Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Short circuit to earth.
- Cover or enclose neighboring units that are live.
- Follow the engineering instructions (AWA) of the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or to the potential equalization. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that a line or wire breakage on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the low voltage for the 24 volt supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD 384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause restart.
• Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.

• Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergency-stop devices should be implemented.

• Wherever faults in the automation system may cause damage to persons or property, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).
Contents

About This Manual 9
Device designation 9
Writing conventions 10

1 EZ 11
Target readership 11
Proper use 11
– Improper use 11
Overview 12
Models 15
– Type reference 17
EZ operation 18
– Buttons 18
– Moving through menus and choosing values 18
– Selecting main and system menu 19
– EZ Status display 20
– Status display for local expansion 20
– Advanced Status display 21
– EZ LED display 21
– Menu structure 22
– Selecting or toggling between menu items 27
– Cursor display 27
– Setting values 28
2 Installation

- Mounting 29
- Connecting the expansion device 32
- Terminals 33
 - Tools 33
 - Cable cross-sections 33
- Connecting the power supply 33
 - Cable protection 33
 - Supplying AC units 34
 - Supplying DC units 35
- Connecting the inputs 37
 - Connecting EZ AC digital inputs 37
 - Connecting EZ DC digital inputs 42
 - Connecting EZ DC analog inputs 44
 - Connecting high-speed counters and frequency generators 49
- Connecting the outputs 51
 - Connecting relay outputs 52
 - Connecting transistor outputs 54
- Expanding inputs/outputs 57
 - Local expansion 57
 - Remote expansion 58
- Connecting bus systems 60

3 Commissioning

- Switching on 61
- Setting the menu language 62
- EZ operating modes 63
- Creating your first circuit diagram 64
 - Circuit diagram display 66
 - From the first contact to the output coil 67
 - Wiring 68
 - Testing the circuit diagram 69
 - Deleting the circuit diagram 71
 - Fast circuit diagram entry 71
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring with EZ</td>
<td>73</td>
</tr>
<tr>
<td>Operation of EZ</td>
<td>73</td>
</tr>
<tr>
<td>Buttons for editing circuit diagrams and function relays</td>
<td>73</td>
</tr>
<tr>
<td>Operation</td>
<td>74</td>
</tr>
<tr>
<td>Relay, function relays</td>
<td>77</td>
</tr>
<tr>
<td>Saving and loading circuit diagrams</td>
<td>80</td>
</tr>
<tr>
<td>Working with contacts and relays</td>
<td>80</td>
</tr>
<tr>
<td>Input and output contacts</td>
<td>81</td>
</tr>
<tr>
<td>Creating and modifying connections</td>
<td>84</td>
</tr>
<tr>
<td>Inserting and deleting a rung</td>
<td>86</td>
</tr>
<tr>
<td>Switching with the cursor buttons</td>
<td>87</td>
</tr>
<tr>
<td>Checking the circuit diagram</td>
<td>88</td>
</tr>
<tr>
<td>Coil functions</td>
<td>89</td>
</tr>
<tr>
<td>Function relays</td>
<td>95</td>
</tr>
<tr>
<td>Example with function relay timer and counter relay</td>
<td>96</td>
</tr>
<tr>
<td>Analog value comparator/threshold value switch</td>
<td>102</td>
</tr>
<tr>
<td>Circuit diagram display with analog value comparator</td>
<td>103</td>
</tr>
<tr>
<td>Parameter display in RUN mode</td>
<td>105</td>
</tr>
<tr>
<td>Resolution of the analog inputs</td>
<td>105</td>
</tr>
<tr>
<td>Function of the analog value comparator</td>
<td>106</td>
</tr>
<tr>
<td>Counters</td>
<td>114</td>
</tr>
<tr>
<td>Function of the counter function relay</td>
<td>118</td>
</tr>
<tr>
<td>High-speed counters, EZ-DA, EZ-DC</td>
<td>122</td>
</tr>
<tr>
<td>Frequency counters</td>
<td>122</td>
</tr>
<tr>
<td>High-speed counter</td>
<td>128</td>
</tr>
<tr>
<td>Text display</td>
<td>134</td>
</tr>
<tr>
<td>Wiring a text display</td>
<td>135</td>
</tr>
<tr>
<td>Retention</td>
<td>135</td>
</tr>
<tr>
<td>Scaling</td>
<td>136</td>
</tr>
<tr>
<td>Function</td>
<td>136</td>
</tr>
<tr>
<td>Text entry</td>
<td>137</td>
</tr>
<tr>
<td>Character set</td>
<td>137</td>
</tr>
<tr>
<td>Entering a setpoint in a display</td>
<td>138</td>
</tr>
</tbody>
</table>
7-day time switch 140
– Parameter display and parameter set for 7-day time switch: 140
– Changing time switch channel 141
– Function of the 7-day time switch 142
Operating hours counter 145
– Value range of the operating hours counter 146
– Accuracy of the operating hours counter 146
– Function of the operating hours counter function block 146
Timing relays 150
– Parameter display and parameter set for a timing relay: 150
– Retention 151
– Timing relay modes 152
– Time range 152
– Function of the timing relay function block 155
– Timing relay examples 163
Jumps 166
– Function 166
– Power flow display 167
Year time switch 169
– Wiring of a year time switch 169
– Parameter display and parameter set for the year time switch: 170
– Changing time switch channel 171
– Entry rules 171
– Function of the year time switch 173
Master reset 176
– Operating modes 177
– Function of the master reset function relay 177
Basic circuits 178
- Negation (contact) 178
- Negation (coil) 179
- Maintained contact 179
- Series circuit 179
- Parallel circuit 180
- Parallel circuit operating like a series connection of make contacts 181
- Parallel circuit operating like a series connection of break contacts 182
- Two-way circuit 182
- Self-latching 183
- Impulse relay 184
- Cycle pulse on rising edge 184
- Cycle pulse on falling edge 185
Example circuits 186
- Star-delta starting 186
- 4x shift register 188
- Running light 192
- Stairwell lighting 194

5 EZ Settings 199
Password protection 199
- Password setup 200
- Selecting the scope of the password 201
- Activating the password 202
- Unlocking EZ 203
- Changing or deleting the password range 204
Changing the menu language 205
Changing parameters 206
- Adjustable parameters for function relays 207
Setting date, time and daylight saving time 209
- Setting the time 209
- Setting summer time start and end 210
- Setting summer time start and end 211
- Summer time start and end, setting the rule 211
Activating debounce (input delay) 218
- Activating debounce (input delay) 219
- Deactivating debounce (input delay) 219
Activating and deactivating the P buttons 220
- Activating the P buttons 220
- Function of the P buttons 220
- Deactivating the P buttons 221
Startup behavior 221
- Setting the startup behavior 221
- Behavior when the circuit diagram is deleted 222
- Behavior during upload/download to card or PC 222
- Possible faults 223
- Card mode behavior 223
Setting the cycle time 225
Retention (non-volatile data storage) 226
- Permissible markers and function relays 226
- Setting retentive behavior 226
- Deleting retentive actual values 228
- Transferring retentive behavior 228
- Changing the operating mode or the circuit diagram 229
- Changing the startup behavior in the SYSTEM menu 229
Displaying device information 230
6 Inside EZ

- EZ circuit diagram cycle
 - EZ operation and effects on circuit diagram creation
- Delay times for inputs and outputs
 - Delay times with EZ-DA and EZ-DC basic units
 - Delay time with EZ-AB, EZ-AC basic units
 - Delay times for the analog inputs of EZ-AB, EZ-DA and EZ-DC

7 What Happens If ...?

- Messages from the EZ system
- Possible situations when creating circuit diagrams
- Event

For more information visit: www.EatonElectrical.com
Appendix 255
Dimensions 255
Technical Data 258
– General 258
– Special approvals 260
– Power supply 261
– Inputs 262
– Relay outputs 268
– Transistor outputs 270
List of the function relays 273
– Usable contacts 273
– Available function relays 274
– Names of relays 275
– Names of function relay 275
– Name of function block inputs (constants, operands) 276
– Memory card attributes 276

Glossary 277

Index 281
About This Manual

This manual describes the installation, commissioning and programming (circuit diagram generation) of the EZ500 and EZ700 control relay.

Specialist electrical training is needed for commissioning and creating circuit diagrams. When active components such as motors or pressure cylinders are controlled, parts of the system can be damaged and persons put at risk if the device is connected or programmed incorrectly.

Device designation

This manual uses the following abbreviated designations for different EZ models:

EZ512-..-..., EZ719-..-..., EZ512-DA-..., EZ719-DA-..., EZ512-DC-..., EZ721-DC-...

Type designation of the control relay, the dots represent placeholders for all characters used.

EZ500 for
EZ512-AB-..., EZ512-AC-..., EZ512-DA-... and EZ512-DC-...

EZ700 for
EZ719-AB-..., EZ719-AC-..., EZ719-DA-..., EZ719-DC-... and EZ721-DC-...

EZ-AB for
EZ512-AB-...
EZ719-AB-...

EZ-AC for
EZ512-AC-...
EZ618-AC-RE and EZ719-AC-...

EZ-DA for
EZ512-DA-...
EZ719-DA-...

EZ-DC for
EZ512-DC-...
EZ6-DC-..., EZ719-DC-... and EZ721-DC-...
About This Manual

EZ-E for
EZ2..._RE, EZ618-AC-RE, EZ618-DC-RE and EZ620-DC-TE
EZSoft for EZSoftBasic and EZSoft

Writing conventions

Symbols used in this manual have the following meanings:

► indicates actions to be taken.

Attention!
Warns of a hazardous situation that could result in damage to the product or components.

Caution!
Warns of the possibility of serious damage and slight injury.

Warning!
 Warns of the possibility of a hazardous situation that could result in major damage and serious or fatal injury or even death.

→ Indicates interesting tips and additional information

For greater clarity, the name of the current chapter is shown in the header of the left-hand page and the name of the current section in the header of the right-hand page. Pages at the start of a chapter and empty pages at the end of a chapter are exceptions.
1 EZ

Target readership
EZ must only be installed and connected up by trained electricians or other persons who are familiar with the installation of electrical equipment.

Specialist electrical training is needed for commissioning and creating circuit diagrams. When active components such as motors or pressure cylinders are controlled, parts of the system can be damaged and persons put at risk if EZ is connected or programmed incorrectly.

Proper use
EZ is a programmable switching and control device and is used as a replacement for relay and contactor control circuits. EZ may only be operated when it has been correctly and properly installed.

• EZ is designed to be installed in an enclosure, switch cabinet or service distribution board. Both the power feed and the signal terminals must be laid and covered so as to prevent accidental contact.
• The installation must comply with regulations for electromagnetic compatibility (EMC).
• The starting up of EZ should not cause any hazards arising from controlled devices, such as unexpected motor startups or power ups.

Improper use
EZ should not be used as a substitute for safety-related controls such as burner or crane controls, emergency-stop or two-hand safety controls.
Overview

Figure 1: EZ basic units and expansion devices
Legend for figure 1:

1. EZ500 basic unit
2. EZ700 I/O expansion
3. EZ202-RE output expansion
4. EZ200-EZ coupling device
5. EZ-LINK-DS data connector
6. EZ204-DP PROFIBUS-DP slave gateway
7. EZ205-ASI AS-Interface slave gateway
8. EZ221-CO CANopen gateway
9. EZ222-DN DeviceNet gateway
10. EZ700 basic unit

EZ is an electronic control relay with logic functions, timer, counter and time switch functions. It is also a control and input device in one that can perform many different tasks in domestic applications as well as in machine building and plant construction.

Circuit diagrams are connected up using ladder diagrams, and each element is entered directly via the EZ display. For example, you can:

- Connect make and break contacts in series and in parallel
- Connect output relays and markers,
- Use outputs as relays, impulse relays or latching relays
- Use multi-function timing relays with different functions
- Use up and down counters,
- Count high-speed counter pulses
- Measure frequencies
- Process analog inputs, EZ-AB, EZ-DA, EZ-DC, (EZ512..: two analog inputs, EZ700: four analog inputs)
- Display any texts with variables, enter setpoints
- Use year time switches, 7-day time switches, EZ...-..-.C(X),
- Count operating hours (four retentive operating hours counters integrated)
- Track the flow of current in the circuit diagram
- Load, save and password-protect circuit diagrams
If you prefer to wire up EZ from a PC, then use EZSoft. EZSoft allows you to create and test your circuit diagram on the PC. EZSoft is also used to print out your circuit diagram in DIN, ANSI or EZ format.
Models EZ basic units at a glance

Figure 2: Models

1. Power supply
2. Inputs
3. Status LED
4. Buttons
5. Interface socket for memory card or PC connection
6. Outputs
7. LCD display
EZ basic units with stand-alone EZD-80..., EZD-CP4-500 HMI unit

Figure 3: Overview with stand-alone HMI unit

1. EZ500 basic units
2. EZ700 basic units
3. EZD device
4. Power supply/communication module with EZD-CP4-500 interface cable
Overview

Type reference

EZ x x x - x x - x x
LCD display: X = No display
Time switch: C = Available; E = Expansion
Output type:
R = Relay (max. 8 A)
T = Transistor (0.5 A, parallel connection possible up to 2 A)
Supply voltage, device and inputs
AB = 24 V AC (2 (4) inputs, also usable as 0 to 10 V analog inputs)
AC = 100, 120, 230, 240 V AC
DC = 24 V DC (2 (4) inputs, also usable as 0 to 10 V analog inputs)
DA = 12 V DC (2 (4) inputs, also usable as 0 to 10 V analog inputs)
Number of inputs/outputs (+ expansion)
12 = 8 I/4 O
18 = 12 I/6 O
19 = 12 I/6 O + expansion
20 = 12 I/8 O
21 = 12 I/8 O + expansion
Rating class (RC) and space unit (SU)
2 = 35.5 mm (SU)
5 = 71.5 mm (4 SU), RC = 4 or 5
6, 7 = 107.5 mm (6 SU), RC = 6 or 7
EZ control relay

For more information visit: www.EatonElectrical.com
EZ operation

Buttons

DEL: Delete object in circuit diagram
ALT: Special functions in circuit diagram, Status display
Cursor buttons < > ^ ^:
 Move cursor
 Select menu items
 Set contact numbers, contacts and values
OK: Next menu level, Save your entry
ESC: Previous menu level, Cancel

Moving through menus and choosing values

Show System menu
Go to next menu level
Select menu item
Store your entry
Return to last menu level
Cancel your entry since the last OK

^ ^ Change menu item
 Change value
< > Change position
P button function (if enabled):
< Input P1 ^ Input P2
> Input P3 ^ Input P4
Selecting main and system menu

Status display

EZ500: 8 inputs, 4 outputs

Current selection flashes in the EZ menu

Clock menu on devices with clock

1st menu level
Main menu

1st menu level
EZ500 or EZ700 System menu

The CONFIGURATOR menu appears if a configurable expansion module is connected such as EZ204-DP (PROFIBUS-DP bus gateway)
Toggling between weekday, time display and date display
(only on devices with clock)

EZ Status display

Status display for local expansion

EZ500: input 1 to 8,
EZ700: input 1 to 12

EZ500: output 1 to 4,
EZ700: output 1 to 6 or 8

On: 1, 2, 3, 4
/Off:...

RS = Expansion functioning correctly.
Advanced Status display

```
12...6.89...
RE  I  AC P-
17.03.04 ST
123.5.78 RUN
```

Retention/Debounce	AC expansion ok/P buttons	Startup behavior
RE | Retention switched on |
I | Debounce switched on |
AC | AC expansion functioning correctly |
DC | DC expansion functioning correctly |
GW | Bus coupling module detected |
GW flashes: Only EZ200-EZ detected. I/O expansion not detected. 17.03.04 Display of actual device date |
ST | When the power supply is switched on, EZ switches to STOP mode |

EZ LED display

EZ512...-..X, EZ700 and EZ-E feature an LED on the front indicating the status of the power supply as well as whether RUN or STOP mode is active (→ figure 2, page 15).

<table>
<thead>
<tr>
<th>LED状态</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED OFF</td>
<td>No power supply</td>
</tr>
<tr>
<td>LED continuously lit</td>
<td>Power supply present, STOP mode</td>
</tr>
<tr>
<td>LED flashing</td>
<td>Power supply present, RUN mode</td>
</tr>
</tbody>
</table>
Menu structure

Main menu without password protection

You access the main menu by pressing OK.

The arrows indicate that there are more than four menus.
Overview

Main menu

Parameter display

Information display of the device

Display for date and time setting

For more information visit: www.EatonElectrical.com
Main menu

PROGRAM...
STOP RUN
PARAMETER...
INFO...
SET CLOCK...
SUMMER TIME.

SET CLOCK...
SUMMER TIME.

SET CLOCK...
SUMMER TIME.

SET CLOCK...
SUMMER TIME.

SUMMER START
SUMMER END

NONE
RULE...
EU
GB
US

SUMMER START
SUMMER END

SUMMER START
SUMMER END

Only one selection is possible.
Main menu with password protection

Unlocking EZ

Password entry

Example: Password only on program

Correct entry

Four wrong entries (if enabled)

EZ System menu
The System menu is accessed by simultaneously pressing DEL and ALT.

Password setup

Password entry

Example:

Password only on program

Correct entry

Four wrong entries (if enabled)
System menu

Only one selection is possible.

The further menus depend on the connected expansion device.
Selecting or toggling between menu items

Cursor display

The cursor flashes.
Full cursor:
- Move cursor with < >
- In circuit diagram also with < >

Value HH:MM
- Change position with < >
- Change values with < >

Flashing values/menus are shown in gray in this manual.
Setting values

Select value ▲ ▼
Select digit < >
Change value at digit ▲ ▼

Values
Digits
Current value at the position (can be changed, Cursor = 3)

Store entries
Retain previous value
2 Installation

EZ must only be installed and wired up by trained electricians or other persons familiar with the installation of electrical equipment.

Danger of electric shock

Never carry out electrical work on the device while the power supply is switched on.

Always follow the safety rules:

- Switch off and isolate
- Secure against reclosing
- Ensure that the device is no longer live
- Cover adjacent live parts

EZ is installed in the following order:

- If necessary connect devices together
- Mounting
- Wiring up the inputs
- Wiring up the outputs
- Connecting the power supply

Mounting

Install EZ in a control cabinet, service distribution board or in an enclosure so that the power feed and terminal connections cannot be touched accidentally during operation.

Clip EZ onto a DIN EN 50022 top-hat rail or fix EZ in place using fixing brackets. EZ can be mounted vertically or horizontally.

When using EZ with expansion units, connect the expansion concerned before mounting (→ page 32).
For ease of wiring, leave a gap of at least 30 mm between EZ terminals and the wall or adjacent devices.

Figure 1: Clearances to EZ

Mounting on top-hat rail
- Hook EZ to the top edge of the top-hat rail and hinge into place while pressing down slightly. Press the device lightly downwards and against the top-hat rail until it snaps over the lower edge of the top-hat rail.
- EZ will clip into place and will be secured by the built-in spring mechanism.
- Check that the device is seated firmly.
- EZ is mounted vertically on a top-hat rail in the same way.
Using a mounting plate
Mounting on a mounting plate requires the use of fixing brackets which are fixed to the back of EZ. The fixing brackets are available as an accessory.

EZ700: Fasten each device with at least three fixing brackets.

Figure 2: Using a mounting plate
Connecting the expansion device

Figure 3: Connecting expansion units
Terminal connections

Open the EZ-LINK connections on the side of both EZ devices.

Fit the EZ-LINK data connector EZ-LINK-DS in the opening provided on the expansion device.

Plug the devices together.

Proceed in the reverse order to dismantle the device.

Terminals

Tools

Slot-head screwdriver, width 3.5 mm, tightening torque 0.6 Nm.

Cable cross-sections

- Solid: 0.2 to 4 mm²
- Flexible with ferrule: 0.2 to 2.5 mm²

Connecting the power supply

The required connection data for device types, EZ-AB with 24 V AC, EZ-AC with standard voltages of 100 V AC, EZ-DA with 12 V DC and EZ-DC with 24 V DC are provided in the section "Technical Data", page 258.

The EZ500 and EZ700 basic units run a system test for two seconds after the power supply has been switched on. Either RUN or STOP mode will be activated after these two seconds, depending on the default setting.

Cable protection

Connect on EZ cable protection (F1) rated for at least 1 A (slow).
Supplying AC units

Supplying AC basic units
EZ…-AB-RC(RCX), EZ…-AC-R(RC, RCX)

![Diagram of power supply on AC basic units]

Supplying AC expansion units
EZ…-AC-.E

![Diagram of power supply on AC expansion units]
Connecting the power supply

Applies to EZ-AC devices with a power supply greater than 24 V AC:

- The voltage terminals for phase L and neutral conductor N have been reversed.
- This enables the EZ interface (for memory card or PC connection) to have the full connection voltage of the phase conductor (100 to 240 V AC).
- There is a danger of electric shock if the connection at the EZ interface is not properly connected or if conductive objects are inserted into the socket.

Attention!
A short current surge will be produced when switching on for the first time. Do not switch on EZ by means of reed contacts since these may burn or melt.

Supplying DC units

Supplying DC basic units
EZ…-DA-RC(X), EZ…-DC-R(RC,RCX)

![Diagram of power supply on DC basic units]

Figure 6: Power supply on the DC basic units
Installation

Supplying DC expansion units
EZ…-DC-.E

Cable protection
Connect on EZ a cable protection (F1) rated for at least 1 A (slow).

When EZ is switched on for the first time, its power supply circuit behaves like a capacitor. Use an appropriate device for switching on the power supply and do not use any reed relay contacts or proximity switches.

EZ-DC and EZ-DA are protected against reverse polarity.
To ensure that EZ works correctly, ensure that the polarity of each terminal is correct.
Connecting the inputs

EZ inputs switch electronically. Once you have connected a contact via an input terminal, you can reuse it as a contact in your EZ circuit diagram as often as you like.

![Diagram of connecting inputs]

Figure 8: Connecting the inputs

Connect to the EZ input terminals contacts such as pushbuttons, switches, relay or contactor contacts, proximity switches (three-wire).

Connecting EZ AC digital inputs

Caution!

Connect the inputs for AC devices in compliance with the safety regulations of the VDE, IEC, UL and CSA. Use the same phase conductor for the input power feed, otherwise EZ will not detect the switching level and may be damaged or destroyed by overvoltage.
Installation

Connecting EZ AC digital inputs on the basic unit

![Diagram of EZ AC digital inputs](image1)

Figure 9: Connecting EZ-AC and EZ-AB digital inputs

Connecting AC digital inputs on the expansion device

![Diagram of AC digital inputs](image2)

Figure 10: Connecting EZ-AC-E digital inputs
Connecting the inputs

Table 1: EZ-AB input signal values

<table>
<thead>
<tr>
<th>Input signal voltage range</th>
<th>OFF signal</th>
<th>ON signal</th>
<th>Input current</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZ500/EZ700</td>
<td>I1 to I6</td>
<td>0 to 6 V AC</td>
<td>14 to 26.4 V AC</td>
</tr>
<tr>
<td></td>
<td>I7, I8</td>
<td>greater than 7 V AC or greater than 9.5 V DC</td>
<td>2 mA with 24 V AC and 24 V DC</td>
</tr>
<tr>
<td>EZ700</td>
<td>I9, I10</td>
<td>14 to 26.4 V AC</td>
<td>4 mA at 24 V AC</td>
</tr>
<tr>
<td></td>
<td>I11, I12</td>
<td>greater than 7 V AC or greater than 9.5 V DC</td>
<td>2 mA with 24 V AC and 24 V DC</td>
</tr>
</tbody>
</table>

Table 2: EZ-AC input signals

<table>
<thead>
<tr>
<th>Input signal voltage range</th>
<th>OFF signal</th>
<th>ON signal</th>
<th>Input current</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZ500/EZ700</td>
<td>I1 to I6</td>
<td>0 to 40 V</td>
<td>79 to 264 V</td>
</tr>
<tr>
<td></td>
<td>I7, I8</td>
<td>6 mA at 230 V AC/4 mA at 115 V</td>
<td></td>
</tr>
<tr>
<td>EZ700</td>
<td>I9 to I12</td>
<td>0.5 mA at 230 V AC/0.25 mA at 115 V AC</td>
<td></td>
</tr>
<tr>
<td>EZ600</td>
<td>R1 to R12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cable lengths

Severe interference can cause a “1” signal on the inputs without a proper signal being applied. Observe therefore the following maximum cable lengths:

- I1 to I6: 40 m without additional circuit
- I7, I8: 100 m without additional circuit
- I9 to I12: 40 m without additional circuit
- R1 to R12: 40 m without additional circuit
Installation

For longer lengths connect in series a diode (e.g. 1N4007) for 1 A, min. 1000 V reverse voltage, to the EZ input. Ensure that the diode is pointing towards the input as shown in the circuit diagram, otherwise EZ will not detect the 1 state.

Figure 11: AC input with suppression diode for EZ-AC and EZ-AB

EZ-AC:
Inputs I7 and I8 have a higher input current on the EZ-AC. Neon bulbs with a maximum residual current of 2 mA/1 mA at 230 V/115 V can be connected to I7 and I8.

Always use neon bulbs that are operated with a separate N connection.

Caution!
Do not use reed relay contacts at I7, I8. These may burn or melt due to the high inrush current of I7, I8.

Two-wire proximity switches have a residual current with the “0” state. If this residual current is too high, the EZ input may only detect a “1” signal.

Therefore, use inputs I7 and I8. An additional input circuit is required if more inputs are used.
Increasing the input current

The following input circuit can be used in order to prevent interference and also when using two-wire proximity switches:

![Figure 12: Increasing the input current](image)

When using a 100 nF capacitor the drop-off time of the input increases by 80 (66.6) ms at 50 (60) Hz.

A resistor can be connected in series with the circuit shown in order to restrict the inrush current.

![Figure 13: Limitation of the input current with a resistor](image)
Complete devices for increasing the input current are available under the type reference EZ256-HCI.

Figure 14: EZ with EZ256-HCI

The increased capacitance increases the drop-off time by approx. 40 ms.

Connecting EZ DC digital inputs

Use input terminals I1 to I12, R1 to R12 to connect pushbutton actuators, switches or 3 or 4-wire proximity switches. Given the high residual current, do not use 2-wire proximity switches.
Connecting the inputs

Connecting DC digital inputs on the basic unit

Figure 15: Connecting EZ-DC, EZ-DA digital inputs

Connecting DC digital inputs on the expansion device

Figure 16: Connecting EZ...-DC digital inputs
Table 3: EZ-DC input signals

<table>
<thead>
<tr>
<th>Input signal voltage range</th>
<th>Input current</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF signal</td>
<td>ON signal</td>
</tr>
<tr>
<td>EZ500/EZ700</td>
<td></td>
</tr>
<tr>
<td>I1 to I6, I7, I8</td>
<td>0 to 5 V</td>
</tr>
<tr>
<td>EZ700</td>
<td>I9, I10, I11, I12</td>
</tr>
<tr>
<td>EZ600 R1 to R12</td>
<td>15 to 28.8 V</td>
</tr>
</tbody>
</table>

Table 4: EZ-DA input signals

<table>
<thead>
<tr>
<th>Input signal voltage range</th>
<th>Input current</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF signal</td>
<td>ON signal</td>
</tr>
<tr>
<td>EZ500/EZ700</td>
<td></td>
</tr>
<tr>
<td>I1 to I6, I7, I8</td>
<td>0 to 4 V DC</td>
</tr>
<tr>
<td>EZ700</td>
<td>I9, I10, I11, I12</td>
</tr>
<tr>
<td>EZ700 I9, I10</td>
<td>3.3 mA at 12 V</td>
</tr>
<tr>
<td>EZ700 I11, I12</td>
<td>1.1 mA at 12 V</td>
</tr>
</tbody>
</table>

Connecting EZ DC analog inputs

The EZ-AB, EZ-DA and EZ-DC basic units are provided with analog inputs. Inputs I7 and I8, and if present I11 and I12, can be used to connect analog voltages ranging from 0 V to 10 V. A simple additional circuit also allows the analog evaluation of currents from 0 to 20 mA. The analog input signals are converted to 10-bit digital signals.

The following applies:

- 0 V DC corresponds to a digital 0.
- 5 V DC corresponds to a digital value of 512.
- 10 V DC corresponds to a digital value of 1023.
Connecting the inputs

Caution!
Analog signals are more sensitive to interference than digital signals. Consequently, greater care must be taken when laying and connecting the signal lines.

Incorrect switching states may occur if they are not connected correctly.

Safety measures with analog signals
- Use shielded twisted pair cables to prevent interference with the analog signals.
- For short cable lengths, ground the shield at both ends using a large contact area. If the cable length exceeds 30 m or so, grounding at both ends can result in equalization currents between the two grounding points and thus in the interference of analog signals. In this case, only ground the cable at one end.
- Do not lay signal lines parallel to power cables.
- Connect inductive loads to be switched via the EZ outputs to a separate power feed, or use a suppressor circuit for motors and valves. If loads such as motors, solenoid valves or contactors are operated with EZ via the same power feed, switching may result in interference on the analog input signals.

The following four circuits contain examples of applications for analog value processing.

Caution!
Ensure that the reference potential is connected. Connect the 0 V of the power supply unit for the different setpoint potentiometers and sensors shown in the examples to the 0 V and neutral conductor terminal (EZ-AB) of the EZ power feed. Otherwise incorrect switching states may occur if they are not connected correctly.
Power supply of EZ-AB devices and analog inputs
With EZ-AB devices that process analog signals, the device must be fed via a transformer so that the device is isolated from the mains supply. The neutral conductor and the reference potential of the DC power feed of analog sensors must be electrically connected.

Ensure that the common reference potential is grounded or monitored by a ground fault monitoring device. Observe the requirements of the relevant regulations.

Figure 17: EZ-AB analog input, connection of reference potentials
Connecting the inputs

Analog setpoint potentiometer, EZ-AB, EZ-DA, EZ-DC

Figure 18: Analog setpoint potentiometer with own power feed

Use a potentiometer with a resistance of \(\leq 1 \, k\Omega \), e.g. 1 k\(\Omega \), 0.25 W.

EZ-DC analog setpoint potentiometer

Figure 19: Analog setpoint potentiometer with 24 V DC power feed
Installation

Brightness sensor, EZ-AB, EZ-DA, EZ-DC

Figure 20: Connection of a brightness sensor, analog input

Temperature sensor, EZ-DA, EZ-DC

Figure 21: Connection of the temperature sensor, analog input
Connecting the inputs

20 mA sensor
4 to 20 mA (0 to 20 mA) sensors can be connected easily without any problem using an external 500 Ω resistor.

Analog sensor

The following values apply:

- 4 mA = 1.9 V
- 10 mA = 4.8 V
- 20 mA = 9.5 V

(Based on $U = R \times I = 478 \Omega \times 10 \text{ mA} - 4.8 \text{ V}$).

Connecting high-speed counters and frequency generators

High-speed counter signals and frequencies on the EZ-DA and EZ-DC can be counted accurately on inputs I1 to I4 independently of the cycle time. These inputs are permanently assigned to counters.

The following applies:

- I1 = C13 high-speed up/down counter
- I2 = C14 high-speed up/down counter
Installation

- I3 = C15 frequency counter
- I4 = C16 frequency counter

Pulse shape of count signals:
EZ processes square wave signals.

Mark-to-space ratio of count signals:
We recommend a mark-to-space ratio of 1:1.

If this is not the case:
The minimum pulse or pause duration is 0.5 ms.

\[t_{\text{min}} = 0.5 \times \left(\frac{1}{f_{\text{max}}} \right) \]

\(t_{\text{min}} \) = minimum time of the pulse or pause duration
\(f_{\text{max}} \) = maximum count frequency (1 kHz)

Figure 23: Connecting high-speed counters and frequency generators
Connecting the outputs

The Q outputs function inside EZ as isolated contacts.

The associated relay coils are controlled in the EZ circuit diagram via the following outputs.

- Q1 to Q4 and Q1 to Q8 (Q6), basic units
- S1 to S8 (S6), expansion devices

You can use the signal states of the outputs as make or break contacts in the EZ circuit diagram to provide additional switching conditions.

The relay or transistor outputs are used to switch loads such as fluorescent tubes, filament bulbs, contactors, relays or motors. Check the technical thresholds and data of the outputs before installation (section “Technical Data”, page 258).

Inputs that are used as high-speed counter inputs should not be used in the circuit diagram as contacts. If the counter frequency is high:

Not all the signals of the high-speed counter can be monitored for processing in the circuit diagram. EZ will only process a randomly logged state.
Connecting relay outputs

EZ512-..-R..

Figure 25: EZ512-..-R.. relay outputs

EZ7-..-R.. and EZ202-RE

Figure 26: EZ7-..-R.. relay outputs and EZ202-RE
Connecting the outputs

Figure 27: EZ618-RE relay outputs

Unlike the inputs, the outputs can be connected to different phases.

