guide

April 2005

New Information

Contents

Showroom and Store Window Lighting 2
Task 2
Overview Drawing 2
Operating Description 2
Circuit Diagram 3
List of Operands 3
Benefits 3
Examples 4
Floor Lighting 6
Task 6
Overview Drawing 6
Operating Description 6
Circuit Diagram 7
List of Operands 7
Benefits 7
Examples 8
Belt Sequence Control for Three Conveyor Belts with Motor Monitoring 11
Task 11
Overview Drawing 11
Operating Description 11
Control Circuit 12
Load Circuit 13
List of Operands 13
Benefits 13
Examples 14
Greenhouse Temperature and Ventilation Control 18
Task 18
Overview Drawing 18
Operating Description 18
Control Circuit 19
Load Circuit 20
Sample Switching Points 20
List of Operands 20
Benefits 20
Examples 21
Lighting Control in a Production Room 24
Task 24
Overview Drawing 24
Operating Description 24
Control Circuit 25
Load Circuit 26
Switching Points of the Daylight Control Switch 26
List of Operands 26
Benefits 26
Examples 27
Booster Pumps 30
Task 30
Overview Drawing 30
Operating Description 30
Control Circuit 31
Load Circuit 32
Pressure Diagram 32
Switching Points 32
Benefits 32
List of Operands 32
Examples 33
Tank Installation Level Indicator 37
Task 37
Overview Drawing 37
Operating Description 37
Control Circuit 38
List of Operands 38
Benefits 38
Examples 39
Access Monitoring for a Parking Garage 42
Task 42
Overview Drawing 42
Operating Description 42
Control Circuit 43
List of Operands 43
Benefits 43
Examples 44
Time-Controlled Lighting System 46
Task 46
Overview Drawing 46
Operating Description 46
Control Circuit 47
Benefits 47
List of Operands 47
Examples 48
Refrigeration Control System 54
Task 54
Overview Drawing 54
Operating Description 54
Control Circuit 55
Load Circuit 56
List of Operands 56
Benefits 56
Examples 57
Perimeter Advertising in a Stadium 60
Task 60
Overview Drawing 60
Operating Description 60
Circuit Diagram 61
List of Operands 61
Benefits 61
Examples 62
Rolling Door Control 65
Task 65
Overview Drawing 65
Operating Description 65
Control Circuit 66
Load Circuit 67
List of Operands 67
Examples 68

Showroom and Store Window Lighting

Task

To automatically switch the showroom lights, store window lighting and external advertising display for a retail store on or off. The on/off function must take into account the day of the week, the time and a daylight control switch. The connection times for the store window lighting can be set as required. It must also be possible to switch all the lights on and off manually. The showroom and store window lighting must turn on in the event of an alarm.

Overview Drawing

Figure 1. Overview

Operating Description

External Advertising Display

Mon-Sun 6:00 am-11:00 pm Time switch 1

The daylight control switch causes the advertising display to turn off as the light level rises and to turn on at dusk.

It must also be possible to manually turn the advertising display on and off at any time. The P2 (Up arrow) and P4 (Down arrow) function buttons on the "EZ" control relay are used for this purpose.

Note: The P buttons are activated in the Special system menu. Press ALT and DEL simultaneously to change to the Special menu. See also the User Manual MN05013003E.

Store Window Lighting

Mon - Fri	8:00 am - 10:00 pm Time switch 2
Sat	8:00 am - 11:00 pm
Sun	10:00 am - 10:00 pm

The store window lighting is also controlled by the daylight control switch: It is turned off as the light level rises and is turned on when it starts to get dark.

The S5 button is used to turn the store window lighting on and off manually outside the programmed times.

In the event of an alarm, potential-free contact S6 in the alarm system turns the store window lighting on.

Once time switch 2 has been enabled it can be used to change the on/off times, even if a password was activated up in the Special menu. The time switch is enabled by programming the " + " symbol.

The flush-mounted switches S1, S2, S3 can be used to activate the showroom lighting outside the programmed times.

In the event of an alarm, the showroom and store window lights are turned on by contact S6.

Circuit Diagram

S1 - S3	Light switches for showroom lighting
S4	Connection contact for daylight control switch
S5	Light switch for store window lighting
S6	Connection contact for alarm system
H1	External advertising display
H2	Store window lighting
H3	Showroom lighting
F1	16 A char. B miniature circuit-breaker

Figure 2. Circuit Diagram

A CAUTION

The safety requirements of the applicable VDE, IEC, UL and CSA standards require the phase that is used for the power supply to be used for the inputs as well. If this is not the case, "EZ" will not detect the connection level and can be damaged by overvoltages

List of Operands

I1 Input, light switch 1, showroom lighting
I2 Input, light switch 2, showroom lighting
I3 Input, light switch 3, showroom lighting
14 Input, connection contact, daytime control switch
I5 Input, light switch, store window lighting
I6 Input, connection contact, alarm system
M1 Marker relay, buffer memory, external advertising display ON/OFF
M2 Marker relay, buffer memory, store window lighting ON/OFF
M3 Marker relay, buffer memory, showroom lighting ON/OFF
P2 Up arrow cursor key = external advertising display ON
P4 Down arrow cursor key = external advertising display OFF
Q1 Output relay, external advertising display
Q2 Output relay, store window lighting
Q3 Output relay, showroom lighting
(1)1 Connection contact, time 1 = time switching, external advertising display
(1)2 Connection contact, time 2 = time switching, store window lighting
(1)3 Connection contact, time 3 = time switching, showroom lighting

Benefits

- Implemented functions:
- $3 \times$ single-channel time switches with weekly and daily programs
- $3 \times$ impulse changeover relays

■ Less wiring required

- Takes up less space than conventional systems
- Password function protects against unauthorized access

Examples

Figure 3. EZ Control Relay Circuit Diagram

Figure 4. EZ Control Relay Parameters

Floor Lighting

Task

To enable the corridor lights on each floor of a multi-story building to be switched on and off at various flushmounted switches. In parallel, there should also be a central switch from which all the lights can be turned on and off. In the event of a fire, it must be possible to turn on all the corridor lights. To save energy, the corridor lights should be turned off altogether at certain times.

