

De omega User's Guide

Shop online at omega.com

e-mail: info@omega.com For latest product manuals: www.omegamanual.info

DP400TP Temp / Process Indicator

omega.com info@omega.com

Servicing North America:

U.S.A. Omega Engineering, Inc.

Headquarters: Toll-Free: 1-800-826-6342 (USA & Canada only) Customer Service: 1-800-622-2378 (USA & Canada only) Engineering Service: 1-800-622-2378 (USA & Canada only) Tel: (203) 359-1660 e-mail: info@omega.com For Other Locations Visit omega.com/worldwide

The information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

Table of contents

1	Safety guidelines	5		
2	Model identification5			
3	Technical Data	6		
	3.1 General data	6		
4	Hardware data	6		
	4.1 Software data	7		
5	Dimensions and Installation	8		
б	Electrical wirings	8		
	6.1 Wiring diagram	9		
7	Display and Key Functions	.13		
	7.1 Keys	.13		
	7.2 Display	.13		
8	Controller Functions	.15		
	8.1 DP-USB-CARD (optional)	.15		
	8.2 Modifying alarm thresholds	.15		
	8.3 Latch on function	16		
	8.4 Digital input functions	.17		
	8.5 Peak values	18		
	8.6 Totalizer function	18		
	8.7 Sum function	.19		
	8.8 Customizable linear input	.19		
	8.9 Alarm Intervention Modes	20		
	8.10 Datalogger	22		
9	Serial communication	23		
10	Configuration	27		
	10.1 Modifying configuration parameters	27		
	10.2 Loading default values	27		
11	Table of configuration parameters	28		
	11.1 Analog input	28		
	11.2 V/I custom	32		
	11.3 Alarm 1	36		

11.4 Alarm 2	
11.5 Display	
11.6 Digital input 1	
11.7 Digital input 2	
11.8 Graphic	
11.9 Analog output in mA	
11.10Analog output in Volt	
11.11 Comunication port	

Introduction

Thanks for choosing an Omega device.

DP400TP is an indicator/panel meter for acquisition and retransmission of processes, also with a fast transient. It is provided with relay outputs for alarm purpose, analog outputs for retransmission of process/setpoints and programmable digital inputs.

Available in standard format 96x48mm, the device can be configured both for horizontal and vertical mounting.

This distinctive feature is the intuitive multilingual interface and a 128x64 pixel graphical OLED display (monochrome yellow).

Visualization options include bar graph and process trend with programmable sampling time. Software features include mathematical functions related to processing value like Totalizer and Sum.

Serial connectivity relies on RS485 and Modbus-RTU protocol.

1 Safety guidelines

Read carefully the safety guidelines and programming instructions contained in this manual before using/connecting the device. Disconnect power supply before proceeding to hardware settings or electrical wirings.

Only qualified personnel should be allowed to use the device and/or service it and in accordance with technical data and environmental conditions listed in this manual. Do not dispose electric tools together with household waste material.

In observance European Directive 2002/96/EC on waste electrical and electronic equipment and its implementation in accordance with national law, electric tools that have reached the end of their life must be collected separately and returned to an environmentally compatible recycling facility.

2	Model	identification	

Model 24..230 Vac/Vdc +/-15% 50/60 Hz - 8 VA

2 relays 2 A + 1 out V + 1 out mA + 2D.I. + RS485 + OLED + Rfid
o EED T TIITA

3 Technical Data 3.1 General data

Display	2.42" monochrome (yellow) OLED graphical display
Operating temperature	Temperature 0-40 °C - Humidity 3595 uR%
Sealing	IP54 front panel (with gasket) - IP20 box and terminals
Material	Box: polycarbonate V0
Weight	Approx. 165 g

4 Hardware data

Power supply	Extended power supply 24230 Vac/Vdc ±15% 50/60 Hz	Consumption: 8 VA.
Analog input	AN1 Configurable via software. Thermocouple type K, S, R, J, T, E, N, B. Automatic compensation of cold junction from 050 °C. Thermoresistance: PT100, PT500, PT1000, Ni100, PTC1K, NTC10K (β 3435K). Input V/I (linear): 0-10 V, 0-20, 4-20 mA, 0-60 mV. Potentiometer input: 6 KΩ, 150 KΩ.	Tolerance (25 °C) +/-0.2% \pm 1 digit (F.s.) for thermocouple, thermoresi- stance and V / mA. Cold junction accuracy 0.1 °C/°C. Impedance: 0-10 V: Ri>110 K Ω 0-20 mA: Ri<5 Ω 4-20 mA: Ri<5 Ω 0-60 mV: Ri>1 M Ω
Relay outputs	2 Relays	Contacts 2 A - 250 V~. Resistive charge.
Analog output	1 tension Linear 010 Volt. 1 current Configurable as output 020mA or 420mA.	All 16bit +/-0.2% (F.s.)

