

User's Guide

Shop online at omega.comsm

e-mail: info@omega.com For latest product manuals: www.omegamanual.info

OMB-DAQ-TC-RACK 32-Channel USB/Ethernet Based Thermocouple Input Data Acquisition System

omega.com info@omega.com

Servicing North America:

U.S.A.: Omega Engineering, Inc., One Omega Drive, P.O. Box 4047

Stamford, CT 06907-0047 USA

Toll-Free: 1-800-826-6342 (USA & Canada only)

Customer Service: 1-800-622-2378 (USA & Canada only) Engineering Service: 1-800-872-9436 (USA & Canada only)

Tel: (203) 359-1660 Fax: (203) 359-7700

e-mail: info@omega.com

For Other Locations Visit omega.com/worldwide

Table of Contents

Preface	
About this User's Guide	5
What you will learn from this user's guide	5
Conventions in this user's guide	5
Where to find more information	5
Chapter 1	
Introducing the OMB-DAQ-TC-RACK	6
Ethernet interface	
USB interface	
Functional block diagram	
C	······ /
Chapter 2	•
Installing the OMB-DAQ-TC-RACK	
Unpacking	
Installing the software	
Connecting the external power adapter	
Installing the hardware	
Installing on Ethernet	8
IP address settings	
Setting up the OMB-DAQ-TC-RACK for communication across networks	
Calibrating the hardware	
Factory calibrationField calibration	
Restoring factory default network settings	
Chapter 3 Functional Details	11
External components	
USB connector	
Ethernet connector	11
External power connector	11
Digital I/O	
LED indicators	
EXPANSION connector	
RESET button	
Mechanical drawings	16
Chapter 4	
Specifications	18
Thermocouple input	18
Channel configuration	19
Compatible thermocouple sensors	19
Accuracy	
Thermocouple measurement accuracy	
Digital input/output	20
Temperature alarms	21
Memory	21
Microcontroller	22
Power	22
USB	22
Network	23

Ethernet connection	23
Network interface	23
Network factory default settings	23
Network security	23
LED displays and the factory reset button	24
Environment	24
Mechanical	24
Signal I/O connectors	24

About this User's Guide

What you will learn from this user's guide

This user's guide describes the Measurement Computing OMB-DAQ-TC-RACK data acquisition device and lists device specifications.

Conventions in this user's guide

For more information

Text presented in a box signifies additional information related to the subject matter.

Caution!	Shaded caution statements present information to help you avoid injuring yourself and others, damaging your hardware, or losing your data.
bold text	Bold text is used for the names of objects on a screen, such as buttons, text boxes, and check boxes.
italic text	Italic text is used for the names of manuals and help topic titles, and to emphasize a word or phrase.

Where to find more information

Additional information about OMB-DAQ-TC-RACK hardware is available on our website at www.omega.com. You can also contact Omega Engineering by phone, fax, or email with specific questions.

Phone: (203) 359-1660 Fax: (203) 359-7700 Email: das@omega.com

Introducing the OMB-DAQ-TC-RACK

The OMB-DAO-TC-RACK is a dual-interface data acquisition device that provides the following features:

- 32 differential thermocouple (TC) inputs, expandable to 64 channels with OMB-DAQ-TC-RACK-EXP32 expansion device¹
- Two 24-bit ADCs (one ADC per 16 inputs)
- TC channels field-to-host isolation
- 3 S/s per update rate
- Support for type J, K, R, S, T, N, E, and B thermocouples, software-selectable per channel
- One integrated cold junction compensation (CJC) sensor per TC input
- Open thermocouple detection (OTD) to detect faulty TC connections
- 8 digital inputs, isolated from TC and host
- 32 digital outputs/alarms isolated from TC inputs and host
- DIO connections are made to 50-pin header connector
- USB 2.0 or 10/100 Ethernet interface
- Powered by the included +5 V external power adapter (OMB-DAQ-TC-RACK-PS)

Ethernet interface

The OMB-DAQ-TC-RACK has a built-in 10/100 BASE-T auto-negotiation, high-speed communication port.