Overview Drawing

Figure 5. Overview

Operating Description

On each of the four floors, the corridor lights can be turned on and off (threewire control) at three flush-mounted switches (S1 to S12).

If necessary, e.g. for cleaning, the corridor lights on every floor can be turned on at switch S13 and turned off at switch S14 in the maintenance man's quarters or building superintentent's room.

In the event of a fire, contact K1 in the fire alarm system turns on all the corridor lights.
To save energy, the corridor lights are all turned off at 6:30 pm, Monday to Friday and at 2:30 pm on Saturday.

CAUTION

The safety requirements of the applicable VDE, IEC, UL and CSA standards require the phase that is used for the power supply to be used for the inputs as well. If this is not the case, "EZ" will not detect the switch power level and can be damaged by overvoltages.

Circuit Diagram

Figure 6. Circuit Diagram

List of Operands

I1	Input, light switches on 1st floor Input, light switches on 2nd floor
I3	Input, light switches on 3rd floor Input, light switches on 4th floor I4
I5	Input, central ON switch Input, central OFF switch In
I7	Input, contact in fire alarm system Marker relay, buffer memory Iight on 1st floor ON/OFF
M2	Marker relay, buffer memory Iight on 2nd floor ON/OFF

M3 Marker relay, buffer memory light on 3rd floor ON/OFF
M4 Marker relay, buffer memory light on 4th floor ON/OFF
M5 Marker relay, buffer memory light ON/OFF at central switch

M6 Marker relay, buffer memory light ON/OFF at central switch or via fire alarm system

Q1 Output relay, lights on 1st floor
Q2 Output relay, lights on 2nd floor
Q3 Output relay, lights on 3rd floor
Q4 Output relay, lights on 4th floor

T1 Timing relay, control pulse, central light OFF switch
(1) 1 Contact switch, Time 1 Current switch, Mon-Fri 6:30 pm/Sat 2:30 pm

Benefits

- Implemented functions:
- $1 \times$ single-channel time switch with weekly and daily programs
- $4 \times$ impulse changeover relays with central circuit

■ Less wiring required

- Takes up less space than conventional systems
■ Increased flexibility facilitates modification and extension
- Password function protects against unauthorized access

Examples

Figure 7. EZ Control Relay Circuit Diagram

Figure 8. EZ Control Relay Circuit Diagram

Figure 9. EZ Control Relay Parameters

Belt Sequence Control for Three Conveyor Belts with Motor Monitoring

Task

To start up and shut down three conveyor belts at different times. There are to be three operating modes "Staggered start-up", "Staggered shut-down" and "Fast stop". The motor-protective circuit-breakers in the belt drives should be monitored; if a circuit-breaker trips, the conveyor system should stop in a controlled manner. The fault should also be signaled by a flashing light.

Overview Drawing

Figure 10. Overview

Operating Description

The three conveyor belts in a bulk material handling installation have to be started up and shut down at different times in order to ensure that the materials are transported safely and without interruption.

Start-Up

When the START button S1 is pressed, the belts start up at 5 -second intervals (this interval is permanently programmed and cannot be changed). Belt 3 starts up first.

Shut-Down

When the STOP button S 2 is pressed, the belts stop in reverse order, i.e. starting from belt 1. This guarantees that the belts are running at no-load when they are restarted, thus avoiding heavy starting with a loaded belt.

When the button is pressed, 5 seconds elapse before belt 1 is shut down. The subsequent belts then turn off, again after a 5 -second delay. It must be possible to change the time via the "EZ" control relay. To do this, the " + " must be set when the function block is programmed.
The "Fast stop" button S3 turns off all three belts without a time delay.

Failure of a Motor

If a drive motor fails, the trip-indicating auxiliary contact (PKZ) opens. The fault is signaled via the flashing light and automatically triggers the STOP function. This means that in the event of a fault any belts downstream of the defective drive run at no-load for 5 seconds before they are turned off. Any belts upstream of the defective drive are turned off immediately.

Control Circuit

Figure 11. Control Circuit

A CAUTION

The safety requirements of the applicable VDE, IEC, UL and CSA standards require the phase that is used for the power supply to be used for the inputs as well. If this is not the case, "EZ" will not detect the switch power level and can be damaged by overvoltages.

Load Circuit

Figure 12. Load Circuit

List of Operands

$\begin{array}{ll}\text { I1 } & \text { Input, START button } \\ \text { 12 } & \text { Input, STOP button }\end{array}$
I3 Input, Fast stop button
14 Input, trip-indicating aux. contact for motor 1
I5 Input, trip-indicating aux. contact for motor 2
16 Input, trip-indicating aux. contact for motor 3
M1 Marker relay, buffer memory, trip-indicating aux. contact, motor 1, 2, 3
M2 Marker relay, buffer memory, STOP
M3 Marker relay, buffer memory, START
Q1 Output, contactor in motor for belt 1
Q2 Output, contactor in motor for belt 2
Q3 Output, contactor in motor for belt 3
Q4 Output, indicator light
T1 Timing relay with 5 sec. ON delay \Rightarrow Start belt 2
T2 Timing relay with 5 sec . ON delay \Rightarrow Start belt 1
T3 Timing relay with 5 sec . OFF delay \Rightarrow Stop belt 1
T4 Timing relay with 5 sec. OFF delay \Rightarrow Stop belt 2
T5 Timing relay with 5 sec . OFF delay \Rightarrow Stop belt 3
T6 Timing relay flashing for 1 second to indicate fault