4.1 Software data

Regulation algorithms	ON/OFF with hysteresis
Alarm mode	Absolute / Threshold, Band with instantaneous/delayed/ retentive action/by digital input activation, Sensor failure / Activation the serial line
Sum Function	By digital input or by keyboard it is possible to sum different process measurements over time
Totalizer Function	Visualization of instant process value and total value since last reset
Trend	Trend visualization up to 59 samples, with selectable time
visualization	basis 1 to 3600s
Analog retransmission	Process values / Setpoints
Digital transmission	Process values / Setpoint / Parameters via RS485
Latch-on function	Semi-automatic setting of limits/ calibration values for analog input
Data logging function	Selectable time basis 1s to 3600s, tot. memory 2.5k words
Text menus	English/Italian/Deutsch/French/Spanish

Electrical wirings

Although this controller has been designed to resist noises in an industrial environment, please notice the following safety guidelines:

- · Separate control lines from the power wires.
- Avoid the proximity of remote control switches, electromagnetic meters, powerful engines.
- Avoid the proximity of power groups, especially those with phase control.
- For permanently connected equipment:
- supply wiring must be ≥18 Awg with cables suitable for temperatures > 70 °C;
- for requirements about any external switch or circuit-breaker see EN 61010-1 par. 6.11.3.1 and about external overcurrent protection devices see EN 61010-1 par. 9.6.2; the switch or circuit-breaker must be near the equipment.

6.1 Wiring diagram

6.1.a Power supply

Switching supply with extended range 24..230 Vac/dc $\pm 15\%$ 50/60Hz – 8 VA (galvanic isolated)

6.1.b AN1 analog imput

For thermocouples K, S, R, J, T, E, N, B.

- Comply with polarity.
- For possible extensions, use a compensated wire and terminals suitable for the thermocouples used (compensated).
- When shielded cable is used, it should be grounded at one side only.

For thermoresistances PT100, NI100,

- For the three-wire connection use wires with the same section
- For the two-wire connection short-circuit terminals 14 and 15
- When shielded cable is used, it should be grounded at one side only.

T/Nit00

For thermoresistances NTC, PTC, PT500, PT1000 and linear potentiometers.

When shielded cable is used, it should be grounded at one side only to avoid ground loop currents.

For linear signals V / mA.

- · Comply with polarity.
- When shielded cable is used, it should be grounded at one side only.

6.1.c Example of connection for linear input Volt and mA

For linear signals 0/4..20 mA with three-wire sensor. Comply with polarity:

- A= Sensor output (+)
- B= Sensor around (-)
- C= Sensor power supply (+24 Vdc / 35mA)

6.1.d Serial input

Electrical endurance Q1 / Q2.

2 A, 250 Vac, resistive load, 10^5 operations. 20/2 A, 250 Vac, $\cos\varphi = 0.3$, 10^5 operations.

6.1.g mA / Volt output

Pins 7-8: linear output in **mA** configurable using parameters as retransmission of process or alarm setpoints (see par. 112-116).

Pins 8-9: linear output in Volt configurable using parameters as retransmission of process or alarm setpoints (vedi par. 119-123).

6.1.h Digital Input 1

PNP digital input Digital input according to parameter 95 Short-circuit pins 10 and 11 to activate the digital input 1

7 Display and Key Functions7.1 Keys

Keys are multifunction: in correspondence of each key its meaning is displayed. If no description is shown, press a key, to visualize it. Some menus will be only displayed when activated.

7.2 Display

It visualizes the process, the setpoints, and all configuration parameters. The programming/ operation interface with text menus in 5 languages makes the navigation intuitive.

At first starting, display shows the language selection.

This page displays the process, the relays status and the serial communication (if available).

This page displays the process, the relays status and a graph representing the process trend.

This page displays the process and its graphic representation as bar graph.

8 Controller Functions8.1 DP-USB-CARD (optional)

Parameters and setpoint values can be duplicated from one controller to another using the DP-USB-CARD.

Insert DP-USB-CARD when the controller is off. On activation, after startup, the display visualizes "Load data" and "Esc" in correspondence of the relative keys (only if the correct values are saved in the DP-USB-CARD). Pressing "Load data" the controller loads the new values. Pressing "Esc" the device keeps the old values.

Updating DP-USB-CARD.

To update the DP-USB-CARD values, follow the procedure described on the first mode, pressing "*Esc*" so as not to load the parameters on the controller. Enter configuration and change at least one parameter. Exit configuration. Changes are stored automatically.

8.2 Modifying alarm thresholds

Selecting one or more absolute/ band alarms, it is possible to modify the intervention thresholds directly by the user menu, without entering configuration.

Press "Setpoint" to enter the thresholds modification.

For the modification procedure refer to the following table:

	Press	Display	Do
1	"Sel"	Selects the setpoint to be modified.	Press ~ e ~ to modify the value. Pressing IIII it is possible to modify digit per digit.

	Press	Display	Do
2	"Sel"	Selects the next setpoint (if active), otherwise go to point 3.	See point 1.
3	"Sel"	and	Press "Esc" to exit procedure.

8.3 Latch on function

For the use with input Potentiometers max.6 kohm and Pot.max.150 kohm and with linear input (0..10 V, 0.60 mV, 0/4..20 mA), it is possible to associate the start value of the scale (par. 4 Lower limit V/I) to the minimum position of the sensor and the value of end scale (par. 5 Upper limit V/I) to the maximum position of the sensor.

To use the LATCH ON function: enter configuration, select **Setting** on par. 8 **Latch on** and press "Sel" (DP400TP shows the page in the picture).

For the calibration procedure refer to the following table:

	Press	Display	Do
3	^	Set the value to maximum.	To exit standard procedure press "Esc". For zero settings place the sensor on the zero point Place the sensor on minimum operating value (associated
			Place the sensor on maximum
2	>	Set the value on minimum.	operating value (associated with Upper limit V/I).
4	"0"	Set the virtual zero value.	Press "Esc" to exit procedure.