Warning!
Do not exceed the maximum voltage of 250 V AC on a relay contact.

If the voltage exceeds this threshold, flashover may occur at the contact, resulting in damage to the device or a connected load.
Connecting transistor outputs

EZ512-..-T..

![Diagram of EZ512-..-T..](image)

EZ7-..-T..

![Diagram of EZ7-..-T..](image)

Figure 28: EZ512-..-T.. transistor outputs

Figure 29: EZ7-..-T.. transistor outputs
Connecting the outputs

Figure 30: EZ620-..-TE transistor outputs

Parallel connection:
Up to four outputs can be connected in parallel in order to increase the power. The output current will increase in this case to a maximum of 2 A.

Caution!
Outputs may only be connected in parallel within a group (Q1 to Q4 or Q5 to Q8, S1 to S4 or S5 to S8), such as Q1 and Q3 or Q5, Q7 and Q8. Outputs connected in parallel must be switched at the same time.

Caution!
Please note the following when switching off inductive loads.
Suppressed inductive loads cause less interference in the entire electrical system. For optimum suppression the suppressor circuits are best connected directly to the inductive load.
If inductive loads are not suppressed, the following applies: Several inductive loads should not be switched off simultaneously to avoid overheating the driver blocks in the worst possible case. If in the event of an emergency stop the +24 V DC power supply is to be switched off by means of a contact, and if this would mean switching off more than one controlled output with an inductive load, then you must provide suppressor circuits for these loads (see the following diagrams).

![Figure 31: Inductive load with suppressor circuit](image)

Behavior with short-circuit/overload

Should a short circuit or overload occur on a transistor output, this output will switch off. The output will switch on up to maximum temperature after the cooling time has elapsed. This time depends on the ambient temperature and the current involved. If the fault condition persists, the output will keep switching off and on until the fault is corrected or until the power supply is switched off (→ section “Monitoring of short-circuit/overload with EZ..-D.-T..”, page 238).
Expanding inputs/outputs You can add expansion units to the following EZ models in order to increase the number of inputs and outputs:

<table>
<thead>
<tr>
<th>Expandable EZ basic units</th>
<th>Expansion units</th>
<th>Description</th>
</tr>
</thead>
</table>
| EZ7...-R.. | EZ618-..-RE | 115/230 V AC power supply
• 12 AC inputs,
• 6 relay outputs |
| EZ7...-T.. | EZ620-..-TE | 24 V DC power supply
• 12 DC inputs,
• 8 transistor outputs |
| EZ202-RE | EZ620-..-TE | 2 relay outputs |

Special expansion units
see current catalog

Local expansion
Local expansion units are connected directly next to the basic unit.

▶ Connect the EZ expansion unit via the EZ-LINK connection.

EZ-LINK

Figure 32: Connecting local expansion with EZ
Installation

Warning!
The following electrical isolation is implemented between the EZ7..-..-.C. basic unit and the expansion device (isolation always in local connection of expansion unit)

- Basic isolation 400 V AC (+10 %)
- Safe isolation 240 V AC (+10 %)

Units may be destroyed if the value 400 V AC +10 % is exceeded, and may cause the malfunction of the entire system or machine!

Basic unit and expansion unit can be provided with different DC power supplies.

Remote expansion
Remote expansion units can be installed and run up to 30 m away from the basic unit.

Warning!
The two-wire or multi-core cable between units must have the necessary insulation voltage required for the installation environment concerned. In the event of a fault (ground leakage, short-circuit) serious damage or injury to persons may otherwise occur.

A cable such as NYM-0 with a rated operational voltage of \(U_e = 300/500 \) V AC is normally sufficient.
Terminals E+ and E- of the EZ200-EZ are protected against short-circuits and polarity reversal. Functionality is only ensured if “E+” is connected with “E+” and “E-” with “E-”.

Figure 33: Connecting remote expansion units to EZ
Installation

Connecting bus systems

The EZ-LINK connection is designed to allow bus connections, apart from I/O expansions. Special bus connection devices are available for the bus systems in use.

Only one device (expansion device or bus connection) can be connected to the EZ-LINK connection.

At present, EZ700 can communicate with the following bus systems or networks:

- AS-Interface (Actuator-Sensor Interface)
- PROFIBUS-DP
- CANopen
- DeviceNet

The different bus systems offer different functions.

The following applies:

- As a minimum data exchange, the input data R1 to R16 and output data S1 to S8 can be exchanged, provided that the bus system supports this.
- If the bus system or bus gateway is capable of this, function block, date, time parameters can be read and written via the bus. The states of inputs, outputs, markers can be read.

The range and the functions of the bus gateways are being continually further developed.

The current Eaton product line catalog and the Internet online catalog contain those bus gateways that are currently available.
3 Commissioning

Before switching on EZ, check that you have connected the power supply terminals and inputs correctly:

- **24 V AC model EZ-AB**
 - Terminal L: Phase conductor L
 - Terminal N: Neutral conductor N
 - Terminals I1 to I12:
 Actuation via same phase conductor L

- **230 V AC model EZ-AC**
 - Terminal L: Phase conductor L
 - Terminal N: Neutral conductor N
 - Terminals I1 to I12, R1 to R12:
 Actuation via phase conductor L

- **12 V DC model**
 - Terminal +12 V: Voltage +12 V
 - Terminal 0 V: 0 V voltage
 - Terminals I1 to I12:
 Actuation via same +12 V

- **24 V DC model**
 - Terminal +24 V: +24 V voltage
 - Terminal 0 V: 0 V voltage
 - Terminals I1 to I12, R1 to R12:
 Actuation via the same +24 V

If you have already integrated EZ into a system, secure any parts of the system connected to the working area to prevent access and ensure that no-one can be injured if, for example, motors start up unexpectedly.
Setting the menu language

When you switch on EZ for the first time, you will be asked to select the menu language.

Use the cursor buttons ▼ or ▲ to select the language required.

- English
- German
- French
- Spanish
- Italian
- Portuguese
- Dutch
- Swedish
- Polish
- Turkish
- Czech
- Hungarian

Press OK to confirm your choice and press ESC to exit the menu.

EZ will then switch to the Status display.

You can change the language setting at a later time (→ section “Changing the menu language”, page 205).

If you do not set the language, EZ will display this menu and wait for you to select a language every time you switch on.
EZ operating modes

EZ has two operating modes - RUN and STOP.

In RUN mode EZ continuously processes a stored circuit diagram until you select STOP or disconnect the power. The circuit diagram, parameters and the EZ settings are retained in the event of a power failure. All you will have to do is reset the real-time clock after the back-up time has elapsed. Circuit diagram entry is only possible in STOP mode.

Caution!
In RUN mode EZ will immediately run the saved circuit diagram in the unit when the power supply is switched on. This will happen unless STOP mode was set as startup mode. In RUN mode outputs are activated according to the switch logic of the circuit diagram.

When a memory card with a circuit diagram is fitted in an EZ model with an LCD display, this circuit diagram will not start automatically if there is circuit diagram in the device. The circuit diagram must first be transferred from the memory card to the EZ unit.

In RUN mode EZ-X models load the circuit diagram on the memory card automatically and run it immediately.
Creating your first circuit diagram

The following small circuit diagram takes you step by step through wiring up your first EZ circuit diagram. In this way you will learn all the rules, quickly enabling you to use EZ for your own projects.

As with conventional wiring, you use contacts and relays in the EZ circuit diagram. With EZ, however, you no longer have to connect up components individually. At the push of a few buttons, the EZ circuit diagram produces all the wiring. All you have to do is then connect any switches, sensors, lamps or contactors you wish to use.

Figure 1: Lamp controller with relays

In the following example, EZ carries out all the wiring and performs the tasks of the circuit diagram shown below.
Creating your first circuit diagram

Figure 2: Lamp controller with EZ

Starting point: the Status display
When you switch on EZ, it opens the Status display immediately to show the switching state of the inputs and outputs. It also indicates whether EZ is already running a circuit diagram.

The examples were written without the use of expansion units. If an expansion unit is connected, the Status display will first show the status of the basic unit and then the status of the expansion unit before showing the first selection menu.
Commissioning

PROGRAM...
STOP / RUN
PARAMETER
INFO

Press OK to switch to the main menu.

Press OK to switch to the next menu level, and press ESC to move one level back.

OK has two other functions:
• Press OK to save modified settings.
• In the circuit diagram, you can also press OK to insert and modify contacts and relay coils.

In this case EZ must be in STOP mode.

Press OK 2 × to enter the circuit diagram display via menu items PROGRAM… → PROGRAM. This is where you will create the circuit diagram.

Circuit diagram display

The circuit diagram display is currently empty. The cursor flashes at the top left, which is where you will start to wire your circuit diagram. EZ will automatically propose the first contact I1.

Use the ↑↓←→ cursor buttons to move the cursor over the invisible circuit diagram grid.

The first three double columns are the contact fields and the right-hand columns form the coil field. Each line is a rung. EZ automatically energizes the first contact to voltage.

Now try to wire up the following EZ circuit diagram.

Switches S1 and S2 are at the input. I1 and I2 are the contacts for the input terminals. Relay K1 is represented by the relay coil Ø1. The symbol Ø identifies the coil’s function, in this case a relay coil acting as a contactor. Ø1 is one of up to eight EZ output relays in the basic unit.
From the first contact to the output coil

With EZ, you work from the input to the output. The first input contact is I_1.

Press OK.

EZ inserts the first contact I_1 at the cursor position.

Press OK 2 × , to move the cursor across the 1 to the second contact field.

You could also move the cursor to the next contact field using the cursor button ▷.

Press OK.

Again, EZ creates a contact I_1 at the cursor position. Change the contact number to I_2 so that break contact S2 can be connected to input terminal I2.

Press OK so that the cursor jumps to the next position and use cursor buttons ← or ↑ to change the number to 2.

Press DEL to delete a contact at the cursor position.

Press OK to move the cursor to the third contact field.

You do not need a third switch contact, so you can now wire the contacts directly to the coil field.
Commissioning

Wiring

EZ displays a small arrow in the circuit diagram for creating the wiring.

Press **ALT** to activate the arrow and press the cursor buttons \^_\^_ to move it.

ALT also has two other functions depending on the cursor position:

• From the left contact field, press **ALT** to insert a new, empty rung.
• The contact under the cursor can be changed between a make and break contact by pressing the **ALT** button.

The wiring arrow works between contacts and relays. When you move the arrow onto a contact or relay coil, it changes back to the cursor and can be reactivated if required.

EZ automatically wires adjacent contacts in a rung up to the coil.

► Press **ALT** to wire the cursor from I² through to the coil field.

The cursor changes into a flashing wiring arrow and automatically jumps to the next logical wiring position.

► Press the cursor button >. Contact I² will be connected up to the coil field.

You can use the **DEL** button to erase a connection at the cursor or arrow position. Where connections intersect, the vertical connections are deleted first, then, if you press **DEL** again, the horizontal connections are deleted.

► Press the cursor button > once more.

The cursor will move to the coil field.
Creating your first circuit diagram

Press OK.

EZ will insert relay Q1. The specified coil function and the output relay Q1 are correct and do not have to be changed.

Your first working EZ circuit diagram now looks like this:

Press ESC to leave the circuit diagram display.

The menu shown appears.

The circuit diagram is now automatically saved. CANCEL exits the circuit diagram. Changes that have been made to the circuit diagram are not saved.

EZ saves all the necessary circuit diagram and program data retentively in the internal data memory.

Once you have connected buttons S1 and S2, you can test your circuit diagram straight away.

Testing the circuit diagram

Switch with ESC to the main menu and select the STOP RUN menu option.

With STOP RUN and STOP RUN you switch to the RUN or STOP operating modes.

EZ is in RUN mode if the tick is present at the corresponding menu item, i.e. STOP RUN.

The tick next to a menu item indicates which operating mode or function is currently active.
Commissioning

Press OK.

The tick changes to STOP RUN

The Status display shows the current mode and the switching states of the inputs and outputs.

Press pushbutton actuator S1.

The contacts for inputs I1 and I2 are activated and relay Q1 picks up.

Power flow display
EZ allows you to check rungs in RUN mode. This means that you can check your circuit diagram via the built-in power flow display while it is being processed by EZ.

Switch to the circuit diagram display (confirm PROGRAM menu with OK) and actuate pushbutton S1.

The relay picks up and EZ displays the power flow.

Press pushbutton actuator S2, that has been connected as a break contact.

The rung is interrupted and relay Q1 drops out.

Press ESC to return to the Status display.

A circuit diagram does not have to be completed before you can test parts of it with EZ.

EZ simply ignores any incomplete wiring that is not yet working and only uses the finished wiring.
Creating your first circuit diagram

Deleting the circuit diagram

► Switch EZ to STOP mode.

The display shows STOP \(\checkmark \) RUN.

EZ must be in STOP mode in order to extend, delete or modify the circuit diagram.

► Use PROGRAM... to switch from the main menu to the next menu level.
► Select DELETE PROGRAM

EZ will display the prompt DELETE?

► Press OK to delete the program or ESC to cancel.

Press ESC to return to the Status display.

Fast circuit diagram entry

You can create a circuit diagram in several ways. The first option is to enter the elements in the circuit and then to wire all the elements together. The other option is to use the enhanced operator guidance of EZ and create the circuit diagram in one go, from the first contact through to the last coil.

If you use the first option, you will have to select some of the elements in order to create and connect up your circuit diagram.

The second, faster option is what you learned in the example. In this case you create the entire rung from left to right.
4 Wiring with EZ

By working through the example in chapter 3 you should now have gained an initial impression of just how simple it is to create a circuit diagram in EZ. This chapter describes the full range of EZ functions and provides further examples of how to use EZ.

Operation of EZ

Buttons for editing circuit diagrams and function relays

<table>
<thead>
<tr>
<th>Operation</th>
<th>Buttons for editing circuit diagrams and function relays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete rung, contact, relay or empty rung in the circuit diagram</td>
<td>DEL</td>
</tr>
<tr>
<td>Toggle between break and make contact</td>
<td>ALT</td>
</tr>
<tr>
<td>Connect contacts, relays and rungs</td>
<td>Connect</td>
</tr>
<tr>
<td>Add rungs</td>
<td>Add</td>
</tr>
<tr>
<td>Change value</td>
<td>Change value</td>
</tr>
<tr>
<td>Move cursor up and down</td>
<td>Move cursor up and down</td>
</tr>
<tr>
<td>Change position</td>
<td>Change position</td>
</tr>
<tr>
<td>Move cursor to left and right</td>
<td>Move cursor to left and right</td>
</tr>
<tr>
<td>Cursor buttons set as P buttons:</td>
<td>Cursor buttons set as P buttons:</td>
</tr>
<tr>
<td>Input P1, Input P3</td>
<td>Input P1, Input P3</td>
</tr>
<tr>
<td>Input P2, Input P4</td>
<td>Input P2, Input P4</td>
</tr>
<tr>
<td>Undo setting since previous OK</td>
<td>Undo setting since previous OK</td>
</tr>
<tr>
<td>Exit current display or menu</td>
<td>Exit current display or menu</td>
</tr>
<tr>
<td>Change, add contact/relay</td>
<td>Change, add contact/relay</td>
</tr>
<tr>
<td>Save setting</td>
<td>Save setting</td>
</tr>
</tbody>
</table>
Wiring with EZ

Operation

The cursor buttons in the EZ circuit diagram perform three functions. The current mode is indicated by the appearance of the flashing cursor.

- Move
- Enter
- Connect

In Move mode you can use ↑↓←→ to move the cursor around the circuit diagram in order to select a rung, contact or relay coil.

Use OK to switch to Entry mode so that you can enter or change a value at the current cursor position. If you press ESC in Entry mode, EZ will undo the most recent changes.

Press ALT to switch to Connect mode for wiring contacts and relays. Press ALT again to return to Move.

Press ESC to leave the circuit diagram and parameter display.

EZ performs many of these cursor movements automatically. For example, EZ switches the cursor to Move mode if no further entries or connections are possible at the selected cursor position.

Opening the parameter display for function relays with contacts or coils

If you specify the contact or coil of a function relay in Entry mode, EZ automatically switches from the contact number to the function relay parameter display when you press OK.

Press > to switch to the next contact or coil field without entering any parameters.

Program

A program is a sequence of commands which EZ executes cyclically in RUN mode. An EZ program consists of the necessary settings for the device, password, system settings, a circuit diagram and/or function relays.
Circuit diagram
The circuit diagram is that part of the program where the contacts are connected together. In RUN mode a coil is switched on and off in accordance with the current flow and the coil function specified.

Function relays
Function relays are program elements with special functions. Example: timing relays, time switches, counters. Function relays are elements provided with or without contacts and coils as required. In RUN mode the function relays are processed according to the circuit diagram and the results are updated accordingly.

Examples:
Timing relay = function relay with contacts and coils
Time switch = function relay with contacts

Relay
Relays are switching devices which are electronically simulated in EZ. They actuate their contacts according to their designated function. A relay consists of at least a coil and a contact.

Contacts
You modify the current flow with the contacts in the EZ circuit diagram. Contacts such as make contacts carry a 1 signal when closed and 0 when open. Every contact in the EZ circuit diagram can be defined as either a make contact or a break contact.
Wiring with EZ

Coils

Coils are the actuating mechanisms of relays. In RUN mode, the results of the wiring are sent to the coils, which switch on or off accordingly. Coils can have seven different coil functions.

Table 5: Usable contacts

<table>
<thead>
<tr>
<th>Contact</th>
<th>EZ representation</th>
</tr>
</thead>
</table>

EZ works with different contacts, which can be used in any order in the contact fields of the circuit diagram.

Table 6: Contacts

<table>
<thead>
<tr>
<th>Contact type</th>
<th>Make contact</th>
<th>Break contact</th>
<th>EZ500</th>
<th>EZ700</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog value comparator function relay</td>
<td>A</td>
<td>Â</td>
<td>A1...A16</td>
<td>A1...A16</td>
<td>102</td>
</tr>
<tr>
<td>Counter function relay</td>
<td>C</td>
<td>Ĉ</td>
<td>C1...C16</td>
<td>C1...C16</td>
<td>114</td>
</tr>
<tr>
<td>Text marker function relay</td>
<td>D</td>
<td>Ď</td>
<td>D1...D16</td>
<td>D1...D16</td>
<td>134</td>
</tr>
<tr>
<td>7-day time switch function relay</td>
<td>Ő</td>
<td>Ő</td>
<td>Ő1...Õ8</td>
<td>Ő1...Õ8</td>
<td>140</td>
</tr>
<tr>
<td>EZ input terminal</td>
<td>I</td>
<td>I</td>
<td>I1...I8</td>
<td>I1...I8</td>
<td>81</td>
</tr>
<tr>
<td>0 signal</td>
<td></td>
<td></td>
<td>I13</td>
<td>I13</td>
<td>81</td>
</tr>
<tr>
<td>Expansion status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>Short-circuit/overload</td>
<td></td>
<td></td>
<td>I16</td>
<td>I15...I16</td>
<td>241</td>
</tr>
<tr>
<td>Marker (auxiliary relay)</td>
<td>M</td>
<td>M</td>
<td>M1...M16</td>
<td>M1...M16</td>
<td>89</td>
</tr>
<tr>
<td>Marker (auxiliary relay)</td>
<td>N</td>
<td>N</td>
<td>N1...N16</td>
<td>N1...N16</td>
<td>89</td>
</tr>
<tr>
<td>Operating hours counter</td>
<td>O</td>
<td>O</td>
<td>O1...O4</td>
<td>O1...O4</td>
<td>145</td>
</tr>
<tr>
<td>Cursor button</td>
<td>P</td>
<td>P</td>
<td>P1...P4</td>
<td>P1...P4</td>
<td>87</td>
</tr>
<tr>
<td>EZ output</td>
<td>Q</td>
<td>Q</td>
<td>Q1...Q8</td>
<td>Q1...Q8</td>
<td>81</td>
</tr>
</tbody>
</table>
Operation of EZ

Relay, function relays

EZ has nine different types of relay for wiring in a circuit diagram.

<table>
<thead>
<tr>
<th>Contact type</th>
<th>Make contact</th>
<th>Break contact</th>
<th>EZ500</th>
<th>EZ700</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion input terminal</td>
<td>R</td>
<td>R</td>
<td>–</td>
<td>R1...R12</td>
<td>81</td>
</tr>
<tr>
<td>Short-circuit/overload with expansion</td>
<td>R</td>
<td>R</td>
<td>–</td>
<td>R1...R16</td>
<td>241</td>
</tr>
<tr>
<td>EZ output (expansion or S auxiliary marker)</td>
<td>S</td>
<td>S</td>
<td>S1...S8 (as marker)</td>
<td>S1...S8</td>
<td>89</td>
</tr>
<tr>
<td>Timing function relay</td>
<td>T</td>
<td>T</td>
<td>T1...T16</td>
<td>T1...T16</td>
<td>150</td>
</tr>
<tr>
<td>Jump label</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1...1</td>
<td>150</td>
</tr>
<tr>
<td>Year time switch</td>
<td>Y</td>
<td>Y</td>
<td>Y1...Y8</td>
<td>Y1...Y8</td>
<td>166</td>
</tr>
<tr>
<td>Master reset, (central reset)</td>
<td>Z</td>
<td>Z</td>
<td>Z1...Z3</td>
<td>Z1...Z3</td>
<td>176</td>
</tr>
</tbody>
</table>

Relays

- **Analog value comparator function relays**: A
 - EZ500: A1...A16
 - EZ700: A1...A16
- **Counter function relays**: C
 - EZ500: C1...C16
 - EZ700: C1...C16
- **Text marker function relays**: D
 - EZ500: D1...D16
 - EZ700: D1...D16
- **7-day time switch function relays**: 0
 - EZ500: 01...04
 - EZ700: 01...04
- **Markers (auxiliary relay)**: M
 - EZ500: M1...M16
 - EZ700: M1...M16
- **Markers (auxiliary relay)**: N
 - EZ500: N1...N16
 - EZ700: N1...N16
- **Operating hours counters**: O
 - EZ500: O1...04
 - EZ700: O1...O4
- **EZ output relays**: Q
 - EZ500: Q1...Q8
 - EZ700: Q1...Q8
- **EZ output relay expansion, auxiliary markers**: S
 - EZ500: S1...S8 (as marker)
 - EZ700: S1...S8
- **Timer function relays**: T
 - EZ500: T1...T16
 - EZ700: T1...T16
Wiring with EZ

<table>
<thead>
<tr>
<th>Relays</th>
<th>EZ display</th>
<th>EZ500</th>
<th>EZ700</th>
<th>Coil function</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional jump</td>
<td>:</td>
<td>:1...:8</td>
<td>:1...:8</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Year time switch</td>
<td>Y</td>
<td>Y1...Y8</td>
<td>Y1...Y8</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Master reset, (central reset)</td>
<td>Z</td>
<td>Z1...Z3</td>
<td>Z1...Z3</td>
<td>✓</td>
<td>–</td>
</tr>
</tbody>
</table>

You can set the switching behavior of these relays by means of the coil functions and parameters selected.

The options for setting output and marker relays are listed with the description of each coil function.

The coil functions and parameters are listed with the description of each function relay.

Circuit diagram display

In the EZ circuit diagram, contacts and coils are connected up from left to right - from the contact to the coil. The circuit diagram is created on a hidden wiring grid containing contact fields, coil fields and rungs. It is then wired up with connections.

- You can add switch contacts in the three contact fields. EZ adds the first energized contact field automatically.
- You add the relay coil to be controlled together with its function and designation in the coil field.
- Every line in the circuit diagram forms a rung. Up to 128 rungs can be wired in a circuit diagram.
Connections are used to produce the electrical contact between switch contacts and the coils. They can be created across several rungs. Each point of intersection is a connection.

The circuit diagram display performs two functions:

- In STOP mode it is used to edit the circuit diagram.
- In RUN mode it is used to check the circuit diagram using the Power flow display.
Wiring with EZ

Saving and loading circuit diagrams
There are two ways of saving circuit diagrams in EZ externally:

- By saving to a memory card
- By saving to a PC running EZSoft.

Once they have been saved, programs can be reloaded into EZ, edited and run.

All circuit diagram data is saved in EZ. In the event of a power failure the data will be retained until the next time it is overwritten or deleted.

Memory card
Each EZ-M-32K memory card contains a circuit diagram which is inserted into the EZ interface. The program is stored retentively on the memory card.

The way the memory card works and a description of how to transfer a program to the card is given in section “Memory card” on page 244.

EZSoft
EZSoft is a PC program with which you can create, store, test (simulate) and manage EZ circuit diagrams.

Completed circuit diagrams are transferred between your PC and EZ via the connecting cable. Once you have transferred a circuit diagram, simply run EZ straight from your PC.

Details on the program and transferring circuit diagrams are given in section “EZSoft” from page 248.

Working with contacts and relays
In EZ circuit diagrams, the switches, buttons and relays of conventional circuit diagrams are connected up using input contacts and relay coils.
Working with contacts and relays

Input and output contacts
First specify which input and output terminals you wish to use in your circuit.

Depending on the type and configuration, EZ has 8, 12 or 24 input terminals and 4, 6, 8, 10 or 16 outputs. The signal states on the input terminals are detected in the circuit diagram with the input contacts I1 to I12. R1 to R12 are the input contacts of the expansion. In the circuit diagram the outputs are controlled via the corresponding output relay coils Q1 to Q8 or S1 to S8 (expansion).

Entering and changing contacts and relay coils
A switch contact is selected in EZ via the contact name and contact number.

A relay coil is defined by its coil function, name and number.
Wiring with EZ

→ A full list of all the contacts and relays is given in the overview starting on page 76.

∫ Values for contacts and coil fields are changed in Entry mode. The value to be changed flashes.

→ If the field is empty, EZ will enter contact 1 or the coil $Q1$.

► Move the cursor using the buttons $\langle\rangle$ to a contact or coil field.
► Press OK to switch to Entry mode.
► Use $\langle\rangle$ to select the position you wish to change, or press OK to jump to the next position.
► Use $\langle\rangle$ to modify the value of the position.
Working with contacts and relays

EZ will leave Entry mode when you press \(\uparrow \) or \(\downarrow \) to leave a contact field or coil field.

Deleting contacts and relay coils

- Move the cursor using the buttons \(\uparrow \) to a contact or coil field.
- Press DEL.

The contact or the relay coil will be deleted, together with any connections.

Changing make contacts to break contacts

Every switch contact in the EZ circuit diagram can be defined as either a make contact or a break contact.
Wiring with EZ

Switch to Entry mode and move the cursor over the contact name.
► Press ALT. The make contact will change to a break contact.
► Press OK 2 × to confirm the change.

Figure 39: Changing contact I3 from make to break

Creating and modifying connections

Switch contacts and relay coils are connected with the wiring arrow in Connect mode. EZ displays the cursor in this mode as an arrow.
► Use 〈 〉 ˄˅ to move the cursor onto the contact field or coil field from which you wish to create a connection.

Do not position the cursor on the first contact field. At this position the ALT button has a different function (Insert rung).

► Press ALT to switch to Connect mode.
► Use 〈 〉 ˄˅ to move the diagonal arrow between the contact fields and coil fields and ˄˅ to move between rungs.
► Press ALT to leave Connect mode.

EZ will leave the mode automatically when you move the diagonal arrow onto a contact field or coil field which has already been assigned.

In a rung, EZ automatically connects switch contacts and the connection to the relay coil if there are no empty fields in-between.
Never work backwards. You will learn why wiring backwards does not work in section “Example: Do not wire backwards” from page 233.

When wiring more than three contacts in series, use an M or N marker.

Deleting connections

► Move the cursor onto the contact field or coil field to the right of the connection that you want to delete. Press ALT to switch to Connect mode.

► Press DEL.

EZ will delete a connection. Closed adjacent connections will be retained.

If several rungs are connected to one another, EZ first deletes the vertical connection. If you press DEL again, it will delete the horizontal connection as well.

You cannot delete connections that EZ has created automatically.

Close the delete operation with ALT or by moving the cursor to a contact or coil field.
Wiring with EZ

Inserting and deleting a rung

The EZ circuit diagram shows four of the 128 rungs in the display at the same time. If you move the cursor past the top or bottom of the display, EZ automatically scrolls up or down the display to show hidden rungs – even empty ones.

A new rung is added below the last connection or inserted above the cursor position:

1. Position the cursor on the first contact field of an empty rung.
2. Press ALT.

The existing rung with all its additional connections is “shifted” downwards. The cursor is then positioned directly in the new rung.

Deleting a rung

EZ will only remove empty rungs, i.e. those without contacts or coils.

1. Delete all the contacts and relay coils from the rung.
2. Position the cursor on the first contact field of the empty rung.
3. Press DEL.

The subsequent rung(s) will be “pulled up” and any existing links between rungs will be retained.
Switching with the cursor buttons

With EZ, you can also use the four cursor buttons as hard-wired inputs in the circuit diagram.

The buttons are wired in the circuit diagram as contacts P1 to P4. The P buttons can be activated and deactivated in the System menu.

The P buttons can also be used for testing circuits or manual operation. These button functions are also useful for servicing and commissioning purposes.

Example 1:
A lamp at output relay Q1 is switched on and off via inputs I1 and I2 or using cursor buttons ▲ ▼.

Example 2
Terminal I1 is used to control output relay Q1. Terminal I5 switches to Cursor button mode and deactivates rung I1 via M1.

The P buttons are only detected as switches in the Status menu. The cursor buttons are used for other functions in the menus, the power flow display and in the text display.

The Status menu display shows whether the P buttons are used in the circuit diagram.

- P: button function wired and active.
- P2: button function wired, active and P2 button ▲ pressed.
- P-: button function wired and not active.
- Empty field: P buttons not used.
Wiring with EZ

Checking the circuit diagram

EZ contains a built-in measuring device enabling you to monitor the switching states of contacts and relay coils during operation.

► Complete the small parallel connection and switch EZ to RUN mode via the main menu.
► Return to the circuit diagram display.

You are now unable to edit the circuit diagram.

If you switch to the circuit diagram display and are unable to modify a circuit diagram, first check whether EZ is in STOP mode.

The circuit diagram display performs two functions depending on the mode:
• STOP: Creation of the circuit diagram
• RUN: Power flow display

► Switch on I3.

In the power flow display, energized connections are thicker than non-energized connections.

You can follow energized connections across all rungs by scrolling the display up and down.

► The power flow display will not show signal fluctuations in the millisecond range. This is due to the inherent delay factor of LCD displays.
Coil functions

You can set the coil function to determine the switching behavior of relay coils. The following coil functions are available for relays Q, M, S, D, “:”.

<table>
<thead>
<tr>
<th>Circuit diagram symbol</th>
<th>EZ display</th>
<th>Coil function</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contactor function</td>
<td>Q01, Q02, Q04, Q11, QM1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contactor function with negated result</td>
<td>J01, J02, J04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cycle pulse with falling edge</td>
<td>L03, L04, L08, L51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cycle pulse with rising edge</td>
<td>R04, R05, R07, R53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impulse relay function</td>
<td>J03, J04, J08, J51</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Set (latching)</td>
<td>S08, S09, S03, S54</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Reset (unlatching)</td>
<td>R04, R05, R07, R53</td>
</tr>
</tbody>
</table>

Marker relays M and N are used as a flag. The S relay can be used as the output of an expansion unit or as a marker if no expansion unit is connected. The only difference between them and the output relay Q is that they have no output terminals.

The coil functions of the function relays are described in the descriptions for the appropriate relays.
The coil functions $\alpha, \beta, \gamma, \delta$ (contactor, contactor negated, cycle pulse negative, rising edge) must only be used once for each relay coil. The last coil in the circuit diagram determines the status of the relay.

When controlling a contactor or relay, the control coil is only present once. If you are creating parallel circuits, use Set, Reset as a coil function.

Rules for wiring relay coils
To ensure a clear overview of all relay states only assign the same coil function once to a relay (α, β, γ). However, retentive coil functions such as α, β, γ can be used several times if required by the circuit diagram logic.

Exception: When using jumps to structure a circuit diagram, this coil function can also be used effectively several times.

Relay with contactor function α
The output signal follows immediately after the input signal and the relay acts as a contactor.

![Signal diagram of contactor function](image)

Representation in EZ:
- Output relays Q: αQ_1 to αQ_8 (depending on type)
- Markers M, N: αM_1 to αM_{16}, αN_1 to αN_{16}
- Function relays (Text) D: αD_1 to αD_{16}
- Output relays S: αS_1 to αS_8
- Jumps: αJ_1 to αJ_8
Contactor function with negated result (inverse contactor function)

The output signal is simply an inversion of the input signal; the relay operates like a contactor with contacts that have been negated. If the coil is triggered with the 1 state, the coil switches its make contacts to the 0 state.