Benefits

- Implemented functions:
- $2 \times \mathrm{ON}$-delayed timing relays
- $2 \times$ OFF-delayed timing relays
- $1 \times$ flash/blink relay
- $2 \times$ auxiliary contactors

■ Less wiring required

- Takes up less space than conventional systems
- Password function protects against unauthorized access

Examples

Figure 13. EZ Control Relay Circuit Diagram

Figure 14. EZ Control Relay Circuit Diagram

Figure 15. EZ Control Relay Circuit Diagram

Figure 16. EZ Control Relay Parameters

Greenhouse Temperature and Ventilation Control

Task

To automatically open and close the roof lights of a greenhouse in order to adjust the ventilation and temperature. Warm air should be blown in via the heating system when the temperature drops below a certain level. The drive motors for the fans and roof lights must be monitored for faults, which should also be signaled by a flashing light.

Overview Drawing

Figure 17. Overview

Operating Description

The greenhouse is also used as a display and sales area. The roof lights are opened for ventilation and are closed again depending on the temperature. The "Open window" and "Close window" switching points are programmed via the "EZ" control relay. The voltage output of temperature sensor B1 supplies the necessary comparison value. The following example demonstrates how the switching points are determined or calculated.

Ventilation Control

All the roof lights are activated by a three-phase AC motor M1 with a reversing contactor circuit. The end positions are detected by limit switch S2 (open) and S3 (closed). The motor switches off when the limit switch is reached.

Warm Air Supply

When the temperature in the greenhouse falls below a certain level, the fan motor M2 is automatically activated to blow in warm air. The motor is switched off again when the temperature returns to the desired level.

Failure of a Motor

If M1 or M2 fails, the contact of the corresponding trip-indicating auxiliary contact Q 1 or Q 2 opens. The fault is signalled via the flashing light H 1 for both motors.

Continuous Ventilation

Key switch S1 is used to turn off the automatic temperature control and select "Continuous ventilation". It may be necessary to first close the roof lights and then open them again in order to use this function.
It should be possible to enter the motor run time T2, which determines how far the roof light is opened, directly on the "EZ" control relay.
The roof lights can be opened as far as the end position. The default for T2 is 4 seconds.

Manual Operation

For maintenance and repairs, the windows can be opened via the P2 button (Up arrow) and closed via P4 (Down arrow).

Note: The P buttons are activated in the Special menu. Press ALT and DEL simultaneously to change to the Special menu. See also the User Manual MN05013003E.

Control Circuit

Figure 18. Control Circuit
Note: The electrical interlock may be omitted when using a reversing contactor combination with a mechanical interlock.

Load Circuit

Figure 19. Load Circuit

Sample Switching Points

■ Temperature sensor measuring range: -35 to $+55^{\circ} \mathrm{C}$
■ Output signal from temperature sensor: 0 to 10V DC

- Selected switching point - Open: $25^{\circ} \mathrm{C}$

■ Selected switching point - Close: $23^{\circ} \mathrm{C}$

- Selected switching point - Heat: $20^{\circ} \mathrm{C}$

General formula for the comparison value:
$=\frac{10 \mathrm{~V}}{U L+L L} \times($ Switchpoint +LL$)$
UL = Upper limit of measured value
LL = Lower limit of measured value
Setpoint value for Open comparator:
$\frac{10 \mathrm{~V}}{55^{\circ} \mathrm{C}+35^{\circ} \mathrm{C}} \times\left(25^{\circ} \mathrm{C}+35^{\circ} \mathrm{C}\right)=6,4 \mathrm{~V}$

Setpoint value for Close comparator:

$\frac{10 \mathrm{~V}}{55^{\circ} \mathrm{C}+35^{\circ} \mathrm{C}} \times\left(23^{\circ} \mathrm{C}+35^{\circ} \mathrm{C}\right)=6,4 \mathrm{~V}$

Setpoint value for Heat comparator:

$\frac{10 \mathrm{~V}}{55^{\circ} \mathrm{C}+35^{\circ} \mathrm{C}} \times\left(20^{\circ} \mathrm{C}+35^{\circ} \mathrm{C}\right)=6,1 \mathrm{~V}$
A switching range ($\pm 0.1 \mathrm{~V}$) must be defined for each comparison value to avoid having to repeatedly turn ON and OFF when the comparison value is reached.

- This gives the following switching points in the comparator blocks:
- Open window

$$
\begin{aligned}
& \mathrm{ON}=6.8 \mathrm{~V} \\
& \mathrm{OFF}=6.6 \mathrm{~V}
\end{aligned}
$$

- Close window
$\mathrm{ON}=6.3 \mathrm{~V}$
OFF $=6.5 \mathrm{~V}$
- Heat
$\mathrm{ON}=6.0 \mathrm{~V}$
$\mathrm{OFF}=6.2 \mathrm{~V}$

List of Operands

A1 Comparator, Open window ON

A2 Comparator, Open window OFF
A3 Comparator, Close window ON
A4 Comparator, Close window OFF
A5 Comparator, Heat ON
A6 Comparator, Heat OFF
11 Input, key switch for continuous ventilation
I2 Input, Open limit switch
I3 Input, Closed limit switch
14 Input, window drive motor trip-indicating aux. contact. Input, fan motor tripindicating aux. contact
18 Input, comparative voltage of temperature sensor
M1 Marker relay, buffer memory, Open window
M2 Marker relay, buffer memory, Close window
M3 Marker relay, buffer memory, Open window comparator
M4 Marker relay, buffer memory, Close window comparator
M5 Marker relay, buffer memory, Heat comparator
M6 Open marker via T2
P2 Up arrow cursor button = Open window
P4 Down arrow cursor button = Close window