16 - DP400TP - User manual

8.4 Digital input functions

On the DP400TP model, digital inputs can be enabled by configuring the par. 95 Digital input 1 and the par. 100 Digital Input 2.

- Run: allows the action of relays and linear output.
- Hold: locks the conversion.
- Tare zero (AI): selects to zero the process value (tare function).
- Alarm reset: if one or more alarms are selected with manual reset and alarm conditions are no longer present, closing the digital input it is possible to restore the alarm output.
- Totalizer reset: if the totalizer function is active, using the digital input it is possible to reset the counter.
- Peaks reset: min. peak/max. peak/peak-to-peak values are reset.
- Sum total: if the sum function is active, using the digital input it is possible to increase the "sum" counter as indicated by the process value.
- Sum reset: if the sum function is active, using the digital input it is possible to reset the "sum" counter.
- **Config. lock**: if the digital input is active it is not possible to enter configuration or to modify the setpoints.

Selecting **Digital input 1** or **Digital input 2** on the alarm parameters, the related relays will activate together with the digital input; functions selected on parameters 95 and 100 will continue to work.

To store the value in EEPROM, see parameter 11 Store.

8.5 Peak values

The DP400TP is provided with a page for the visualization of peak values: max. peak, min. peak and peak-to-peak of analog input. Keeping pressed "*Rst*" it is possible to reset the visualized values.

8.6 Totalizer function

The totalizer function, which can be enabled by par. 9 **Totalizer**, performs an instant measurement of the process and sums it on a time basis to the previously totalized value.

On the dedicated page, it is possible to see the instant process value and the totalized value: keeping pressed "*Rst*" it is possible to reset this value.

Ex.: if a sensor 4..20mA with F.s. 9000m³/hour is connected, it is necessary to select **Hour** on par. 9 **Totalizer**. The device will increase the totalized value considering the m³ flowing each second (2.5m³).

To store the value in EEPROM, see parameter 11 Store.

8.7 Sum function

The sum function, which can be enabled by par. 10 Sum function allows to increase a counter adding the process value on command. It is an application typical for weighing systems and allows to know the total weight value.

Press "Sum Function" to enter the function page. Pressing "+" the **Process** value is added to the counter. It is possible to reset the total value keeping pressed "Rst" and to fix "tare zero" of the process pressing "Tar."

Functions tare, sum and reset can also be managed by digital input if enabled on par. 95 Digital Input 1 and par. 100 Digital Input 2. To store the value in EEPROM, see parameter 11 Store.

8.8 Customizable linear input

Selecting 16 steps on par. 17 V/I custom and connecting a linear sensor it is possible to customize the linear input for a max. of 16 steps. On parameters xx-Input value it is necessary to enter the value of the input to which the value selected on the corresponding parameter xx-Custom value will be related. Example: sensor 0-10V

01-Input value => 0.000V	01-Custom value=>0mBar
02-Input value => 2.000V	02-Custom value=>100mBar
03-Input value => 5.000V	03-Custom value=>500mBar
04-Input value => 10.000V	04-Custom value=>1000mBar

At each value in volt (input) it is related a value in mBar (customized): if the sensor supplies 2V the device visualizes 100mBar, if it supplies 5V the device visualizes 500mBar. For intermediate tension values the value in mBar is calculated linearly between the entered values containing it: 1V = 50mBar, 3.5V=300mBar and 7V=700mBar

8.9 Alarm Intervention Modes 8.9.a Absolute alarm (absolute selection)

Absolute alarm and hysteresis value greater than "0" (Par. 58 **hysteresis** > 0).

N.B. The example refers to alarm 1; the function can also be enabled for alarms 2

Absolute alarm and hysteresis value less than "0" (Par. 58 **hysteresis** < 0). N.B. The example refers to alarm 1; the function can also be enabled for alarms 2.

8.9.b Band alarm (band selection)

Band alarm and hysteresis value greater than "0" (Par. 58 hysteresis > 0).

N.B. The example refers to alarm 1; the function can also be enabled for alarms 2.

8.9.c Digital input alarm (sel. "Digital input 1" or "Digital input 2") Alarm related to digital input: the relay activates with digital input active.

8.9.d Loop Break Alarm (selection"L.B.A.")

Sensor alarm breakage: the relay activates in case of sensor breakage or sensor out of range.

8.9.e Remote control alarm (selection "remote Ctrl")

The relay activates writing 1 on word modbus 1015 for the alarm 1 and on word modbus 1016 for the alarm 2. Writing 0 the relay deactivates.

8.10 Datalogger

DP400TP implements a basic Datalogger function which can be enabled by par. 109 **Datalogger**. Right after startup, the device starts storing the process data on EEPROM memory, the sampling time has to be selected on par. 108 **Graphic time**. Data can be read via Modbus starting from address 5001 (see next paragraph)

or via wireless reading the RFid memory directly from address 0x600 (1536). The first data give a reference about the type of saved process values: refer to the following table for the description of the saved data.

0x600	1536	Datalogger: firmware version
0x601	1537	Datalogger: sensor type
0x602	1538	Datalogger: decimal point
0x603	1539	Datalogger: measure unit
0x604	1540	Datalogger: sampling time in seconds
0x605	1541	Datalogger: end memory flag. 0 indicates that memory still available. 1 indicates that the memory is exhausted and the device resumed saving data from address 5017
0x610	1552	First saved value of analog input
0x611	1553	Second saved value of analog input
0xFFF	4095	Last saved value of analog input

The reading of value 0x8000 (-32768) indicates the end of the saved data: subsequent read data are not valid.