Figure 41: Signal diagram of inverse contactor function

Representation in EZ
- Output relays Q: Q1 to Q8 (depending on type)
- Markers M, N: M1 to M16, N1 to N16
- Function relays (Text) D: D1 to D16
- Output relays S: S1 to S8
- Jumps: :1 to :8

Falling edge evaluation (cycle pulse)

This function is used if the coil is only meant to switch on a falling edge. With a change in the coil state from 1 to 0, the coil switches its make contacts to the 1 state for one cycle.

Figure 42: Signal diagram of cycle pulse with falling edge
Wiring with EZ

Representation in EZ:

- Markers M, N: \(\text{M1 to M16, N1 to N16} \)
- Jumps: \(\text{I1 to I8} \)

\[\rightarrow \] Physical outputs should not be used as a cycle pulse is generated.

Rising edge evaluation (cycle pulse)

This function is used if the coil is only meant to switch on a rising edge. With a change in the coil state from 0 to 1, the coil switches its make contacts to the 1 state for one cycle.

Physical outputs should not be used as a cycle pulse is generated.

![Signal diagram of cycle pulse with rising edge](image-url)
Impulse relay
The relay coil switches whenever the input signal changes from 0 to 1. The relay behaves like an impulse relay.

Figure 44: Signal diagram of impulse relay

Representation in EZ:
- Output relays Q: JQ1 to JQ8 (depending on type)
- Markers M: JM1 to JM16
- Function relays (Text) D: JD1 to JD8
- Relays S: JS1 to JS8

A coil is automatically switched off if the power fails and if STOP mode is active. Exception: Retentive coils retain signal 1 (→ section “Retention (non-volatile data storage)” from page 226).
Latching relay
The “latch” and “unlatch” relay functions are used in pairs. The relay picks up when latched and remains in this state until it is reset by the “unlatch” function.

Figure 45: Latching relay signal diagram
- Range A: The Set coil and the Reset coil are triggered at different times
- Range B: Reset coil is triggered at the same time as the Set coil
- Range C: Power supply switched off

Representation in EZ:
- Q output relays: SQ1 to SQ8, RQ1 to RQ8 (depending on type)
- M markers: SM1 to SM16, RM1 to RM16
- (Text) D function relays: SD1 to SD8, RD1 to RD8
- S relays: SS1 to SS8, RS1 to RS8

Use each of the two relay functions S and R once only per relay.

If both coils are triggered at the same time, priority is given to the coil further down in the circuit diagram. This is shown in the above signal diagram in section B.
Function relays

Function relays allow you to simulate the functions of different conventional control engineering devices in your circuit diagram. EZ provides the following function relays:

Table 8: Function relays

<table>
<thead>
<tr>
<th>EZ circuit diagram symbol</th>
<th>Function relays</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1, A2</td>
<td>Analog value comparator, threshold value switch (only useful for devices with an analog input)</td>
</tr>
<tr>
<td>C1, CC1, DC1, RC1</td>
<td>Counter relay, up/down counter, high-speed counter, frequency counter</td>
</tr>
<tr>
<td>D2, CD2</td>
<td>Text, output user-defined texts, enter values</td>
</tr>
<tr>
<td>G1, G2</td>
<td>Time switch, weekday/time</td>
</tr>
<tr>
<td>O1, CO2</td>
<td>Operating hours counter with limit value entry.</td>
</tr>
<tr>
<td>T1, TT1, RT1, HT1, X, ?X</td>
<td>Timing relay, on-delayed</td>
</tr>
<tr>
<td>T1, TT1, RT1, HT1, ?X</td>
<td>Timing relay, on-delayed with random switching</td>
</tr>
<tr>
<td>T6, TT6, RT6, HT6, X, ??</td>
<td>Timing relay, off-delayed</td>
</tr>
<tr>
<td>T8, TT8, RT8, HT8, X, ??</td>
<td>Timing relay, off-delayed with random switching</td>
</tr>
<tr>
<td>T2, TT2, RT2, HT2, A</td>
<td>Timing relay, single pulse</td>
</tr>
</tbody>
</table>

A latched relay is automatically switched off if the power fails or if the device is in STOP mode. Exception: Retentive coils retain signal 1 (section “Retention (non-volatile data storage)”, page 226).
A function relay is started via its relay coil or by evaluating a parameter. It switches the contact of the function relay according to its function and the set parameters.

Current actual values are cleared if the power supply is switched off or if EZ is switched to STOP mode.

Exception: Retentive coils keep their logic state (section “Retention (non-volatile data storage)”, page 226).

Attention!
The following applies to RUN mode: EZ processes the function relays after a pass through the circuit diagram. The last state of the coils is used for this.

Only use the coil of a function relay once. Exception: When working with jumps, the same coil can be used several times.

Example with function relay timer and counter relay
A warning light flashes when the counter reaches 10. The example shows function relays C1 and T1. The S1 pushbutton actuator is used for the count signal. The S2 pushbutton actuator resets counter P1.
The wiring of the EZ relay looks as follows.

The counter P1 is called C1 in EZ.

The timing relay K1T is called T1 in EZ.
Wiring with EZ

Complete the circuit diagram up to CC1.

CC1 is the count coil of the counter 1 function relay.

Press OK to call up the EZ parameter display.

Move the cursor onto the 1 of CC1 and press OK.

The parameter set for the counter is displayed.

Press the cursor button until the cursor is on the plus sign on the right of the S (setpoint).

Press the OK button.

Press the > button.

Use > to move the cursor onto the tens digit.

Use ^ ^ to modify the value of the digit.

Confirm the value input with OK.
Function relays

Press ESC to return to the circuit diagram, the setpoint 0010 will be stored.

EZ has specific parameter displays for function relays. The meaning of these parameters is explained under each relay type.

Enter the circuit diagram up to coil TT1 of the timing relay. Set the parameter for T1.

The timing relay works like a flashing relay. The EZ symbol for the flasher/blink relay is Ü. It is set at the top left of the parameter display. S means here the Seconds time base.

Select the Ü symbol by pressing the Ú button.

Use the > button to move to the first time setpoint I1.

Press the OK button.

Press the > button.
Wiring with EZ

Use the buttons to enter the value 01.000.
Confirm with OK.

The time setpoint I1 for the pause time is 1 s

Use the button to enter the value of the second setpoint I2.
Set this value to 0.5 s.

This is the time value for the pulse time.
Press ESC to leave the parameter entry.

The values are now stored.
Complete the circuit diagram.

Press the ESC button.
Press OK to store the circuit diagram.
Test the circuit diagram using the power flow display.
Switch EZ to RUN mode and return to the circuit diagram.

Each parameter set can be displayed using the power flow display for the circuit diagram.
Move the cursor onto C1 and press OK.

The parameter set for the counter is displayed with actual and setpoint values.
Switch the input I5. The actual value changes.
Function relays

This is represented in the EZ parameter display. In the last line C: 0007 the counter actual value is 7.

If the actual value is greater than or equal to the setpoint (10), the left character on the bottom row will change to . The contact of counter C1 switches.

The counter contact triggers the timing relay. This causes the warning light to flash at output Q1.

Power flow of the circuit diagram

Doubling the flashing frequency:

- In the power flow display select T1.
- Press OK.
- Change the set time I1 to 00.500 and I2 to 00.250 (0.5 and 0.25 s).
- The set time will be accepted as soon as you press OK.

The character on the left of the bottom row will indicate whether the contact has switched or not.

- □ Contact has not switched (make contact open).
- ■ Contact has switched (make contact closed).

You can also modify parameter settings via the PARAMETER menu option.

If you want to prevent other people from modifying the parameters, change the access enable symbol from + to – when creating the circuit diagram and setting parameters. You can then protect the circuit diagram with a password.
Wiring with EZ

Analog value comparator/threshold value switch

EZ provides 16 analog comparators A1 to A16 for use as required. These can also be used as threshold value switches or comparators.

An analog value comparator or threshold value switch enables you to compare analog input values with a setpoint, the actual value of another function relay or another analog input. This enables you to implement small controller tasks such as two-point controllers very easily.

All EZ-AB, EZ-DA and EZ-DC devices are provided with analog inputs.

- The analog inputs of the EZ500 are I7 and I8.
- The analog inputs of the EZ700 are I7, I8, I11 and I12

The following comparisons are possible:

<table>
<thead>
<tr>
<th>Value at function relay value input I1</th>
<th>Comparator functions</th>
<th>Mode selection at the function relay</th>
<th>Value at function relay value input I2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input I7, I8, I11, I12</td>
<td></td>
<td></td>
<td>Analog input I7, I8, I11, I12</td>
</tr>
<tr>
<td>Setpoint 0000 to 9999</td>
<td></td>
<td></td>
<td>Setpoint 0000 to 9999</td>
</tr>
<tr>
<td>Actual value of counter relay C1 to C16</td>
<td></td>
<td></td>
<td>Actual value of counter relay C1 to C16</td>
</tr>
<tr>
<td>Actual value of timing relay T1 to T16</td>
<td></td>
<td></td>
<td>Actual value of timing relay T1 to T16</td>
</tr>
<tr>
<td>Less than</td>
<td>LT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than/equal to</td>
<td>LE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal to</td>
<td>EQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater than/equal to</td>
<td>GE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater than</td>
<td>GT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analog value comparator/threshold value

Table 9: Comparison examples:

<table>
<thead>
<tr>
<th>A1 function relay</th>
<th>Value input I1</th>
<th>A1 function relay</th>
<th>Value input I2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>GE (greater than/equal to)</td>
<td>I8</td>
<td></td>
</tr>
<tr>
<td>I7</td>
<td>LE (less than/equal to)</td>
<td>I8</td>
<td></td>
</tr>
<tr>
<td>I7</td>
<td>GE (greater than/equal to)</td>
<td>Setpoint</td>
<td></td>
</tr>
<tr>
<td>I7</td>
<td>LE (less than/equal to)</td>
<td>Setpoint</td>
<td></td>
</tr>
<tr>
<td>I8</td>
<td>GE (greater than/equal to)</td>
<td>Setpoint</td>
<td></td>
</tr>
<tr>
<td>I8</td>
<td>LE (less than/equal to)</td>
<td>Setpoint</td>
<td></td>
</tr>
</tbody>
</table>

Circuit diagram display with analog value comparator

Analog value comparators are integrated as contacts in the circuit diagram.

In the circuit diagram above, I1 enables both analog value comparators. If a value goes below the set value, A1 switches output Q1. If another value exceeds the set value, A2 deactivates output Q1. A3 switches marker M1 on and off.

Table 10: Parameter display and parameter set for analog value comparator:

<table>
<thead>
<tr>
<th>A1</th>
<th>Analog value comparator function relay 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>Equal mode</td>
</tr>
<tr>
<td>+</td>
<td>The function relay has the following modes:</td>
</tr>
<tr>
<td></td>
<td>• LT: less than</td>
</tr>
<tr>
<td></td>
<td>• LE: less than/equal to</td>
</tr>
<tr>
<td></td>
<td>• EQ: equal to</td>
</tr>
<tr>
<td></td>
<td>• GE: greater than/equal to</td>
</tr>
<tr>
<td></td>
<td>• GT: greater than</td>
</tr>
</tbody>
</table>

+ + appears in the PARAMETER menu.
- does not appear in the PARAMETER menu.
Wiring with EZ

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Comparison value 1 (positive value I7, I8, I11, I12, actual value T1 to T16, C1 to C16)</td>
</tr>
<tr>
<td>F1</td>
<td>Gain factor for I1 (I1 = F1 × actual value at I1); F1 = positive value from 0 to 9999</td>
</tr>
<tr>
<td>I2</td>
<td>Comparison value 2 (positive value I7, I8, I11, I12, actual value T1 to T16, C1 to C16)</td>
</tr>
<tr>
<td>F2</td>
<td>Gain factor for I2 (I2 = F2 × actual value at I2); F2 = positive value from 0 to 9999</td>
</tr>
<tr>
<td>OS</td>
<td>Offset for the value of I1 (I1 = OS + + actual value at I1); OS = positive value from 0 to 9999</td>
</tr>
<tr>
<td>HV</td>
<td>Switching hysteresis for value I2 Value HV applies both to positive and negative hysteresis.</td>
</tr>
<tr>
<td></td>
<td>• I2 = Actual value at I2 + HV;</td>
</tr>
<tr>
<td></td>
<td>• I2 = Actual value at I2 - HV;</td>
</tr>
<tr>
<td></td>
<td>• HV = positive value from 0 to 9999</td>
</tr>
</tbody>
</table>

Work normally with analog inputs and setpoints as the parameters for the analog value comparator.

The analog value comparator for EZ500 and EZ700 operates internally in the value range:

–2147483648 to +2147483647

This ensures that the correct value is always calculated. This is important for multiplying values (I1 × F1 or I2 × F2).

Example:

I1 = 9999, F1 = 9999

I1 × F1 = 99980001

The result is within the value range.

If no value is entered at F1 or F2, only the value at I1 and I2 is used (no multiplication).
Analog value comparator/threshold value

If the value of a control relay exceeds the value 9999, the value of the counter is shown in the display of the analog value comparator minus 10000.

Example: Counter actual value = 10233
Display of the analog value comparator: 233 (10000 is displayed as 0).

Parameter display in RUN mode

Parameter display and parameter set for analog value comparator in RUN mode with the display of the actual values:

<table>
<thead>
<tr>
<th>A1</th>
<th>EQ</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>0249</td>
<td>+</td>
</tr>
<tr>
<td>F1</td>
<td>0000</td>
<td>-</td>
</tr>
<tr>
<td>I2</td>
<td>0350</td>
<td>+</td>
</tr>
<tr>
<td>F2</td>
<td>0000</td>
<td>-</td>
</tr>
<tr>
<td>OS</td>
<td>0000</td>
<td>-</td>
</tr>
<tr>
<td>HV</td>
<td>0025</td>
<td>-</td>
</tr>
</tbody>
</table>

— Actual value, e.g.: analog input
— Factor is not used
— Actual comparison value, e.g.: constant
— Factor is not used
— Offset is not used
— The switching hysteresis is +/- 25

Resolution of the analog inputs

The analog inputs I7, I8, and on the EZ700 I11, I12 have the following resolution.

The analog signal from 0 to 10 V DC is converted to a 10-bit digital value from 0 to 1023. A digital value of 100 represents an analog value of 1.0 V (exactly 0.98 V).
Wiring with EZ

Figure 48: Resolution of the analog inputs

Function of the analog value comparator

The GT, GE, LT, and LE comparison functions only differ in the fact that GE and LE also switch when the value is equal to the setpoint. EZ500 and EZ700 feature five comparison modes so that all analog value comparators are compatible between models.

Caution!
Analog signals are more sensitive to interference than digital signals. Consequently, more care must be taken when laying and connecting the signal lines.

Set the switching hysteresis to a value so that interference signals will not cause accidental switching. A value of 0.2 V (value 20 without gain) must be observed as a safety value.

Function of the Less than comparison
Parameter display and parameter set for Less than analog value comparator.
Analog value comparator/threshold value

Circuit diagram with analog value comparator.

Figure 49: Signal diagram of analog value comparator in Less than mode

1: actual value at I7
2: setpoint plus hysteresis value
3: setpoint
4: setpoint minus hysteresis

The make contact switches off when the actual value at I7 exceeds the setpoint plus hysteresis. If the actual value at I7 falls below the setpoint, the make contact switches on.

Function of the Less than/equal to comparison

Parameter display and parameter set for Less than and equal to analog value comparator.

The values $F1 +0$, $F2 +0$ and $OS +0$ were not defined. A gain is not used with any values. No offset is used.
Circuit diagram with analog value comparator.

The values $F_1 +0$, $F_2 +0$, and $O5 +0$ were not defined. No values are used with a gain factor, and no offset is used.

The make contact switches off when the actual value at I7 exceeds the setpoint plus hysteresis. If the actual value at I7 equals or falls below the setpoint, the make contact switches on.

Function of the Equal to comparison

Parameter display and parameter set for Equal analog value comparator.

- F_1: 0010
- I_2: 0000
- F_2: +0
- $O5$: +0
- HY: 0250
Analog value comparator/threshold value

Circuit diagram with analog value comparator.

The values $F^2 + 0$ and $O5 + 0$ were not defined. No values are used with a gain factor, and no offset is used. A gain factor of 10 is used with the analog value at I8. The hysteresis is adjusted accordingly.

Figure 51: Signal diagram of analog value comparator in Equal to mode
1: actual value at I8, multiplied with gain factor F^2
2: setpoint plus hysteresis value
3: setpoint
4: setpoint minus hysteresis

The make contact switches on if the actual value at I8 (multiplied by F^1) reaches the configured setpoint. If the value exceeds the setpoint plus hysteresis, the make contact switches off. If the actual value at I8 (multiplied by F^1) falls to the setpoint, the make contact switches on. If the actual value falls below the setpoint minus hysteresis, the make contact switches off.
Wiring with EZ

Example: Function of the Greater than/equal to comparison

Parameter display and parameter set for Greater than/equal to analog value comparator.

The values \(\pm 0 \), \(\pm 0 \) and \(\pm 0 \) were not defined. No values are used with a gain factor, and no offset is used.

Circuit diagram with analog value comparator.

Figure 52: Signal diagram of analog value comparator in Greater than/equal to mode

1: actual value at I7
2: setpoint plus hysteresis value
3: setpoint
4: setpoint minus hysteresis

The make contact switches if the actual value at I7 is equal to the setpoint. The make contact switches off when the actual value at I7 falls below the setpoint minus hysteresis.
Analog value comparator/threshold value

Example: Function of the Greater than comparison
Parameter display and parameter set for Greater than analog value comparator.

Circuit diagram with analog value comparator.

The values F_1, F_2, and OS were not defined.
No values are used with a gain factor, and no offset is used.

Figure 53: Signal diagram of analog value comparator in Greater than mode
1: actual value at I7
2: setpoint plus hysteresis value
3: setpoint
4: setpoint minus hysteresis

The make contact switches if the actual value at I7 reaches the setpoint. The make contact switches off when the actual value at I7 falls below the setpoint minus hysteresis.
Example: Analog value comparator as two-step controller

If, for example, the temperature goes below a value, A1 switches on the output Q1 with the enable input I5. If the temperature exceeds the set value, A2 will switch off. If there is no enable signal, output Q1 will always be switched off by I5.

Parameter settings of both analog value comparators:

<table>
<thead>
<tr>
<th>Switching on</th>
<th>Switch off</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 LT +</td>
<td>A2 GT +</td>
</tr>
<tr>
<td>I1 I7 +</td>
<td>I1 I7 +</td>
</tr>
<tr>
<td>F1 +0</td>
<td>F1 +0</td>
</tr>
<tr>
<td>I2 0500 +</td>
<td>I2 0550 +</td>
</tr>
<tr>
<td>F2 +0</td>
<td>F2 +0</td>
</tr>
<tr>
<td>OS +0</td>
<td>OS +0</td>
</tr>
<tr>
<td>HV +0</td>
<td>HV 0015</td>
</tr>
</tbody>
</table>

A simple circuit can be implemented if a switching point of the controller is assigned to the digital switching point of the analog input. This switching point has a 8 V DC (EZ-DA, EZ-DC) and 9.5 V (EZ-AB) signal.

Parameter settings:

<table>
<thead>
<tr>
<th>Switching on</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 LT +</td>
</tr>
<tr>
<td>I1 I7 +</td>
</tr>
<tr>
<td>F1 +0</td>
</tr>
<tr>
<td>I2 0500 +</td>
</tr>
<tr>
<td>F2 +0</td>
</tr>
<tr>
<td>OS +0</td>
</tr>
<tr>
<td>HV +0</td>
</tr>
</tbody>
</table>

The switch point is implemented via I7 (digital switching signal).
Example: analog value comparator, detection of operating states

Several analog value comparators can be used to evaluate different operating states. In this case 3 different operating states are evaluated.

Parameter settings of three analog value comparators:

First operating state

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6</td>
<td>EQ +</td>
</tr>
<tr>
<td>I1</td>
<td>I7</td>
</tr>
<tr>
<td>F1</td>
<td>+0</td>
</tr>
<tr>
<td>I2</td>
<td>0500</td>
</tr>
<tr>
<td>F2</td>
<td>+0</td>
</tr>
<tr>
<td>OS</td>
<td>+0</td>
</tr>
<tr>
<td>HV</td>
<td>0025</td>
</tr>
</tbody>
</table>

Second operating state

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>EQ +</td>
</tr>
<tr>
<td>I1</td>
<td>I7</td>
</tr>
<tr>
<td>F1</td>
<td>+0</td>
</tr>
<tr>
<td>I2</td>
<td>0700</td>
</tr>
<tr>
<td>F2</td>
<td>+0</td>
</tr>
<tr>
<td>OS</td>
<td>+0</td>
</tr>
<tr>
<td>HV</td>
<td>0025</td>
</tr>
</tbody>
</table>

Third operating state

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8</td>
<td>EQ +</td>
</tr>
<tr>
<td>I1</td>
<td>I7</td>
</tr>
<tr>
<td>F1</td>
<td>+0</td>
</tr>
<tr>
<td>I2</td>
<td>0850</td>
</tr>
<tr>
<td>F2</td>
<td>+0</td>
</tr>
<tr>
<td>OS</td>
<td>+0</td>
</tr>
<tr>
<td>HV</td>
<td>0025</td>
</tr>
</tbody>
</table>
Wiring with EZ

Example: analog value comparator, comparison of two analog values
To compare two analog values, you can use the following circuit. In this case, the comparison determines whether I7 is less than I8.

Parameter settings of the analog value comparator

Counters
EZ provides 16 up/down counters C1 to C16 for use as required. The counter relays allow you to count events. You can define an upper threshold value as a comparison value. The contact will switch according to the actual value.

High-speed counters, frequency counters up to 1 kHz counter frequency.

EZ-DA and EZ-DC feature four high-speed counters C13 to C16. The function is defined by the mode selected. The counter input is connected directly to a digital input. The high-speed digital inputs are I1 to I4.

Possible applications include the counting of components, lengths, events and frequency measurement.

If required, the same counters can also be used for retentive data.
Counters

Table 11: Counter modes

<table>
<thead>
<tr>
<th>Counters</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 to C12</td>
<td>N</td>
<td>Up/down counters</td>
</tr>
<tr>
<td>C13, C14</td>
<td>N or H</td>
<td>Up/down counters or high-speed up counters (EZ-DA, EZ-DC)</td>
</tr>
<tr>
<td>C15, C16</td>
<td>N or F</td>
<td>Up/down counters or frequency counters (EZ-DA, EZ-DC)</td>
</tr>
</tbody>
</table>

Wiring of a counter
You integrate a counter into your circuit in the form of a contact and coil. The counter relay has different coils.

To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram.
Do not use the input of a high-speed counter as a contact in the circuit diagram. If the counter frequency is too high only a random input value will be used in the circuit diagram.

EZ circuit diagram with counter relay
The coils and contacts have the following meanings:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 to C16</td>
<td>The contact switches if the actual value is greater than or equal to the setpoint.</td>
<td></td>
</tr>
</tbody>
</table>
Wiring with EZ

Parameter display and parameter set for the counter relay:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1 to CC16</td>
<td>Counter input, rising edge counts</td>
</tr>
</tbody>
</table>
| DC1 to DC16 | Counting direction
 • Coil not triggered: up counting.
 • Coil triggered: down counting. |
| RC1 to RC16 | Reset, coil triggered: actual value reset to 00000 |

In the parameter display of a counter relay you change the mode, the setpoint and the enable of the parameter display.

Value range
The counter relay counts between 0 and 32000.

Behavior when value range is reached
The EZ control relay is in RUN mode.

If the value of 32000 is reached, this value will be retained until the count direction is changed. If the value of 00000 is reached, this value will be retained until the count direction is changed.
Parameter display in RUN mode:

```
C1 N +
S 00309
☐ C:00042
```

— Current setpoint, constant (0309)

☐ Contact has not switched.

■ Contact has switched.

Actual value (00042)

Retention

Counter relays can be operated with retentive actual values. You can select the retentive counter relays in the SYSTEM... RETENTION... menu. C5 to C7, C8 and C13 to C16 can be selected.

If a counter relay is retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

When EZ is restarted in RUN mode, the counter relay continues with the retentively stored actual value.

Determining counter frequency

The maximum counter frequency depends on the length of the circuit diagram in EZ. The number of contacts, coils and rungs used determines the run time (cycle time) required to process the EZ circuit diagram.

Example: When using EZ512-DC-TC with only three rungs for counting, resetting and outputting the result via the output, the counter frequency may be 100 Hz.

The maximum counter frequency depends on the maximum cycle time.

The following formula is used to determine the maximum counter frequency:

\[
f_c = \frac{1}{2 \times t_c} \times 0.8
\]

- \(f_c\) = maximum counter frequency
- \(t_c\) = maximum cycle time
- 0.8 = Correction factor
Example
The maximum cycle time is $t_c = 4000 \mu s$ (4 ms).

$$f_c = \frac{1}{2 \times 4 \text{ ms}} \times 0.8 = 100 \text{ Hz}$$

Function of the counter function relay

Figure 54: Signal diagram
1: Count pulses at the count coil CC...
2: Count direction, direction coil DC...
3: Reset signal at the reset coil RC...
4: Counter setpoint (the setpoint in the figure = 6)
5: actual value of the counter
6: contact of the counter, C
 - Range A: The relay contact of counter C with setpoint value 6 switches when the actual value is 6.
 - Range B: If the counting direction is reversed B, the contact is reset when the actual value is 5.
 - Range C: Without count pulses the current actual value is retained.
 - Range D: The reset coil resets the counter to 0.
Example: counters, counting unit quantities, manual counter value reset
The input I6 contains the necessary counter information and controls the count coil CC1 of counter 1. Q4 is activated if the setpoint is reached. Q4 remains switched on until I7 resets counter C1 to zero with the RC1 coil.

Circuit diagram display Parameter settings of the C1 counter

Example: counting unit quantities, automatic counter value reset
The input I6 contains the necessary counter information and controls the count coil CC2 of counter 2. M8 will be switched on for one program cycle if the setpoint is reached. The counter C2 is automatically set to zero by the Reset coil RC2.

Circuit diagram display Parameter settings of the C2 counter
Example of a two counter cascade
Another counter is added to the previous example. As the contact of counter C2 is only set to 1 for one program cycle, the carry of counter C2 is transferred to counter C3. The counter C3 prevents further counting when its setpoint is reached.

Circuit diagram display

Parameter settings of the C2 counter

Parameter settings of the C3 counter

Example: up/down counting with a scan for actual value = zero
The input I6 contains the necessary counter information and controls the count coil CC6 of counter 6. Marker N2 is set if the setpoint is reached. Marker N2 controls the direction coil DC6 of counter C6. If N2 is 1 (activated), counter C6 counts down. If the actual value of the counter is 00000, the analog value
comparator A6 resets marker N2. The direction coil DC6 of counter C6 is reset. The counter C6 only operates as an up counter.

Example: counter with retentive actual value
Select a retentive counter if you wish to retain the actual value of a counter, even after a power failure or a change from RUN to STOP.

Select the required counter in the SYSTEM… ➔ RETENTION… menu.

The above example scans the value zero. However, any permissible value within the range of the analog value comparator function block can be entered.
The example shows the counters C5 to C7 as retentive counters.

Circuit diagram display

Parameter settings of counter C5

The counter has the value 450 before the power supply is switched off.

Figure 55: Retentive counter

1. The numerical value 450 is retained even after a power outage.

U = supply voltage of the device

High-speed counters, EZ-DA, EZ-DC

EZ provides various high-speed counter functions. These counter function blocks are coupled directly to digital inputs. The following functions are possible:

- Frequency counters: C15 and C16
- High-speed counters: C13 and C14.

Frequency counters

EZ provides two frequency counters C15 and C16 for use as required. The frequency counters can be used for measuring frequencies. The high-speed frequency counters are permanently connected to the digital inputs I3 and I4.

Frequency counters C15 and C16 can be used for determining motor speeds, volume measurement using volume meters or the running of a motor.
High-speed counters, EZ-DA, EZ-DC

The frequency counter allows you to enter an upper threshold value as a comparison value. The C15 and C16 frequency counters are not dependent on the cycle time.

Counter frequency and pulse shape
The maximum counter frequency is 1 kHz.
The minimum counter frequency is 4 Hz.
The signals must be square waves. We recommend a mark-to-space ratio of 1:1.

If this is not the case:
The minimum mark-to-space ratio is 0.5 ms.

\[
 t_{\text{min}} = 0.5 \times \frac{1}{f_{\text{max}}}
\]

\[
 t_{\text{min}} = \text{minimum time of the pulse or pause duration}
\]
\[
 f_{\text{max}} = \text{maximum count frequency (1 kHz)}
\]

Frequency counters operate independently of the program cycle time. The result of the actual value setpoint comparison is only transferred once every program cycle for processing in the circuit diagram.

The reaction time in relation to the setpoint/actual value comparison can therefore be up to one cycle.

Measurement method
The pulses on the input are counted for one second irrespective of the cycle time, and the frequency is determined. The measurement result is provided as an actual value.

Wiring of a frequency counter
The following assignment of the digital inputs apply.

- I3 counter input for frequency counter C15
- I4 counter input for frequency counter C16.
Wiring with EZ

If you use C15 or C16 as frequency counters, coils DC15 or DC16 will have no function. The counter signals are transferred directly from the digital inputs I3 and I4 to the counters. A frequency counter measures the actual value and does not measure a direction.

You only integrate a frequency counter into your circuit in the form of a contact and enable coil. The coils and contacts have the following meanings:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1$ to C1#</td>
<td>The contact switches if the actual value is greater than or equal to the setpoint.</td>
</tr>
<tr>
<td>CC15, CC16</td>
<td>Enable of the frequency counter on "1" state, coil activated</td>
</tr>
<tr>
<td>RC15, RC16</td>
<td>Reset, coil triggered: actual value reset to 0000</td>
</tr>
</tbody>
</table>

The frequency counter can also be enabled specifically for a special operating state. This has the advantage that the cycle time of the device is only burdened with the frequency measurement when it is taking place. If the frequency counter is not enabled, the cycle time of the device is shorter.

Parameter display and parameter set for frequency counter:

C1$	Counter function relay number 15
F	Mode F: frequency counter
+	• + appears in the PARAMETER menu.
	• - does not appear in the PARAMETER menu.
S	Setpoint, constant from 00000 to 01000
	(32000 is a possible setting, the maximum frequency is 1 kHz)
In the parameter display of a counter relay you change the mode, the setpoint and the enable of the parameter display.

Value range
The counter relay counts between 4 and 1000 [Hz].

Parameter display in RUN mode:

- Current setpoint, constant (0309)
- Contact has not switched.
- Contact has switched.
- Actual value (0153)

Retention
Setting retention on the frequency counter serves no purpose since the frequency is continuously remeasured.
Wiring with EZ

Function of the frequency counter

Figure 56: Signal diagram of the frequency counter

1: counter input I3 or I4
2: upper setpoint
3: enable coil CC...
4: reset coil RC...
5: contact (make contact) C... upper setpoint value reached.

t_g: gate time for the frequency measurement

- **Range A:** the counter is enabled. Contact C15 (C16) switches after a frequency above the setpoint was measured for the first time.
- **Range B:** If the actual value falls below the setpoint, the contact is reset. The removal of the enable signal resets the actual value to zero.
- **Range C:** the counter is enabled. After a frequency above the setpoint was measured for the first time, contact C15 (C16) switches.
- **Range D:** The reset coil resets the actual value to zero.
Example: frequency counter

Frequency counters with different switch points

The frequency measured at input I3 is to be classified in different value ranges. The analog value comparator is used as an additional comparison option.

The counter is enabled via marker N3. The value 900 or higher is detected by frequency counter C15 as the upper limit value. This triggers the coil of marker N4.

If the frequency is higher than 600 Hz, analog value comparator A1 indicates this and triggers marker N5.

If the frequency is higher than 400 Hz, analog value comparator A2 indicates this and triggers marker N6.

Circuit diagram display

![Circuit Diagram]

Parameter settings of the counter C15

<table>
<thead>
<tr>
<th>N3 -- CC15</th>
<th>C15 F +</th>
</tr>
</thead>
<tbody>
<tr>
<td>C15 S 00900</td>
<td></td>
</tr>
</tbody>
</table>

Parameter settings of the analog value comparator A1

<table>
<thead>
<tr>
<th>A1 GE +</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1 C6 +</td>
</tr>
<tr>
<td>F1 +0</td>
</tr>
<tr>
<td>I2 0600 +</td>
</tr>
</tbody>
</table>

Parameter settings of the analog value comparator A2

<table>
<thead>
<tr>
<th>A2 GE +</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1 C6 +</td>
</tr>
<tr>
<td>F1 +0</td>
</tr>
<tr>
<td>I2 0400 +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F2 +0</th>
</tr>
</thead>
<tbody>
<tr>
<td>O5 +0</td>
</tr>
<tr>
<td>HY +0</td>
</tr>
</tbody>
</table>
Wiring with EZ

High-speed counter
You can use the high-speed counters to count high frequency signals reliably.