Q1 Output, contactor for Open window drive motor
Q2 Output, contactor for Close window drive motor
Q3 Output, contactor for fan motor
Q4 Output, motor fault indicator light
T1 Timing relay, flashing, for fault message
T2 Timing relay, single-pulse, 4 seconds = opening time for continuous ventilation

Benefits

■ Implemented:

- $1 \times$ ON-delayed timing relay
- $1 \times$ flash/blink relay
- Temperature values can be processed (analog values)
■ Less wiring required
■ More flexible if modifications are required

Examples

Figure 20. EZ Control Relay Circuit Diagram

Figure 21. EZ Control Relay Circuit Diagram

Figure 22. EZ Control Relay Parameters

Lighting Control in a Production Room

Task

To automatically turn on the lighting fixtures in a production room during production hours. The lights should turn on and off gradually in response to changes in the daylight level. It must be possible to turn the switch for the individual lighting stages on and off manually at any time. Faults in the lighting system should be signaled by a flashing light.

Overview Drawing

Figure 23. Overview

Operating Description

Three light fixtures, each with 12 fluorescent lights, are suspended from a busbar system. The lighting is on from 6:00 am to $5: 30 \mathrm{pm}$ on Monday to Friday and is varied according to the daylight level. The switch-on times and the ON duration must be variable to suit requirements.

Lighting Stages

The use of three different switching stages guarantees the necessary brightness, saves energy and places a uniform load on the mains supply.

Connection to the Busbar System

Phase 1:
Every 1st, 4th, 7th and 10th neon light
Activated via contactor K1
Enabled via daylight control switch B1
Phase 2:
Every 2nd, 5th, 8th and 11th neon light
Activated via contactor K2
Enabled via daylight control switch B2
Phase 3:
Every 3rd, 6th, 9th and 12th neon light Activated via contactor K3
Enabled via daylight control switch B3

Lighting Stages

Stage 0 :
All the lights are off.

Stage 1:
Every third light is on. Contact B1 is closed.
Stage 2:
Every third light is off. Contacts B1 and B2 are closed.

Stage 3:
All the lights are on. Contacts B1, B2 and B3 are closed.

Manual Operation

It must be possible to switch the individual lighting stages at light switches S1 to S3.

Use of the manual function is signalled by indicator lights H1 to H3.

Failure of a Busbar

The busbars are protected via miniature circuit-breakers Q1 to Q 3 and are monitored by trip indicating auxiliary contacts. Faults are signalled in the form of a group alarm via the flashing indicator light H4.

Note: If the daylight control switches already have an ON-delay or OFF-delay, these times should be set as low as possible (of the order of one second). Alternatively, the ONdelayed timers T1 to T6 programmed in the "EZ" control relay (default value: 60 seconds) can be changed to obtain the required overall delay.

Control Circuit

Figure 24. Control Circuit

A CAUTION

The safety requirements of the applicable VDE, IEC, UL and CSA standards require the phase that is used for the power supply to be used for the inputs as well. If this is not the case, "EZ" will not detect the switching level and can be damaged by overvoltages.

Load Circuit

Figure 25. Load Circuit
Switching Points of the Daylight Control Switch

Figure 26. Switching Points of the Daylight Control Switch

List of Operands

11 Input, light switch, stage 1
12 Input, light switch, stage 2
I3 Input, light switch, stage 3
14 Input, contact of daylight control switch 1
I5 Input, contact of daylight control switch 2
I6 Input, contact of daylight control switch 3
17 Input, circuit-breaker messages
M1 Marker relay, buffer memory, stage 1
M2 Marker relay, buffer memory, stage 2
M3 Marker relay, buffer memory, stage 3
Q1 Output, contactor for stage 1
Q2 Output, contactor for stage 2
Q3 Output, contactor for stage 3
Q4 Output, fault indicator light
T1 Timing relay with 60 sec . ON delay. \Rightarrow Stage 1 ON
T2 Timing relay with 60 sec . ON delay. \Rightarrow Stage 1 OFF
T3 Timing relay with 60 sec . ON delay. \Rightarrow Stage 2 ON
T4 Timing relay with 60 sec . ON delay. \Rightarrow Stage 2 OFF
T5 Timing relay with 60 sec . ON delay. \Rightarrow Stage 3 ON
T6 Timing relay with 60 sec . ON delay. \Rightarrow Stage 3 OFF
T7 Timing relay, flashing for 1 second to indicate fault

Benefits

- Implemented functions:
- $1 \times$ flash/blink relay
- $1 \times$ single-channel time switch with weekly and daily programs

■ Functional overall solution
■ Less wiring required

- Takes up less space than conventional systems

Examples

Figure 27. EZ Control Relay Circuit Diagram

Figure 28. EZ Control Relay Circuit Diagram

Figure 29. EZ Control Relay Parameters

Booster Pumps

Task

Two pumps provide the water supply for an installation. Their operation is to be monitored. The two pumps are to be operated alternately to prevent excessive wear. The operating status and faults within the installation are to be signaled by two indicator lights. It must be possible to select the pressure-related switching points for activating the pumps as required.

Overview Drawing

Figure 30. Overview

Operating Description

Pumping Operation

The pumping station provides the water supply for an installation. It must also ensure that the pressure does not fall below a specified minimum level. There are two booster pumps P 1 and P 2 - if the pressure is too low, one of the pumps is activated via the pressure sensor B1. To ensure that the two pumps are subject to equal use and wear, they are run alternately for 48 -hour periods. The two indicator lights H 1 and H 2 signal which of the two pumps is in use. If "EZ" is disconnected from the power supply, the operating hours count will start again and pump 1 will be activated first.