9 Serial communication

DP400TP equipped with RS485 can receive and broadcast data via serial communication using MODBUS RTU protocol. The device can be configured only as a Slave. This function enables the control of multiple controllers connected to a supervisory system. Each controller responds to a master query only if the query contains the same address as that in the parameter par. 126 Slave address.

The permitted addresses range from 1 to 254, and there must not be controllers with the same address on the same line.

Address 255 can be used by the master to communicate with all the connected equipment (broadcast mode), while with 0 all the devices receive the command, but no response is expected. DP400TP can introduce a delay (in milliseconds) in response to the master request. This delay must be set on the parameter 129 Serial Delay. Each parameter change is saved by the controller on EEPROM memory (100000 writing cycles).

NB: changes made to Words that are different from those reported in the following table can lead to malfunction.

	Modbus RTU protocol features
Baud-rate	Selection on par. 127 Baud Rate: 1.200 baud 28.800 baud 2.400 baud 38.400 baud 4.800 baud 57.600 baud 9.600 baud 115.200 baud 19.200 baud
Format	Selection on par. 128 Serial format: 8, N, 1 (8 bit, no parity, 1 stop) 8, E, 1 (8 bit, even parity, 1 stop) 8, O, 1 (8 bit, odd parity, 1 stop) 8, N, 2 (8 bit, no parity, 2 stop) 8, E, 2(8 bit, even parity, 2 stop) 8, O, 2 (8 bit, odd parity, 2 stop)

Modbus RTU protocol features Supported functions WORD READING (max 20 word) (0x03, 0x04) SINGLE WORD WRITING (0x06) MULTIPLE WORDS WRITING (max 20 word) (0x10)

Looking at the table here below it is possible to find all available addresses and functions:

RO	Read Only	R/W	Read / Write	WO	Write Only	
----	-----------	-----	--------------	----	------------	--

Modbus Address	Description	Read Only	Reset value
0	Device type	RO	EEPROM
1	Software version	RO	EEPROM
5	Slave address	R/W	EEPROM
6	Boot version	RO	EEPROM
1000	Process (degrees.tenths for temperature sensors; digit for linear sensors)	RO	0
1001	Min. peak (degrees.tenths for temperature sensors; digit for linear sensors)	RO	0
1002	Max. peak (degrees.tenths for temperature sensors; digit for linear sensors)	RO	0
1003	Peak-to-peak (degrees.tenths for temperature sensors; digit for linear sensorsati)	RO	0
1004	Totalizer value (H)	RO	EEPROM
1005	Totalizer value (L)	RO	EEPROM
1006	Sum value (H)	RO	EEPROM
1007	Sum value (L)	RO	EEPROM
1008	Cold junction temperature (degrees.tenths)	RO	EEPROM
1009	Relays status (0 = Off, 1 = On): Bit 0 = Relay Q1 Bit 1 = Relay Q2	RO	0

Modbus Address	Description	Read Only	Reset value
1010	Digital inputs status (0 = Off, 1 = Active): Bit 0 = D.I.1 Bit 1 = D.I.2	RO	-
1011	Keys status (0 = released, 1 = pressed): Bit 0 = Bit 1 = Bit 2 = Bit 3 = O	RO	0
1012	Error flags Bit 0 = Cold junction error Bit 1 = Process error (sensor) Bit 2 = EEPROM writing error Bit 3 = EEPROM reading error Bit 4 = Missing calibration data error Bit 5 = Generic error Bit 6 = Hardware error	RO	0
1013	Alarms status (0 = None, 1 = Active) Bit 0 = Alarm 1 Bit 1 = Alarm 2	RO	0
1014	Manual reset: write 0 to reset all alarms. In reading (0 = Not resettable, 1 = Resettable) Bit 0 = Alarm 1 Bit 1 = Alarm 2	R/W	0
1015	Alarm 1 status (remote control)	R/W	0
1016	Alarm 2 status (remote control)	R/W	0
1017	mA analog output value (remote control)	R/W	0
1018	Volt analog output value (remote control)	R/W	0
1019	Run by serial 0 = Inhibited outputs 1 = Active outputs	R/W	1

Modbus Address	Description	Read Only	Reset value
1020	Hold by serial 0 = Active analog input 1 = Analog input in Hold	R/W	0
1021	Tare zero AI (write 1)	R/W	0
1022	Totalizer reset (write 1)	R/W	0
1023	Peaks reset (write 1)	R/W	0
1024	Sum total (write 1)	R/W	0
1025	Total sum reset (write 1)	R/W	0
2001	Parameter 1	R/W	EEPROM
2002	Parameter 2	R/W	EEPROM
2150	Parameter 150	R/W	EEPROM
4001	Parameter 1*	R/W	EEPROM
4002	Parameter 2*	R/W	EEPROM
4150	Parameter 150*	R/W	EEPROM
5001	Datalogger: firmware version	R	EEPROM
5002	Datalogger: sensor type	R	EEPROM
5003	Datalogger: decimal point	R	EEPROM
5004	Datalogger: measure unit	R	EEPROM
5005	Datalogger: sampling time in seconds	R	EEPROM
5006	Datalogger: End memory flag. 0 indicates that there is still available memory. 1 indicates that the memory is ended and the device resumed to saved data form address 5017	R	EEPROM
5017	First value of analog input stored	R	EEPROM
5018	Second value of analog input stored	R	EEPROM
		R	EEPROM
7561	Last value of analog input stored	R	EEPROM

 Parameters modified using serial address 4001 to 4150, will be stored on EEPROM only after 10s since last writing of one parameter.