With the Ethernet interface, you can remotely access and configure your OMB-DAQ-TC-RACK from anywhere on the network. Only one computer can control the OMB-DAQ-TC-RACK at a time.

A unique *media access control* (MAC) address is assigned to each device at the factory. You configure the Ethernet connection settings through software. The network name uses the format TC-32-xxxxx, where xxxxx are the lower six digits of the factory-assigned MAC address.

USB interface

The OMB-DAQ-TC-RACK is a USB 2.0 full-speed device that is compatible with USB 3.0 ports. The device is also compatible with USB 1.1 ports.

¹ 40-pin ribbon cable for the **EXPANSION** connector is included with the OMB-TC-RACK-EXP.

Functional block diagram

Device functions are illustrated in the block diagram shown here:

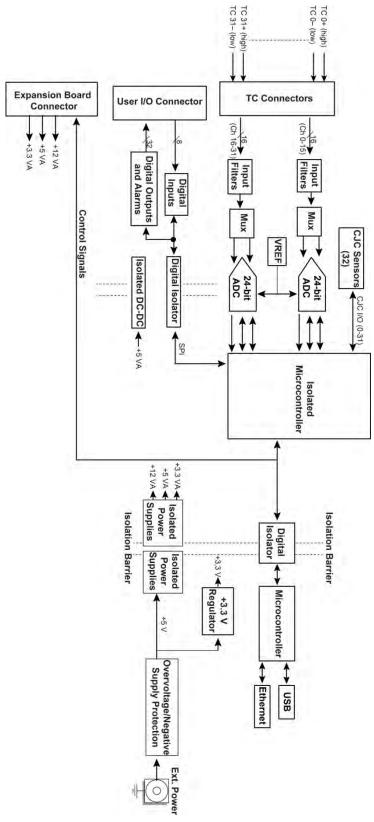


Figure 1. OMB-DAQ-TC-RACK functional block diagram

Installing the OMB-DAQ-TC-RACK

Unpacking

As with any electronic device, you should take care while handling to avoid damage from static electricity. Before removing the board from its packaging, ground yourself using a wrist strap or by simply touching the computer chassis or other grounded object to eliminate any stored static charge.

Installing the software

Refer to the *Software User's Guide* for instructions on installing the software on the CD. This booklet is available in PDF at www.omega.com/manuals/manualpdf/M4803.pdf.

Connecting the external power adapter

Power to the OMB-DAQ-TC-RACK is provided with the 5 V external power adapter (OMB-DAQ-TC-RACK-PS). Connect the adapter cord to the power connector on the OMB-DAQ-TC-RACK device, and plug the AC adapter into an electrical outlet.

The **Power** LED turns on when 5 V power is supplied to the OMB-DAQ-TC-RACK. If the voltage supply is less than 4.0 V or more than 5.75 V, the **POWER** LED does not turn on.

Refer to Figure 2 on page 11 for the location of the Power LED.

Installing the hardware

The OMB-DAQ-TC-RACK can run on either a USB or Ethernet interface.

Installing on USB

Connect the OMB-DAQ-TC-RACK using the cable provided to a to a USB port on a computer running Windows. Windows finds and installs the device driver automatically, and notifies you that the device is ready to use.

Installing on Ethernet

The OMB-DAQ-TC-RACK requires a TCP/IP and UDP connection to a network or computer. Use the standard Ethernet cable provided to connect the OMB-DAQ-TC-RACK to a 10Base-T or 100Base-TX compatible Ethernet port, hub, or switch.

When connecting the OMB-DAQ-TC-RACK for the first time, make sure that you connect to a local network with DHCP enabled.

If you are unsure whether you have access to a local network or that DHCP is enabled on that network, you should use a direct connection to a Windows PC.

It may take a minute or two to detect the device and assign the address. The green **Link/activity** LED on the lower left of the Ethernet connector turns on when there is a valid Ethernet link, and blinks when network activity is detected.

Once the OMB-DAQ-TC-RACK is physically connected to the local network or PC, you can run the software (InstaCal for example) to establish a connection. If a connection cannot be established, make sure the device is using the default configuration by following the instructions in the <u>Restoring factory default network settings</u> on page 10.