To enable the pumps to change over after a shorter or longer operating period, the counters C1 and C2 should be set to new comparison values using the following formula:
Desired changeover time in hours x $60=$ comparison value
Default: 48 hours x $60=2880$

Faults

Electrical failure of a pump motor is detected by the trip indicating auxiliarycontacts for motor-protective circuitbreaker Q1 and Q2. The pump that is still in working order will be activated. If one of the pumps is mechanically defective, the resulting drop in pressure will be detected and the other pump will be activated after time T4 has elapsed. Both types of fault are signaled by the flashing indicator light H 1 or H 2 . When both pumps are electrically defective, the indicator lights H1 and H 2 will flash simultaneously.

Low Pressure

The system is monitored for low pressure, which is signaled by indicator lights H 1 and H 2 which flash alternately after time T5 has elapsed. It must be possible to set the low pressure limit on the "EZ" control relay.

Acknowledgement

All fault messages are retained until they have been acknowledged by pressing button S3.

Maintenance

It must be possible to switch pump P1 directly using key switch S1 and pump P2 using key switch S2.

Control Circuit

Figure 31. Control Circuit

Load Circuit

Figure 32. Load Circuit
Pressure Diagram

Figure 33. Pressure Diagram

Switching Points

A1 Pump 1 or pump 2 is activated; H 1 or H 2 lights up.
A2 Low pressure After time T4 (10 sec), changeover to the inactive pump, the fault is indicated by flashing signal at H 1 or H 2 . After time T5, a total failure is signaled by H 1 and H 2 flashing alternately.
A3 Pump 1 or pump 2 is switched off; H 1 or H 2 goes out.

See example 4 for determining the pressure switching points.

Benefits

- Implemented functions:
- $1 \times$ flash/blink relay
- $2 \times$ ON-delayed timing relays
- $1 \times$ operating hour counters

■ Processing of pressure values (analog values)

- Variable switching points and operating hour changeover
■ Less wiring required
■ Takes up less space than conventional systems

List of Operands

A1 Comparator for minimum pressure monitoring, lower threshold
A2 Comparator for low pressure monitoring due to electrical or mechanical fault
A3 Comparator for minimum pressure monitoring, upper threshold
C1 Counter with 30 sec. pulse for operating hours of pump 1
C2 Counter with 30 sec. pulse for operating hours of pump 2
I1 Input, key switch for directly activating pump 1
12 Input, key switch for directly activating pump 2
I3 Input, motor-protective circuit-breaker for pump 1
14 Input, motor-protective circuit-breaker for pump 2
I5 Input, fault message acknowledgement button
M1 Pump changeover marker relay M1=Off: pump 1/ M1=On: pump 2
M2 Marker relay for low pressure/ mechanical fault, pump 1
M3 Marker relay for low pressure/ mechanical fault, pump 2
M4 Marker relay for electrical fault, pump 1
M5 Marker relay for electrical fault, pump 2
M6 Marker relay for total failure of pumping system
M7 Marker relay for minimum pressure switching point, switch pump on/off
M8 Marker relay, buffer memory, indicator light for pump 1
M9 Marker relay, buffer memory, indicator light for pump 2
Q1 Output, contactor for pump 1
Q2 Output, contactor for pump 2
Q3 Output, indicator light for pump 1
Q4 Output, indicator light for pump 2
T1 30 sec. cycle for recording operating time, pump 1
T2 30 sec. cycle for recording operating time, pump 2
T3 1 sec. cycle for flashing signal from indicator light
T4 Time delay for low pressure message/mechanical fault, pump 1, 2
T5 Time delay for low pressure message, total failure

Examples

Figure 34. EZ Control Relay Parameters

Figure 35. EZ Control Relay Circuit Diagram

Figure 36. EZ Control Relay Circuit Diagram

Figure 37. EZ Control Relay Parameters

Tank Installation Level Indicator

Task

To monitor the fill level of three tanks. When the maximum level is reached, this should be indicated by a visual and an audible signal.

Overview Drawing

Figure 38. Overview

Operating Description

The fill level of three fat tanks in an animal feed plant is monitored. If one tank is full, the corresponding indicator light $\mathrm{H} 1, \mathrm{H} 2$ or H 3 flashes in the control room to signal that a "new value" is being formed. After a set time has elapsed (default: 3 seconds) an alaramstarts as well. The acknowledgement button S4 can be used for all three tanks; this acknowledges the audible signal from the alarm and changes the flashing light to a continuous light.

Control Circuit

Figure 39. Control Circuit

A CAUTION

The safety requirements of the applicable VDE, IEC, UL and CSA standards require the phase that is used for the power supply to be used for the inputs as well. If this is not the case, "EZ" will not detect the switch power level and can be damaged by overvoltages.

List of Operands

11 Input, float switch for tank 1
12 Input, float switch for tank 2
I3 Input, float switch for tank 3
14 Input, acknowledgement button
M1 Marker relay, acknowledged full message from tank 1
M2 Marker relay, acknowledged full message from tank 2
M3 Marker relay, acknowledged full message from tank 3
Q1 Output, indicator light for tank 1
Q2 Output, indicator light for tank 2
Q3 Output, indicator light for tank 3
Q4 Output, Alarm
T1 Timing relay with 3 sec . ON delay \rightarrow delay after tank 1 full message
T2 Timing relay with 3 sec . ON delay \rightarrow delay after tank 2 full message
T3 Timing relay with 3 sec . ON delay \rightarrow delay after tank 3 full message
T4 Single-pulse timing relay \rightarrow Alarm ON set pulse
T5 Single-pulse timing relay \rightarrow Alarm ON set pulse
T6 Single-pulse timing relay \rightarrow Alarm ON set pulse
T7 Timing relay flashing for $0.5 \mathrm{sec} . \rightarrow$ New value signal

Benefits

- Implemented functions:
- $3 \times$ ON-delayed timing relays
- $1 \times$ flash/blink relay
- $3 \times$ auxiliary contactors
- Less wiring required

■ Takes up less space than conventional systems

Examples

Figure 40. EZ Control Relay Circuit Diagram

Figure 41. EZ Control Relay Circuit Diagram

Figure 42. EZ Control Relay Parameters

Note: The specified time of 0 seconds in the timing relay produces a pulsing signal of the same length as one "EZ" cycle time.