EZ provides two high-speed up/down counters C13 and C14 for use as required. The high-speed counter inputs are permanently connected to the digital inputs I1 and I2. These counter relays allow you to count events independently of the cycle time.

The high-speed counters allow you to enter an upper threshold value as a comparison value. The C13 and C14 high-speed counters are not dependent on the cycle time.

Counter frequency and pulse shape
The maximum counter frequency is 1 kHz.

The signals must be square waves. We recommend a mark-to-space ratio of 1:1.

If this is not the case:

The minimum mark-to-space ratio is 0.5 ms.

\[t_{\text{min}} = 0.5 \times \frac{1}{f_{\text{max}}} \]

- \(t_{\text{min}} \) = minimum time of the pulse or pause duration
- \(f_{\text{max}} \) = maximum count frequency (1 kHz)

High-speed counters operate independently of the program cycle time. The result of the actual value setpoint comparison is only transferred once every program cycle for processing in the circuit diagram.

The reaction time in relation to the setpoint/actual value comparison can therefore be up to one cycle in length.

Wiring of a high-speed counter
The following assignment of the digital inputs apply.

- \(I_1 \): high-speed counter input for counter C13.
- \(I_2 \): high-speed counter input for counter C14.
High-speed counters, EZ-DA, EZ-DC

If you use C13 or C14 as high-speed counters you must enable them with the coil CC13 or CC14 accordingly.

You integrate a high-speed counter into your circuit in the form of a contact and coil.

The coils and contacts have the following meanings:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13 to C14</td>
<td>CC13, CC14</td>
<td>Enable of the high-speed counter on 1 signal coil activated</td>
</tr>
<tr>
<td></td>
<td>DC13, DC14</td>
<td>Counting direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Status 0, not activated, up counting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Status 1, activated, down counting.</td>
</tr>
<tr>
<td></td>
<td>RC13, RC14</td>
<td>Reset, coil triggered: actual value reset to 00000</td>
</tr>
</tbody>
</table>

The high-speed counter can also be enabled specifically for a special operating state. This has the advantage that the cycle time of the device is only burdened with the counting when it is taking place. If the high-speed counter is not enabled, the cycle time of the device is shorter.

Parameter display and parameter set for the high-speed counter:

<table>
<thead>
<tr>
<th>C13</th>
<th>Counter function relay number 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H high-speed counter mode (H = high speed)</td>
</tr>
<tr>
<td>+</td>
<td>• + appears in the PARAMETER menu.</td>
</tr>
<tr>
<td></td>
<td>• - does not appear in the PARAMETER menu.</td>
</tr>
<tr>
<td>$</td>
<td>Setpoint, constant from 00000 to 32000</td>
</tr>
</tbody>
</table>
In the parameter display of a counter relay you change the mode, the setpoint and the enable of the parameter display.

Value range
The counter relay counts between 0 and 32000.

Behavior when value range is reached
The EZ control relay is in RUN mode.

The value is retained if the counter reaches 32000. If the counter counts down and reaches 0, this value is retained.

Parameter display in RUN mode:

- Current setpoint, constant (1250)
- Contact has not switched.
- Contact has switched.

Actual value (877)

Retention
The high-speed counter can be run with the retentive actual value. You can select the retentive counter relays in the SYSTEM... \(\rightarrow\) RETENTION... menu. C5 to C7, C8 and C13 to C16 can be selected.

If a counter relay is retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

When EZ is restarted in RUN mode, the counter relay continues with the retentively stored actual value.
High-speed counters, EZ-DA, EZ-DC

Function of the high-speed counter function block

- 1: count pulses at counter input I1/I2
- 2: setpoint of the counter
- 3: actual value of the counter
- 4: enable of the counter, CC13 (CC14)
- 5: count direction, direction coil DC13 (DC14)
- 6: reset coil of the counter RC13 (RC14)

Figure 57: Signal diagram of the high-speed counter

1: count pulses at counter input I1/I2
2: setpoint of the counter
3: actual value of the counter
4: enable of the counter, CC13 (CC14)
5: count direction, direction coil DC13 (DC14)
6: reset coil of the counter RC13 (RC14)
Wiring with EZ

7: contact of the counter, C13 (C14)
- Range A: The relay contact C13 (C14) of the counter with setpoint value 512 switches as soon as the actual value is 512.
- Range B: When new count pulses or the counter enable are not present, the actual value is retained.
- Range C: If the count direction is reversed DC13 (DC14), the contact is reset when the actual value is 511.
- Range D: the count direction is set to up counting
- Range E: The Reset coil RC13 (RC14) resets the counter to 0. No pulses are counted.
- Range F: the Reset coil is not active, pulses are counted.

In the examples it must be remembered that there may be a time difference of up to one program cycle between the setpoint/actual value comparison and the processing of the result. This may cause deviations in values.

Example: counting measuring pulses and setting an output
Measuring pulses can represent lengths, rotations, angles or other values. These program sections are required for applications involving the filling of sacks, bags or the cutting of foil.

The count signals are continuously present at I1. The high-speed counter C13 counts these pulses. The counter is automatically set to zero if the actual value equals the setpoint. Contact C13 is then set for one program cycle. The output Q3 is set at the same time. This is then reset by input I8.

Circuit diagram display

Parameter settings of the C13 counter

```
N1--------CC8
C8--------SO8
C8--------RC8
I8--------R08
```

```
Example running motors or spindles in parallel.
Applications may involve motion control with the parallel control of two drives. Only certain deviations are permissible so that the mechanical system does not jam.

These tasks can be implemented with the following solution.
I8 starts the drives. I7 and I6 carry the feedback signals of the motor-protective circuit-breakers. The drives are stopped if a motor-protective circuit-breaker trips. The analog value comparators control the difference of the path distance. The appropriate drive is stopped temporarily if one path distance is outside of the set tolerance. The coils and contacts have the following meanings:

- M8 = enable for all drives
- Q1 = drive 1, counter drive 1 is connected with input I1 and this with high-speed counter C13.
- Q2 = drive 2, counter drive 2 is connected with input I2 and this with high-speed counter C14.
- A1 = comparison, if C13 is less than C14, drive 2 is too fast.
- A2 = comparison, if C14 is less than C13, drive 1 is too fast.
- A3 = comparison, if C13 and C14 are equal, both drives can be activated.
- The hysteresis value of A1, A2 and A3 depends on the resolution of the transducer and the mechanical system.

Circuit diagram display

Parameter settings of the counter C13
Wiring with EZ

**Text display**

EZ500 and EZ700 can display up to 16 user-defined texts. These texts can be triggered by the actual values of function relays such as timing relays, counters, operating hours counters, analog value comparators, date, time or scaled analog values. The setpoints of timing relays, counters, operating hours counters, analog value comparators can be modified when the text is displayed. The texts are saved in the EZSoft file or on the EZ-M-32K memory card for EZ500 and EZ700.
Wiring a text display
You integrate a text display into your circuit in the form of a contact and coil.

The coils and contacts have the following meanings:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 to D16</td>
<td>Coil of the corresponding text display is triggered</td>
</tr>
<tr>
<td>D2 to D5</td>
<td>If a coil is triggered, the text is shown in the display.</td>
</tr>
</tbody>
</table>

The text display does not have a parameter display in the PARAMETER menu.

Retention
The texts D1 to D8 can be operated with retentive actual values (contacts).

If the text displays are retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

When EZ is restarted in RUN mode, the text displays D1 to D8 continue with the retentively stored actual value.
Example of a text display:
The text display can display the following:

<table>
<thead>
<tr>
<th>Line 1</th>
<th>12 characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 2</td>
<td>12 characters, a setpoint or actual value</td>
</tr>
<tr>
<td>Line 3</td>
<td>12 characters, a setpoint or actual value</td>
</tr>
<tr>
<td>Line 4</td>
<td>12 characters</td>
</tr>
</tbody>
</table>

**Scaling**
The values of the analog inputs can be scaled.

<table>
<thead>
<tr>
<th>Range</th>
<th>Selectable display range</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10 V</td>
<td>0 to 9999</td>
<td>0000 to 0100</td>
</tr>
<tr>
<td>0 to 10 V</td>
<td>± 999</td>
<td>-025 to 050</td>
</tr>
<tr>
<td>0 to 10 V</td>
<td>± 9.9</td>
<td>-5.0 to 5.0</td>
</tr>
</tbody>
</table>

**Function**
The D (D = “Display”) text display function relay works in the circuit diagram like a normal M marker. A “1” signal at the coil will cause a stored text to be displayed in the EZ display line. For this to take place, the EZ must be in RUN mode and the Status display must be activated before the text is displayed.

D2 to D16:
If several texts are present and are triggered, each text is automatically displayed in turn every 4 s. This process will be repeated until
- No other text display function block is set to “1”.
- STOP mode is selected.
- EZ’s power supply is no longer present.
Text display

- The OK or DEL + ALT buttons are used to switch to a menu.
- A setpoint is entered.
- The text for D1 is displayed.

D1:
D1 is designed as an alarm text. If D1 is activated, the text assigned to it will be displayed until
- The coil D1 is reset to 0.
- STOP mode is selected.
- EZ's power supply is no longer present.
- The OK or DEL + ALT buttons are used to switch to a menu.

Character set
All ASCII characters in upper and lower case are permissible.
- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
- a b c d e f g h i j k l m n o p q r s t u v w x y z

The following special characters are permissible:
! " # $ % & ' () * + , – ./ 0 1 2 3 4 5 6 7 8 9

Counter with actual value
Analog input scaled as temperature value
D1 as error message on fuse failure

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>TEMPERATURE</th>
<th>FUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCE:0042</td>
<td>OUT -018 DEG</td>
<td>FAILURE</td>
</tr>
<tr>
<td>!COUNTING!</td>
<td>IN +018 DEG</td>
<td>HOUSE 1</td>
</tr>
</tbody>
</table>

HEAT..

Figure 58: Text output examples
Entering a setpoint in a display

A text can contain two values such as actual values and setpoints of function relays, analog input values and time and date. The position of setpoints and actual values is fixed to the center of lines 2 and 3. The length depends on the value to be displayed. Setpoint entries in the text display are useful if the PARAMETER menu is not available for display or entry. Also when the operator is to be shown which setpoint is being modified.

The example shows the following.

The setpoint of timing relay T1 is to be changed from 12 minutes to 15 minutes.

- Line 2: setpoint of timing relay T1, can be edited
- Line 3: actual value of timing relay T1

The text is displayed.

When values are being entered, the text is retained statically on the display. The actual values are updated.

The example shows the following.

The setpoint of timing relay T1 is to be changed from 12 minutes to 15 minutes.

- Line 2: setpoint of timing relay T1, can be edited.
- Line 3: actual value of timing relay T1.

The text is displayed.
Pressing the ALT button will cause the cursor to jump to the first editable value.

In this operating mode, you can use the cursor buttons ▲▼ to move between different editable constants.

Press the OK button, the cursor will jump to the highest digit of the constant to be modified.

In this operating mode use the cursor buttons ▲▼ to modify the value. Use the cursor buttons < > to move between digits.

Use the OK button to accept the modified value. Use the ESC button to abort the entry and leave the previous value.

Press the OK button, the cursor will move from constant to constant.

The modified value is accepted.

Press the ESC button to leave Entry mode.
Wiring with EZ

7-day time switch

EZ500 and EZ700 with type suffix EZ…-..-C. are provided with a real-time clock. The time switches can only be used effectively in these devices.

The procedure for setting the time is described under section “Setting date, time and daylight saving time” on page 209.

EZ offers eight 7-day time switches Ø1 to Ø8 for up to 32 switch times.

Each time switch has four channels which you can use to set four on and off times. The channels are set via the parameter display.

The timer has a back-up battery. This means that it will continue to run in the event of a power failure, although the time switch relays will not switch. When the timer is disconnected from the power supply, the contacts remain open. Information on the battery back-up time are provided on page 260.

A 7-day time switch can be integrated into your circuit in the form of a contact.

Parameter display and parameter set for 7-day time switch:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø1 to Ø8</td>
<td>Contact of the 7-day time switch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ø1 A +</th>
<th>D SU</th>
<th>ON --:--</th>
<th>OFF --:--</th>
</tr>
</thead>
</table>

7-day time switch function relay 1

Time switch channels

+ • + appears in the PARAMETER menu,
  • - does not appear in the PARAMETER menu.

Day setting, from -- to --

On time

Off time
The parameter display for a 7-day time switch is used to modify the weekdays, the on time, the off time and enable of the parameter display.

Table 12: On and off times

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Meaning</th>
<th>Meaningful values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day of the week</td>
<td>Monday to Sunday</td>
<td>MO, TU, WE, TH, FR, SA, SU, --</td>
</tr>
<tr>
<td>On time</td>
<td>Hours: Minutes:</td>
<td>00:00 to 23:59, --:--</td>
</tr>
<tr>
<td>Off time</td>
<td>Hours: Minutes:</td>
<td>00:00 to 23:59, --:--</td>
</tr>
</tbody>
</table>

Parameter display in RUN mode:

Example:

The parameter display of the 7-day time switch is active. The cursor is flashing on channel A.

Changing time switch channel

You can change time switch channel in either RUN or STOP mode by selecting the channel required with the cursor buttons ~ ~. 

Example:

The parameter display of the 7-day time switch is active. The cursor is flashing on channel A.
Wiring with EZ

Press the ▲ button to move the cursor to channel B.

Press the ▼ button to reach any value that can be edited.

Function of the 7-day time switch

The following examples illustrate the function of the 7-day time switch.

Work days example

The time switch Ö1 switches on Monday to Friday between 6:30 and 9:00 and between 17:00 and 22:30.

Weekends example

Time switch Ö2 switches on at 16:00 on Friday and switches off at 6:00 on Monday.

For more information visit: www.EatonElectrical.com
7-day time switch

Figure 60: Weekend switching signal diagram

Night switching example
Time switch A switches on at 22:00 on Monday and switches off at 6:00 on Tuesday.

If the off time is before the on time, EZ will switch off on the following day.

Time overlaps example
The time settings of a time switch overlap. The clock switches on at 16:00 on Monday, whereas on Tuesday and Wednesday it switches on at 10:00. On Monday to Wednesday the off time is 22:00.
Wiring with EZ

Figure 62: Time overlaps signal diagram

On and off times always follow the channel which switches first.

Power failure example
The power is removed between 15:00 and 17:00. The relay drops out and remains off, even after the power returns, since the first off time was at 16:00.

When it is switched on, EZ always updates the switching state on the basis of all the available switching time settings.

24 hour switching example
The time switch is to switch for 24 hours. On time at 0:00 on Monday and off time at 0:00 on Tuesday.
Operating hours counter

EZ provides 4 independent operating hours counters. These operating hours counters enable you to record the operating hours of systems, machines and machine parts. An adjustable setpoint can be selected within the value range. In this way, maintenance times can be logged and reported. The counter states are retained even when the device is switched off. As long as the count coil of the operating hours counter is active, EZ counts the hours in second cycles.

You integrate an operating hours counter into your circuit in the form of a contact and coil.

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1 to O4</td>
<td>Count coil of the operating hours counter</td>
</tr>
<tr>
<td>C01 to C04</td>
<td></td>
</tr>
<tr>
<td>R01 to R04</td>
<td>Reset coil of the operating hours counter</td>
</tr>
</tbody>
</table>

Parameter display and parameter set for the operating hours counter function block:

| 04 | Operating hours counter number 4 |
| + | Operating hours counter number 4 |
| + | + appears in the parameter display |
| + | - appears in the parameter display |
| $ | Setpoint in hours |
| 0: | Actual value of the operating hours counter in hours [h] |

In the parameter display of an operating hours counter you change the setpoint in hours and the enable of the parameter display.
Parameter display in RUN mode:

<table>
<thead>
<tr>
<th>O1</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>01000</td>
</tr>
<tr>
<td>O</td>
<td>000309</td>
</tr>
</tbody>
</table>

- Set time in hours
- Actual time in hours

☐ Contact has not switched.
☐ Contact has switched.

Value range of the operating hours counter

The operating hours counter counts in the range from 0 hours to way over 100 years.

Accuracy of the operating hours counter

The operating hours counter counts in seconds. When the device is switched off, up to 999 ms can be lost.

Function of the operating hours counter function block

When the coil of the O operating hours counter is set to 1, the counter increments its actual value by 1 (basic pulse: 1 second).

If the actual value of the operating hours counter reaches the setpoint of S, the contact O... switches for as long as the actual value is greater than or equal to the setpoint.

The actual value is kept stored in the device until the Reset coil RO... is triggered. The actual value is then set to zero.
Operating hours counter

Operating mode change RUN, STOP, power On, Off, Delete program, Change program, Load new program. All these functions do not clear the actual value of the operating hours counter.

Example: operating hours counter
Operating hours counter for the operating time of a machine. The time in which a machine (EZ) is energized is to be measured.

Example: maintenance meters for different machine areas
Machine areas have to be maintained after different times have elapsed. Markers N1 and N2 are the on markers of two different machine areas. These markers control the associated operating hours counters. Output Q4 switches on a warning light if the setpoint of an operating hours counter has been reached. A keyswitch at input I8 resets the associated operating hours counter after maintenance has been completed.
Wiring with EZ

Example maintenance meter for different machine sections, with text output

The entire machine operating time is to be counted. Machine areas have to be maintained after different times have elapsed. Markers N1 and N2 are the On markers of two different machine areas. These markers control the associated operating hours counters. Output Q4 switches on a warning light if the setpoint of an operating hours counter has been reached. This should flash. A keyswitch at input I8 resets the associated operating hours counter after maintenance has been completed.

The entire machine operation time is to be displayed continuously. The run time of the machine sections should only be displayed once the maintenance interval has elapsed.

Circuit diagram display

Parameter settings of operating hours counter O3

<table>
<thead>
<tr>
<th>O3</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>000000</td>
</tr>
</tbody>
</table>

Parameter settings of operating hours counter O1

<table>
<thead>
<tr>
<th>O1</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>000000</td>
</tr>
</tbody>
</table>
### Operating hours counter

<table>
<thead>
<tr>
<th>Parameter settings of operating hours counter O2</th>
<th>Parameter settings of operating hours counter O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2 + S 00500</td>
<td>O3 + S 00800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter setting of timing relay T1</th>
<th>Text of text display D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 + S</td>
<td>MAINTENANCE REQUIRED</td>
</tr>
<tr>
<td>I1 02.000</td>
<td>HRS: 000501</td>
</tr>
<tr>
<td>I2 01.500</td>
<td>MACHINE 01</td>
</tr>
<tr>
<td>T:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text of text display D3</th>
<th>Text of text display D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINTENANCE REQUIRED</td>
<td>RUNTIME</td>
</tr>
<tr>
<td>HRS: 000800</td>
<td>MACHINE</td>
</tr>
<tr>
<td>MACHINE 02</td>
<td>HRS: 001955</td>
</tr>
</tbody>
</table>
Wiring with EZ

Timing relays

EZ provides 16 timing relays T1 to T16 for use as required. A timing relay is used to change the switching duration and the make and break times of a switch contact. The delay times can be configured between 2 ms and 99 h 59 min. You can use positive values, values of analog inputs, actual values of counter relays and timing relays.

You can also use EZ as a multi-function relay in the application. EZ is more flexible than any hard-wired timing relay since you can wire all the functions at the push of a button as well as program additional functions.

The “flash” function starts on EZ500 and EZ700 with the pulse. If required, the same timing relays can also be used for retentive data.

You integrate a timing relay into your circuit in the form of a contact and coil.

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 to T16</td>
<td>Contact of a timing relay</td>
</tr>
<tr>
<td>TT1 to TT16</td>
<td>Enable, timing relay trigger</td>
</tr>
<tr>
<td>RT1 to RT16</td>
<td>Reset coil of the timing relay</td>
</tr>
<tr>
<td>HT1 to HT16</td>
<td>Stop coil of the timing relay</td>
</tr>
</tbody>
</table>

(H = Stop, S means the Set coil function)

To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram.

Parameter display and parameter set for a timing relay:

| T1 | Timing relay number 1 |
| X | On-delayed mode |
| $ | Time range in seconds |
| + | $+ appears in the PARAMETER menu. |
| - | $- does not appear in the PARAMETER menu. |
In the parameter display of a timing relay you can change the mode, the time base, the time setpoint 1, time setpoint 2 (if necessary) and the enable of the parameter display.

### Parameter display in RUN mode:

<table>
<thead>
<tr>
<th>I1</th>
<th>Time setpoint 1:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Positive value, I7, I8, I11, I12</td>
</tr>
<tr>
<td></td>
<td>• Actual value T1 to T16, C1 to C16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I2</th>
<th>Time setpoint 2 (with timing relay with 2 setpoints):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Positive value, I7, I8, I11, I12</td>
</tr>
<tr>
<td></td>
<td>• Actual value T1 to T16, C1 to C16</td>
</tr>
</tbody>
</table>

| T: | Display of actual value in RUN mode |

In the parameter display of a timing relay you can change the mode, the time base, the time setpoint 1, time setpoint 2 (if necessary) and the enable of the parameter display.

### Retention

Timing relays can be run with retentive actual values. Select the number of retentive timing relays in the SYSTEM... ➔ RETENTION... menu. T7, T8, T13 to T16 can be used as retentive timing relays.

If a timing relay is retentive, the actual value is retained when the operating mode is changed from RUN to STOP and when the power supply is switched off.

When EZ is restarted in RUN mode, the timing relay continues with the retentively stored actual value.
When EZ is restarted, the status of the trigger pulse must be the same as on disconnection.

Status 1 with all operating modes:
- on-delayed,
- single pulse,
- flashing.

Status 0 with all operating modes: off-delayed.

Status 1 or 0 (as with disconnection): on-delayed

### Timing relay modes

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Switch function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Switch with on-delay</td>
</tr>
<tr>
<td>?X</td>
<td>Switch with on-delay and random time range</td>
</tr>
<tr>
<td>ı</td>
<td>Switch with off-delay</td>
</tr>
<tr>
<td>?ı</td>
<td>Switch with off-delay and random time range</td>
</tr>
<tr>
<td>Xı</td>
<td>On- and off-delayed, two time setpoints</td>
</tr>
<tr>
<td>?Xı</td>
<td>On- and off-delayed switching with random time, 2 time setpoints</td>
</tr>
<tr>
<td>ä</td>
<td>Single pulse switching</td>
</tr>
<tr>
<td>ıı</td>
<td>Flash switching, mark-to-space ratio = 1:1, 2 time setpoints</td>
</tr>
<tr>
<td>ıı</td>
<td>Flash switching, mark-to-space ratio ≠ 1:1, 2 time setpoints</td>
</tr>
</tbody>
</table>

### Time range

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Time range and setpoint time</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>Seconds: 0.000 to 99.999 s</td>
<td>1 ms</td>
</tr>
<tr>
<td>H:$:00:00</td>
<td>Minutes: Seconds 00:00 to 99:59</td>
<td>1 s</td>
</tr>
<tr>
<td>H:M:00:00</td>
<td>Hours: Minutes, 00:00 to 99:59</td>
<td>1 min.</td>
</tr>
</tbody>
</table>
Variable values as time setpoint (I7, I8, I11, I12, actual value T1 to T16, C1 to C16)

The following conversion rules apply if you are using variable values such as an analog input:

s time base

Equation: Time setpoint = ( Value $\times$ 10) in [ms]

<table>
<thead>
<tr>
<th>Value, e.g. analog input</th>
<th>Time setpoint in [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00.000</td>
</tr>
<tr>
<td>100</td>
<td>01.000</td>
</tr>
<tr>
<td>300</td>
<td>03.000</td>
</tr>
<tr>
<td>500</td>
<td>05.000</td>
</tr>
<tr>
<td>1023</td>
<td>10.230</td>
</tr>
</tbody>
</table>

Minimum time setting:
If a time value is less than EZ's cycle time, the elapsed time will not be recognized until the next cycle. This may cause unforeseeable switching states.

Variable values as time setpoint (I7, I8, I11, I12, actual value T1 to T16, C1 to C16)

If the value of the variable is greater than the maximum permissible value of the configured time range, the maximum value of the time range will be used as the setpoint.

You can only use analog values as setpoints if the value of the analog input is stable. Fluctuating analog values reduce the reproducibility of the time value.

The following conversion rules apply if you are using variable values such as an analog input:

s time base

Equation: Time setpoint = ( Value $\times$ 10) in [ms]
Wiring with EZ

M:S time base

Rule: Time setpoint
= Value divided by 60, Integer result = Number of minutes, remainder is the number of seconds

<table>
<thead>
<tr>
<th>Value, e.g. analog input</th>
<th>Time setpoint in [M:S]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00:00</td>
</tr>
<tr>
<td>100</td>
<td>01:40</td>
</tr>
<tr>
<td>300</td>
<td>05:00</td>
</tr>
<tr>
<td>500</td>
<td>08:20</td>
</tr>
<tr>
<td>1023</td>
<td>17:03</td>
</tr>
</tbody>
</table>

Time base H:M

Rule: Time setpoint
= Value divided by 60, Integer result = Number of hours, remainder is the number of minutes

<table>
<thead>
<tr>
<th>Value, e.g. analog input</th>
<th>Time setpoint in [H:M]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00:00</td>
</tr>
<tr>
<td>100</td>
<td>01:40</td>
</tr>
<tr>
<td>300</td>
<td>05:00</td>
</tr>
<tr>
<td>606</td>
<td>10:06</td>
</tr>
<tr>
<td>1023</td>
<td>17:03</td>
</tr>
</tbody>
</table>
Function of the timing relay function block

Timing relay, on-delayed with and without random switching

Random switching: The contact of the timing relay switches randomly within the setpoint value range.

Figure 63: Signal diagram of timing relay, on-delayed (with and without random switching)

1: trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: switch contact (make contact) Tx

\[ t_1 + t_2 = t_s \]

- Range A: The set time elapses normally.
- Range B: The entered setpoint does not elapse normally because the trigger coil drops out prematurely.
- Range C: The Stop coil stops the time from elapsing.
Wiring with EZ

Figure 64: Signal diagram of timing relay, on-delayed
(with and without random switching)
• Range D: The Stop coil is inoperative after the time has elapsed.
• Range E: The Reset coil resets the relay and the contact.
• Range F: The Reset coil resets the time during the timeout sequence. After the Reset coil drops out, the time elapses normally.
Timing relay, off-delayed with and without random switching

Random switching: The contact of the timing relay switches randomly within the setpoint value range.

Figure 65: Signal diagram of timing relay, off-delayed (with and without random switching)

1: trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: switch contact (make contact) Tx

$t_s$: setpoint time

- **Range A**: The time elapses after the trigger coil is deactivated.
- **Range B**: The Stop coil stops the time from elapsing.
- **Range C**: The Reset coil resets the relay and the contact. After the Reset coil drops out, the relay continues to work normally.
- **Range D**: The Reset coil resets the relay and the contact when the function block is timing out.
Wiring with EZ

Figure 66: Signal diagram of timing relay, off-delayed (with/without random switching with retriggering)

Range E: The Trigger coil drops out twice. The actual time $t_1$ is cleared and the set time $t_s$ elapses completely (retriggerable switch function).
Timing relay, on-delayed and off-delayed with and without random switching

Time value I₁: On-delayed time
Time value I₂: Off-delayed time

Random switching: The contact of the timing relay switches randomly within the setpoint value ranges.

Figure 67: Signal diagram of timing relay, on- and off-delayed 1
1: trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: switch contact (make contact) Tx

$t_{s1}$: pick-up time
$t_{s2}$: drop-out time

- Range A: The relay processes the two times without any interruption.
- Range B: The trigger coil drops out before the on-delay is reached.
- Range C: The Stop coil stops the timeout of the on-delay.
- Range D: The Stop coil has no effect in this range.
Wiring with EZ

Figure 68: Signal diagram of timing relay, on- and off-delayed 2
- Range E: The Stop coil stops the timeout of the off-delay.
- Range F: The Reset coil resets the relay after the on delay has elapsed
- Range G: The Reset coil resets the relay and the contact while the on delay is timing out. After the Reset coil drops out, the time elapses normally.

Figure 69: Signal diagram of timing relay, on- and off-delayed 3
- Range H: The Reset signal interrupts the timing out of the set time.
Timing relay, single pulse

Figure 70: Signal diagram of timing relay, single pulse 1
1: trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: switch contact (make contact) Tx

- Range A: The trigger signal is short and is lengthened
- Range B: The Trigger signal is longer than the set time.
- Range C: The Stop coil interrupts the timing out of the set time.

Figure 71: Signal diagram of timing relay, single pulse 2

- Range D: The Reset coil resets the timing relay.
- Range E: The Reset coil resets the timing relay. The Trigger coil is still activated after the Reset coil has been deactivated and the time is still running.
Timing relay, flashing
You can set the mark-to-space ratio to 1:1 or ≠ 1:1.

Time value I1: Pulse time
Time value I2: Pause time

Mark-to-space ratio = 1:1 flashing: S1 equals S2
Mark-to-space ratio ≠ 1:1 flashing: S1 does not equal S2

Figure 72: Timing relay signal diagram, flashing
1: trigger coil TTx
2: Stop coil HTx
3: Reset coil RTx
4: switch contact (make contact) Tx

- Range A: The relay flashes for as long as the Trigger coil is activated.
- Range B: The Stop coil interrupts the timing out of the set time.
- Range C: The Reset coil resets the relay.
Timing relays

Timing relay examples

Example: timing relay, on-delayed
In this example a conveyor starts 10 s after the system is powered up.

Circuit diagram display

Parameter settings of timing relay T1

<table>
<thead>
<tr>
<th>I5</th>
<th>TT1</th>
<th>I1 10.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>QQ1</td>
<td>I2</td>
</tr>
</tbody>
</table>

Example: timing relay, off-delayed
The off-delayed function is used to implement a rundown time on the conveyor if required.

Circuit diagram display

Parameter settings of timing relay T2

<table>
<thead>
<tr>
<th>I6</th>
<th>TT2</th>
<th>I1 30.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>QQ2</td>
<td>I2</td>
</tr>
</tbody>
</table>

Example: timing relay, on- and off-delayed
The on/off-delayed function is used to implement the delay of both the startup and the shutdown if required.

Circuit diagram display

Parameter settings of timing relay T3

<table>
<thead>
<tr>
<th>I6</th>
<th>TT3</th>
<th>I1 10.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>QQ3</td>
<td>I2 30.000</td>
</tr>
</tbody>
</table>
Wiring with EZ

Example: timing relay, single pulse
The input pulses present may vary in length. These pulses must be normalized to the same length. The Single pulse function can be used very simply to implement this.

Circuit diagram display Parameter settings of timing relay T4

```
I7-------TT4
T4-------Q4
```

```
T4 A $ +
I1 10.000
I2
```

Example: timing relay, flashing
This example shows a continuous flash pulse function. Outputs Q3 or Q4 flash according to the marker states of M8 or M9.

Circuit diagram display Parameter settings of timing relay T5