10 Configuration 10.1 Modifying configuration parameters

For configuration parameters see par. 11

	Press	Display	Do
1	"Configuration"	Shows 0000 with the 1st digit selected.	
2	∼ and ∽	Changes the selected digit and moves to the next one using ullow.	Enter password 1234
3	<i>"Sel"</i> to confirm	Shows the names of the parameter groups.	
4	\sim and \sim	Scroll up / down the parameter groups.	
5	<i>"Sel"</i> to enter the parameter group	Shows the parameters of the selected group.	Press \frown and \smile to select parameter to be modified.
6	<i>"Sel"</i> to enter the parameter modification	Shows all parameter possible selections or the parameter numeric value.	Press And to modify parameter. For numeric parameters, pressing to it is possible to modify digit-to-digit. Press "Sel" to confirm modification. Press "<" to exit without modify.

10.2 Loading default values

Enter password 9999 to restore factory settings of the device.

11 Table of configuration parameters

The following table includes all parameters. Some of them will not be visible on the models which are not provided with relevant Hardware data.

11.1 Analog input

Parameters to configure the analog input.

1 Sensor type

Analog input configuration/sensor selection Thermocouple K (Default) -260 °C..1360 °C Thermocouple S -40 °C..1760 °C Thermocouple R -40 °C..1760 °C Thermocouple J -200 °C..1200 °C Thermocouple T -260 °C..400 °C Thermocouple E -260 °C..1000 °C Thermocouple N -260 °C..1280 °C Thermocouple B +80 °C..1820 °C Pt100 -200 °C 600 °C -60 °C..180 °C Ni100 -40 °C..125 °C NTC 10kOhm PTC 1kOhm -50 °C 150 °C Pt500 -100 °C..600 °C Pt1000 -100 °C..600 °C 0..10 V 0..20 mA 4..20 mA 0.60 mV Pot. max. 6 kOhm Pot. max. 150 kOhm

2	Decimal Point			
	Selects type of the 0 0.0 0.00 0.000	visualized decimal p No decimals. Defaul 1 Decimal 2 Decimals 3 Decimals	oint t	
3	Measure unit			
	Selects the visualiz °C (Default) °F K V mV A mA Bar mBar psi	ed measure unit in g kg q t oz lb m/s m/m m/h	rpm %rh ph N kN % L gal mmHg atm	lbf ozf pcs kg/h GPS GPM GPH inH2O inH2O inHg FPS
	Pa mm	l/s l/m	mH2O Nm	FPM FPH
	cm dm m	l/h m³/s m³/m	kNm kgf kap	Ton
		,		

4 Lower limit V/I

km

Range AN1 lower limit only for linear input. Ex: with input 4..20 mA this parameter takes value associated to 4 mA -32767 + 32767 [digit¹], Default: 0.

kip

m³/h

5 Upper limit V/I

Range AN1 upper limit only for linear input. Ex: with input 4..20 mA this parameter takes value associated to 20 mA -32767 + 32767 [digit¹], **Default**: 1000.

6 Offset calibration

Value added/subtracted to the process visualization (usually correcting the

value of environmental temperature)

-1000..+1000 [digit¹] for linear sensors and potentiometers.

-100.0..+100.0 (degrees.tenths for temperature sensors). Default 0.0.

7 Gain calibration

Percentage value that is multiplied for the process value (allows to calibrated the working point)

-100.0% .. +100.0%, Default: 0.0

ex: to correct the range from 0..1000°C showing 0..1010°C, set the par. to -1.0.

8 Latch On

Automatic setting of limits for linear inputs and potentiometers. (see par. 8.3) Disabled (**Default**) Enabled Setting

9 Totalizer

Visualizes the total **fluid** volume considering the sensor signal as unit/time value (ex. if the connected sensor has an output 4..20mA with F.s. 2000m³/ hour, the parameter 9 **Totalizer** has to be selected as **Hour** and the display will visualize the total fluid volume from the last RESET/START signal). (*see par. 8.6*)

Disabled	Display visualizes the process (Default)
econd	Display visualizes the flow in unit/s

- Minute Display visualizes the flow in unit/min
- Hour Display visualizes the flow in unit/hour

10 Sum function

Enables the sum function and its dedicated page. Allows to sum the process value to a variable. (see par. 8.7) Disabled (Default) Fnabled

11 Store

Enables to store in EEPROM the values of peak, totalizer, sum function and tare zero. If disabled, at starting the above-mentioned values start from 0. The storing is done automatically every 5 minutes. Disabled (Default) Fnabled

12 **Filter samples**

ADC Filter: number of input sensor readings to calculate the mean that defines process value. NB: when readings increase, control loop speed slows down

1..15 means Default: 10

13 Sampling frequency

Sampling frequency of analog/digital converter.