Once a connection is established and you can communicate to the device, you can change the configuration for other network scenarios.

Configuring network settings

The following OMB-DAQ-TC-RACK network settings are software-selectable. Only one user at a time can connect to the OMB-DAQ-TC-RACK to configure network options on the device. For typical local networks, the default settings are recommended.

Address mode settings

The address mode setting determines whether the default IP parameters (IPv4 address, subnet mask, and gateway) are assigned to the OMB-DAQ-TC-RACK or an auto-addressing method is used to assign these parameters.

DHCP or link-local enabled (default)

If connected to a network with a DHCP server, the service automatically assigns IP addresses to the OMB-DAQ-TC-RACK.

If the connected network does not have a DHCP server, the address stored in the default IP address is assigned to the OMB-DAQ-TC-RACK.

If the OMB-DAQ-TC-RACK is directly connected to a Windows PC or other host that supports link-local addressing, a link-local address is assigned to the device. A link-local address is valid only for communications between the

OMB-DAQ-TC-RACK and the device to which it is connected

DHCP Only

Enables configuration by a DHCP server if one is available. The OMB-DAQ-TC-RACK is assigned an IP address shortly after it is powered up and attached to the network.

Link Local Only

The OMB-DAQ-TC-RACK is assigned a link-local IP address by the Windows PC or other host that supports link-local addressing. A link-local address is valid only for communications between the OMB-DAQ-TC-RACK and the device to which it is connected.

Static

The default **IPv4 Address** is manually configured on the OMB-DAO-TC-RACK.

IP address settings

The default settings of the following IP address are assigned to the OMB-DAQ-TC-RACK when automatic addressing is disabled or not available (DHCP or Link Local for example)

- IPv4 address The IP address that is stored on the device. The default IPv4 address is 192.168.0.101.
- **Subnet mask** The Subnet mask that is stored on the OMB-DAQ-TC-RACK. The subnet mask determines the number of bits of the IP address that is used for the host portion of the address vs. the number of bits used for the network portion. The default subnet mask is 255.255.255.000
- **Gateway** The gateway IP address that is stored on the OMB-DAQ-TC-RACK. The gateway address of the device that bridges subnets within a network. The default gateway is 192.168.0.1

Connection code

The connection code is a number between 0 (default) and 999999999. You can change this number from its default of 0 to prevent other users from connecting to and configuring the device. The device remains visible to other users on the network, but connection by another user is not allowed.

Setting up the OMB-DAQ-TC-RACK for communication across networks

In order to communicate with the OMB-DAQ-TC-RACK from a computer connected to a different network – such as over the Internet – you must change the network configuration of the network router.

In the following procedure, the OMB-DAQ-TC-RACK is installed on the *host* LAN, the computer is installed on the *client* LAN, and it is assumed that you have you have successfully connected the device to a local network.

Caution! This procedure should only be performed by a network administrator or computer professional. Incorrect settings can significantly disrupt a network.

- 1. Determine the IP address of the device. If the address was assigned by DHCP, it is recommended you change it to a static address by setting the default address to the address assigned and setting the device network configuration to static.
- 2. Configure the firewall/router to forward incoming traffic to the following ports to the IP address assigned to the device:
 - UDP:54211 (discovery)
 - TCP:54211 (commands)
- 3. On the computer connected to the client LAN, manually enter the WAN address of the host router, and specify the ports that were forwarded to connect to the remote OMB-DAQ-TC-RACK.

Calibrating the hardware

Factory calibration

Omega Engineering performs the initial factory calibration. Return the device to Omega Engineering when calibration is required. The recommended calibration interval is one year.

Field calibration

The OMB-DAQ-TC-RACK supports field calibration. Calibrate the device using InstaCal whenever the ambient temperature changes by more than ± 10 °C from the last calibration.

The following items are required to perform field calibration on a OMB-DAQ-TC-RACK:

- a precision voltage source
- a voltmeter

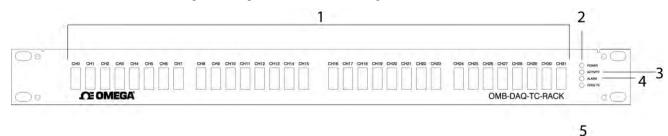
Each ADC (two ADCs per device) is measured at three points and a linear correction is calculated.