```
---------TT5
T5 M8-----Q3
M9-------Q4
```

```
T5 U $ +
I1 02.000
I2 01.000
```

Example: on-delayed timing relay with retentive actual value
Select a retentive timing relay if you wish to retain the actual value of a timing relay, even after a power failure or a change from RUN to STOP.
Select the required timing relay in the SYSTEM... → RETENTION... menu.

The example shows the timing relays T7, T8 as retentive timing relays. Markers M9 to M12 were also selected as retentive.

Figure 73: Function the circuit
1: power supply
2: status of marker M9 and thus trigger signal T8
3: status of make contact T8
Jumps can be used to optimize the structure of a circuit diagram or to implement the function of a selector switch. Jumps can be used for example to select whether manual/automatic operation or other machine programs are to be set.

You integrate jumps into your circuit in the form of a contact and coil. Jumps consist of a jump location and a jump label.

Function

If the jump coil is triggered, the rungs after the jump coil are no longer processed. The states of the coils before the jump will be retained, unless they are overwritten in rungs that were not missed by the jump. Jumps are always made forwards, i.e. the jump ends on the first contact with the same number as that of the coil.

- Coil = jump when 1
- Contact only at the first leftmost contact = Jump label

The Jump label contact point is always set to "1".

Backward jumps are not possible with EZ due to the way it operates.

If the jump label does not come after the jump coil, the jump will be made to the end of the circuit diagram. The last rung will also be skipped.

Multiple use of the same jump coil and jump contact is possible as long as this is implemented in pairs, i.e.:

- Coil \( \xi : 1 \) /jumped section/Contact: 1, Coil \( \xi : 1 \) /jumped section/Contact: 1 etc.
Attention!
The states of jumped rungs are retained. The time value of timing relays that have been started will continue to run.

Power flow display
Jumped sections are indicated by the coils in the power flow display.
All coils after the jump coil are shown with the symbol : of the jump coil.

Example
A selector switch allows two different sequences to be set.
• Sequence 1: Switch on Motor 1 immediately.
• Sequence 2: Switch on Guard 2, Wait time, then switch on Motor 1.

Contacts and relays used:
• I1 sequence 1
• I2 sequence 2
• I3 guard 2 moved out
• I12 motor-protective circuit-breaker switched on
• Q1 motor 1
• Q2 guard 2
• T1 wait time 30.00 s, on-delayed
• D1 text “Motor-protective circuit-breaker tripped”
Wiring with EZ

Circuit diagram:

Power flow display: I1 selected:

Section from jump label 1 processed.

Jump to label 8.
Section to jump label 8 skipped.

Jump label 8, circuit diagram processed from this point on.
Year time switch

EZ500 and EZ700 devices with the type designation EZ...-..-..C are equipped with an integrated real-time clock that you can use as a 7-day time switch and year time switch. If you have to implement special on and off switching functions on public holidays, vacations, company holidays, school holidays and special events, these can be implemented easily with the year time switch.

The procedure for setting the time is described under section “Setting date, time and daylight saving time”, page 209.

EZ offers eight year time switches Y1 to Y8 for up to 32 switch times.

Each time switch has four channels which you can use to set four different on and off times. The channels are set via the parameter display.

The time and date are backed up in the event of a power supply failure and continue to run. This means that it will continue to run in the event of a power failure, although the time switch relays will not switch. When EZ is in a de-energized state, the timer contacts remain open. Refer to section “Technical Data”, page 260 for information on the buffer time.

The clock module integrated in EZ works within the date range 01.01.2000 to 31.12.2099.

Wiring of a year time switch

A year time switch can be integrated into your circuit in the form of a contact.

The coils and contacts have the following meanings:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
<th>Contact of the year time switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1 to Y8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter display and parameter set for the year time switch:

<table>
<thead>
<tr>
<th>V1</th>
<th>Year time switch function relay 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C, D</td>
<td>Time switch channels</td>
</tr>
</tbody>
</table>
| + | • + appears in the PARAMETER menu.  
• - does not appear in the PARAMETER menu. |
| ON | On date: day, month, year (two-digit 2004 = 04) |
| OFF | Off date: day, month, year (two-digit 2004 = 04) |

The parameter display for a year time switch is used to modify the on time, the off time and the enable of the parameter display.

Table 13: On and off times

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Meaning</th>
<th>Meaningful values</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx.--.00</td>
<td>Date, day</td>
<td>01 to 31</td>
</tr>
<tr>
<td>--.xx.00</td>
<td>Month</td>
<td>01 to 12</td>
</tr>
<tr>
<td>--.--.00</td>
<td>Year, two-digit</td>
<td>00 to 99</td>
</tr>
</tbody>
</table>

Parameter display in RUN mode:

- Selected channel
- On time
- Off time
- O Contact has not switched.
- ■ Contact has switched.
Changing time switch channel

You can change time switch channel in either RUN or STOP mode by selecting the channel required with the cursor buttons 🚸.

Example:

The display on the left shows the parameter display of a year time switch. The cursor is flashing on channel A.

>Press the 🚸 button to move the cursor to channel B.

Press the ➤ button to reach any value that can be edited.

Important input rules.

The year time switch only operates properly by observing the following rules.

The on year must not be later than the off year.

ON and OFF times must have the same parameters.

Example: ON = Year, OFF = Year; ON = Year/Month, OFF = Year/Month

Entry rules

The following nine entry rules are possible.

Display format: XX = digit used

Rule 1

ON: Day

OFF: Day
Wiring with EZ

Rule 2
ON: Month
OFF: Month

Rule 3
ON: Year
OFF: Year

Rule 4
ON: Day/month
OFF: Day/month

Rule 5
ON: Month/year
OFF: Month/year

Rule 6
ON: Day/month/year
OFF: Day/month/year

Rule 7
Two-channel
Channel A ON: Day/month
Channel B OFF: Day/month
Year time switch

Rule 8
Two-channel
Channel ON: Day/month/year
Channel D OFF: Day/month/year
With this rule, the same year number must be entered in each channel in the ON and OFF entry area.

Rule 9
Overlapping channels:
The first ON date switches on and the first OFF date switches off.

Function of the year time switch
The year time switch can switch ranges, individual days, months, years or combinations of all three.

Years
ON: 2002 to OFF: 2010 means:
Switch on at 00:00 on 01.01.2002 and switch off at 00:00 on 01.01.2011.

Months
ON: 04 to OFF: 10 means:
Switch on at 00:00 on 1 April and switch off at 00:00 on 1 November

Days
ON: 02 to OFF: 25 means:
Switch on at 00:00 on day 2 and switch off at 00:00 day 26

Avoid incomplete entries. It hinders transparency and leads to unwanted functions.
Example: Selecting year range
The year time switch Y1 is required to switch on at 00:00 on 1 January 2004 and switch off at 23:59 on 31 December 2005.

Circuit diagram display Parameter settings for the year time switch Y1

Example: Selecting month ranges
The year time switch Y2 is required to switch on at 00:00 on 1 March and switch off at 23:59 on 30 September.

Circuit diagram display Parameter settings for the year time switch Y2

Example : Selecting day ranges
The year time switch Y3 is required to switch on at 00:00 on day 1 of each month and switch off at 23:59 on day 28 of each month.

Circuit diagram display Parameter settings for the year time switch Y3
Example: Selecting public holidays
The year time switch Y4 is required to switch on at 00:00 on day 25.12 of each year and switch off at 23:59 on day 26.12 of each year. “Christmas program”

Example: Selecting a time range
The year time switch Y1 is required to switch on at 00:00 on day 02.05 of each year and switch off at 23:59 on day 31.10 of each year. “Open air season”

Example: Overlapping ranges
The year time switch Y1 channel C switches on at 00:00 on day 3 of months 5, 6, 7, 8, 9, 10 and remains on until 23:59 on day 25 of these months.

The year time switch Y1 channel D switches on at 00:00 on day 2 of the months 6, 7, 8, 9, 10, 11, 12 and remains on until 23:59 on day 17 of these months.
Total number of channels and behavior of the contact Y1: The time switch will switch on at 00:00 from 3 May and off at 23:59 on 25 May.
In June, July, August, September, October, the time switch will switch on at 00:00 on day 2 of the month and switch off at 23:59 on day 17.
In November and December, the time switch will switch on at 00:00 on day 2 of the month and switch off at 23:59 on day 17.

Master reset
The master reset function relay enables you to set with one command the status of the markers and all outputs to "0".
Depending on the operating mode of this function relay, it is possible to reset the outputs only, or the markers only, or both. Three function blocks are available.

Wiring of the master reset function relay
You integrate a master reset function relay into your circuit in the form of a contact and coil.
The coils and contacts have the following meanings:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1 to Z3</td>
<td>Contact of the master reset</td>
</tr>
<tr>
<td>Z1 to Z3</td>
<td>Coil of the master reset</td>
</tr>
</tbody>
</table>
Operating modes
The different coils of the master reset have different operating modes

- Z1: For Q outputs: controls outputs Q1 to Q8 and S1 to S8.
- Z2: For markers M, N: controls the marker range M1 to M16 and N1 to N16.
- Z3: for outputs and markers: controls Q1 to Q8, S1 to S8, M1 to M16 and N1 to N16.

Function of the master reset function relay
A rising edge or the 1 signal on the coil will reset the outputs or markers to 0, depending on the operating mode set. The location of the coil in the circuit diagram is of no importance. The master reset always has the highest priority.

The contacts Z1 to Z3 follow the status of their own coil.

Example: resetting outputs
All outputs that you have used can be reset to 0 with one command.
A rising edge at the coil of Z1 will cause all Q and S outputs to be reset.

Example: resetting markers
All markers that you have used can be reset to 0 with one command.
A rising edge at the coil of Z2 will cause all markers M and N to be reset.
Example: resetting outputs and markers
All outputs and markers that you have used can be reset to 0 with one command.
A rising edge at the coil of Z3 will cause all Q and S outputs and all M and N markers to be reset.

Basic circuits
The values in the logic table have the following meanings

For switch contacts:

• 0 = make contact open, break contact closed
• 1 = make contact closed, break contact open

For Q…: relay coils

• 0 = coil not energized
• 1 = coil energized

Negation (contact)

Negation means that the contact opens rather than closes when it is actuated (NOT circuit).

In the EZ circuit diagram, press the ALT button to toggle contact I1 between break and make contact.

Table 14: Negation

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Negation (coil)

Negation means in this case that the coil opens when the make contact is actuated (NOT circuit).

In the EZ circuit diagram example, you only change the coil function.

Table 15: Negation

<table>
<thead>
<tr>
<th>I1</th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Maintained contact

To energize a relay coil continuously, make a connection of all contact fields from the coil to the leftmost position.

Table 16: Maintained contact

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

Series circuit

Q1 is controlled by a series circuit consisting of three make contacts (AND circuit).

Q2 is controlled by a series circuit consisting of three break contacts (NOR circuit).

In the EZ circuit diagram, you can connect up to three make or break contacts in series within a rung. Use M marker relays if you need to connect more than three make contacts in series.
Wiring with EZ

Table 17: Series circuit

<table>
<thead>
<tr>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Parallel circuit

Q1 is controlled by a parallel circuit consisting of several make contacts (OR circuit).

A parallel circuit of break contacts controls Q2 (NAND circuit).

Table 18: Parallel circuit

<table>
<thead>
<tr>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Parallel circuit operating like a series connection of make contacts

A series circuit with more than three contacts (make contacts) can be implemented with a parallel circuit of break contacts on a negated coil.

In the EZ circuit diagram you can switch as many rungs in parallel as you have rungs available.

Table 19: Parallel connection of break contacts on a negated coil

<table>
<thead>
<tr>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I4</th>
<th>I5</th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Parallel circuit operating like a series connection of break contacts

A series circuit with more than three contacts (break contacts) can be implemented with a parallel connection of make contacts on a negated coil.

In the EZ circuit diagram you can switch as many rungs in parallel as you have rungs available.

Table 20: Parallel connection of make contacts on a negated coil

<table>
<thead>
<tr>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I4</th>
<th>I5</th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Two-way circuit

A two-way circuit is made in EZ using two series connections that are combined to form a parallel circuit (XOR).

An XOR circuit stands for a “Exclusive Or” circuit. The coil is only energized if one contact is activated.
Table 21: Two-way circuit (XOR)

<table>
<thead>
<tr>
<th>I1</th>
<th>I2</th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Self-latching

A combination of a series and parallel connection is used to wire a latching circuit.

Latching is established by contact Q1 which is connected in parallel to I1. If I1 is actuated and reopened, the current flows via contact Q1 until I2 is actuated.

Table 22: Self-latching

<table>
<thead>
<tr>
<th>I1</th>
<th>I2</th>
<th>Contact Q1</th>
<th>Coil Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Latching circuits are used to switch machines on and off. The machine is switched on at the input terminals via make contact S1 and is switched off via break contact S2.
S2 breaks the connection to the control voltage in order to switch off the machine. This ensures that the machine can be switched off, even in the event of a wire break. I2 is always closed when not actuated.

A self-latching circuit with wire break monitoring can alternatively be wired using the Set and Reset coil functions. If I1 is activated, coil Q1 latches. I2 executes the break contact signal from S2 and does not switch until S2 is actuated. In this way, the machine is switched off if or when a wire breaks.

Make sure that both coils are wired up in the correct order in the EZ circuit diagram: first wire the S coil and then the R coil. This will ensure that the machine will be switched off when I2 is actuated, even if I1 is switched on.

**Impulse relay**

An impulse relay is often used for controlling lighting such as for stairwell lighting.

<table>
<thead>
<tr>
<th>I1</th>
<th>Status of Q1</th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Cycle pulse on rising edge**

You can create a cycle pulse on a rising edge if you use the appropriate coil function. This is very useful for count pulses, jump pulses.
Table 24: Cycle pulse on rising edge

<table>
<thead>
<tr>
<th>I1</th>
<th>Status of Q1</th>
<th>Status of Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cycle n</td>
<td>cycle n + 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Cycle pulse on falling edge

You can create a cycle pulse on a falling edge if you use the appropriate coil function.

This is very useful for count pulses, jump pulses.

Table 25: Cycle pulse on falling edge

<table>
<thead>
<tr>
<th>I1</th>
<th>Status of Q1</th>
<th>Status of Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cycle n</td>
<td>cycle n + 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

S1 make contact at I1
Example circuits  Star-delta starting

You can implement two star-delta circuits with EZ. The advantage of EZ is that you can select any changeover time between star and delta contactors and any wait time between switching off the star contactor and switching on the delta contactor.

Figure 74: Star-delta circuit with conventional contactors
Figure 75: Star-delta circuit with EZ
Wiring with EZ

Function of the EZ circuit diagram:
Start/stop of the circuit with the external pushbutton actuators S1 and S2. The mains contactor starts the timing relay in EZ.

- I1: Mains contactor switched on
- Q1: Star contactor ON
- Q2: Delta contactor ON
- T1: Star-delta changeover time (10 to 30 s, X)
- T2: Wait time between star off, delta on (30, 40, 50, 60 ms, X)

If your EZ has an integral time switch, you can combine star-delta starting with the time switch function. In this case, use EZ to switch the mains contactor as well.

4x shift register

You can use a shift register for storing an item of information, such as for the sorting of parts into good and bad, for two, three or four transport steps further on.

A shift pulse and the value (0 or 1) to be shifted are needed for the shift register.

The shift register's Reset input is used to clear any values that are no longer needed. The values in the shift register go through the register in the order: 1st, 2nd, 3rd, 4th storage location.

Figure 76: Block diagram of the 4x shift register
Table 26: Shift register

<table>
<thead>
<tr>
<th>Pulse</th>
<th>Value</th>
<th>Storage position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reset</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Assign the information “bad” to value 0. If the shift register is cleared accidentally, no bad parts are used further.

- I1: Shift pulse (PULSE)
- I2: Information (good/bad) to be shifted (VALUE)
- I3: Clear content of the shift register (RESET)
- M1: 1st storage location
- M2: 2nd storage location
- M3: 3rd storage location
- M4: 4th storage location
- M7: Marker relay for cycle pulse
- M8: Cyclical pulse for shift pulse
How does the shift register work?
The shift pulse is activated for exactly one cycle. To do this, the shift pulse is generated by evaluating the change from I1 OFF to I1 ON – the rising edge.

In this way, therefore, the cyclical processing of EZ is used to trigger the shift pulse.

When I1 is activated for the first time, the marker relay break contact M7 is closed during the first pass through the cycle. Thus, the series circuit consisting of I1, break contact M7 (closed) and M8 is activated. Although M7 is now also activated, this does not yet have any effect on contact M7.

The contact of M8 (make contact) was still open during the first cycle so a shift pulse cannot yet be generated. When the relay coil M8 is activated, EZ transfers the result to the contacts.
In the second cycle break contact M7 is open. The series circuit is opened. The contact M8 is activated from the result of the first cycle. Now, all the storage locations are either set or reset in accordance with the series circuit.

If the relay coils were activated, EZ transfers the result to the contacts. M8 is now open again. No new pulse can be formed until I1 has opened, since M7 is open for as long as I1 is closed.

How does the value reach the shift register?
When shift pulse M8 = ON, the state of I2 (VALUE) is transferred to storage location M1.

If I2 is activated, M1 is set. If I2 is deactivated, M1 is deactivated via break contact I2.

How is the result shifted?
EZ activates the coils in accordance with the rung and its result, from top to bottom. M4 assumes the value of M3 (value 0 or 1) before M3 assumes the value of M2. M3 assumes the value of M2, M2 the value of M1 and M1 the value of I2.

Why are the values not constantly overwritten?
In this example, the coils are controlled only by the S and R functions, i.e. the values are retained in on or off states even though the coil is not constantly activated. The state of the coil changes only if the rung up to the coil is activated. In this circuit, the marker relay is therefore either set or reset. The rungs of the coils (storage locations) are only activated via M8 for one cycle. The result of activating the coils is stored in EZ until a new pulse changes the state of the coils.
How are all the storage locations cleared?
When I3 is activated, all the R coils of storage locations M1 to M4 are reset, i.e. the coils are deactivated. Since the reset was entered at the end of the circuit diagram, the reset function has priority over the set function.

How can the value of a storage location be transferred?
Use the make or break contact of storage locations M1 to M4 and wire them to an output relay or in the circuit diagram according to the task required.

Running light
An automatic running light can be created by slightly modifying the shift register circuit.

One relay is always switched on. It starts at Q1, runs through to Q4 and then starts again at Q1.

The marker relays for storage locations M1 to M4 are replaced by relays Q1 to Q4.

The shift pulse I1 has been automated by the flasher relay T1. The cycle pulse M8 remains as it is.

On the first pass, the value is switched on once by break contact M9. If Q1 is set, M9 is switched on. Once Q4 (the last storage location) has been switched on, the value is passed back to Q1.

Try changing the times.
**Example circuits**

Flasher relay
Generate shift pulse

Clear first value
Set 4th storage location
Clear 4th storage location
Set 3rd storage location
Clear 3rd storage location
Set 2nd storage location
Clear 2nd storage location
Set 1st storage location
Enter first value (=1)
Clear 1st storage location

Figure 78: EZ run light circuit diagram
Stairwell lighting

For a conventional circuit you would need at least five space units in the distribution board, i.e. one impulse relay, two timing relays and two auxiliary relays.

EZ requires only four space units. A fully functioning stairwell lighting system can be set up with five terminals and the EZ circuit diagram.

Figure 79: Conventional stairwell lighting

→ Up to twelve such stairwell circuits can be implemented with one EZ device.
Figure 80: Stairwell lighting with EZ

<table>
<thead>
<tr>
<th>Button pressed briefly</th>
<th>Light ON or OFF. The impulse relay function will even switch off Continuous lighting. Light off after 6 min. with Continuous lighting this function is not active.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button pressed for more than 5 s</td>
<td>Continuous lighting</td>
</tr>
</tbody>
</table>

For more information visit: www.EatonElectrical.com
Meaning of the contacts and relays used:

- **I1**: ON/OFF pushbutton
- **Q1**: Output relay for light ON/OFF
- **M1**: Marker relay. This is used to block the "switch off automatically after 6 minutes" function for continuous lighting.
- **T1**: Cycle pulse for switching Q1 on and off, (△, single-pulse with value 00.00 s)
- **T2**: Scan to determine how long the button was pressed. If pressed longer than 5 s, continuous lighting is switched on (X, on-delayed, value 5 s).
- **T3**: Switch off after a lighting time of 6 min. (X, on-delayed, value 6:00 min.).
- **T4**: Switch off after 4 hours continuous lighting (X, on-delayed, value 4:00 h).

If you are using an EZ with a time switch, you can define both the stairwell lighting and the continuous lighting periods via the time switch.
If you use an EZ with analog inputs, you can optimize the stairwell lighting with a brightness sensor to suit the lighting conditions.
5 EZ Settings

Settings can only be carried out on EZ models provided with buttons and LCD display.
EZSoft can be used to set all models via the software.

Password protection

The EZ can be protected by a password against unauthorized access.
In this case the password consists of a value between 0001 and 9999. The number combination 0000 is used to delete a password.

Factory setting:

0000, no password present and none active, circuit diagram area selected.

Password protection inhibits access to selected areas. The System menu is always protected when a password is activated.

The password can protect the following entries and areas:

- Start or modification of the program
- Transfer of a circuit diagram from and to the memory card
- Change of the RUN or STOP mode.
- Calling and modification of function block parameters
- All settings of the real-time clock.
- Modifications of all system parameters.
- Communication with the individual device.
- Switching off the password delete function.
Password setup

A password can be set up via the System menu in either RUN or STOP mode. You cannot change to the System menu if a password is already activated.

Press DEL and ALT to call up the System menu.
Select the menu option SECURITY… to enter the password.
Press the OK button and move to the PASSWORD… menu.
If you press the OK button again, you will access the password entry area.

If no password has been entered, EZ changes directly to the password display and displays for XXXX characters: No password present.
Press OK, four zeros will appear
Set the password using the cursor buttons:
- < > select position in the password,
- ~ set a value between 0 to 9.
Save the new password by pressing OK.

Use OK to exit the password display and proceed with ESC and ~ to the RANGE… menu.
The scope of the password has not yet been defined. The password is now valid but not yet activated.

A password that has been entered in EZ is transferred to the memory card together with the circuit diagram, irrespective of whether it was activated or not.

If this EZ circuit diagram is loaded back from the memory card, the password will also be transferred to EZ and is activated immediately.
Password protection

Selecting the scope of the password

- Press the OK button.
- Select the function or the menu to be protected.
- Press the OK button in order to protect the function or menu (tick = protected).

Standard protection encompasses the programs and circuit diagram.

At least one function or menu must be protected.

- CIRCUIT DIAG: The password is effective on the program with circuit diagram and non-enabled function relays.
- PARAMETER: The PARAMETER menu is protected.
- CLOCK: Date and time are protected with the password.
- OPRTNG MODE: The toggling of the RUN or STOP operating mode is protected.
- INTERFACE: The interface is disabled for access with EZSoft.
- DELETE FUNCT: The question DELETE PROG? will appear on the device after four incorrect password entries have been made. This prompt is not displayed if selected. However, it is no longer possible to make changes in protected areas if you forget the password.
Activating the password

You can activate a valid password in three different ways:

• automatically when EZ is switched on again
• automatically after a protected circuit diagram is loaded
• via the password menu

Press DEL and ALT to call up the System menu.
Open the password menu via the SECURITY… menu

EZ will only show this menu if a password is present.

Make a note of the password before you activate it. If the password is no longer known, EZ can be unlocked (DELETE FUNCT is not active), but the circuit diagram and data settings are lost. The interface must not be disabled.

Attention!

If the password is unknown or lost, and the password delete function is not activated: The unit can only be reset to the factory setting by the manufacturer. The program and all data are lost.

Select ACTIVATE PW and press OK.
The password is now active. EZ changes back automatically to the Status display.

You must unlock EZ with the password before you carry out a protected function, enter a protected menu or the System menu.
Unlocking EZ

Unlocking EZ will deactivate the password. You can reactivate password protection later via the Password menu or by switching the power supply off and on again.

▶ Press OK to switch to the main menu.
The PASSWORD... entry will flash.

▶ Press OK to enter the password entry menu.

EZ will display the password entry field.
▶ Set the password using the cursor buttons:
▶ Confirm with OK.

If the password is correct, EZ will switch automatically to the Status display.

The PROGRAM... menu option is now accessible so that you can edit your circuit diagram.

The System menu is also accessible.
Changing or deleting the password range

- Unlock EZ.
- Press **DEL** and **ALT** to call up the System menu.
- Open the password menu via the menu option **SECURITY → PASSWORD...**

The **CHANGE PW** entry will flash.

EZ will only show this menu if a password is present.

- Press **OK** to enter the password entry menu.
- Press **OK** to move to the 4-digit entry field.
- Four zeros will be displayed

- Modify the four password digits using the cursor buttons.
- Confirm with **OK**.

Press **ESC** to exit the security area.

Deleting

Use number combination 0000 to delete a password.

If a password has not been entered already, EZ will show four XXXX.

Password incorrect or no longer known

If you no longer know the exact password, you can try to re-enter the password several times.

The **DELETE FUNCT** function has not been deactivated.

Have you entered an incorrect password?

- Re-enter the password.
Changing the menu language

After the fourth entry attempt EZ will ask whether you wish to delete the circuit diagram and data.

Press

- ESC: Circuit diagram, data or password are not deleted.
- OK: Circuit diagram, data and password are deleted.

EZ will return to the Status display.

If you no longer know the exact password, you can press OK to unlock the protected EZ. The saved circuit diagram and all function relay parameters will be lost.

Pressing ESC will retain the circuit diagram and data. You can then make another four attempts to enter the password.

### Changing the menu language

EZ500 and EZ700 provide twelve menu languages which are set as required via the System menu.

<table>
<thead>
<tr>
<th>Language</th>
<th>LCD display</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ENGLISH</td>
</tr>
<tr>
<td>German</td>
<td>DEUTSCH</td>
</tr>
<tr>
<td>French</td>
<td>FRANCAIS</td>
</tr>
<tr>
<td>Spanish</td>
<td>ESPANOL</td>
</tr>
<tr>
<td>Italian</td>
<td>ITALIANO</td>
</tr>
<tr>
<td>Portuguese</td>
<td>PORTUGUES</td>
</tr>
<tr>
<td>Dutch</td>
<td>NEDERLANDS</td>
</tr>
<tr>
<td>Swedish</td>
<td>SVENSKA</td>
</tr>
<tr>
<td>Polish</td>
<td>POLSKI</td>
</tr>
<tr>
<td>Turkish</td>
<td>TURKCE</td>
</tr>
<tr>
<td>Czech</td>
<td>CESKY</td>
</tr>
<tr>
<td>Hungarian</td>
<td>MAGYAR</td>
</tr>
</tbody>
</table>
EZ Settings

Language selection is only possible if EZ is not password-protected.

Press DEL and ALT to call up the System menu.
Select LANGUAGE... to change the menu language.

The language selection for the first entry ENGLISH is displayed.

Use ↑ or ↓ to select the new menu language, e.g. Italian (ITALIANO).
Confirm with OK. ITALIANO is assigned a tick.
Exit the menu with ESC.

EZ will now show the new menu language.
Press ESC to return to the Status display.

Changing parameters
EZ allows you to change function relay parameters such as timing relay setpoint values and counter setpoints without having to call up the circuit diagram. This is possible regardless of whether EZ is running a program or is in STOP mode.

Press OK to switch to the main menu.
Start the parameter display by selecting PARAMETER.
Changing parameters

All function relays are displayed as a list.

The following preconditions must be fulfilled in order for a parameter set to be displayed:

- A function relay must have been included in the circuit diagram.
- The PARAMETER menu must be available.
- The parameter set must have been enabled for access, indicated by the + character at the bottom right of the display.

Select the required function block with Í or Ú.

Press the OK button.

Use the cursor buttons Í or Ú to select the parameter required.

Change the values for a parameter set:
- Press OK to enter the Entry mode.
- Press < > to change decimal place
- Press ~ ~ to change the value of a decimal place
- Press OK to save constants or
- Press ESC to retain previous setting.

Press ESC to leave the parameter display.

Adjustable parameters for function relays

You can also modify the function relay parameters used in the circuit diagram in the PARAMETER menu.

Adjustable setpoint values are:
- With all function relays the setpoints
- On and off times with time switches.
In RUN mode EZ operates with a new setpoint as soon as it has been modified in the parameter display and saved with OK.

**Example: Changing switch times for outdoor lighting**
The outdoor lighting of a building is automatically switched on from 19:00 to 23:30 Mondays to Fridays in the EZ circuit diagram.

The parameter set for the time switch function relay 1 is saved in channel A and looks like this.

From the following weekend, the outdoor lighting is now also required to switch on between 19:00 and 22:00 on Saturdays.

1. Select PARAMETER from the main menu.
2. The first parameter set is displayed.
   - Use \( \uparrow \) or \( \downarrow \) to scroll through the parameter sets until channel A of time switch 1 is displayed.
   - Press \( \downarrow \) to select the next empty parameter set, in this case channel B of time switch 1.
3. The current time is 15:21.
   - Change the value for the day interval from MO to SA:
     - \( \leftarrow \rightarrow \) Move between the parameters
     - \( \leftarrow \rightarrow \) Change value.
     - Press OK to acknowledge the value SA.
4. Change the ON value to 19:00.
   - Move to the value of ON
   - Press OK.
     - \( \leftarrow \rightarrow \) Move between the parameters
     - \( \leftarrow \rightarrow \) Change value.
     - Press OK to acknowledge the value 19:00.
Setting date, time and daylight saving

Set the switching off time to 22:00.
Press OK.
EZ will save the new parameters. The cursor will remain in the contact field on channel identifier B.
Press ESC to leave the parameter display.

The time switch will now also switch on at 19:00 on Saturdays and switch off at 22:00.

Setting date, time and daylight saving time

The EZ500 and EZ700 devices are equipped with a real-time clock with date and time functions. The type reference is EZ…-..-C. The time switch function relays can thus be used to implement time switch applications.

Factory setting:
SA 0:01 01.05.2004

Setting the time

If the clock has not yet been set or if the device is switched on after the buffer time has elapsed, the clock starts with the setting “SA 0:01 01.05.2004”. The EZ clock operates with date and time so the hour, minute, day, month and year must all be set.

Select SET CLOCK... from the main menu.
This will open the menu for setting the time.
Select SET CLOCK and confirm with OK.
EZ Settings

- Set the values for time, day, month and year.
- Press the OK button to access the Entry mode.
  - Move between the parameters
  - Change the value of a parameter
  - OK Save day and time
  - ESC Retain previous setting.

Press ESC to leave the time setting display.

Setting summer time start and end

Most EZ models are fitted with a real-time clock. The clock has various possibilities for starting and ending the summer time (DST) setting. These are subject to different legal requirements in the EU, GB and USA.

Factory setting:
No automatic DST setting present

You can make the following settings:

- NONE: no DST setting rule.
- RULE: a user-defined date for the DST change
- EU: date defined by the European Union; Start: last Sunday in March; End: last Sunday in October
- GB: date defined in Great Britain; Start: last Sunday in March; End: fourth Sunday in October
- US: date defined in the United States of America: Start: first Sunday in April; End: last Sunday in October

The following applies to all legally stipulated DST settings:

Summer time start: On the day of time change, the clock moves forward one hour at 2:00 to 3:00.

Summer time end: On the day of time change, the clock moves back one hour at 3:00 to 2:00.

Select SET CLOCK... from the main menu.
Setting date, time and daylight saving

This will open the menu for setting the time.

- Select the SUMMER TIME menu option.

