$\Omega E O M E G A A^{9}$ Min
5. Installation and start-up

DP2O shown smaller
than actual size

1. Frontal view

Alarm 1 and 2

2. Dimensions and panel cut-out ($\mathrm{mm} / \mathrm{in}$)

3. Additional documentation

Toview the DP20 specsheet, video and manuals visitus at http://www.omega.com/pptst/DP20.htm

4. How to order

Model	Option 1	Option 2
DP20		
	4	\triangle
	-A1 (1 relay) -M1 (analog output) -S1 (Modbus RTU) -(empty)	-A2 (1 relay) -(empty)

1. Open the instrument (see section 7).
2. Select the jumpers for the desired signal range (see section 8).
3. Close the instrument (see section 7).
4. Connect the signal and the power (see section 6).
5. Configure the instrument from the 'Configuration menu' (see section 9).

6 . If you need additional information, see section 3 .
nu' (see section 9).

6. Connections

Option 2

Option 1

1	2	3	4	5	Input Signal Terminal
$\underset{\substack{\text {-Vac } \\ \text { +Vdc }}}{ }$			- Vac		$\checkmark 600 \mathrm{Vac}, \pm 600 \mathrm{Vdc},-200 \mathrm{Vac}, \pm 20 \mathrm{Vdc}$
	$\begin{aligned} & \begin{array}{c} \mathrm{Vac} \\ \text { +VdC } \end{array} \end{aligned}$		-Vac		
		$\underset{\substack{\text { Aac } \\ \text { +AdC }}}{\text { ade }}$	- Aac		${ }^{-5 A a c} \pm 5$ Adc
	tc+		tc-		Thermocouples
	+		-		Pt (2 wire), Ni, NTC, PTC
	pt+		pt-	Sense	Pt100 (3 wire)
	mA			Vexc.	4/20mA passive
	mA ${ }^{+}$		mA-		4/20mA active
	+Vdc		common	Vexc.	o/10 Vat passive
	+Vdc		common		0/10 Vdc active
	rest		res-		Resistances
	signal		pot-	pot+	Potentiometer
Check Jumpers 's' ond dumper 'T' postition for each input signal					

7. How to open and install the instrument

Use a flat screwdriver to unlock clips ' D^{\prime} ' C^{\prime} ' B ' and ' A ', in this order. Remove the front filter. Gently let the interna To reinsert the boards in the housing:

1. make sure that the boards are correctly connected to the displays pins
2. slide the boards into the housing guides
3. Place the front filter at corner X, and then insert clips
' A,' B,' 'C' and ${ }^{\prime}$ ' in this order. Risk of electric shock. Removing the front cover will grant access to internal circuits
whicic may ye at dangerouu voltage. Disconnect the inits signal andthe power supply
to prevent electric shock to the operator. Operation must be performed by qualified to prevent electics.
How to install the meter in a panel
4. Remove the 2 blue fixation tabs from each side of the
5. After setting internal jumpers selection and housing is closed, insert in in
panel cut out.
3 Re-attached the 2 blu fixation tabs by sliding each 3. Re-attached the 2 blue fixation tabs by sliding each one
aiong its rail on each side end push until the tabs are tight onto the panel. If needed use a flat screwdriver to push
the tabss strongly to the end. the tabs strongly to the end.