When prompted, enter the voltmeter reading to a precision of three decimal places.

Omega Engineering strongly recommends that you warm up the OMB-DAQ-TC-RACK for at least 20 minutes prior to performing field calibration.

Restoring factory default network settings

To reset the network configuration settings to the factory default values, complete the following steps:

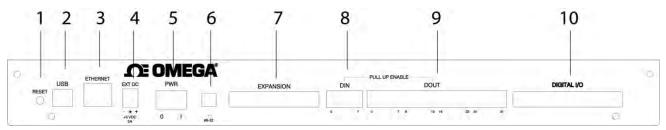

- 1. Use a ballpoint pen to press and hold in the **Reset** button for at least four seconds until both the **Power** and **Activity** LEDs blink , indicating that the settings have been restored to the factory defaults.
- 2. Release the button so the device continues startup with the default settings. If the button is released before the two LEDs blink, the settings are not affected and the device starts up normally.

If InstaCal is open when default settings are restored, click the **Refresh Boards** button on the InstaCal toolbar to reflect the changes.

Functional Details

External components

OMB-DAQ-TC-RACK front panel components are shown in Figure 2.


- 1 TC input channels 0 through 31 (32 mini-jack connectors) 4 ALARM LED
- POWER LED

OPEN TC LED

3 **ACTIVITY** LED

Figure 2. OMB-DAQ-TC-RACK front panel components

OMB-DAQ-TC-RACK rear panel components are shown in Figure 3.

- 1 Factory RESET button
- 6 Chassis ground connector

2 USB connector

- 7 40-pin **EXPANSION** connector
- 3 **ETHERNET** connector
- Eight digital input (**DIN**) pull-up switches
- 4 External power (**EXT DC**) connector
- 9 32 digital output (**DOUT**) pull-up switches
- ⁵ Power switch (**PWR**)
- 10 50-pin **DIGITAL I/O** connector

Figure 3. OMB-DAQ-TC-RACK rear panel components

USB connector

The USB connector provides USB communication.

Ethernet connector

The OMB-DAQ-TC-RACK has one 10/100 BASE-T, auto-negotiation, high-speed communication port. The port connector is an RJ-45, eight-position connector. The Ethernet port accepts CAT-5 shielded or unshielded twisted pair cable. The maximum communication distance without using a repeater is 100 meters.

External power connector

Connect the OMB-DAQ-TC-RACK-PS power supply to this connector. The power supply provides 5 VDC, 2 A power to the OMB-DAQ-TC-RACK.

TC input connectors, measurements, and LED

A thermocouple consists of two dissimilar metals that are joined together at one end. When the junction of the metals is heated or cooled, a voltage is produced that correlates to temperature.

You can add another 32 differential TC input connections to mini-jack connectors labeled CH0 through CH31 (refer to Figure 2).

The device supports type J, K, S, R, B, E, T, N thermocouples.

Caution! Omega Engineering strongly recommends that you ground yourself using a wrist strap before handling the thermocouple sensors.

Connecting TCs to common-mode voltage sources

You can connect a thermocouple to a common voltage source (AC or DC) as long as the magnitude of the voltage is within the common mode voltage range specification of 48V (DC) or 3.5V p-p (AC).

Each applied common mode voltage must be less than or equal to the average common mode voltage ±1.4 V.

For example, in Figure 4, there are three TCs connected to three different common mode voltage sources and two thermocouples that are not connected to anything (floating).

In this example, the average common mode voltage is calculated as follows: (11.4 V + 10 V + 8.6 V)/3 = 10 V

- Each TC channel becomes biased to the average common mode voltage of 10 V.
- Each common mode voltage must then be within the 10 V ±1.4 V limits or 8.6 V to 11.4 V.