Access Monitoring for a Parking Garage

Task

To monitor the occupancy of a company parking garage. Cars can enter the garage provided that there are still some spaces free. Access is controlled by a barrier system. The occupancy of the garage is signaled by a "Full/ Empty" display.

Overview Drawing

Figure 43. Overview

Operating Description

Entry and Exit

Access to the garage is monitored by a swipe card reader. If the card is valid, contact S3 is closed briefly. When a vehicle leaves the garage, contact S2 is closed via an induction loop embedded in the ground. A display panel with the message "Full" or "Spaces free" at the point of entry should indicate whether there are still parking spaces available. If voltage is present at signal input K2, the display panel should read "Full", otherwise it should read "Spaces free". The barrier opens when a voltage pulse is applied to K1 for 2 seconds, and it closes automatically when a vehicle has passed through or after a set time has elapsed.

Counting the Vehicles

Incoming and outgoing vehicles should be counted by the "EZ" control relay. The maximum number of vehicles that can be parked can be set on the "EZ". Vehicles may enter if there are parking spaces available. The counter can be reset to zero via the key switch S5 in order to establish a baseline.

Manual Operation

The garage attendant should be able to open the barrier at any time using button S4, regardless of whether the garage is full or not.

Faults

A fault in the barrier system, which is signaled via make contact S 1 , is displayed by flashing indicator light H 1 in the garage attendant's booth.

Maintenance

The barrier can be opened by pressing function button P2 (Up arrow) on the "EZ" control relay.

Control Circuit

F1 16 A, char. B miniature circuit-breaker
H1 Fault flashing indicator light
K1 Barrier driving circuit
K2 Display panel driving circuit
S1 Barrier fault indicator
S2 Contact for induction loop
S3 Contact for swipe card reader
S4 Open barrier button
S5 Reset counter key switch

List of Operands

C1 Vehicle counter
11 Input, fault barrier
I2 Input, contact for induction loop
I3 Input, contact for swipe card reader
14 Input, open barrier button
15 Input, reset counter key switch
P2 Up arrow cursor button = open barrier
Q1 Output, open barrier
Q2 Output, display panel
Q3 Output, fault indicator light
T1 Single 2-second single-pulse timing relay = open barrier pulse
T2 Timing relay with 1 -second flashing cycle $=$ barrier fault flashing message

Benefits

- Implemented functions:
- $1 \times$ flash/blink relay
- $1 \times$ up/down counter with reset function
- $1 \times$ ON-delayed timing relay
- Compact system
- Easy program duplication with program transfer

Figure 44. Control Circuit

A CAUTION

The safety requirements of the applicable VDE, IEC, UL and CSA standards require the phase that is used for the power supply to be used for the inputs as well. If this is not the case, "EZ" will not detect the switch power level and can be damaged by overvoltages.

Examples

Figure 45. EZ Control Relay Circuit Diagram

Figure 46. EZ Control Relay Parameters

Time-Controlled Lighting System

Task

To activate the lighting in rarely-visited rooms in a library only when turned on by the user in order to save energy. The user may select how long he wants the lights to remain on. It should also be possible to switch the lights on and off permanently at a central switch.

Overview Drawing

Figure 47. Overview

Operating Description

The four groups of lights (H 1 to H 4) in a library should only be switched on at a reader's request. Two flush-mounted buttons (S 1 to S 8) are provided for this purpose at the end of an area of shelving. If the reader presses the button briefly, the light will come on for just 5 minutes. More pressure on the button will light the area for a halfhour period. All the lights can be turned on and off for cleaning via the central flush-mounted button S9.

Control Circuit

Figure 48. Control Circuit

A CAUTION

The safety requirements of the applicable VDE, IEC, UL and CSA standards require the phase that is used for the power supply to be used for the inputs as well. If this is not the case, "EZ" will not detect the switch power level and can be damaged by overvoltages.

Benefits

- Implemented functions:
- $12 \times$ ON-delayed timing relays
- $1 \times$ impulse changeover relay

■ Less wiring required
■ Takes up less space than conventional systems

List of Operands

C1 Counter, ON duration 5 min., area A
C2 Counter, ON duration 30 min ., area A
C3 Counter, ON duration 5 min ., area B
C4 Counter, ON duration 30 min ., area B
C5 Counter, ON duration 5 min., area C
C6 Counter, ON duration 30 min ., area C
C7 Counter, ON duration 5 min., area D
C8 Counter, ON duration 30 min ., area D
11 Input, light switch S1/S2, area A
12 Input, light switch S3/S4, area B
I3 Input, light switch S5/S6, area C
14 Input, light switch S7/S8, area D
I5 Input, central ON/OFF light switch
M1 Marker relay, buffer memory, light in area A ON for 5 min .
M2 Marker relay, buffer memory, light in area A ON for 30 min .
M3 Marker relay, buffer memory, light in area B ON for 5 min .
M4 Marker relay, buffer memory, light in area B ON for 30 min .
M5 Marker relay, buffer memory, light in area C ON for 5 min .
M6 Marker relay, buffer memory, light in area C ON for 30 min .
M7 Marker relay, buffer memory, light in area D ON for 5 min .
M8 Marker relay, buffer memory, light in area D ON for 30 min .
M9 Marker relay, buffer memory, light ON/OFF at central switch
Q1 Output relay, light area A
Q2 Output relay, light area B
Q3 Output relay, light area C
Q4 Output relay, light area D
T1 Timing relay with $2-\mathrm{sec}$. ON delay = short/long ON duration, area A
T2 Timing relay with 2-sec. ON delay = short/long ON duration, area B
T3 Timing relay with 2-sec. ON delay = short/long ON duration, area C
T4 Timing relay with 2-sec. ON delay = short/long ON duration, area D
T8 Flashing 20-sec. cycle. for short/ long ON duration