AC ranges	Scalable	$\begin{gathered} \text { Jumpers } \\ { }^{\prime} s^{\prime} \text { ' } \end{gathered}$	Jumper $‘ \tau^{\prime}$	$\begin{gathered} \text { Accuracy } \\ (\% \text { FS) } \end{gathered}$
$\sim 600 \mathrm{Vac}$	$\begin{gathered} \text { from } 9999 \\ \text { to } 1999 \end{gathered}$	G\&1	4-5	$\begin{gathered} <0.30 \% \\ \text { (up to } 150 \mathrm{~Hz} \text {) } \end{gathered}$
$\sim 200 \mathrm{Vac}$		1		
$\sim 20 \mathrm{Vac}$		A\&1		
$\sim 2 \mathrm{Vac}$		B\&1		
$\sim 200 \mathrm{mVac}$		C\&1		
$\sim 60 \mathrm{mVac}$		E\&1		
${ }^{-5} \mathrm{Aac}$		1		$\left.\left\lvert\, \begin{array}{c} <0.50 \% \\ \text { (up to } 150 \mathrm{~Hz} \end{array}\right.\right)$
$\sim 20 \mathrm{mAac}$		D\& 1		
DC ranges	Scalable	$\begin{gathered} \text { Jumpers } \\ \text { ' } s \text { ' } \end{gathered}$	Jumper	Accuracy (\% FS)
$\pm 600 \mathrm{Vdc}$	from 9999 to - 1999	G	4-5	<0.20\%
$\pm 200 \mathrm{Vdc}$		---		
$\pm 20 \mathrm{Vdc}$		A		
$\pm 2 \mathrm{Vdc}$		B		
$\pm 200 \mathrm{mVdc}$		c		
$\pm 60 \mathrm{mvdc}$		E		<0.25\%
$\pm 5 \mathrm{Adc}$		---		
$\pm 20 \mathrm{mAdc}$		D		<0.15\%
Resistance ranges	Scalable	$\begin{gathered} \text { Jumpers } \\ \text { ' } S \text { ' } \end{gathered}$	Jumper $' T \text { ' }$	Accuracy (\% reading)
Oto 5 K	$\begin{aligned} & \text { from g999 } \\ & \text { to-19999 } \end{aligned}$	F\&H\&K	4-5	$<1.5 \%$ of reading
Oto 50 K		F\&K		

Process signals	Scalable	${ }_{\substack{ \\\text { Jumpers } \\ \text { ' }}}^{\text {d }}$	${ }^{\text {Jumper }}{ }^{\prime} T^{\prime}$	$\begin{gathered} \text { Accuracy } \\ (\% \text { FS) } \end{gathered}$
4/20 mA	$\begin{aligned} & \text { from g999 } \\ & \text { to-1999 } \end{aligned}$	D	1-2*	<0.15\%
0/10 Vdc		A		<0.20\%

Potentiometers nominal value	Scalable	$\begin{aligned} & \text { Jumpers } \\ & \text { 's' } \end{aligned}$	Jumper	$\begin{aligned} & \text { Accuracy } \\ & \hline(\%) S 5) \end{aligned}$
500 R to 20 K	$\begin{aligned} & \text { from } 9999 \\ & \text { to-1999 } \end{aligned}$	A	2-3	<0.5\%
Frequency	Scalable	$\begin{gathered} \text { Jumpers } \\ \text { ' }{ }^{\prime} \text { ' } \end{gathered}$	Jumper	$\begin{gathered} \hline \text { Accuracy } \\ \text { (\% reading) } \end{gathered}$
15 Hz to 100 Hz	$\begin{gathered} \hline \text { from } 9999 \\ \text { to -1999 } \end{gathered}$	select Vac or Aac range	4-5	<0.15\% of reading

PTC probes Family	$\begin{aligned} & \text { Jumpers } \\ & \text { 's' } \end{aligned}$	Jumper $‘{ }^{\prime} ’$	Range in ${ }^{\circ} \mathrm{C}$ (in ${ }^{\circ}$ F)		Total error
KTY-121	F	4-5	$\begin{gathered} -55 / 150 \circ \mathrm{O} \\ (-67 / 302 \circ \mathrm{~F}) \end{gathered}$		$<1{ }^{\circ} \mathrm{C}$
KTY-210	F\&H\&K				
kTY-220	F\& H\&K				
NTC probes ' ${ }_{25}$ (configurable)*	$\begin{aligned} & \text { Jumpers } \\ & \text { ' } S^{\prime} \end{aligned}$	$\begin{aligned} & \text { Jumper } \\ & { }^{T} T^{\prime} \end{aligned}$	$\begin{gathered} \text { Range } \\ \text { of measure } \end{gathered}$	$\begin{gathered} \text { Accuracy } \\ \text { (\% of reading) } \end{gathered}$	$\begin{array}{c\|} \hline \text { Beta } \\ \text { (configurable)* } \end{array}$
10K	F\&K	4-5	$\begin{gathered} -60{ }^{\circ} \mathrm{C} \text { to } \\ 150{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & <1.5 \% \text { of } \\ & \text { reading } \end{aligned}$	3500
*'Beta' configurable (2000 to 5500). R25 configurable. Resistance measure from 100R to 1 MR.					