10 V CH0 10 V CH1 10 V CH2 8.6 V Floating 10 V CH3

OMB-DAQ-TC-RACK

Figure 4. OMB-DAQ-TC-RACK common mode voltage connections example

Cold junction compensation (CJC)

Each TC input on the OMB-DAQ-TC-RACK has a high-resolution CJC sensor. When you connect the thermocouple sensor leads to the sensor input channel, the dissimilar metals at the OMB-DAQ-TC-RACK terminal blocks produce an additional thermocouple junction. This junction creates a small voltage error component which must be removed from the overall sensor measurement using a CJC technique.

The measured voltage includes both the thermocouple voltage and the cold junction voltage. To compensate for the additional cold junction voltage, the OMB-DAQ-TC-RACK subtracts the cold junction voltage from the thermocouple voltage.

Increasing the thermocouple length

If you need to increase the length of your thermocouple, use the same type of TC wires to minimize the error introduced by thermal EMFs.

Data linearization

After the CJC correction is performed on the measurement data, an on-board microcontroller automatically linearizes the thermocouple measurement data using National Institute of Standards and Technology (NIST) linearization coefficients for the selected thermocouple type.

The measurement data is then output as a 32-bit floating point value in the configured format (voltage or temperature).

Open-thermocouple detection (OTD)

The OMB-DAQ-TC-RACK is equipped with OTD for all analog input channel. With OTD, any open-circuit condition at the TC sensor is detected by the software. An open channel is detected by the use of a pull up and pull down resistors on the thermocouple inputs. An open thermocouple condition forces the input differential voltage outside of the valid thermocouple voltage range. The software recognizes this as an invalid reading and flags the appropriate channel. The software continues to sample all channels when OTD is detected.

Input leakage current

With OTD enabled, 75 nA (max) of input leakage current is injected into the TC. This current can cause an error voltage to develop across the lead resistance of the TC that is indistinguishable from the thermocouple voltage you are measuring. You can estimate this error voltage with the following formula:

error voltage = resistance of the thermocouple × 75 nA

To reduce the error, reduce the length of the TC to lower its resistance, or lower the AWG of the wire by using a wire with a larger diameter. With open-thermocouple detection disabled, 2 nA (max) of input leakage current is injected into the TC.

Digital I/O

The OMB-DAQ-TC-RACK provides eight digital inputs and 32 digital outputs that are electrically isolated from the host computer and from the OMB-DAQ-TC-RACK analog circuits.

All DIO bits have internal pull-up resistors to 5 V that can be disconnected with the rear panel slide switches.

The recommended maximum length of the 50-pin cable used to connect the **DIGITAL I/O** connector to the digital I/O signal source is 1 foot.

Digital inputs

The OMB-DAQ-TC-RACK provides eight digital inputs with rates of 500 port reads or single bit reads per second.

Digital input voltage ranges of 0 V to 15 V are permitted, with thresholds of 0.6 V (low) and 2.2 V (high).

Each digital input has a 100 k Ω pull-up resistor. Use the eight **PULL-UP ENABLE – DIN** slide switches to enable or disable the 5 V pull-up option.

5Digital outputs/temperature alarms

Each digital output is *open-drain*, which can of sink up to 100 mA for direct drive applications. Each output has a 100 k Ω pull-up resistor. Use the eight **PULL-UP ENABLE – DOUT** slide switches to enable or disable the 5 V pull-up option.

6Optionally, you can configure each digital output as an alarm for each TC input. When an alarm is enabled, its associated output line is driven to the appropriate state determined by the alarm options and input temperature.

You can also use the alarm outputs to control a device or application that indicates when a temperature threshold has been exceeded.

The alarm configurations are stored in non-volatile memory and loaded at power up.

Alarm settings are applied when changed and at power on. Temperatures are constantly converted on enabled channels and processed for alarm conditions regardless of the communications connectivity.

Each available alarm mode and setting is explained below.