NB: Increasing the conversion speed will slow down reading stability (ex: for fast transients, as pressure, it is advisable to increase sampling frequency)

242 Hz	4.2ms (Maximum speed conversion)
123 Hz	8.2ms
62 Hz	16.1ms
50 Hz	20ms
39 Hz	25.6ms
33.2 Hz	30.1ms
19.6 Hz	51ms
16.7 Hz	(Default) 59.9ms Ideal for filtering noises 50 / 60 Hz
12.5 Hz	80ms

10 Hz	100ms	
8.33 Hz	120ms	
6.25 Hz	160ms	
4.17 Hz	240ms (Minimum speed conversion	on)

11.2 V/I custom

Parameters to configure the customizable linear input. (see par. 8.8)

17 V/I custom

Selects the linearization type for the analog input if selected as linear. **Lower and upper limits.** The input will be linearized by parameters 4 and 5 (**Default**) 16 constructs The input will be linearized by parameter 18, 40

16 spezzate. The input will be linearized by parameter 18-49

18 01-Input value

Defines the input value to which the 1st customized value is assigned 0..20000 **Default**: 0.

19 01-Custom value

Defines the 1st customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

20 02-Input value

Defines the input value to which the 2nd customized value is assigned 0..20000 **Default**: 2000.

21 02-Custom value

Defines the 2nd customized value assigned to the input -32767..32767 [Digit¹] **Default**: 1000.

22 03-Input value

Defines the input value to which the 3rd customized value is assigned 0..20000 **Default**: 0.

23 03-Custom value

Defines the 3rd customized value assigned to the input -32767..32767 [Digit'] **Default**: 0.

24 04-Input value

Defines the input value to which the 4th customized value is assigned 0..20000 **Default**: 0.

25 04-Custom value

Defines the 4th customized value assigned to the input -32767..32767 [Digit'] **Default**: 0.

26 05-Input value

Defines the input value to which the 5th customized value is assigned 0..20000 **Default**: 0.

27 05-Custom value

Defines the 5th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

28 06-Input value

Defines the input value to which the 6th customized value is assigned 0..20000 **Default**: 0.

29 06-Custom value

Defines the 6th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

30 07-Input value

Defines the input value to which the 7th customized value is assigned 0..20000 **Default**: 0.

31 07-Custom value

Defines the 7th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

32 08-Input value

Defines the input value to which the 8th customized value is assigned 0..20000 **Default**: 0.

33 08-Custom value

Defines the 8th customized value assigned to the input -32767..32767 [Digit'] **Default**: 0.

34 09-Input value

Defines the input value to which the 9th customized value is assigned 0..20000 **Default**: 0.

35 09-Custom value

Defines the 9th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

36 10-Input value

Defines the input value to which the 10th customized value is assigned 0..20000 **Default**: 0.

37 10-Custom value

Defines the 10th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

38 11-Input value

Defines the input value to which the 11th customized value is assigned 0..20000 **Default**: 0.

39 11-Custom value

Defines the 11th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

40 12-Input value

Defines the input value to which the 12th customized value is assigned 0..20000 **Default**: 0.

41 12-Custom value

Defines the 12th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

42 13-Input value

Defines the input value to which the 13th customized value is assigned 0..20000 **Default**: 0.

43 13-Custom value

Defines the 13th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

44 14-Input value

Defines the input value to which the 14th customized value is assigned 0..20000 **Default**: 0.

45 14-Custom value

Defines the 14th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

46 15-Input value

Defines the input value to which the 15th customized value is assigned 0..20000 **Default**: 0.

47 15-Custom value

Defines the 15th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

48 16-Input value

Defines the input value to which the 16th customized value is assigned 0..20000 **Default**: 0.

49 16-Custom value

Defines the 16th customized value assigned to the input -32767..32767 [Digit¹] **Default**: 0.

11.3 Alarm 1

Parameters to configure the Alarm 1. (see par. 8.9)

54 Alarm type

Alarm 1 selection Disabled (**Default**) Absolute alarm Band alarm Digital input 1 Digital input 2 Sensor failure Remote control by Modbus

55 Contact type

Selects the alarm 1 output contact and intervention type Normally open (**Default**) Normally closed N.O.-Disabled Power on N.C.-Disabled Power on

56 Alarm threshold

Selects the alarm 1 setpoint -32767..+32767 [Digit¹] (degrees.tenths for temperature sensors), Default: 0.0.

57 Deviation threshold

Selects the deviation from alarm 1 setpoint for the band alarm 0..+32767 [Digit¹] (degrees.tenths for temperature sensors), **Default**: 0.0.

58 Hysteresis

Alarm 1 hysteresis -1000..+1000 [Digit'] (degrees.tenths for temperature sensors), Default: 0.0.

59 Reset type

Alarm 1 contact r	eset type
Automatic:	(Default)
Manual:	Manual reset by keyboard
Manual stored:	Keeps relay status also after an eventual power failure

60 Error contact

State of contact for alarm 1 output in case of error Open (**Default**) Closed

62 Actuation delay

Alarm 1 delay. -3600..+3600 seconds. Default: 0 Negative: delay in alarm output phase. Positive: delay in alarm entry phase.

63 Lower limit

Lower limit for alarm 1 setpoint. -32767.+32767 [Digit¹] (degrees.tenths for temperature sensors). Default: 0.

64 Upper limit

Upper limit for alarm 1 setpoint -32767..+32767 [Digit'] (degrees.tenths for temperature sensors). Default: 1000.