Setting summer time start and end

EZ shows you the options for the DST change.

The standard setting is NONE for automatic DST changeover (Tick at NONE).

The start and end of summer time can only be set in STOP mode.

- Select the required DST version and press the OK button.

The rule for the European Union (EU) has been selected.

Summer time start and end, setting the rule

If you wish to enter your own date, it is important to know what settings are possible.

The start and end of summer time is a complex calculation procedure throughout the world. For this reason, the standard rules for the EU, US, GB are provided in EZ.
### EZ Settings

The following rules normally apply:

**Table 27: DST setting rule**

<table>
<thead>
<tr>
<th>When</th>
<th>Weekday</th>
<th>How</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>WD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Rule 1: change on a special date**

- -- -- --

**Rule 2: change on a defined day in the month**

- 1st (first)
- 2nd (second)
- 3rd (third)
- 4th (fourth)
- L. (last)
- SU (Sunday)
- MO (Monday)
- TU (Tuesday)
- WE (Wednesday)
- TH (Thursday)
- FR (Friday)
- SA (Saturday)
- MONTH

**Rule 3: change on a defined day after or before a date**

1st (first)
- SU (Sunday)
- MO (Monday)
- TU (Tuesday)
- WE (Wednesday)
- TH (Thursday)
- FR (Friday)
- SA (Saturday)
- AFTER THE
- BEFORE THE

1) Apart from day definitions
Setting date, time and daylight saving

Table 28: Date parameters

<table>
<thead>
<tr>
<th>Day</th>
<th>Month</th>
<th>Hour</th>
<th>Minute</th>
<th>Time difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD.</td>
<td>MM</td>
<td>HH:</td>
<td>MM</td>
<td>H:M</td>
</tr>
<tr>
<td>1st</td>
<td>1</td>
<td>00</td>
<td>00</td>
<td>+ 3:00</td>
</tr>
<tr>
<td>2nd</td>
<td>2</td>
<td>01</td>
<td>01</td>
<td>+ 2:30</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>02</td>
<td>02</td>
<td>+ 2:00</td>
</tr>
<tr>
<td>31st</td>
<td>12</td>
<td>03</td>
<td>03</td>
<td>+ 1:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>04</td>
<td>+ 1:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>...</td>
<td>+ 0:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>– 0:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– 1:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– 1:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– 2:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– 2:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– 3:00</td>
</tr>
</tbody>
</table>

Example with EU (European Union)
End of summer time

Menu in EZ SUMMER END:

The following rule applies:

The clock goes back one hour (-1:00) to 2:00 at 3:00 on the last Sunday in October.

Table 29: EU summer time end

<table>
<thead>
<tr>
<th>When</th>
<th>Weekday</th>
<th>How</th>
<th>Day</th>
<th>Month</th>
<th>Hour</th>
<th>Minute</th>
<th>Time difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD</td>
<td></td>
<td></td>
<td>DD.</td>
<td>MM</td>
<td>HH:</td>
<td>MM</td>
<td>H:M</td>
</tr>
<tr>
<td>ON</td>
<td>SU (Sunday)</td>
<td>MONTH</td>
<td>--</td>
<td>10 (October)</td>
<td>03</td>
<td>00</td>
<td>– 1:00</td>
</tr>
<tr>
<td>L. (last)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start of summer time

Menu in EZ SUMMER START:

The following rule applies:

The clock goes forward one hour (+1:00) to 3:00 at 2:00 on the last Sunday in March.
## EU summer time start

<table>
<thead>
<tr>
<th>When</th>
<th>Weekday</th>
<th>How</th>
<th>Day</th>
<th>Month</th>
<th>Hour</th>
<th>Minute</th>
<th>Time difference H: M</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON L. (last)</td>
<td>SU (Sunday)</td>
<td>MONTH --</td>
<td>03</td>
<td>02</td>
<td>00</td>
<td>+1:00</td>
<td></td>
</tr>
</tbody>
</table>

The following start and times for summer time normally apply throughout the world (as at beginning of 2004):

## Summer time rules

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Summer time start</th>
<th>Summer time end</th>
<th>Start time</th>
<th>End time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil, Rio de Janeiro</td>
<td>1st Sunday in November</td>
<td>1st Sunday after the 15th February</td>
<td>00:00</td>
<td>00:00</td>
</tr>
<tr>
<td>Chile, Santiago</td>
<td>1st Sunday after 8th October</td>
<td>1st Sunday after 8th March</td>
<td>00:00</td>
<td>00:00</td>
</tr>
<tr>
<td>USA/Antarctic, McMurdo</td>
<td>1st Sunday in October</td>
<td>1st Sunday after 15th March</td>
<td>02:00</td>
<td>02:00</td>
</tr>
<tr>
<td>Chatham Islands</td>
<td>1st Sunday in October</td>
<td>1st Sunday after 15th March</td>
<td>02:45</td>
<td>03:45</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1st Sunday in October</td>
<td>1st Sunday after 15th March</td>
<td>02:00</td>
<td>03:00</td>
</tr>
<tr>
<td>Chile, Easter Islands</td>
<td>1st Saturday after 8th October</td>
<td>1st Saturday after 8th March</td>
<td>22:00</td>
<td>22:00</td>
</tr>
<tr>
<td>USA/Antarctic, Palmer</td>
<td>1st Sunday after 9th October</td>
<td>1st Sunday after 9th March</td>
<td>00:00</td>
<td>00:00</td>
</tr>
<tr>
<td>Iran</td>
<td>1st day of Favardin</td>
<td>30th day of Shahrivar</td>
<td>00:00</td>
<td>00:00</td>
</tr>
<tr>
<td>Jordan</td>
<td>Last Thursday in March</td>
<td>Last Thursday in September</td>
<td>01:00</td>
<td>01:00</td>
</tr>
<tr>
<td>Israel</td>
<td>Special rules according to the Hebrew calendar</td>
<td>Last Sunday in March</td>
<td>01:00</td>
<td>01:00</td>
</tr>
<tr>
<td>Australia, Howe Islands</td>
<td>Last Sunday in October</td>
<td>Last Sunday in March</td>
<td>02:00</td>
<td>02:00</td>
</tr>
</tbody>
</table>
## Setting date, time and daylight saving

1. Relevant local time to which the clock should be set forward.
2. Relevant local time to which the clock should be set back.
3. Persian calendar
4. Summer time = standard time + 0.5 hours

### Table of Summer Time Rules

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Summer time start</th>
<th>Summer time end</th>
<th>Start time1</th>
<th>End time2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Last Sunday in October</td>
<td>Last Sunday in March</td>
<td>02:00</td>
<td>03:00</td>
</tr>
<tr>
<td>Georgia</td>
<td>Last Sunday in March</td>
<td>Last Sunday in October</td>
<td>00:00</td>
<td>00:00</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>Last Sunday in March</td>
<td>Last Sunday in October</td>
<td>01:00</td>
<td>01:00</td>
</tr>
<tr>
<td>Kirgistan</td>
<td>Last Sunday in March</td>
<td>Last Sunday in October</td>
<td>02:30</td>
<td>02:30</td>
</tr>
<tr>
<td>Syria</td>
<td>1st April</td>
<td>1st October</td>
<td>00:00</td>
<td>00:00</td>
</tr>
<tr>
<td>Iraq</td>
<td>1st April</td>
<td>1st October</td>
<td>03:00</td>
<td>04:00</td>
</tr>
<tr>
<td>Pakistan</td>
<td>1st Sunday after the 2nd April</td>
<td>1st Saturday in October</td>
<td>00:00</td>
<td>00:00</td>
</tr>
<tr>
<td>Namibia</td>
<td>1st Sunday in September</td>
<td>1st Sunday in April</td>
<td>02:00</td>
<td>02:00</td>
</tr>
<tr>
<td>Paraguay</td>
<td>1st Sunday in September</td>
<td>1st Sunday in April</td>
<td>02:00</td>
<td>00:00</td>
</tr>
<tr>
<td>Canada, Newfoundland</td>
<td>1st Sunday in April</td>
<td>Last Sunday in October</td>
<td>00:01</td>
<td>00:01</td>
</tr>
</tbody>
</table>

1) Relevant local time to which the clock should be set forward.
2) Relevant local time to which the clock should be set back.
3) Persian calendar
4) Summer time = standard time + 0.5 hours

- Select the RULE menu.
- Press the OK button.
The two SUMMER START (start of summer time) and SUMMER END (end of summer time) menus are shown.

SUMMER START: set the DST time for the start of summer.
SUMMER END: set the DST time for the end of summer.

If a standard rule has been selected, this will be accepted as the rule.

This menu appears for entering the required time settings:

- **DAY:** Rule for day, 1st, 2nd, 3rd, 4th, Lst.
- **WD:** Weekday
- **MONTH:** Rule 2 MONTH, AFTER, BEFORE
- **DD.MM:** Date, day, month
- **HH:MM:** Time, hour, minute
- **DIFF:** Time difference, summer time always + x:xx
  Time difference, winter time always - x:xx

Enter summer time start.

Press OK to reach Entry mode for the summer time start rule.

The following menu appears:

This will open the menu for setting the time.

Set the values for DST time change.
Setting date, time and daylight saving

Press the OK button to access the Entry mode.

– Menu Select required value.
– Move between the places.
– Change the value of a parameter
– OK Save value.
– ESC Retain previous setting.

Press ESC to leave the DST setting display.

The above rule is the EU rule for the start of summer time.

The menu for the end of summer time has the same structure. The values are now entered accordingly.

The DIFF time difference value can be modified both for the summer time setting and the winter time setting. The value is always the same.

Summer time means a positive value + X:XX.
Winter time means a negative value – X:XX.

Behavior on 29 February

If the time change is set for 29.02. at HH.MM, the switch time for years that are not leap years will occur on 01.03 at HH.MM.

The switch time minus the time difference should not go into 28.02. The following applies:
0:15 is put back by –30 min. New time: 28.02. 23:45
Activating debounce (input delay)

Input signals can be evaluated by EZ with an input delay. This enables, for example, the trouble-free evaluation of switches and pushbutton actuators subject to contact bounce.

Factory setting:
Debounce is activated.

High-speed counter functions are evaluated independently of the debounce function.

In many applications, however, very short input signals have to be monitored. In this case, the debounce function can be switched off.

Press DEL and ALT to call up the System menu.
Select the SYSTEM menu.

Behavior for summer time end on 01.01.
If 01.01. is selected for the end of summer time, ensure the following:
The DST time minus the time difference should not go into 31.12. Otherwise the time will continue to run until the set time minus the time difference is 0:00 on the 01.01. The time will then continue to run with 0:00.

Setting the time manually within the summer time end setting:
At 3:00 on summer time end the time is to be put back by one hour to 2:00.
The clock is set at 1:30 to 3:05. EZ will interpret this as 3:05 winter time. A time change will not be carried out.
Activating debounce (input delay)

If EZ is password-protected you cannot open the System menu until you have “unlocked” it.

The input delay (debounce) is set with the DEBOUNCE menu item.

Activating debounce (input delay)

If a tick \( \checkmark \) is next to DEBOUNCE; this means that the Debounce function has been switched on.

If this is not so, proceed as follows:

1. Select DEBOUNCE and press OK.
2. Debounce mode will be activated and the display will show DEBOUNCE \( \checkmark \).
3. Press ESC to return to the Status display.

Deactivating debounce (input delay)

If EZ is showing DEBOUNCE in the display, this means that Debounce mode has already been deactivated.

1. Otherwise select DEBOUNCE \( \checkmark \) and press OK.
2. If Debounce mode is deactivated the display will show DEBOUNCE.

How EZ input and output signals are processed internally is explained in section “Delay times for inputs and outputs”, from page 234.
Activating and deactivating the P buttons

Even though the cursor buttons (P buttons) have been set as pushbutton actuator inputs in the circuit diagram, this function is not activated automatically. This prevents any unauthorized use of the cursor buttons. The P buttons can be activated in the System menu.

If EZ is password-protected you cannot open the System menu until you have “unlocked” it.

Factory setting:
The P buttons are not activated.

The P buttons are activated and deactivated via the P BUTTONS menu.

Press DEL and ALT to call up the System menu.
Select the SYSTEM menu.
Move the cursor to the P BUTTONS menu.

Activating the P buttons

If EZ is displaying P BUTTON$✓$, this means that the P buttons are active.

Otherwise select P BUTTONS and press OK.

EZ changes the display to P BUTTON$✓$ and the P buttons are activated.

Press ESC to return to the Status display.

Function of the P buttons

The P buttons are only active in the Status display. In this display you can use the P buttons to activate inputs in your circuit diagram.

If a text is displayed, the P buttons only function if a value entry is not carried out.
Deactivating the P buttons

Select P BUTTONS \( \checkmark \) and press OK.
EZ changes the display to P BUTTONS and the P buttons are deactivated.

When deleting a circuit diagram in EZ500, the P buttons are deactivated automatically. If a circuit diagram is loaded from the memory card or from EZSoft, the status set there is also transferred.

Startup behavior
The startup behavior is an important aid during the commissioning phase. The circuit diagram which EZ contains is not yet fully wired up, or the system or machine is in a state which EZ is not permitted to control. The outputs should not be controlled when EZ is switched on.

Setting the startup behavior

The EZ models without a display can only be started in RUN mode.

Requirement: EZ must contain a valid circuit diagram.

Factory setting:
RUN mode is activated.

Switch to the System menu.

If EZ is password-protected, the System menu can only be accessed after EZ has first been “unlocked” (section “Unlocking EZ”, from page 203).
Specify the operating mode which EZ must use when the power supply is switched on.
EZ Settings

Activating RUN mode
Displayed as EZ RUNMODE, this means that EZ will start in RUN mode when the power supply is switched on.

- Otherwise select RUN MODE and press OK.

RUN mode is activated.

- Press ESC to return to the Status display.

Deactivating RUN mode

- Select RUN MODE. Press the OK button.

The RUN mode function is deactivated.

EZ is factory set with the display showing RUN MODE, which means that EZ starts in RUN mode when the power supply is switched on.

Table 32: Startup behavior

<table>
<thead>
<tr>
<th>Startup behavior</th>
<th>Menu displayed</th>
<th>Status of EZ after startup</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZ starts in STOP mode</td>
<td>RUN MODE</td>
<td>EZ is in STOP mode</td>
</tr>
<tr>
<td>EZ starts in RUN mode</td>
<td>RUN MODE</td>
<td>EZ is in RUN mode</td>
</tr>
</tbody>
</table>

Behavior when the circuit diagram is deleted

The setting for the startup behavior is an EZ device function. When the circuit diagram is deleted this does not result in the loss of the setting selected.

Behavior during upload/download to card or PC

When a valid circuit diagram is transferred from EZ to a memory card or the PC or vice versa, the setting is still retained.

The EZ models without a display can only be started in RUN mode.
Possible faults
EZ will not start in RUN mode:
• EZ does not contain a program.
• You have put EZ in STOP mode (RUN MODE menu displayed).

Card mode behavior
The startup behavior using a memory card is for applications where unskilled personnel have to change the memory card with EZ de-energized.

EZ only starts in the RUN mode if a memory card with a valid program is inserted.

If the program on the memory card is different to the program in EZ, the program from the card is loaded into EZ and EZ starts in RUN mode.

Factory setting:
Card mode is not activated.

Switch to the System menu.

If EZ is password-protected, the System menu can only be accessed after EZ has first been “unlocked” (Unlocking EZ, from page 203).

Activation of card mode
Displayed in EZ as CARD MODE, this means that when the power supply is switched on, EZ will only start in RUN mode if a memory card with a valid program has been inserted.

Otherwise select CARD MODE and press the OK button.

Press ESC to return to the Status display.
EZ Settings

→ Card mode only functions with the EZ-M-32K memory card. Previous memory cards did not support this function.

Deactivating card mode

Select CARD MODE ✔ and press the OK button.

The Card mode function is deactivated.

EZ is factory set with the display showing CARD MODE, which means that EZ without a memory card starts in RUN mode when the supply voltage is applied.
Setting the cycle time

EZ allows you to fix the cycle time. To do this, move to the SYSTEM menu and from there to the CYCLE TIME.. menu.

Factory setting:
The cycle time is set to 00 ms.

The cycle time can only be set in STOP mode.

EZ is in STOP mode.

Select CYCLE TIME and press OK.
The following menu appears:

Press OK.

You can now enter the set cycle time.

- Move between the parameters
- Change value.

Press OK to acknowledge the value; e.g. 35 ms.

The minimum set cycle time is 35 ms. The cycle time can be lengthened if EZ requires more time to process the program.

The entry of a set cycle time is only useful in applications involving two-step controllers or similar functions.

With a cycle time setting of 00 ms, EZ will process the circuit diagram and the program at the fastest possible speed. (see also inside EZ.. Cycle time)

Set cycle time value range:
between 00 and 60 ms.
Retention (non-volatile data storage)

It is a requirement of system and machine controllers for operating states or actual values to have retentive settings. What this means is that the values will be retained safely even after the supply voltage to a machine or system has been switched off, and will also be retained until the next time the actual value is overwritten.

Factory setting:
The retention function is not activated.

Permissible markers and function relays

It is possible to retentively store (non-volatile memory) the actual values (status) of markers, timing relays and up/down counters.

The following markers and function relays can be set to have retentive actual values:

• Markers M9 to M12, M13 to M16, N9 to N16
• Up/down counters: C5, C6, C7, C8, C13 to C16
• Text function relays: D1 to D8
• Timing relays: T7, T8, T13 to T16

Attention!
The retentive data is kept every time the power supply is switched off. Data security is assured for 1000000 write cycles.

Setting retentive behavior

Requirement: EZ must be in STOP mode.

Switch to the System menu.

If EZ is password-protected, the System menu can only be accessed after EZ has first been “unlocked” (→ section “Unlocking EZ”, from page 203).
Retention (non-volatile data storage)

Switch to STOP mode.

Switch to the System menu.

Move to the SYSTEM menu and continue to the RETENTION... menu.

Press the OK button.

The first screen display is the selection of the marker range.

Select a range.

Press OK to select the marker, the function relay or the range that is to be retentive (tick on the line).

Press ESC to exit the entry for the retentive ranges.

Example:
M9 to M12, counters C5 to C7, C8 as well as timing relays T7 and T8 are retentive. Indicated by the tick on the line.

The default setting of EZ is selected so that no retentive data is selected. In this setting, EZ works without retentive actual values if a valid circuit diagram is present. When EZ is in STOP mode or has been switched to a de-energized state, all actual values are cleared.
Deleting retentive actual values

The retentive actual values are cleared if the following is fulfilled (applies only in STOP mode):

- When the circuit diagram is transferred from EZSoft or the memory card to the EZ control relay, the retentive actual values are reset to 0. This also applies when there is no program on the memory card. In this case the old circuit diagram is retained in EZ.
- When the selected retentive markers, function relays or text display are deactivated.
- When the circuit diagram is deleted via the DELETE FUNCT menu.

The operating hours counters are always retentive. The actual values can only be reset by means of a special reset operation from the circuit diagram.

Transferring retentive behavior

The setting for retentive behavior is a circuit diagram setting; in other words, the retention setting is on the memory and is transferred with the circuit diagram when uploading or downloading from the PC.
Retention (non-volatile data storage)

Changing the operating mode or the circuit diagram
When the operating mode is changed or the EZ circuit diagram is modified, the retentive data is normally saved together with their actual values. The actual values of relays no longer being used are also retained.

Changing the operating mode
If you change from RUN to STOP and then back to RUN, the actual values of the retentive data will be retained.

Modifying the EZ circuit diagram
If a modification is made to the EZ circuit diagram, the actual values will be retained.

Attention!
Even if the markers and function relays that were retentive are deleted from the circuit diagram, the retentive actual values remain when changing from STOP to RUN, and when switching the device off and on. Should these relays be used again in the circuit diagram, they will still have their former actual values.

Changing the startup behavior in the SYSTEM menu
The retentive actual values in EZ will be retained irrespective of the RUN MODE or STOP MODE settings.
Displaying device information

Device information is provided for service tasks and for determining the capability of the device concerned.

This function is only available with devices featuring a display.

Exception: Terminal mode with the EZD.

EZ enables the display of the following device information:

- AC, AB (AC voltage) or DA, DC (DC voltage),
- T (transistor output) or R (relay output)
- C (clock provided)
- LCD (display provided)
- OS: 1.10.204 (operating system version)
- CRC: 25825 (Checksum of the operating system is only displayed in STOP mode).
- Program name if this was assigned in EZSoft.

Switch to the main menu.

The device information is always available. The password does not prevent access.

Select the main menu.

Use the cursor button to select the INFO... menu

Press the OK button.

This will display all device information.

Press ESC to exit the display.
6 Inside EZ

EZ circuit diagram cycle

In conventional control systems, a relay or contactor control processes all the rungs in parallel. The speed with which a contactor switches in this case depends on the components used, and ranges from 15 to 40 ms for relay pick-up and drop-out.

With EZ the circuit diagram is processed with a microprocessor that simulates the contacts and relays of the circuit concerned and thus processes all switching operations considerably faster. Depending on its size, the EZ circuit diagram is processed cyclically every 2 to 40 ms.

During this time, EZ passes through five segments in succession.

How EZ evaluates the circuit diagram:

<table>
<thead>
<tr>
<th>Rungs</th>
<th>Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

In the first three segments EZ evaluates the contact fields in succession. As it does so, EZ also checks whether the contacts are connected in parallel or series and stores the switching states of all the contact fields.

In the fourth segment, EZ assigns the new switching states to all the coils in one pass.
The fifth segment is outside the circuit diagram and EZ uses it to establish contact to the “outside world”: The output relays Q1 to Q... are switched and inputs I1 to I.. are read again. EZ also copies all the new switching states to the status image register.

EZ only uses this status image for one cycle. This ensures that each rung is evaluated with the same switching states for one cycle, even if the input signals at I1 to I12, for example, change their status several times within a cycle.

**Evaluation in the circuit diagram and high-speed counter functions**

When using high-speed counter functions, the signal state is continuously counted or measured irrespective of the processing of the circuit diagram. (C13, C14 high-speed up/down counters, C15, C16 frequency counters)

**EZ operation and effects on circuit diagram creation**

EZ evaluates the circuit diagram in these five segments in succession. You should therefore remember two points when you create your circuit diagrams:

- The changeover of a relay coil does not change the switching state of an associated contact until the next cycle starts.
- Always wire forwards, upwards or downwards. Never wire backwards.
Example: switching in the next cycle

Start condition:
- I1, I2 switched on
- Q1 switched off.

This is the circuit diagram of a self-latching circuit. If I1 and I2 are closed, the switching state of relay coil Q1 is latched via contact Q1.

- **1st cycle:** Inputs I1 and I2 are switched on. Coil Q1 picks up.
- Contact Q1 remains switched off since EZ evaluates from left to right.
- **2nd cycle:** The self-latching function now becomes active. EZ has transferred the coil states to contact Q1 at the end of the first cycle.

Example: Do not wire backwards

This example is shown in section “Creating and modifying connections”. It was used there to illustrate how NOT to do it.

In the third rung, EZ finds a connection to the second rung in which the first contact field is empty. The output relay is not switched.

When wiring more than three contacts in series, use one of the marker relays.
Inside EZ

Delay times for inputs and outputs

The time from reading the inputs and outputs to switching contacts in the circuit diagram can be set in EZ via the delay time.

This function is useful, for example, in order to ensure a clean switching signal despite contact bounce.

Figure 82: EZ input assigned with a switch

EZ-DC, EZ-DA, EZ-AB and EZ-AC units function with different input voltages and therefore also have different evaluation characteristics and delay times.

Delay times with EZ-DA and EZ-DC basic units

The delay time for DC signals is 20 ms.

Figure 83: Delay times of EZ-DC and EZ-DA basic units
An input signal S1 must therefore be 15 V or 8 V (EZ-DA) for at least 20 ms on the input terminal before the switch contact will change from 0 to 1 (range A). If applicable, this time must also include the cycle time (range B) since EZ does not detect the signal until the start of a cycle.

The same time delay (range C) applies when the signal drops out from 1 to 0.

If the debounce is switched off, EZ responds to an input signal after just 0.25 ms.

![Figure 84: Switching behavior with input debounce disabled](image)

Typical delay times with the debounce delay switched off are:

- **On delay for I1 to I12:**
  - 0.25 ms (DC),
  - 0.3 ms (EZ-DA)
- **Off delay for**
  - I1 to I6 and I9 to I12: 0.4 ms (EZ-DC), 0.3 ms (EZ-DA)
  - I7 and I8: 0.2 ms (DC), 0.35 ms (EZ-DA)

Ensure clean input signals when the debounce is deactivated as EZ reacts even to very short signals.
Delay time with EZ-AB, EZ-AC basic units

The input delay with AC voltage signals depends on the frequency. The appropriate values for 60 Hz are given in brackets.

- **On delay**
  - 80 ms at 50 Hz,
  - 66 ms at 60 Hz,
- **Off delay for**
  - I1 to I6 and I9 to I12: 80 ms (66 ms)
  - I7 and I8: 160 ms (150 ms) with EZ-AB
  - I7 and I8: 80 ms (66 ms) with EZ-AC

If the debounce is switched on, EZ checks at 40 ms (33 ms) intervals whether there is a half-wave present at an input terminal (1st and 2nd pulses in A). If EZ detects two pulses in succession, the device switches on the corresponding input internally.

The input is switched off again as soon as EZ does not detect two successive half-waves (1st and 2nd pulses in B).
Delay times for inputs and outputs

If a button or switch bounces (A), the delay time may be extended by 40 ms (33 ms) (A).

If the debounce delay is switched off, the delay time is reduced.

- **On delay**
  - 20 ms (16.6 ms)
- **Off delay for**
  - I1 to I6 and I9 to I12: 20 ms (16.6 ms)
- **Off delay for**
  - I7 and I8: 100 ms (100 ms) with EZ-AB, EZ-AC

**Figure 87: On and off delays**

EZ switches the contact as soon as it detects a pulse (A). If no pulse is detected, EZ switches off the contact (B).

The procedure for changing the delay times is described in section “Activating debounce (input delay)” on page 218.

**Delay times for the analog inputs of EZ-AB, EZ-DA and EZ-DC**

The analog input values are read at 1 ms intervals. The values are continuously smoothed so that the analog values do not fluctuate excessively and remain clean. At the start of the circuit diagram cycle, the currently available analog values that have been smoothed are provided for processing in the circuit diagram.
Monitoring of short-circuit/overload with EZ-D-T..

Depending on the type of EZ in use, it is possible to use the internal inputs I15 and I16, R15, R16 to monitor for short-circuits or overloads on an output.

- EZ512-...-T.:
  I16 = Group fault alarm for outputs Q1 to Q4.

- EZ721-...-T.:
  - I16 = Group fault alarm for outputs Q1 to Q4.
  - I15 = Group fault alarm for outputs Q5 to Q8.

- EZ620-D.-TE:
  - R16 = Group fault alarm for outputs S1 to S4.
  - R16 = Group fault alarm for outputs S5 to S8.

Table 33: Status of error outputs

<table>
<thead>
<tr>
<th>State of outputs</th>
<th>Status I15 or I16, R15 or R16</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fault found</td>
<td>0 = switched off (make contact)</td>
</tr>
<tr>
<td>At least one output has a fault</td>
<td>1 = switched on (make contact)</td>
</tr>
</tbody>
</table>

The following examples are for I16 = Q1 to Q4. I15 indicates in the same way short-circuits and overloads on Q5 to Q8.

Example 1: Output with fault indication

The circuit diagram functions as follows:

If a transistor output reports a fault, M16 is set by I16. The break contact of M16 switches off output Q1. M16 can be cleared by resetting the EZ power supply.

Example 2: Output of operating state

The circuit functions as described in Example 1. An additional feature is that when an overload is detected, the indicator light at Q4 is actuated. If Q4 has an overload, it would 'pulse'.
Example 3: Automatic reset of error signal
The circuit diagram functions in the same way as Example 2. In addition the marker M16 is reset every 60 seconds by timing relay T8 (on-delayed, 60 s). Should I16 remain at 1, M16 will continue to be set. Q1 is set briefly to 1 until I16 switches off again.

Expanding EZ700
You can expand EZ700 with EZ618-..-RE, EZ202-RE or EZ620-D.-TE modules locally or use the EZ200-EZ coupling module for remote expansion.

For this first install the units and connect the inputs and outputs (→ chapter “Installation”, page 29).

You process the inputs of the expansion devices as contacts in the EZ circuit diagram in the same way as you process the inputs of the basic unit. The input contacts are assigned the operand identifiers R1 to R12.

R15 and R16 are the group fault alarms of the transistor expansion unit (→ section "Monitoring of short-circuit/overload with EZ..-D.-T..", page 238).

The outputs are processed as relay coils or contacts like the outputs in the basic unit. The output relays are S1 to S8.

EZ618-..-RE provides the outputs S1 to S6. The other outputs S7, S8 can be used as markers.

The following bus modules can also be connected:
• EZ205-ASI (AS-Interface),
• EZ204-DP (PROFIBUS-DP),
• EZ221-CO (CANopen) or
• EZ222-DN (DeviceNet).
These modules offer considerably more functions than simple I/O expansion modules. Depending on type, all the data of the program can be read and setpoints can be written. The functions of the individual devices are described in the relevant documentation.

How is an expansion unit recognized

EZ checks cyclically whether a device is sending data on EZ-LINK.

Transfer behavior

The input and output data of the expansion units is transferred serially in both directions. Take into account the modified reaction times of the inputs and outputs of the expansion units:

Input and output reaction times of expansion units

The debounce setting has no effect on the expansion unit.

Transfer times for input and output signals:

- **Local expansion**
  - Time for inputs R1 to R12:
    - 30 ms + 1 cycle
  - Time for outputs S1 to S6 (S8):
    - 15 ms + 1 cycle
- **Remote expansion**
  - Time for inputs R1 to R12:
    - 80 ms + 1 cycle
  - Time for outputs S1 to S6 (S8):
    - 40 ms + 1 cycle
Function monitoring of expansion units

If the power supply of the expansion unit is not present, no connection can be established between it and basic unit. The expansion inputs R1 to R12, R15, R16 are incorrectly processed in the basic unit and show status 0. It cannot be assured that the outputs S1 to S8 are transferred to the expansion unit.

The status of the internal input I14 of the basic unit signals the status of the expansion device:

- I14 = “0”: expansion unit is functional
- I14 = “1”: expansion unit is not functional

When the power supply is switched on, basic units and expansion devices may require different power up times to reach full functionality. If the basic unit is powered up faster, the internal monitoring input I14 will have status 1, indicating that an expansion device is not functional.

Example

The expansion unit may be powered up later than the basic unit. This means that the basic unit is switched to RUN when an expansion unit is missing. The following EZ circuit diagram detects if the expansion unit is functional or not functional.

As long as I14 is 1, the remaining circuit diagram is skipped. If I14 is 0, the circuit diagram is processed. If the expansion unit drops out for any reason, the circuit diagram is skipped. M1 detects whether the circuit diagram was processed for at least one cycle after the power supply is switched on. If the circuit diagram is skipped, all the outputs retain their previous state. The next example should be used if this is not desired.

Warning! Ensure the continuous monitoring of EZ expansion devices in order to prevent switching faults in machines or systems.
Example with LCD output and reset of the outputs

<table>
<thead>
<tr>
<th>I14</th>
<th>M1</th>
<th>C : 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2</td>
<td>I3</td>
<td>C : 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EZ...—..X

EZ models without a keypad can be loaded with a circuit diagram via EZSoft or automatically from the fitted memory card every time the power supply is switched on.

Interface

The EZ interface is covered.
Saving and loading circuit diagrams

DANGER of electric shock with EZ-AC units!
If the voltage terminals for phase (L) and neutral conductor (N) are reversed, the connected 230 V/115 V voltage will be present at the EZ interface. There is a danger of electric shock if the plug is not properly connected or if conductive objects are inserted into the socket.

Figure 88: Do not touch the interface

Carefully remove the cover with a screwdriver.

Figure 89: Remove the cover

To close the slot again, push the cover back onto the slot.
Memory card

The card is available as an accessory EZ-M-32K for EZ500 and EZ700.

Circuit diagrams with all the data can be transferred to the EZ500 and EZ700 from the EZ-M-32K memory card. A transfer, however, in the other direction is not possible.

Each memory card can hold one EZ circuit diagram.

Information stored on the memory card is “non-volatile” and thus you can use the card to archive, transfer and copy circuit diagrams.

On the memory card you can save:

- the circuit diagram
- all parameter sets of the function relays
- all display texts with functions
- the system settings,
  - debounce
  - P buttons
  - password
  - retention on/off,
- card start
- summer time start/end time settings

Insert the memory card in the open interface slot.

Figure 90: Inserting the memory card
With EZ you can insert and remove the memory card even if the power feed is switched on, without the risk of losing data.

Loading or saving circuit diagrams
You can only transfer circuit diagrams in STOP mode.

Behavior of EZ device without integrated keypad, display when loading the memory card
If a memory card is inserted in EZ variants without an onboard keypad and LCD, the circuit diagram is automatically transferred from the memory card to the EZ...-...X when the power supply is switched on. If the memory card contains an invalid circuit diagram, the circuit diagram installed in the EZ is retained.
Inside EZ

The memory card is detected when the card is inserted and you move from the main menu to the program menu.

As read access to the EZ-M-32K card is possible, the card can only be removed in the Status display. This ensures that the correct card is always detected.

Only the EZ-M-32K memory card can be written to.

Switch to STOP mode. 
Select PROGRAM... from the main menu. 
Select the CARD... menu option.

The CARD... menu option will only appear if you have inserted a functional memory card.

You can transfer a circuit diagram from EZ to the card and from the card to the EZ memory or delete the content of the card.