Examples

Figure 49. EZ Control Relay Circuit Diagram

Figure 50. EZ Control Relay Circuit Diagram

Figure 51. EZ Control Relay Circuit Diagram

Figure 52. EZ Control Relay Circuit Diagram

Figure 53. EZ Control Relay Parameters

Figure 54. EZ Control Relay Parameters

Refrigeration Control System

Task

To turn the compressors of the refrigeration system in a hotel on and off in response to the system pressure. The system pressure is supplied by the "EZ" control relay via analog input 18. The value at 18 is compared with setpoint values and the switching points are derived from the comparison value.

Overview Drawing

Figure 55. Overview

Operating Description

The pressure of the refrigeration system is compared with setpoint values. Timers are connected upstream of the outputs so that pressure fluctuations in the system do not cause the compressors to turn on immediately.

Setpoint Values

Output Q1:

Set: A1 ≥ 1.8 bar
Time T1 = 5 sec
Reset: A5 ≤ 1.7 bar
Output Q2:
Set: A2 ≥ 2.0 bar
Time T2 $=20 \mathrm{sec}$
Reset: A6 ≤ 1.9 bar
Output Q3:
Set: A3 ≥ 2.2 bar
Time T3 $=20 \mathrm{sec}$
Reset: A7 ≤ 2.1 bar
Output Q4:
Set: A4 ≥ 2.4 bar
Time T4 $=20 \mathrm{sec}$
Reset: A8 ≤ 2.3 bar

Control Circuit

Figure 56. Control Circuit

Load Circuit

Figure 57. Load Circuit

List of Operands

A1 Comparator, motor 1 ON after T1 has elapsed
A2 Comparator, motor 2 ON after T2 has elapsed
A3 Comparator, motor 3 ON after T3 has elapsed
A4 Comparator, motor 4 ON after T4 has elapsed
A5 Comparator, motor 1 OFF
A6 Comparator, motor 2 OFF
A7 Comparator, motor 3 OFF
A8 Comparator, motor 4 OFF
I1 Input, system ON/OFF
18 Input, comparison voltage from pressure sensor
Q1 Output, motor 1
Q2 Output, motor 2
Q3 Output, motor 3
Q4 Output, motor 4
T1 Timing relay, ON delay, motor 1
T2 Timing relay, ON delay, motor 2
T3 Timing relay, ON delay, motor 3
T4 Timing relay, ON delay, motor 4

Benefits

- Implemented functions:
- $4 \times$ ON-delayed timing relays
- Processing of pressure values (analog values)
- Password function protects against unauthorized access

Examples

Figure 58. EZ Control Relay Circuit Diagram

Figure 59. EZ Control Relay Parameters

Figure 60. EZ Control Relay Parameters

Perimeter Advertising in a Stadium

Task

The time-dependent control of four advertising panels, each with three sides. Each side is to be visible for 30 seconds, after which the next side is to be turned to the front.

Overview Drawing

Figure 61. Overview

Operating Description

Start

The Start/Stop button S5 is used to start the procedure for all four panel fixture electrical strips. The visible advertising panel is on view for a variable time (controlled via T1 to T4). It should be possible to stop the entire procedure by pressing the S5 button again.

Rotation

Once the set time has elapsed, the motor (M1 to M4) associated with the strip must start automatically. The strip rotates to display the next advertising panel. Once the advertising panel is in the correct position, this is signaled via the corresponding limit switch (S1 to S4) and the motor is turned off. To enable the strip to leave the limit switch position, disconnection must be bypassed, again for a variable time (controlled via T 5 to T 8), when the rotation procedure starts.

Testing and Maintenance

It must be possible to activate the rotation procedure manually in order to be able to test the individual strips during installation and assembly and to replace the advertising panels. The cursor buttons P1 to P4 on the "EZ" control relay are used to activate a single turn for each individual strip and button S 6 activates a single turn of all the strips together.
Note: The P buttons are activated in the Special menu. Press ALT and DEL simultaneously to change to the Special menu.

Circuit Diagram

Figure 62. Circuit Diagram

A CAUTION

The safety requirements of the applicable VDE, IEC, UL and CSA standards require the phase that is used for the power supply to be used for the inputs as well. If this is not the case, "EZ" will not detect the switch power level and can be damaged by overvoltages.