65 Protection

 Alarm 1 set protection. Does not allow user to modify setpoint

 Free
 Modification allowed (**Default**)

 Lock
 Protected

 Hide
 Protected and not visualized

11.4 Alarm 2

Parameters to configure the Alarm 2

69 Alarm type

Alarm 2 selection Disabled (**Default**) Absolute alarm Band alarm Digital input 1

Digital input 2 Sensor failure Remote control by Modbus

70 Contact type

Selects the alarm 2 output contact and intervention type Normally open (**Default**) Normally closed N.O.-Disabled Power on N.C.-Disabled Power on

71 Alarm threshold

Selects the alarm 2 setpoint -32767..+32767 [Digit¹] (degrees.tenths for temperature sensors), **Default**: 0.0.

72 Deviation threshold

Selects the deviation from alarm 2 setpoint for the band alarm 0..+32767 [Digit¹] (degrees.tenths for temperature sensors), Default: 0.0.

73 Hysteresis

Alarm 2 hysteresis -1000..+1000 [Digit'] (degrees.tenths for temperature sensors), Default: 0.0.

74 Reset type

 Alarm 2 contact reset type

 Automatic:
 (Default)

 Manual:
 Manual reset by keyboard

 Manual stored:
 Keeps relay status also after an eventual power failure

75 Error contact

State of contact for alarm 2 output in case of error Open (**Default**) Closed

77 Actuation delay

Alarm 2 delay. -3600.+3600 seconds. Default: 0 Negative: delay in alarm output phase. Positive: delay in alarm entry phase.

78 Lower limit

Lower limit for alarm 2 setpoint. -32767..+32767 [Digit¹] (degrees.tenths for temperature sensors). Default: 0.

79 Upper limit

Upper limit for alarm 2 setpoint -32767..+32767 [Digit¹] (degrees.tenths for temperature sensors). Default: 1000.

80 Protection

 Alarm 2 set protection. Does not allow user to modify setpoint

 Free
 Modification allowed (**Default**)

 Lock
 Protected

 Hide
 Protected and not visualized

11.5 Display

84	Language		
	Selects the language		
	English (Default)	Deutsch	Español
	Italiano	Français	

86 Contrast

Selects the contrast value for the display 0%..100%, **Default**: 80%.

87 Reverse

Enables the display reverse visualization Disabled (**Default**) Enabled

88 Screen timeout

Determines the time after which the display switches to standby mode when no key has been pressed, reducing brightness so as not to be an inconvenience in environments with little lighting and to extend the display's life time.

Always on (**Default**) 15 seconds 30 seconds

2 minutes 5 minutes 10 minutes 30 minutes 1 hour

1 minute

89 Display direction

Selects the display visualization direction. Horizontal (**Default**) Vertical

90 Starting page

Selects the page visualized at starting after the initial splash screen Process (**Default**) Graphic Peak values Totalizer Sum function

11.6 Digital input 1

Parameters to configure the digital input 1.

95 Digital input function

Selects the digital input 1 function. (see par. 8.4) Disabled (Default) Run Hold Tare zero (Al) (impulse functioning) Alarm reset Totalizer reset (impulse functioning) Peaks reset Sum total (impulse functioning) Sum reset (impulse functioning) Config. lock

96 Contact type

Selects the digital input 1 inactive contact.Normally open(Default) Executes function with closed contactNormally closedExecutes function with open contact

11.7 Digital input 2

Parameters to configure the digital input 2. (see par. 8.4)

100 Input function

Selects the digital input 2 function Disabled (**Default**) Run Hold Tare zero (Al) (impulse functioning) Alarm reset Totalizer reset (impulse functioning) Peaks reset Sum total (impulse functioning) Sum reset (impulse functioning) Config. lock

101 Contact type

Selects the digital input 2 inactive contact.Normally open(Default) Executes function with closed contactNormally closedExecutes function with open contact

11.8 Graphic

Parameters to configure the trend and bar graph management.

105 Graphic type

Selects the type of graph to be visualized on the relevant page. Trend (**Default**) Bar graph

106 Lower limit

Trend or bar graph lower limit. -32767 + 32767 [Digit¹], **Default**: 0.

107 Upper limit

Trend or bar graph upper limit. -32767 + 32767 [Digit¹], **Default**: 1000.

108 Trend time

Selects the trend sampling time. 1..3600 seconds, **Default**: 60s.

109 Datalogger

Enables the over time registration of the process in EEPROM The sampling time is equal to the trend upgrading time. (see par. 8.10) Disabled (**Default**) Enabled

110 Datalogger time

Selects the Datalogger sampling time. 1..3600 seconds, **Default**: 60s.

11.9 Analog output in mA

Parameters to configure the analog output in mA

112 Retransmission

Enables analog output Disabled (**Default**) Process Alarm 1 Alarm 2 Remote control by Modbus

113 Signal type

Selects the signal for the analog output in mA 0..20 mA 4..20 mA (**Default**)

114 Lower limit

Analog output mA lower limit range -32767.+32767 [Digit¹] (degrees.tenths for temperature sensors), **Default**: 0

115 Upper limit

Analog output mA upper limit range -32767..+32767 [Digit¹] (degrees.tenths for temperature sensors) **Default**: 1000

116 Error value

Selects the value of the analog output in mA in case of error 0 mA (**Default**) 4 mA 20 mA

11.10 Analog output in Volt

Parameters to configure the analog output in Volt

119 Retransmission

Enables analog output Disabled (**Default**) Process Alarm 1 Alarm 2 Remote control by Modbus