If the operating voltage fails during communication with the card, repeat the last step since EZ may not have transferred or deleted all the data.

After transmission, remove the memory card and close the cover.

Saving a circuit diagram to the card
Select DEVICE-CARD. 
Confirm the prompt with OK to delete the contents of the memory card and replace it with the EZ circuit diagram.

Press ESC to cancel.
Loading a circuit diagram from the card

➤ Select the CARD → DEVICE menu option.
➤ Press OK to confirm the prompt if you want to delete the EZ memory and replace it with the card content.

Press ESC to go back one menu.

Attention!
Once you have started the CARD → DEVICE transfer, the following operation is initiated:

• The RAM of the device is loaded from the card.
• The internal program memory is cleared.
• The data is written from the card to the internal retentive program memory.

This is carried out in blocks. A complete program is not transferred to the RAM for space reasons.

If an invalid program or an interruption occurs during the read or write operation, EZ500 or EZ700 loses the program in the internal memory.

Deleting a circuit diagram on the card

➤ Select the DELETE CARD menu option.
➤ Press OK to confirm the prompt and to delete the card content.

Press ESC to cancel.
EZSoft is a PC program with which you can create, store, test (simulate) and manage EZ circuit diagrams.

You should only transfer data between the PC and EZ using the special PC interface cable, which is available as an optional accessory EZ-PC-CAB.

**DANGER of electric shock with EZ-AC units!**
Only the EZ-PC CAB cable will guarantee reliable electrical isolation from the interface voltage.

Figure 91: Plug in the EZ-PC-CAB

- Connect the PC cable to the serial PC interface.
- Insert the EZ plug in the opened interface.
- Activate the Status display on the EZ

EZ cannot exchange data with the PC while the circuit diagram display is on screen.

Use EZSoft to transfer circuit diagrams from your PC to EZ and vice versa. Switch EZ to RUN mode from the PC to test the program using the current wiring.

EZSoft provides extensive help on how to use the software.
- Start EZSoft and click on Help.

The help provides all the additional information about EZSoft that you will need.
If there are transmission problems, EZ will display the INVALID PROG message.

- Check whether the circuit diagram is suitable for the destination device.

If the operating voltage fails during communication with the PC, repeat the last step. It is possible that not all the data was transferred between the PC and EZ.

After transmission, remove the cable and close the cover.

EZ500 and EZ700 can be operated with a stand-alone display/operating unit. In this configuration, all the display information is transferred via the EZ interface.

This has the advantage that EZ can be operated remotely. The texts in EZ are backlit and displayed on the front of the operator or control panel in twice the size. The display/operating unit provides protection to IP65.
If a display/operating unit with a keypad is used, EZ can be programmed and assigned parameters from "outside".

Card mode operation is not possible when using a stand-alone display/operating unit. The interface can only be used once.

The EZD-80 (IP65 display unit), EZD-80-B (IP65 display/operating unit) with the EZD-CP4-500 power supply/communication unit are currently available for use as stand-alone display/operating units.

The EZD-CP4 communication unit establishes permanent communication with the EZ control relay. This increases EZ's cycle time, and must be taken into account during engineering.

**Device version**

Every EZ has the device version number printed on the left of the device housing. The device version is indicated by the first two digits of the device number.

DC 20.4 …28.8 V
3 W

01-900000042

Figure 93: Example of device version

This device is of device version 01.

The device version provides useful service information about the hardware version and the version of the operating system. The device version is important for selecting the correct control relay for EZSoft.
7 What Happens If …?

You may sometimes find that EZ does not do exactly what you expect. If this happens, read through the following notes which are intended to help you solve some of the problems you may encounter.

You can use the power flow display in EZ to check the logic operations in the EZ circuit diagram with reference to the switching states of contacts and relays.

Only qualified persons should test EZ voltages while the device is in operation.

<table>
<thead>
<tr>
<th>EZ system messages on the LCD</th>
<th>Explanation</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No display</td>
<td>Power supply interrupted</td>
<td>Switch on the power supply</td>
</tr>
<tr>
<td></td>
<td>EZ LCD faulty</td>
<td>Replace EZ</td>
</tr>
<tr>
<td>Continuous display</td>
<td>Self-test aborted</td>
<td>Replace EZ</td>
</tr>
<tr>
<td>TEST: AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST: EEPROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST: DISPLAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST: CLOCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERROR: I2C</td>
<td>Memory card removed or not inserted correctly before saving</td>
<td>Insert memory card</td>
</tr>
<tr>
<td></td>
<td>Memory card faulty</td>
<td>Replace memory card</td>
</tr>
<tr>
<td></td>
<td>EZ is faulty</td>
<td>Replace EZ</td>
</tr>
<tr>
<td>ERROR: EEPROM</td>
<td>The memory for storing the retentive values or the EZ circuit diagram memory is faulty.</td>
<td>Replace EZ</td>
</tr>
</tbody>
</table>
What Happens If ...?

<table>
<thead>
<tr>
<th>Possible situations when creating circuit diagrams</th>
<th>Explanation</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot enter contact or relay in circuit diagram</td>
<td>EZ is in RUN mode</td>
<td>Select STOP mode</td>
</tr>
<tr>
<td>Time switch switches at wrong times</td>
<td>Incorrect time or time switch parameters</td>
<td>Check time and parameters</td>
</tr>
<tr>
<td>Message when using a memory card PROG INVALID</td>
<td>EZ memory card contains no circuit diagram</td>
<td>Change the version of EZ or change the circuit diagram on the memory card</td>
</tr>
<tr>
<td>Power flow display does not show changes to the rungs</td>
<td>EZ is in STOP mode</td>
<td>Select RUN mode</td>
</tr>
<tr>
<td>Association/connection not fulfilled</td>
<td>Check the circuit diagram and parameter sets and modify as required</td>
<td></td>
</tr>
<tr>
<td>Relay does not activate coil</td>
<td>Incorrect parameter values/time</td>
<td></td>
</tr>
<tr>
<td>• Analog value comparison is incorrect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Time value of timing relay is incorrect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Function of timing relay is incorrect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Q or M does not pick up</td>
<td>Relay coil has been wired up several times</td>
<td>Check coil field entries</td>
</tr>
</tbody>
</table>

EZ system messages on the LCD

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOCK</td>
<td>Clock error</td>
</tr>
<tr>
<td>LCD</td>
<td>LCD is faulty</td>
</tr>
<tr>
<td>ACLOW</td>
<td>Incorrect AC voltage</td>
</tr>
<tr>
<td>EZ</td>
<td>EZ is faulty</td>
</tr>
</tbody>
</table>
### Possible situations when creating circuit diagrams

<table>
<thead>
<tr>
<th>Possible situations when creating circuit diagrams</th>
<th>Explanation</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input not detected</td>
<td>Loose terminal contact</td>
<td>Check installation instructions, check external wiring</td>
</tr>
<tr>
<td></td>
<td>No voltage to switch/button</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broken wire</td>
<td>Replace EZ</td>
</tr>
<tr>
<td></td>
<td>EZ input is faulty</td>
<td></td>
</tr>
<tr>
<td>Relay output Q does not switch and activate the load</td>
<td>EZ in STOP mode</td>
<td>Select RUN mode</td>
</tr>
<tr>
<td></td>
<td>No voltage at relay contact</td>
<td>Check installation instructions, check external wiring</td>
</tr>
<tr>
<td></td>
<td>EZ power supply interrupted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EZ circuit diagram does not activate relay output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broken wire</td>
<td>Replace EZ</td>
</tr>
<tr>
<td></td>
<td>EZ relay is faulty</td>
<td></td>
</tr>
</tbody>
</table>
What Happens If ...?

<table>
<thead>
<tr>
<th>Event</th>
<th>Explanation</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The actual values are not being stored retentively.</td>
<td>Retention has not been switched on.</td>
<td>Switch on retention in the SYSTEM menu.</td>
</tr>
<tr>
<td>The RETENTION... menu is not displayed in the SYSTEM menu.</td>
<td>EZ is in RUN mode</td>
<td>Select STOP mode</td>
</tr>
<tr>
<td>The SYSTEM menu is not displayed.</td>
<td>This EZ model does not have this menu.</td>
<td>Exchange EZ if you need retention</td>
</tr>
<tr>
<td>EZ starts only in operating mode STOP</td>
<td>No circuit diagram in EZ</td>
<td>Load, input circuit diagram</td>
</tr>
<tr>
<td></td>
<td>Startup behavior is set to the function &quot;Startup in operating mode STOP&quot;.</td>
<td>Set the startup behavior in the SYSTEM menu.</td>
</tr>
<tr>
<td>LCD display showing nothing</td>
<td>No power supply</td>
<td>Switch on the power supply</td>
</tr>
<tr>
<td></td>
<td>EZ is faulty</td>
<td>Press the OK button. If no menu appears, replace the EZ.</td>
</tr>
<tr>
<td></td>
<td>Text displayed with too many spaces</td>
<td>Enter text or do not select</td>
</tr>
<tr>
<td>GW flashes on the Status display</td>
<td>EZ200-EZ bus coupler detected without I/O expansion</td>
<td>Connect I/O expansion to external EZ-LINK</td>
</tr>
</tbody>
</table>
Appendix

Dimensions

Figure 94: Dimensions of EZ200 in mm (for dimensions in inches see page 257, table 34)
Figure 95: Dimensions of EZ512-… in mm (for dimensions in inches see page 257, table 34)
Figure 96: Dimensions of EZ700 in mm (for dimensions in inches see table 34)

Table 34: Dimensions in inches

<table>
<thead>
<tr>
<th>mm</th>
<th>inches</th>
<th>mm</th>
<th>inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>0.177</td>
<td>56.5</td>
<td>2.22</td>
</tr>
<tr>
<td>7.5</td>
<td>0.295</td>
<td>58</td>
<td>2.28</td>
</tr>
<tr>
<td>10.75</td>
<td>0.423</td>
<td>71.5</td>
<td>2.81</td>
</tr>
<tr>
<td>16.25</td>
<td>0.64</td>
<td>75</td>
<td>2.95</td>
</tr>
<tr>
<td>35.5</td>
<td>1.4</td>
<td>90</td>
<td>3.54</td>
</tr>
<tr>
<td>35.75</td>
<td>1.41</td>
<td>102</td>
<td>4.01</td>
</tr>
<tr>
<td>45</td>
<td>1.77</td>
<td>107.5</td>
<td>4.23</td>
</tr>
<tr>
<td>47.5</td>
<td>1.87</td>
<td>110</td>
<td>4.33</td>
</tr>
<tr>
<td>50</td>
<td>1.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix

Technical Data

<table>
<thead>
<tr>
<th>General</th>
<th>EZ200</th>
<th>EZ512</th>
<th>EZ700</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Dimensions W × H × D</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[mm]</td>
<td>35.5 × 90 × 56.5</td>
<td>71.5 × 90 × 56.5</td>
<td>107.5 × 90 × 56.5</td>
</tr>
<tr>
<td>[inches]</td>
<td>1.4 × 3.54 × 2.08</td>
<td>2.81 × 3.54 × 2.08</td>
<td>4.23 × 3.54 × 2.08</td>
</tr>
<tr>
<td>Space units (SU) width</td>
<td>2 space units wide</td>
<td>4 SU (space units) wide</td>
<td>6 SU (space units) wide</td>
</tr>
<tr>
<td>Weight</td>
<td>70 g</td>
<td>200 g</td>
<td>300 g</td>
</tr>
<tr>
<td>[lb]</td>
<td>0.154</td>
<td>0.441</td>
<td>0.661</td>
</tr>
<tr>
<td>Mounting</td>
<td>DIN 50022, 35 mm rail or screw mounting with 3 ZB101-GF1 fixing brackets (accessories); with EZ200 only 2 fixing brackets required.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Climatic environmental conditions**

(Cold to IEC 60068-2-1, Heat to IEC 60068-2-2)

- **Ambient temperature**
  - Installed horizontally/vertically: –25 to 55 °C, –13 to 131 °F
  - Prevent condensation with suitable measures
- **Condensation**
  - 0 to 55 °C, 32 to 131 °F
  - –40 to +70 °C, –40 to 158 °F
- **LCD display (reliably legible)**
  - 5 to 95 %, non-condensing
- **Storage/transport temperature**
  - 5 to 95 %, non-condensing
- **Relative humidity (IEC 60 068-2-30)**
  - 795 to 1080 hPa
- **Air pressure (operation)**
  - SO2 10 cm³/m³, 4 days
  - H2S 1 cm³/m³, 4 days
- **Corrosion resistance**
  - V0
- **Inflammability class to UL 94**
  - IP 20
## Technical Data

### Oscillations (IEC 60068-2-6)
- 10 to 57 Hz (constant amplitude 0.15 mm)
- 57 to 150 Hz (constant acceleration 2 g)

### Shock (IEC 60068-2-27)
- 18 shocks (semi-sinusoidal 15 g/11 ms)

### Drop (IEC 60068-2-31)
- Drop height 50 mm

### Free fall, packed (IEC 60068-2-32)
- 1 m

### Electromagnetic compatibility (EMC)

#### Electrostatic discharge (ESD), (IEC/EN 61 000-4-2, severity level 3)
- 8 kV air discharge,
- 6 kV contact discharge

#### Electromagnetic fields (RFI), (IEC/EN 61000-4-3)
- Field strength 10 V/m

#### Emitted interference

#### Interference immunity

#### Fast transient burst (IEC/EN 61000-4-4, severity level 3)
- 2 kV power cables,
- 2 kV signal cables

#### High-energy pulses (surge) EZ-AC

#### Surge EZ-DA, EZ-DC, EZ-AB

#### Line-conducted interference (IEC/EN 61 000-4-6)
- 10 V

### Dielectric strength

#### Clearance and creepage distances

#### Dielectric strength

#### Overvoltage category/pollution degree

#### Tools and cable cross-sections

#### Solid
- min. 0.2 mm², max. 4 mm²/AWG: 22 – 12

#### Flexible with ferrule
- min. 0.2 mm², max. 2.5 mm²/AWG: 22 – 12
- Factory wiring: to AWG 30

#### Slot-head screwdriver, width
- 3.5 × 0.8 mm

#### Tightening torque
- 0.6 Nm
Appendix

Backup/accuracy of real-time clock (only with EZ-C)

<table>
<thead>
<tr>
<th>Clock battery back-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

① = backup time in hours
② = service life in years

Accuracy of the real-time clock
Normally ± 5 s/day, ~ ± 0.5 h/year

Repetition accuracy of timing relays

Accuracy of timing relays
± 1 % of value

Resolution

Range “s”
10 ms

Range “M:S”
1 s

Range “H:M”
1 min.

Retentive memory

Write cycles of the retentive memory (minimum)
1000000

Rungs (basic units)
EZ512, EZ700

128

Special approvals

CSA
(testing in progress)
## Technical Data

### Power supply

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated value (sinusoidal)</th>
<th>Operating range</th>
<th>Frequency, rated value, tolerance</th>
<th>Input current consumption at</th>
<th>Voltage dips</th>
<th>Power loss at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 V AC</td>
<td>+10/-15 % 20.4 to 26.4 V AC</td>
<td>50/60 Hz, ± 5 %</td>
<td>Normally 40 mA/70 mA</td>
<td>20 ms, IEC/EN 61131-2</td>
<td>Normally 5 VA/normally 10 VA</td>
</tr>
<tr>
<td></td>
<td>100/110/115/120/230/240 V AC</td>
<td>+10/-15 % 85 to 264 V AC</td>
<td>85 to 264 V AC</td>
<td>Normally 20 mA/35 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage dips</th>
<th>Power loss at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 ms, IEC/EN 61131-2</td>
<td>Normally 5 VA/normally 10 VA</td>
</tr>
</tbody>
</table>

## Additional Information

For more information visit: [www.EatonElectrical.com](http://www.EatonElectrical.com)
## Appendix

### Inputs

**EZ-512-AB-…, EZ719-AB-…**

<table>
<thead>
<tr>
<th>Digital inputs 24 V AC</th>
<th>EZ512-AB-…</th>
<th>EZ719-AB-…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Status display</td>
<td>LCD (if provided)</td>
<td>LCD (if provided)</td>
</tr>
<tr>
<td>2 inputs (I7, I8) usable as analog inputs</td>
<td>4 inputs (I7, I8, I11, I12) usable as analog inputs</td>
<td></td>
</tr>
<tr>
<td>Electrical isolation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To power supply</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Between each other</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>To the outputs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rated voltage L (sinusoidal)</td>
<td>24 V AC</td>
<td>24 V AC</td>
</tr>
<tr>
<td>0 signal</td>
<td>0 to 6 V AC</td>
<td>0 to 6 V AC</td>
</tr>
<tr>
<td>1 signal</td>
<td>(I7, I8) &gt;8 V AC, &gt; 11 V DC (I1 to I6, I9 to I12)</td>
<td>(I7, I8, I11, I12) &gt;8 V AC, &gt; 11 V DC (I1 to I6, I9 to I10)</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50/60 Hz</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Input current on 1 signal I1 to I6 (EZ719.. also I9 to I10)</td>
<td>4 mA at 24 V AC 50 Hz</td>
<td>4 mA at 24 V AC, 50 Hz</td>
</tr>
<tr>
<td>Input current on 1 signal I7, I8, (EZ719.. also I11, I12)</td>
<td>2 mA at 24 V AC, 50 Hz 2 mA at 24 V DC</td>
<td>2 mA at 24 V AC, 50 Hz 2 mA at 24 V DC</td>
</tr>
</tbody>
</table>
## Technical Data

<table>
<thead>
<tr>
<th></th>
<th>EZ-512-AB-…</th>
<th>EZ719-AB-…</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Delay time for 0 to 1 and 1 to 0 for I1 to I8, EZ719… also I9 to I12</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debounce ON</td>
<td>80 ms (50 Hz), 66(\frac{2}{3}) ms (60 Hz)</td>
<td>80 ms (50 Hz), 66(\frac{2}{3}) ms (60 Hz)</td>
</tr>
<tr>
<td>Debounce OFF</td>
<td>20 ms (50 Hz), 16(\frac{2}{3}) ms (60 Hz)</td>
<td>20 ms (50 Hz), 16(\frac{2}{3}) ms (60 Hz)</td>
</tr>
<tr>
<td>Max. permissible cable length (per input)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1 to I8, (with EZ719… also I9 to I10)</td>
<td>Normally 40 m</td>
<td>Normally 40 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>EZ-512-AC-…, EZ618-AC-.E, EZ719-AC-…</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Digital inputs 115/230 V AC</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Status display</td>
<td>LCD (if provided)</td>
<td>LCD (if provided)</td>
</tr>
<tr>
<td>Electrical isolation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To power supply</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Between each other</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>To the outputs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rated voltage L (sinusoidal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 signal</td>
<td>0 to 40 V AC</td>
<td>0 to 40 V AC</td>
</tr>
<tr>
<td>1 signal</td>
<td>79 to 264 V AC</td>
<td>79 to 264 V AC</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50/60 Hz</td>
<td>50/60 Hz</td>
</tr>
</tbody>
</table>
### Appendix

**Input current with 1 signal R1 to R12, I1 to I6**
- EZ512-AC..., EZ518-AC-E, EZ719-AC-

<table>
<thead>
<tr>
<th>Input current</th>
<th>EZ512-AC..., EZ518-AC-E, EZ719-AC-</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 to R12, I1 to I6</td>
<td>6 × 0.5 mA at 230 V AC 50 Hz, 6 × 0.25 mA at 115 V AC 60 Hz</td>
</tr>
<tr>
<td>I7, I8</td>
<td>2 × 6 mA at 230 V AC 50 Hz, 2 × 4 mA at 115 V AC 60 Hz</td>
</tr>
</tbody>
</table>

**Input current on 1 signal I7, I8**
- EZ512-DA..., EZ719-DA-

<table>
<thead>
<tr>
<th>Input current</th>
<th>EZ512-DA..., EZ719-DA-</th>
</tr>
</thead>
<tbody>
<tr>
<td>I7, I8</td>
<td>6 × 0.5 mA at 230 V AC 50 Hz, 6 × 0.25 mA at 115 V AC 60 Hz</td>
</tr>
<tr>
<td></td>
<td>2 × 6 mA at 230 V AC 50 Hz, 2 × 4 mA at 115 V AC 60 Hz</td>
</tr>
</tbody>
</table>

**Delay time for 0 to 1 and 1 to 0 for I1 to I6, I9 to I12**
- EZ512-AC..., EZ518-AC-E, EZ719-AC-

<table>
<thead>
<tr>
<th>Delay time</th>
<th>EZ512-AC..., EZ518-AC-E, EZ719-AC-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debounce ON</td>
<td>80 ms (50 Hz), 662/3 ms (60 Hz)</td>
</tr>
<tr>
<td>Debounce OFF (also R1 to R12)</td>
<td>20 ms (50 Hz), 162/3 ms (60 Hz)</td>
</tr>
</tbody>
</table>

**Delay time I7, I8 for 1 to 0**
- EZ512-AC..., EZ518-AC-E, EZ719-AC-

<table>
<thead>
<tr>
<th>Delay time</th>
<th>EZ512-AC..., EZ518-AC-E, EZ719-AC-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debounce ON</td>
<td>160 ms (50 Hz), 150 ms (60 Hz)</td>
</tr>
<tr>
<td>Debounce OFF</td>
<td>100 ms (50 Hz/60 Hz)</td>
</tr>
</tbody>
</table>

**Delay time I7, I8 for 0 to 1**
- EZ512-AC..., EZ518-AC-E, EZ719-AC-

<table>
<thead>
<tr>
<th>Delay time</th>
<th>EZ512-AC..., EZ518-AC-E, EZ719-AC-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debounce ON</td>
<td>80 ms (50 Hz), 662/3 ms (60 Hz)</td>
</tr>
<tr>
<td>Debounce OFF</td>
<td>20 ms (50 Hz), 162/3 ms (60 Hz)</td>
</tr>
</tbody>
</table>

**Max. permissible cable length (per input)**
- EZ512-AC..., EZ518-AC-E, EZ719-AC-

<table>
<thead>
<tr>
<th>Cable Length</th>
<th>EZ512-AC..., EZ518-AC-E, EZ719-AC-</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1 to I6, R1 to R12 (with EZ719-... also I9 to I12)</td>
<td>Normally 40 m</td>
</tr>
<tr>
<td>I7, I8</td>
<td>Normally 100 m</td>
</tr>
</tbody>
</table>

**Digital inputs**
- EZ512-DA..., EZ719-DA-

<table>
<thead>
<tr>
<th>Digital inputs</th>
<th>EZ512-DA..., EZ719-DA-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2 inputs (I7, I8) usable as analog inputs</td>
<td>4 inputs (I7, I8, I11, I12) usable as analog inputs</td>
</tr>
</tbody>
</table>

For more information visit: [www.EatonElectrical.com](http://www.EatonElectrical.com)
## Technical Data

<table>
<thead>
<tr>
<th></th>
<th>EZ512-DA-...</th>
<th>EZ719-DA-...</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Status display</strong></td>
<td>LCD (if provided)</td>
<td>LCD (if provided)</td>
</tr>
<tr>
<td><strong>Electrical isolation</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To power supply</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Between each other</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>To the outputs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Rated voltage</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated value</td>
<td>12 V DC</td>
<td>12 V DC</td>
</tr>
<tr>
<td>0 signal</td>
<td>4 V DC (I1 to I8)</td>
<td>4 V DC (I1 to I12)</td>
</tr>
<tr>
<td>1 signal</td>
<td>8 V DC (I1 to I8)</td>
<td>8 V DC (I1 to I12)</td>
</tr>
<tr>
<td>Input current on 1 signal</td>
<td>3.3 mA at 12 V DC (I1 to I6)</td>
<td>3.3 mA at 12 V DC (I1 to I6, I9 to I12)</td>
</tr>
<tr>
<td>I7, I8</td>
<td>1.1 mA at 12 V DC</td>
<td>1.1 mA at 12 V DC</td>
</tr>
<tr>
<td><strong>Delay time for 0 to 1</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debounce ON</td>
<td>20 ms</td>
<td>20 ms</td>
</tr>
<tr>
<td>Debounce OFF</td>
<td>Normally 0.3 ms (I1 to I16) Normally 0.35 ms (I7, I8)</td>
<td>Normally 0.3 ms (I1 to I6, I9, I10) Normally 0.35 ms (I7, I8, I11, I12)</td>
</tr>
<tr>
<td><strong>Delay time for 1 to 0</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debounce ON</td>
<td>20 ms</td>
<td>20 ms</td>
</tr>
<tr>
<td>Debounce OFF</td>
<td>Normally 0.3 ms (I1 to I16) Normally 0.15 ms (I7, I8)</td>
<td>Normally 0.4 ms (I1 to I6, I9 to I10) Normally 0.2 ms (I7, I8, I11, I12)</td>
</tr>
<tr>
<td><strong>Cable length (unshielded)</strong></td>
<td>100 m</td>
<td>100 m</td>
</tr>
</tbody>
</table>

**Digital inputs**

<table>
<thead>
<tr>
<th></th>
<th>EZ512-DC-..., EZ6-DC-E, EZ7-DC-...</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Number</strong></td>
<td>8</td>
</tr>
<tr>
<td>2 inputs (I7, I8) usable as analog inputs</td>
<td>4 inputs (I7, I8, I11, I12) usable as analog inputs</td>
</tr>
</tbody>
</table>
## Appendix

<table>
<thead>
<tr>
<th></th>
<th>EZ512-DC-...</th>
<th>EZ6-DC-E</th>
<th>EZ7-DC-...</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Status display</strong></td>
<td>LCD (if provided)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Electrical isolation</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To power supply</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Between each other</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>To the outputs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Rated voltage</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated value</td>
<td>24 V DC</td>
<td>24 V DC</td>
<td>24 V DC</td>
</tr>
<tr>
<td>0 signal</td>
<td>&lt; 5 V DC (I1 to I8)</td>
<td>&lt; 5 V DC (R1 to R12)</td>
<td>&lt; 5 V DC (I1 to I12)</td>
</tr>
<tr>
<td>1 signal</td>
<td>&gt; 8 V DC (I7, I8)</td>
<td>&gt; 15 V DC (I1 to I6)</td>
<td>&gt; 15 V DC (I1 to I12)</td>
</tr>
<tr>
<td>Input current on 1 signal</td>
<td>3.3 mA at 24 V DC (I1 to I6)</td>
<td>3.3 mA at 24 V DC (R1 to R12)</td>
<td>3.3 mA at 24 V DC (I1 to I6, I9, I10)</td>
</tr>
<tr>
<td>I7, I8 (EZ7-DC-... also I11, I12)</td>
<td>2.2 mA at 24 V DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Delay time for 0 to 1</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debounce ON</td>
<td>20 ms</td>
<td>20 ms</td>
<td>20 ms</td>
</tr>
<tr>
<td>Debounce OFF</td>
<td>Normally 0.25 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZ512-DC-... / I1 to I8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZ6-DC-E / R1 to R12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZ7-DC-... / I1 to I12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Delay time for 1 to 0</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debounce ON</td>
<td>20 ms</td>
<td>20 ms</td>
<td>20 ms</td>
</tr>
<tr>
<td>Debounce OFF</td>
<td>Normally 0.4 ms (I1 to I16)</td>
<td>Normally 0.4 ms (R1 to R12)</td>
<td>Normally 0.4 ms (I1 to I6, I9, I10)</td>
</tr>
<tr>
<td>Normally 0.2 ms (I7, I8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable length (unshielded)</td>
<td>100 m</td>
<td>100 m</td>
<td>100 m</td>
</tr>
</tbody>
</table>
### Technical Data

#### High-speed counter inputs, I1 to I4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4</td>
</tr>
<tr>
<td>Cable length (shielded)</td>
<td>20 m</td>
</tr>
</tbody>
</table>

#### High-speed up and down counters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting frequency</td>
<td>&lt; 1 kHz</td>
</tr>
<tr>
<td>Pulse shape</td>
<td>Square wave</td>
</tr>
<tr>
<td>Mark-to-space ratio</td>
<td>1:1</td>
</tr>
</tbody>
</table>

#### Frequency counters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting frequency</td>
<td>&lt; 1 kHz</td>
</tr>
<tr>
<td>Pulse shape</td>
<td>Square wave</td>
</tr>
<tr>
<td>Mark-to-space ratio</td>
<td>1:1</td>
</tr>
</tbody>
</table>

#### Analog input I7, I8, I11, I12

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>2/4</td>
</tr>
<tr>
<td>Electrical isolation</td>
<td>No/Yes</td>
</tr>
<tr>
<td>To power supply</td>
<td>No</td>
</tr>
<tr>
<td>To the digital inputs</td>
<td>No</td>
</tr>
<tr>
<td>To the outputs</td>
<td>Yes/Yes</td>
</tr>
<tr>
<td>Input type</td>
<td>DC voltage/DC voltage</td>
</tr>
<tr>
<td>Signal range</td>
<td>0 to 10 V DC/0 to 10 V DC</td>
</tr>
<tr>
<td>Resolution analog</td>
<td>10 mV/10 mV</td>
</tr>
<tr>
<td>Resolution digital</td>
<td>0.01 (10-bit, 1 to 1023)/0.01 (10-bit, 0 to 1023)</td>
</tr>
<tr>
<td>Input impedance</td>
<td>11.2 kΩ/11.2 kΩ</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± % of actual value/± 3 % of actual value</td>
</tr>
<tr>
<td>Two EZ devices</td>
<td>± % of actual value/± 3 % of actual value</td>
</tr>
<tr>
<td>Within a single device</td>
<td>± 2 % of actual value (I7, I8), ± 0.12 V</td>
</tr>
</tbody>
</table>
### Appendix

<table>
<thead>
<tr>
<th>Conversion time, analog/digital</th>
<th>Debounce ON: 20 ms</th>
<th>Debounce OFF: every cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input current at 10 V DC</td>
<td>1 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>Cable length (shielded)</td>
<td>30 m</td>
<td>30 m</td>
</tr>
</tbody>
</table>

#### Relay outputs

<table>
<thead>
<tr>
<th>EZ512-..-R…, EZ618-..-RE/EZ719-..-R…, EZ202-RE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EZ512-..-R…</th>
<th>EZ618-..-RE/EZ719-..-R…</th>
<th>EZ202-RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Type of outputs</td>
<td>Relay</td>
<td></td>
</tr>
<tr>
<td>In groups of</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Connection of outputs in parallel to increase the output</td>
<td>Not permissible</td>
<td></td>
</tr>
<tr>
<td>Protection for an output relay</td>
<td>Miniature circuit-breaker B16 or 8 A fuse (slow)</td>
<td></td>
</tr>
<tr>
<td>Potential isolation to mains supply, inputs</td>
<td>Yes</td>
<td>300 V AC (safe isolation)</td>
</tr>
<tr>
<td>Mechanical lifespan (switching operations)</td>
<td>$10 \times 10^6$</td>
<td></td>
</tr>
<tr>
<td>Contacts relays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional therm. current</td>
<td>8 A (10 A UL)</td>
<td></td>
</tr>
<tr>
<td>Recommended for load</td>
<td>&gt; 500 mA, 12 V AC/DC</td>
<td></td>
</tr>
<tr>
<td>Short-circuit resistance $\cos \varphi = 1$</td>
<td>16 A characteristic B (B16) at 600 A</td>
<td></td>
</tr>
<tr>
<td>Short-circuit resistance $\cos \varphi = 0.5$ to $0.7$</td>
<td>16 A characteristic B (B16) at 900 A</td>
<td></td>
</tr>
<tr>
<td>Rated impulse withstand voltage $U_{imp}$ contact coil</td>
<td>6 kV</td>
<td></td>
</tr>
<tr>
<td>Rated insulation voltage $U_{i}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information visit: [www.EatonElectrical.com](http://www.EatonElectrical.com)
### Technical Data

<table>
<thead>
<tr>
<th></th>
<th>EZ512-...-R...</th>
<th>EZ618-...-RE/ EZ719-...-R...</th>
<th>EZ202-RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated operational voltage $U_e$</td>
<td>250 V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe isolation to EN 50178 between coil and contact</td>
<td>300 V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe isolation to EN 50178 between two contacts</td>
<td>300 V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Making capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-15 250 V AC, 3 A (600 Ops/h)</td>
<td>300 000 operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-13 L/R ≤ 150 ms 24 V DC, 1 A (500 Ops/h)</td>
<td>200 000 operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaking capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-15 250 V AC, 3 A (600 Ops/h)</td>
<td>300 000 operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-13 L/R ≤ 150 ms 24 V DC, 1 A (500 Ops/h)</td>
<td>200 000 operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filament lamp load</td>
<td>1000 W at 230/240 V AC/250 000 operations</td>
<td>500 W at 115/120 V AC/250 000 operations</td>
<td></td>
</tr>
<tr>
<td>Fluorescent tube with ballast</td>
<td>10 × 58 W at 230/240 V AC/250 000 operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional fluorescent tube, compensated</td>
<td>1 × 58 W at 230/240 V AC/250 000 operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorescent tube, uncompensated</td>
<td>10 × 58 W at 230/240 V AC/250 000 operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating frequency, relays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical switching operations</td>
<td>10 million (1 × 10^7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical switching frequency</td>
<td>10 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistive lamp load</td>
<td>2 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inductive load</td>
<td>0.5 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Appendix

### UL/CSA

<table>
<thead>
<tr>
<th>Control Circuit Rating Codes</th>
<th>AC</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Utilization category)</td>
<td>B300 Light Pilot Duty</td>
<td>R300 Light Pilot Duty</td>
</tr>
<tr>
<td>Max. rated operational voltage</td>
<td>300 V AC</td>
<td>300 V DC</td>
</tr>
<tr>
<td>Max. thermal continuous current cos $\varphi = 1$ with B300</td>
<td>5 A</td>
<td>1 A</td>
</tr>
<tr>
<td>Maximum make/break capacity cos $\varphi \neq 1$ (Make/break) with B300</td>
<td>3600/360 VA</td>
<td>28/28 VA</td>
</tr>
</tbody>
</table>

### Transistor outputs

**EZ-512-D-T..., EZ620-DC-, E, EZ72...**

<table>
<thead>
<tr>
<th>Number of outputs</th>
<th>EZ512-D-T...</th>
<th>EZ620-DC-, E, EZ72...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacts</td>
<td>Semiconductors</td>
<td>Semiconductors</td>
</tr>
<tr>
<td>Rated voltage $U_e$</td>
<td>24 V DC</td>
<td>24 V DC</td>
</tr>
<tr>
<td>Permissible range</td>
<td>20.4 to 28.8 V DC</td>
<td>20.4 to 28.8 V DC</td>
</tr>
<tr>
<td>Residual ripple</td>
<td>$\leq 5%$</td>
<td>$\leq 5%$</td>
</tr>
<tr>
<td>Supply current</td>
<td>Normally 9 mA/max. 16 mA</td>
<td>Normally 18 mA/max. 32 mA</td>
</tr>
<tr>
<td>0 signal</td>
<td>Normally 12 mA, max. 22 mA</td>
<td>Normally 24 mA, max. 44 mA</td>
</tr>
<tr>
<td>1 signal</td>
<td>Normally 12 mA, max. 22 mA</td>
<td>Normally 24 mA, max. 44 mA</td>
</tr>
<tr>
<td>Reverse polarity protection</td>
<td>Yes, caution! If voltage is applied to the outputs when the polarity of the power supply is reversed, this will result in a short circuit.</td>
<td>Yes, caution! If voltage is applied to the outputs when the polarity of the power supply is reversed, this will result in a short circuit.</td>
</tr>
<tr>
<td>Potential isolation to mains supply, inputs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rated current $I_e$ on 1 signal</td>
<td>max. 0.5 A DC</td>
<td>max. 0.5 A DC</td>
</tr>
<tr>
<td>Lamp load</td>
<td>5 Watts without $R_V$</td>
<td>5 Watts without $R_V$</td>
</tr>
</tbody>
</table>
### Technical Data

|                                      | EZ512-D-T... | EZ620-DC-E, EZ72...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual current at state 0 per channel</td>
<td>&lt; 0.1 mA</td>
<td>&lt; 0.1 mA</td>
</tr>
<tr>
<td>Max. output voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On 0 signal with ext. load &lt; 10 MΩ</td>
<td>2.5 V</td>
<td>2.5 V</td>
</tr>
<tr>
<td>On 1 signal, $I_e = 0.5$ A</td>
<td>$U = U_e - 1$ V</td>
<td>$U = U_e - 1$ V</td>
</tr>
<tr>
<td>Short-circuit protection</td>
<td>Yes, thermal (detected via diagnostics input I16, I15; R16; R15)</td>
<td></td>
</tr>
<tr>
<td>Short-circuit tripping current for $R_a \leq 10$ mΩ</td>
<td>0.7 A $\leq I_e \leq 2$ A per output</td>
<td></td>
</tr>
<tr>
<td>Max. total short-circuit current</td>
<td>8 A</td>
<td>16 A</td>
</tr>
<tr>
<td>Peak short-circuit current</td>
<td>16 A</td>
<td>32 A</td>
</tr>
<tr>
<td>Thermal cutout</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Max. switching frequency with constant resistive load $R_L &lt; 100$ kΩ: operations/hour</td>
<td>40000 (depends on program and load)</td>
<td></td>
</tr>
<tr>
<td>Parallel connection of outputs with resistive load; inductive load with external suppression circuit (see page 56) combination within a group</td>
<td>Group 1: Q1 to Q4</td>
<td>Group 1: Q1 to Q4, S1 to S4  • Group 2: Q5 to Q8, S5 to S8</td>
</tr>
</tbody>
</table>

For more information visit: [www.EatonElectrical.com](http://www.EatonElectrical.com)
Appendix

<table>
<thead>
<tr>
<th>EZ512-D-T...</th>
<th>EZ620-DC-E, EZ72...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outputs</td>
<td>max. 4</td>
</tr>
<tr>
<td>Total maximum current</td>
<td>2.0 A, Attention! Outputs must be actuated simultaneously and for the same time duration.</td>
</tr>
<tr>
<td>Status display of the outputs</td>
<td>LCD display (if provided)</td>
</tr>
</tbody>
</table>

Inductive load (without external suppressor circuit)

General explanations:

\[ T_{0.95} = \text{time in milliseconds until 95% of the stationary current is reached.} \]

\[ T_{0.95} \approx 3 \times T_{0.65} = 3 \times \frac{L}{R} \]

Utilization category in groups for:

- Q1 to Q4,
- Q5 to Q8,
- S1 to S4,
- S5 to S8.

<table>
<thead>
<tr>
<th>Utilization factor</th>
<th>g = 0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative duty factor</td>
<td>%</td>
</tr>
<tr>
<td>Maximum switching frequency</td>
<td>Operations/h</td>
</tr>
<tr>
<td>f = 0.5 Hz</td>
<td>1500</td>
</tr>
<tr>
<td>Maximum duty factor</td>
<td>DF = 50%</td>
</tr>
</tbody>
</table>

DC13

\[ T_{0.95} = 72 \text{ ms} \]

\[ R = 48 \Omega \]

\[ L = 1.15 \text{ H} \]

Utilization factor

<table>
<thead>
<tr>
<th>Relative duty factor</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum switching frequency</td>
<td>Operations/h</td>
</tr>
<tr>
<td>f = 0.5 Hz</td>
<td>1500</td>
</tr>
<tr>
<td>Maximum duty factor</td>
<td>DF = 50%</td>
</tr>
</tbody>
</table>

Other inductive loads:
List of the function relays

<table>
<thead>
<tr>
<th>Contact type</th>
<th>Make contact</th>
<th>Break contact</th>
<th>EZ500</th>
<th>EZ700</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog value comparator function relay</td>
<td>A</td>
<td>Ť</td>
<td>A1…A16</td>
<td>A1…A16</td>
<td>102</td>
</tr>
<tr>
<td>Counter relay contact</td>
<td>C</td>
<td>Č</td>
<td>C1…C16</td>
<td>C1…C16</td>
<td>114</td>
</tr>
<tr>
<td>Text display function relay</td>
<td>D</td>
<td>Ď</td>
<td>D1…D16</td>
<td>D1…D16</td>
<td>134</td>
</tr>
<tr>
<td>7-day time switch function relay</td>
<td>Ȭ</td>
<td>Ÿ</td>
<td>Ȭ1…Ȭ8</td>
<td>Ȭ1…Ȭ8</td>
<td>140</td>
</tr>
<tr>
<td>EZ input terminal</td>
<td>I</td>
<td>Ľ</td>
<td>I1…I16</td>
<td>I1…I16</td>
<td>114</td>
</tr>
<tr>
<td>0 signal</td>
<td>–</td>
<td>–</td>
<td>I1ۭ</td>
<td>I1ۭ</td>
<td>241</td>
</tr>
<tr>
<td>Expansion status</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>241</td>