List of Operands

11 Input, limit switch for strip 1
12 Input, limit switch for strip 2
I3 Input, limit switch for strip 3
14 Input, limit switch for strip 4
I5 Input, Start/Stop button
I6 Input, Turn button
M1 Marker relay, buffer memory, Start/Stop
P1 Cursor button $1 \times$ Turn strip 1
P2 Cursor button $1 \times$ Turn strip 2
P3 Cursor button $1 \times$ Turn strip 3
P4 Cursor button $1 \times$ Turn strip 4
Q1 Output, motor for strip 1
Q2 Output, motor for strip 2
Q3 Output, motor for strip 3
Q4 Output, motor for strip 4
T1 Timing relay with $30-\mathrm{sec}$. ON delay => Advert viewing time, strip 1
T2 Timing relay with $30-\mathrm{sec}$. ON delay => Advert viewing time, strip 2
T3 Timing relay with $30-\mathrm{sec}$. ON delay => Advert viewing time, strip 3
T4 Timing relay with $30-\mathrm{sec}$. ON delay => Advert viewing time, strip 4
T5 Single 1-sec. pulse timing relay => Block limit switch for starting strip 1
T6 Single 1-sec. pulse timing relay => Block limit switch for starting strip 2
T7 Single 1-sec. pulse timing relay => Block limit switch for starting strip 3
T8 Single 1-sec. pulse timing relay => Block limit switch for starting strip 4

Benefits

- Implemented functions:
- $8 \times$ ON-delayed timing relays
- $1 \times$ impulse changeover relay

■ Less wiring required

- Takes up less space than conventional systems
■ Dwell-time of each strip can be individually selected

Examples

Figure 63. EZ Control Relay Circuit Diagram

Figure 64. EZ Control Relay Circuit Diagram

Figure 65. EZ Control Relay Parameters

Cutler-Hammer

Rolling Door Control

Task

To automatically control the roll-up security door at the entrance to an underground garage. The door should open on request and then close automatically after a set time. It should also be possible to close the door upon request. The door is locked at certain times of day and days of the week. The limit switches and mechanical operation of the door should be constantly monitored.

Overview Drawing

Figure 66. Overview

Operating Description

Opening the Rolling Door

The rolling door can be opened from outside via a swipe card reader and/or the key switch S6. Contact K1 closes briefly once the swipe card has been checked. It should be possible to lock the entrance at certain, variable times of the day and on certain days of the week (©1), although it should always be possible to open the door using the key switch S5.
The door must be opened using the pull switch S7 in order to leave the garage.

Closing the Rolling Door

Once a car has driven into the garage, the driver can close the door manually via S7. If the driver does not use the pull switch, the door will automatically close after a set time (T3). The door can be opened and closed manually using the buttons S4 and S3 in the control room.

Security

Door closing should be indicated by a brief audible signal (H3). At the same time, the red warning lights H 1 and H 2 light up at the entrance and exit. If there is a person, vehicle or other object under the door while it is closing, the procedure will be stopped or prevented via the contact in the safety bar (K2) and/or light barrier (K3). The door will either immediately open fully or will remain open. If the safety bar is triggered, there is an audible signal and warning lights H 1 and H 2 light up.

The "Open door" function is disabled by the safety bar when the door is closed (limit switches actuated) in order to prevent break-in and vandalism.

The contact bar can be tested by triggering the alarm while the door is open.

Pressing the emergency stop button stops all movement of the door. Warning lights H 1 and H 2 will start to flash and the audible signal will start.

If the door is closed, the alarm cannot be triggered via the emergency stop button. The "Open door" command must be given to start the flashing lights and the audible signal in order to indicate that the emergency stop button has been pressed.

Break contacts should be used for the emergency stop, safety bar and limit switch functions. The emergency stop button and safety bar must be wired up as shown in the following circuit diagram. This will guarantee that the opening and closing procedure during an emergency stop, and the door closing procedure when the safety bar is tripped, work independently of the electronic circuit.

The following standards must be observed:
DIN EN 60 335-1 (VDE 0700 part 1)
DIN 57 700-238 VDE 0700 part 238)
German Workplace Directive ASR 11/1-5
ZH1/494 and ZH1/580.1 Safety Rules

Faults

Defective limit switches S1 and S2 (door opened S2/door closed S1) and mechanical faults in the door must be detected. If a limit switch is not working correctly, the drive should be shut down after a variable time (T1 and T2) and the warning lights H 1 and H 2 should start to flash. The message can be cleared by pressing and resetting the emergency stop button S8. If the emergency stop button S 8 is pressed, the warning lights should light up and a continuous audible signal should start.

Control Circuit

Figure 67. Control Circuit

CAUTION

The safety requirements of the applicable VDE, IEC, UL and CSA standards require the phase that is used for the power supply to be used for the inputs as well. If this is not the case, "EZ" will not detect the switch power level and can be damaged by overvoltages.

Load Circuit

Figure 68. Load Circuit
Note: The electrical interlock may be omit-
ted if a reversing contactor with a mechanical interlock is used.

List of Operands

11 Input, door closed limit switch
I2 Input, door opened limit switch
I3 Input, close door button
14 Input, open door key switch/ contact swipe card reader
I5 Input, open door button/open door key switch
I6 Input, pull switch
17 Input, safety bar/light barrier triggered signal
I8 Input, emergency stop triggered signal
M1 Marker relay, buffer memory, close door
M2 Marker relay, buffer memory, open door
M3 Marker relay, buffer memory, close
M4 Marker relay, buffer memory, open
M5 Marker relay, buffer memory, pull switch
M6 Marker relay, buffer memory, time monitoring of limit switch
Q1 Output relay, close door
Q2 Output relay, open door
Q3 Output relay, warning lights
Q4 Output relay, audible signal
T1 ON-delayed timing relay, monitoring of door closed limit switch
T2 ON-delayed timing relay, monitoring of door opened limit switch
T3 Single-pulse timing relay, warning time before door closes
T4 ON-delayed timing relay, time until door closes automatically
T5 Single-pulse timing relay, open/ close changeover delay
T6 Flashing timing relay for warning lights
(1) 1 Switching contact time $1=$ operating time

Examples

Figure 69. EZ Control Relay Circuit Diagram

Figure 70. EZ Control Relay Circuit Diagram

Figure 71. EZ Control Relay Circuit Diagram

Figure 72. EZ Control Relay Parameters

Eaton Electrical Inc. 1000 Cherrington Parkway
Moon Township, PA 15108-4312
USA
tel: 1-800-525-2000
www.EatonElectrical.com