120 Signal type

Selects the signal for the analog output in Volt 0..10 V (**Default**)

121 Lower limit

Analog output Volt lower limit range -32767..+32767 [Digit¹] (degrees.tenths for temperature sensors), **Default**: 0

122 Upper limit

Analog output Volt upper limit range -32767..+32767 [Digit¹] (degrees.tenths for temperature sensors) **Default**: 1000

123 Error value

Selects the value of the analog output in Volt in case of error 0 V (**Default**) 10 V

11.11 Comunication port

Parameters to configure the serial communication port. (see par. 9)

126 Slave address

Selects the slave address for serial communication 1..254. **Default**: 240

127 Baud rate

1

Selects the baud rate for serial communication 1.200 baud 2.400 baud 4.800 baud 9.600 baud 19.200 baud (**Default**) 28.800 baud 39.400 baud 57.600 baud 115 200 baud

128 ComPort setting

Selects the format for the serial communication

- 8,N,1 8bit, No parity, 1 Stop bit (Default)
- 8,E,1 8bit, Even parity, 1 Stop bit
- 8,0,1 8bit, Odd parity, 1 Stop bit
- 8,N,2 8bit, No parity, 2 Stop bit
- 8,E,2 8bit, Even parity, 2 Stop bit
- 8,O,2 8bit, Odd parity, 2 Stop bit

129 Serial delay

Selects the serial delay 0..100 milliseconds. **Default**: 10

Notes / Updates

Table of configuration parameters

1	Sensor type	28
2	Decimal Point	29
3	Measure unit	29
4	Lower limit V/I	29
5	Upper limit V/I	30
б	Offset calibration	30
7	Gain calibration	30
8	Latch On	30
9	Totalizer	30
10	Sum function	31
11	Store	31
12	Filter samples	31
13	Sampling frequency	31
17	V/I custom	32
18	01-Input value	32
19	01-Custom value	32
20	02-Input value	32
21	02-Custom value	32
22	03-Input value	32
23	03-Custom value	33
24	04-Input value	33
25	04-Custom value	33
26	05-Input value	33
27	05-Custom value	33
28	06-Input value	33
29	06-Custom value	33
30	07-Input value	33
31	07-Custom value	34
32	08-Input value	34
33	08-Custom value	34
34	09-Input value	34
35	09-Custom value	34
36	10-Input value	34

48 - DP400TP - User manual

37	10-Custom value	34
38	11-Input value	34
39	11-Custom value	35
40	12-Input value	35
41	12-Custom value	35
42	13-Input value	35
43	13-Custom value	35
44	14-Input value	35
45	14-Custom value	35
46	15-Input value	35
47	15-Custom value	36
48	16-Input value	36
49	16-Custom value	36
54	Alarm type	36
55	Contact type	36
56	Alarm threshold	37
57	Deviation threshold	37
58	Hysteresis	37
59	Reset type	37
60	Error contact	37
62	Actuation delay	37
63	Lower limit	37
64	Upper limit	38
65	Protection	38
69	Alarm type	38
70	Contact type	38
71	Alarm threshold	38
72	Deviation threshold	39
73	Hysteresis	39
74	Reset type	39
75	Error contact	39
77	Actuation delay	39
78	Lower limit	39
79	Upper limit	39

80	Protection	40
84	Language	40
86	Contrast	40
87	Reverse	40
88	Screen timeout	40
89	Display direction	41
90	Starting page	41
95	Digital input function	41
96	Contact type	41
100	Input function	42
101	Contact type	42
105	Graphic type	42
106	Lower limit	42
107	Upper limit	43
108	Trend time	43
109	Datalogger	43
110	Datalogger time	43
112	Retransmission	43
113	Signal type	43
114	Lower limit	44
115	Upper limit	44
116	Error value	44
119	Retransmission	44
120	Signal type	44
121	Lower limit	44
122	Upper limit	45
123	Error value	45
126	Slave address	45
127	Baud rate	45
128	ComPort setting	46
129	Serial delay	46

WARRANTY / DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 13 months from date of purchase. OMEGA's Warranty adds an additional one (1) month grace period to the normal one (1) year product warranty to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation, OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY TABLET, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY OMEGA, either serval or any construction of the server of the companies of the server of the

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used; (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTV/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTIAN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence. The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:

- Purchase Order number under which the product was PURCHASED,
- Model and serial number of the product under warranty, and
- Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

- Purchase Order number to cover the COST of the repair,
- 2. Model and serial number of the product, and
- Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering. OMEGA is a trademark of OMEGA ENGINEERING, INC.

© Copyright 2018 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course! Shop online at omega.com

TEMPERATURE

- Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assy
- Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

- Transducers & Strain Gages
- Load Cells & Pressure Gages
- NNNN Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL

- Rotameters, Gas Mass Flowmeters & Flow Computers
- NNNN Air Velocity Indicators
- Turbine/Paddlewheel Systems
- Totalizers & Batch Controllers

PH/CONDUCTIVITY

- pH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION

- Data Acquisition & Engineering Software
- Communications-Based Acquisition Systems
- Plug-in Cards for Apple, IBM & Compatibles
- Data Logging Systems
- Recorders, Printers & Plotter

HEATERS

- Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL

- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
- Air, Soil & Water Monitors
- Industrial Water & Wastewater Treatment
- pH, Conductivity & Dissolved Oxygen Instruments

2300.10.287-RevF 181218