</tr>
<tr>
<td>Short-circuit/overload</td>
<td>M</td>
<td>Ť</td>
<td>M1…M16</td>
<td>M1…M16</td>
<td>89</td>
</tr>
<tr>
<td>Marker (auxiliary relay)</td>
<td>M</td>
<td>Ť</td>
<td>M1…M16</td>
<td>M1…M16</td>
<td>89</td>
</tr>
<tr>
<td>Marker (auxiliary relay)</td>
<td>N</td>
<td>Ť</td>
<td>N1…N16</td>
<td>N1…N16</td>
<td>89</td>
</tr>
<tr>
<td>Operating hours counter</td>
<td>O</td>
<td>Ū</td>
<td>O1…O4</td>
<td>O1…O4</td>
<td>145</td>
</tr>
<tr>
<td>Cursor button</td>
<td>P</td>
<td>Ž</td>
<td>P1…P4</td>
<td>P1…P4</td>
<td>87</td>
</tr>
</tbody>
</table>

Usable contacts

<table>
<thead>
<tr>
<th>Contact type</th>
<th>Make contact</th>
<th>Break contact</th>
<th>EZ500</th>
<th>EZ700</th>
<th>Page</th>
</tr>
</thead>
</table>
| EZ500_700.book  Page 273  Tuesday, May 3, 2005  5:15 PM
## Appendix

### Available function relays

<table>
<thead>
<tr>
<th>Relay</th>
<th>EZ display</th>
<th>EZ500</th>
<th>EZ700</th>
<th>Coil function</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog value comparator function relay</td>
<td>R</td>
<td>A1...R1 bk</td>
<td>A1...R1 bk</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Counter relay contact</td>
<td>C</td>
<td>C1...C1 bk</td>
<td>C1...C1 bk</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Text marker function relays</td>
<td>D</td>
<td>D1...D1 bk</td>
<td>D1...D1 bk</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7-day time switch function relay</td>
<td>G</td>
<td>G1...G8</td>
<td>G1...G8</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Marker (auxiliary relay)</td>
<td>H</td>
<td>H1...H1 bk</td>
<td>H1...H1 bk</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Marker (auxiliary relay)</td>
<td>N</td>
<td>N1...N1 bk</td>
<td>N1...N1 bk</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Operating hours counter</td>
<td>O</td>
<td>O1...O4</td>
<td>O1...O4</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>EZ output relay</td>
<td>Q</td>
<td>Q1...Q4</td>
<td>Q1...Q4</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>EZ output relay expansion, auxiliary marker</td>
<td>S</td>
<td>S1...S8</td>
<td>S1...S8</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Timer function relay</td>
<td>T</td>
<td>T1...T1 bk</td>
<td>T1...T1 bk</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
### List of the function relays

<table>
<thead>
<tr>
<th>Relay</th>
<th>EZ display</th>
<th>EZ500</th>
<th>EZ700</th>
<th>Coil function</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional jump</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Year time switch</td>
<td>V</td>
<td>V1...V4</td>
<td>V1...V4</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Master reset, (central reset)</td>
<td>Z</td>
<td>Z1...Z8</td>
<td>Z1...Z8</td>
<td>✓</td>
<td>–</td>
</tr>
</tbody>
</table>

### Names of relays

<table>
<thead>
<tr>
<th>Relay</th>
<th>Meaning of abbreviation</th>
<th>Function relay designation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Analog value comparator</td>
<td>Analog value comparator</td>
<td>102</td>
</tr>
<tr>
<td>C</td>
<td>counter</td>
<td>Counter</td>
<td>114</td>
</tr>
<tr>
<td>D</td>
<td>display</td>
<td>Text display</td>
<td>134</td>
</tr>
<tr>
<td>B</td>
<td>(week, Software)</td>
<td>7-day time switch</td>
<td>140</td>
</tr>
<tr>
<td>O</td>
<td>operating time</td>
<td>Operating hours counter</td>
<td>145</td>
</tr>
<tr>
<td>T</td>
<td>timing relay</td>
<td>Timing relay</td>
<td>150</td>
</tr>
<tr>
<td>V</td>
<td>year</td>
<td>Year time switch</td>
<td>169</td>
</tr>
<tr>
<td>Z</td>
<td>zero reset,</td>
<td>Master reset</td>
<td>176</td>
</tr>
</tbody>
</table>

### Names of function relay

<table>
<thead>
<tr>
<th>Function relay coil</th>
<th>Meaning of abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>count input</td>
<td>Counter input, counter</td>
</tr>
<tr>
<td>D</td>
<td>direction input</td>
<td>Counter direction, counter</td>
</tr>
<tr>
<td>H</td>
<td>hold, stop</td>
<td>Stopping of timing relay, stop, timing relay</td>
</tr>
<tr>
<td>R</td>
<td>reset</td>
<td>Reset of actual value to zero, operating hours counters, counters, text displays, timing relays</td>
</tr>
<tr>
<td>T</td>
<td>trigger</td>
<td>Timing coil, timing relay</td>
</tr>
</tbody>
</table>
# Appendix

## Name of function block inputs (constants, operands)

<table>
<thead>
<tr>
<th>Input</th>
<th>Meaning of abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Factor 1</td>
<td>Gain factor for I1 (I1 = F1 × Value)</td>
</tr>
<tr>
<td>F2</td>
<td>Factor 2</td>
<td>Gain factor for I2 (I2 = F2 × Value)</td>
</tr>
<tr>
<td>HY</td>
<td>Hysteresis</td>
<td>Switching hysteresis for value I2 (Value HY applies to positive and negative hysteresis.)</td>
</tr>
<tr>
<td>D</td>
<td>Day</td>
<td>Day</td>
</tr>
<tr>
<td>I1</td>
<td>Input 1</td>
<td>1st setpoint, comparison value</td>
</tr>
<tr>
<td>I2</td>
<td>Input 2</td>
<td>2nd setpoint, comparison value</td>
</tr>
<tr>
<td>S</td>
<td>Setpoint</td>
<td>Setpoint, limit value</td>
</tr>
</tbody>
</table>

## Memory card attributes

<table>
<thead>
<tr>
<th>Type of memory card</th>
<th>EZ500</th>
<th>EZ700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read</td>
<td>write</td>
</tr>
<tr>
<td></td>
<td>read</td>
<td>write</td>
</tr>
<tr>
<td>M-32K</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Glossary

Analog input
The device EZ-AB, EZ-DA and EZ-DC are provided with the two (EZ500) and four (EZ700) analog inputs I7, I8 and I11, I12. The input voltage range is 0 V to 10 V. The measuring data is evaluated with the integrated function relays.

Circuit diagram elements
As in conventional wiring, the circuit diagram is made up of circuit elements. These include input, output and marker relays, plus function relays and P buttons.

Connect mode
Connect mode is used to wire up the circuit elements in your EZ circuit diagram.

Contact behavior
The contact behavior of any circuit element can be defined as either a break contact or a make contact. Break contact elements are identified by a line above the identifier (Exception: jump).

Entry mode
Entry mode is used to input or modify values when creating circuit diagrams or setting parameters, for example.

Function relays
Function relays can be used for complex control tasks. EZ features the following function relays:

- Timing relay
- 7-day time switch
- Year time switch
- Counter, up/down, high-speed, frequency
- Analog value comparator/threshold value switch
- Operating hours counter
- Master reset
- Text marker relay
Glossary

Impulse relay
An impulse relay is a relay which changes its switching state and retains its new state (latched) when a voltage is applied to the relay coil for a short time.

Input
The inputs are used to connect up external contacts. In the circuit diagram, inputs are evaluated via contacts I1 to I12 and R1 to R12.
EZ-AB, EZ-DA and EZ-DC can also receive analog data via the inputs I7, I8 and I11, I12.

Interface
The EZ interface is used to exchange and save circuit diagrams to a memory card or PC.
Each memory card contains one circuit diagram and its associated EZ settings.
The EZSoft software allows you to control EZ from your PC which is connected using the EZ-PC-CAB cable.

Local expansion
I/O expansion with the expansion unit (e.g. EZ620-DC-TE) installed directly on the basic unit. The connector is always supplied with the expansion unit.

Memory card
The memory card is used to store your EZ circuit diagram, together with its parameter and EZ settings. The data on the memory card will be retained, even if the power supply fails or is switched off.
The memory card is inserted into the interface slot on the EZ device.

Mode
EZ has two operating modes: RUN and STOP. RUN mode is used to process your circuit diagram (with the controller running continuously). In STOP mode you can create your circuit diagrams.
Operating buttons

EZ has eight operating buttons. These are used to select menu functions and create circuit diagrams. The large round button in the middle is used to move the cursor.

**DEL, ALT, ESC** and **OK** all perform additional functions.

Output

You can connect various loads to the four EZ outputs, such as contactors, lamps and motors. In the EZ circuit diagram the outputs are controlled via the corresponding output relay coils Q1 to Q8 or S1 to S8.

P buttons

The P buttons can be used to simulate four additional inputs which are controlled directly by the four cursor buttons, rather than via external contacts. The switch contacts of P buttons are connected up in the circuit diagram.

Parameters

Parameters enable the user to set the behavior of a function relay. Possible values include switching times or counter setpoints. They are set in the parameter display.

Power supply

EZ-AB is supplied with an 24 V AC supply. The terminals are labelled “L” and “N”.

EZ-AC is powered by AC voltage at 85 to 264 V AC, 50/60 Hz. The terminals are labelled “L” and “N”.

EZ-DA is supplied with a 12 V DC supply. The terminals are labelled +12 V and 0 V.

EZ-DC is powered by DC voltage at 24 V DC. The terminals are labelled “+24 V” and “0 V”.

The terminals for the power feed are the first three terminals on the input side.
Glossary

Remote expansion  I/O expansion with the expansion unit (e.g. EZ620-DC-TE) installed up to 30 m away from the basic unit. The EZ200-EZ coupling unit is fitted to the basic unit. The input and output data is exchanged between expansion and basic unit via a two-wire cable.

Retention  Data is retained even after the EZ power supply is switched off (retentive data)

The following data is retentive:

- EZ circuit diagram
- Parameters, setpoint values
- Texts
- System settings
- Password
- Actual values of marker relays, timing relays, counters (selectable)

Retentive data  See Retention.

Rungs  Each line in the circuit diagram is a rung. EZ500 and EZ700 can take 128 rungs.
Index

7-day time switch
    Compatibility of parameters ...................... 282

A
    Ambient conditions ................................. 258
    Analog
        Comparing two values .......................... 114
        Input ............................................. 44, 277
        Input power supply ............................. 46
        Input, resolution ................................ 105
        Setpoint potentiometer ......................... 47
        Signals ........................................... 45
        Value comparator ................................ 102
        Value comparator, two-step controller ........ 112
        Value scaling .................................... 136
        Analog input, power supply .................... 46
        AND circuit ...................................... 179
        Approvals ....................................... 260

B
    Basic circuit
        Maintained contact ............................. 179
        Negation ......................................... 178, 179
        Parallel circuit ................................ 180
        Self-latching ................................... 183
        Series circuit ................................... 179
        Two-way circuit ................................ 182
        Basic circuits ................................... 178
        Break contact .................................... 76, 273
        Inverting ......................................... 83
        Bus system ....................................... 60
        Button
            ALT ............................................. 68
            DEL ............................................. 68
            OK ............................................. 66, 74
Index

Buttons ................................................................. 18
Buttons for circuit diagram editing ......................... 73

Cable cross-sections .............................................. 33
Cable lengths ....................................................... 39
Cable protection ................................................. 33, 36
Cables ............................................................... 33
Changing channel (7-day time switch) ...................... 141
Changing channel (year time switch) ....................... 171
Changing the language ......................................... 205
Circuit diagram .................................................... 75
Checking ............................................................ 88
Coil field ............................................................ 78
Contact fields ..................................................... 78
Creation, error handling ...................................... 252
Cycle ............................................................... 231
Deleting ............................................................. 71
Display .............................................................. 66, 78
Elements ............................................................ 277
Enter ................................................................. 64
Evaluation .......................................................... 232
EZ operation ....................................................... 232
Fast entry .......................................................... 71
Grid ................................................................. 66, 78
Internal processing .............................................. 231
Load ................................................................. 80, 242, 247, 248
Operating buttons ................................................ 73
Overview .......................................................... 78
Rungs ................................................................. 78
Saving ............................................................... 80, 242, 245, 246, 248
Testing .............................................................. 69, 88
Wiring .............................................................. 68, 84
Clock accuracy ..................................................... 260
Clock battery backup time ..................................... 260
Clock, backup time .............................................. 260
Coil ................................................................. 76
Coil field ............................................................ 78
### Coil function
- Contactor ........................................... 90
- Impulse relay ........................................ 93
- Latching relay ........................................ 94
- Negate .................................................. 91
- Overview ............................................... 89

### Commissioning .................................. 61

### Comparator functions .......................... 102

### Compare function
- Equal to ............................................... 108
- Greater than ......................................... 111
- Greater than/equal to .............................. 110
- Less than .............................................. 106
- Less than/equal to ................................. 107
- Two analog values .................................. 114

### Connect mode ..................................... 277

### Connecting
- 20 mA sensor ........................................... 49
- AC voltage ............................................. 34
- Analog inputs ........................................ 44
- Analog setpoint potentiometer .................. 47
- Brightness sensor .................................. 47, 48
- Bus system ............................................. 60
- Contactors and relays ............................. 51
- DC voltage ............................................. 35
- Digital input .......................................... 42
- Expansion device .................................... 32
- Frequency generators ............................. 49
- High-speed counters ............................... 49
- Input ................................................... 37
- Neon bulbs ........................................... 40
- Output .................................................. 51
- Power supply ........................................ 33
- Proximity switch .................................... 42
- Pushbutton actuators and switches ............ 42
- Relay outputs ....................................... 52
- Temperature sensor ................................. 48
- Connecting AC ....................................... 34
Index

Connecting DC voltage ............................................ 35
Connecting frequency generators .......................... 49
Connecting the brightness sensor ....................... 48
Connecting the setpoint potentiometer .............. 47
Connection cross-sections ......................................... 33
Connections
  Deleting ............................................................... 85
Contact .............................................................. 75, 80
  Behavior ............................................................. 277
  Fields ................................................................. 78
  First ................................................................. 67
  List of all .......................................................... 273
Contact type .......................................................... 83
  Change ............................................................... 81
  Cursor buttons ...................................................... 87
  Deleting ............................................................... 83
  Enter ................................................................. 81
  Inverting ............................................................. 68
  Overview ............................................................ 76
  Contactor function, inverse ................................... 91
Counter relay ....................................................... 114
  Parameters ........................................................ 125, 130
Counter value automatic reset .............................. 119
Counter value manual reset .................................. 119
Counters ............................................................... 114, 119
  Cascading .......................................................... 120
  Counting frequency ............................................. 117
  Frequency .......................................................... 122
  High-speed .......................................................... 49, 128
  High-speed, circuit diagram evaluation ............... 232
  Maintenance ........................................................ 147
  Operating hours .................................................... 145
  Retentive actual value ......................................... 121
  Scan for actual value = zero ............................... 120
  Unit quantities ..................................................... 119
  Counting unit quantities ..................................... 119
Current
  Input .................................................. 39, 44
  Input current, increasing ......................... 41
Cursor buttons ........................................... 18, 87
  Activate ................................................ 220
  Deactivate ............................................. 221
  See P buttons ......................................... 279
Cursor display .......................................... 27, 74
Cycle ...................................................... 231
  Cycle pulse ............................................ 91, 92, 184, 185

D  Date setting .............................................. 209
Delay times
  For EZ-AB, EZ-DA, EZ-DC ......................... 237
  For EZ-AC, EZ-AB ..................................... 236
  For EZ-DA, EZ-DC ..................................... 234
Inputs and outputs ..................................... 234
Deleting retentive actual values .................. 228
Detecting operating states .......................... 113
Device information ..................................... 230
Device version .......................................... 250
Dielectric strength ..................................... 259
Dimensions ................................................ 255
Display and operating unit ......................... 249
DST setting ................................................ 210

E  Edge
  Falling .................................................. 185
  Falling, evaluate ..................................... 91
  Rising .................................................... 184
  Rising, evaluate ....................................... 92
  Electromagnetic compatibility (EMC) ............. 259
Entry mode ............................................... 277
Error handling
  During circuit diagram creation ................. 252
  What happens if ...? ................................. 251
  With events ........................................... 254
### Index

Example circuits ........................................... 186  
Expanding EZ ............................................. 239  
Expansion .................................................. 239  
  Connecting ............................................... 32  
  Detecting ............................................... 240  
  Local ..................................................... 278  
  Monitoring ............................................ 241  
  Remote .................................................. 280  
  Transfer behavior .................................. 240  
Expansion units ........................................ 57  
EZ overview .............................................. 15, 16  
EZSoft ................................................... 80, 248

F  
  Fixing brackets ....................................... 31  
  Flashing ............................................... 162  
  Frequency counters .................................. 122  
  Function block inputs, list of names .......... 276  
  Function relays ........................................ 75, 277  
    Counter, high-speed ................................. 128  
    Counters ............................................. 114  
    Example ............................................. 96  
    Frequency counters ................................ 122  
    List .................................................. 273  
    List of all .......................................... 274  
    List of names ...................................... 275  
    Master reset ....................................... 176  
    Operating hours counter ......................... 145  
    Overview ........................................... 95  
    Parameters ......................................... 207  
    Retention .......................................... 226  
    Text display ........................................ 134  
    Time switch ....................................... 140, 169  
    Timing relays ...................................... 150
Improper use .......................................................... 11
Impulse relay .................................................. 93, 184, 278
Input ......................................................... 278
  Analog resolution ......................................... 105
  Analog, power supply .................................. 46
  Connecting ............................................... 37, 42
  Connecting analog inputs ........................... 44
  Contact ..................................................... 81
  Current .................................................... 39, 44
  Current, increasing ..................................... 41
  Delay setting ............................................. 218
  Delay times ............................................. 234
  Expanding ................................................ 57
  Reaction time ........................................... 240
  Technical data ............................................ 262
  Terminals ................................................ 81
  Voltage range ............................................ 39, 44
  Inrush current limitation ......................... 41
  Inserting a new rung ................................ 68
  Inside ....................................................... 231
  Installation ............................................. 29
  Interface ................................................ 242, 278
  Interference ............................................. 39
  Inverting ................................................ 83

Jumps .............................................................. 166

Latching relay ............................................. 94
LED display .................................................. 21
List
  Contacts ................................................ 273
  Function relays ........................................ 274
  Relay ...................................................... 275
Index

M
Main menu
Overview ......................................................... 22
Selection ......................................................... 19
Maintenance meters .......................................... 147
Make contact ..................................................... 76, 273
Inverting ......................................................... 83
Marker relay ................................................... 89, 233
Markers .......................................................... 89
Master reset ...................................................... 176
Memory card ..................................................... 80, 244, 278
Deleting ......................................................... 247
Inserting ......................................................... 244
Reading ......................................................... 247
Writing ......................................................... 246
Menu
Changing menu level ........................................ 66
Changing the language .................................... 205
Guidance ......................................................... 18
Language setting ............................................. 62
Selecting main menu ....................................... 19
System menu selection ..................................... 19
Message
INVALID PROG ............................................. 249, 252
System ........................................................... 251
Mode ............................................................. 278
Changing ....................................................... 69
Monitoring of expansion unit .............................. 241
Mounting ......................................................... 29
Screw fixing .................................................... 31
Top-hat rail ..................................................... 30

N
NAND circuit ................................................... 180
Neon bulbs ...................................................... 40
NOT circuit ..................................................... 178, 179
O Operating buttons ...........................................73, 279
Operating hours counter ........................................145
Operating modes ................................................... 63
Operating unit ....................................................... 249
Operation .............................................................. 18, 73, 74
OR circuit ................................................................. 180
Output ................................................................. 279
Connecting .............................................................. 51
Connecting relay outputs ........................................ 52
Contact ................................................................. 81
Delay times ............................................................. 234
Expanding ............................................................... 57
Reaction time ........................................................... 240
Relay ................................................................. 81
Reset ............................................................... 177
Overload ................................................................. 56
Monitoring with EZ-.D.-.T. ........................................ 238
Overview ............................................................... 12
Index

P

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P buttons</td>
<td>279</td>
</tr>
<tr>
<td>Activate</td>
<td>220</td>
</tr>
<tr>
<td>Activating and deactivating</td>
<td>220</td>
</tr>
<tr>
<td>Deactivate</td>
<td>221</td>
</tr>
<tr>
<td>See Cursor buttons</td>
<td>87</td>
</tr>
<tr>
<td>Parameter display</td>
<td>74</td>
</tr>
<tr>
<td>Timing relays</td>
<td>125, 130</td>
</tr>
<tr>
<td>Parameters</td>
<td>279</td>
</tr>
<tr>
<td>Change</td>
<td>206</td>
</tr>
<tr>
<td>Changing the switching time</td>
<td>208</td>
</tr>
<tr>
<td>Display</td>
<td>207</td>
</tr>
<tr>
<td>Function relays</td>
<td>207</td>
</tr>
<tr>
<td>Inhibit access</td>
<td>207</td>
</tr>
<tr>
<td>Power flow display</td>
<td>101</td>
</tr>
<tr>
<td>Password</td>
<td></td>
</tr>
<tr>
<td>Activate</td>
<td>202</td>
</tr>
<tr>
<td>Change</td>
<td>204</td>
</tr>
<tr>
<td>Deactivate, see Unlocking EZ</td>
<td>203</td>
</tr>
<tr>
<td>Deleting</td>
<td>204</td>
</tr>
<tr>
<td>Protection</td>
<td>199</td>
</tr>
<tr>
<td>Protection removal</td>
<td>204</td>
</tr>
<tr>
<td>Scope</td>
<td>201</td>
</tr>
<tr>
<td>Setup</td>
<td>200</td>
</tr>
<tr>
<td>PC connection</td>
<td>248</td>
</tr>
<tr>
<td>Power flow display</td>
<td>70, 88, 101</td>
</tr>
<tr>
<td>Power supply</td>
<td>33, 279</td>
</tr>
<tr>
<td>AC voltage</td>
<td>34</td>
</tr>
<tr>
<td>Analog input</td>
<td>46</td>
</tr>
<tr>
<td>DC voltage</td>
<td>35</td>
</tr>
<tr>
<td>Technical data</td>
<td>261</td>
</tr>
<tr>
<td>Program</td>
<td>74</td>
</tr>
<tr>
<td>Proper use</td>
<td>11</td>
</tr>
</tbody>
</table>
For more information visit: www.EatonElectrical.com

E·T·N

R

Reaction time for I/O ............................................ 240
Reed relay contacts ............................................. 40
Relay ................................................................. 75, 80
Connecting analog outputs ................................. 52
Contactor function .............................................. 90
Impulse .............................................................. 93
List of all ............................................................. 275
Name ................................................................. 81
Negate .............................................................. 91
Number .............................................................. 81
Output, technical data ........................................ 268
Reset ................................................................. 94
Set ................................................................. 94
Timing ............................................................... 150

Relay coil
Change .............................................................. 81
Coil function ....................................................... 81, 89
Deleting ............................................................ 83
Enter ................................................................. 69, 81

Relays
Overview .......................................................... 77
Reset ................................................................. 94
Reset markers ..................................................... 177
Reset, master ..................................................... 176
Retention ............................................................ 226, 280
Memory ............................................................. 260
Permissible markers and function relays ............. 226
Retention (non-volatile data storage) .................. 226
Retentive actual value, deleting .......................... 228
Retentive behavior
On circuit diagram transfer ............................... 229
Setting ............................................................. 226
Transfer ............................................................ 228
RUN, start behavior ............................................ 63
RUN/STOP changeover ....................................... 69
Index

Rungs ............................................................... 280
Add new .......................................................... 68
Change ............................................................ 84
Creating .......................................................... 84
Deleting ........................................................... 86
Insert ............................................................... 86
Position in circuit diagram .............................. 78
Running light .................................................. 192

Scaling ............................................................ 136
Selecting the System menu .............................. 19
Self-latching ..................................................... 183
Sensor (20 mA) connection ............................... 49
Set ................................................................. 94
Setpoints .......................................................... 207
Setting summer time rule ............................... 211
Setting the cycle time ..................................... 225
Setting the time ................................................ 209
Settings ........................................................... 199
Shift register ..................................................... 188
Short-circuit ..................................................... 56
  Monitoring with EZ..-D.-T. .............................. 238
Signals, analog .................................................. 45
Single pulse ..................................................... 161
Stairwell lighting ............................................. 194
Star-delta starting ............................................ 186
Startup behavior ............................................. 221, 223
  After the circuit diagram is deleted ............ 222
  Basic setting ................................................. 222, 224
  Card .............................................................. 223
  Possible faults ............................................. 223
  Setting ........................................................ 221
  With upload/download to card or PC .......... 222
Status display ............................................... 19, 20
Status image register ..................................... 232
Switch contact ................................................ 80
  Contact name .............................................. 81
  Contact number .......................................... 81
Switching on .................................................. 61
| Target readership | 11 |
| Target readership | 11 |
| Technical data | 258 |
| General | 258 |
| Inputs | 262 |
| Power supply | 261 |
| Relay output | 268 |
| Transistor output | 270 |
| Temperature sensor connection | 48 |
| Terminals | 33 |
| Text display | 134 |
| Threshold value switch | 102 |
| Tightening torque | 33 |
| Time switch | 140 |
| 7-day | 140 |
| Changing channel | 141, 171 |
| Examples | 142 |
| Year | 169 |
| Timing relays | 150 |
| Flashing | 162 |
| Off-delayed | 157 |
| On/off delayed | 159 |
| On-delayed | 155 |
| Operating modes | 152 |
| Single pulse | 161 |
| Time units | 152 |
| Top-hat rail | 30 |
| Transfer behavior, expansion devices | 240 |
| Transfer cable | 248 |
| Transistor output, technical data | 270 |
| Two-step controllers | 112 |
| Two-wire proximity switches | 41 |
| Type reference | 17 |

| Unlocking EZ | 203 |
| Unlocking EZ | 203 |
| Use, improper | 11 |
| Use, proper | 11 |
| Using a mounting plate | 31 |
Index

V Value entry ............................................................. 18
Voltage range, input .............................................. 39, 44

W Weekday setting .................................................. 209
What happens if ....? ............................................. 251
Wiring ................................................................. 73
Backwards .......................................................... 233
Deleting ......................................................... 68
Enter .............................................................. 68
Wiring rules ...................................................... 90

X XOR circuit .......................................................... 182

Y Year time switch .................................................. 169