■EOMECAㅇ
9. Configuration menu

(■) Press 'SQ' (1) for 1 second to access $\begin{aligned} & \text { the 'Configuration menu'. }\end{aligned}$

$\rightarrow \mathrm{nP} \Rightarrow \mathrm{Ac} \Rightarrow$ БODU 600 vac

EDU 20 Vac
EU 2 Vac D.ED 200 mvac EDTU 60 mvac 5 - 5 Aac 2ロITA 20 mac $\stackrel{\mathrm{v}}{\mathrm{V}}-\mathrm{-}$ $\overline{\mathrm{E}} \mathrm{O} \mathrm{U} \quad \pm 60 \mathrm{vdc}$
 हU
$\pm 2 \mathrm{Vac}$ D. C U $\pm 200 \mathrm{mvdc}$ हロПU $\pm 60 \mathrm{mvdc}$ 5 5 $\pm 5 \mathrm{Adc}$
륵 $\pm 20 \mathrm{madc}$ ---

Prat ${ }_{\text {Process }}>$

\downarrow	
$\frac{5 \Sigma A L}{5}$	
$\frac{A L r e}{A L}$	
$\begin{aligned} & \text { t.up } \\ & \text { key up } \end{aligned}$	$>\frac{5 E E .1}{\text { Setpoint 1 }}>\square \square \pi / a F F$
$\begin{aligned} & \text { EHH.c } \\ & \begin{array}{c} \text { Extennal } \\ \text { control } \end{array} \\ & \hline \end{aligned}$	

10. Regulations

This instrument conforms to the actual CE regulations. For a copy of the 'CE declaration sean
Security regulations EN-61010-1 (Fixed' equipment, Permanently connected 'Double' isolation. 'CAT-II' category)
This instrument does not provide a general mains swith and will start operation as soon as power is connected. The instrument does not provide protection fuse, and the fuse must be added during installation
Risk of electrical shock. Instrument terminals can be connected to
dangerous voltage.
\square Instrument protected with double isolation. No earth connection Instrumen
required.
Instrument conforms to CE rules and regulations.
-
According to directive 2012/19/EU, electronic equipment must be re-
ective and controlled way at the end of its useful life.

11. Factory configuration

Software configuration

Range, scaling and decimal point	$0 / 600 \mathrm{Vac}=0 / 600$
Alarm 1	as maximum
Setpoint	1000
Hysteresis	0 counts
Alarm 2	as maximum
Setpoint	1000
Hysteresis	0 counts
External control	off
Fast access	all off
Tools	
Option 1	off (retains last configuration value)
Step	1
Average	0
Manual offset	0
Second scaling	0/600
'Eco' mode	off
Temperature resolution	$1{ }^{\circ}$
Degrees	${ }^{\circ} \mathrm{C}$
Alpha	385
cla	on
AC 'deadband'	20
Luminosity	3
Password	off
Option	
Analog output	$0 / 100.0=4 / 20 \mathrm{~mA}$
Serial Modbus RTU	9600 bps, address 1 , format 8 n 1
Hardware configuration	
Jumpers 'S'. Jumpers in position	G \& I. Range for 600 Vac
Jumper 'T'. Jumpers in position	4-5. External contact 'Ek' function
12. User's man	