Alarm input modes Set independent temperature thresholds T1 and T2 for each alarm. Alarm error modes	 Trigger alarm when input temperature ≥ T1; reset alarm when input temperature < T2 Trigger alarm when input temperature ≤ T1; reset alarm when input temperature > T2 Trigger alarm when input temperature is < T1 or > T2 Alarm on temperature reading only Alarm on temperature reading, open thermocouple, or commonmode voltage error Alarm on open thermocouple or common-mode voltage error only
Alarm output modes	 Alarm disabled; digital output line can be used for normal operation Alarm enabled; active low output (output line goes low when alarm condition is met) Alarm enabled; active high output (output line goes high when alarm condition is met) Alarm output may be latched and will not clear unless explicitly cleared by the user

The OMB-DAQ-TC-RACK provides three alarm indicators – the <u>ALARM LED</u>, the <u>OPEN TC LED</u> on the front panel and, optionally, the user-configurable digital outputs associated with each channel.

Because the digital alarm outputs are user-configurable, they can be used to supply additional information (visually, if the digital outputs are used to drive LEDs), such as the channel associated with the alarm condition or differentiating between threshold and CMV alarms.

Pull-up configuration

By default, pull-up is enabled for all eight digital inputs and all 32 digital outputs. Slide switches on the rear of the housing can disable pull-up for each digital input bit and digital output bit.

LED indicators

The OMB-DAQ-TC-RACK has four LEDs that indicate the power, communication, alarm, and open TC status

POWER LED²

The **POWER** LED turns on when you plug the power adapter into the OMB-DAQ-TC-RACK. If a Flash LED command is sent from an application, the **Power** LED blinks five times.

ACTIVITY LED²

The **ACTIVITY** LED turns on when there is a valid connection (USB or Ethernet) and blinks when a command is sent to the OMB-DAQ-TC-RACK.

ALARM LED

The ALARM LED turns on when an alarm condition occurs.

OPEN TC LED

The **OPEN TC** LED turns on when there is an open thermocouple condition.

EXPANSION connector

Use the **EXPANSION** connector to connect the OMB-DAQ-TC-RACK to an OMB-TC-RACK-EXP32 expansion device (sold separately) for applications that need additional analog/thermocouple input and digital I/O channels. A 40-pin expansion cable is included with the OMB-DAQ-TC-RACK-EXP32.

Chassis ground connector

Provides a connection point (#6-32 screw) for chassis ground. Connect this to an external grounding source.

² Both the **POWER** and **ACTIVITY** LEDs blink in firmware upgrade mode. Refer to Updating firmware on page 10.

If the OMB-DAQ-TC-RACK is connected by USB or by a shielded Ethernet cable to grounded equipment, connecting to an external grounding source is not needed since the USB/shielded Ethernet connection already grounds the OMB-DAQ-TC-RACK and a connected OMB-DAQ-TC-RACK-EXP32.

RESET button

Press and hold this button to restore the OMB-DAQ-TC-RACK to its factory default network settings. Refer to Restoring factory default network settings on page 10

Mechanical drawings

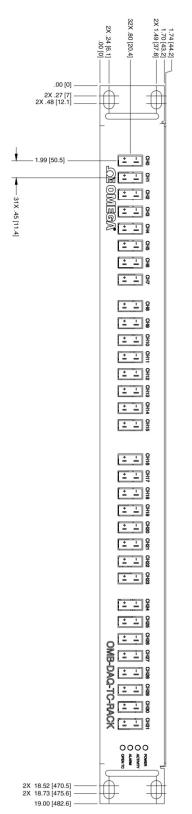


Figure 7. Enclosure dimensions - front

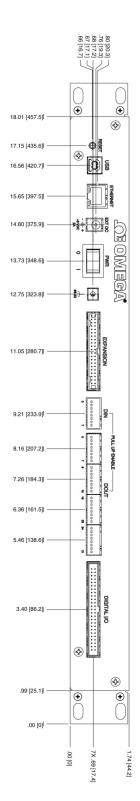


Figure 8. Enclosure dimensions - rear

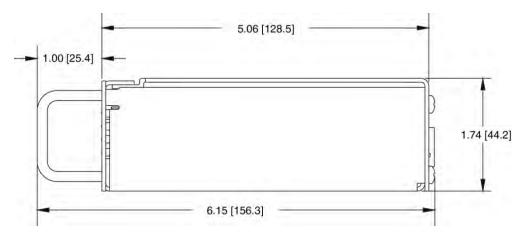
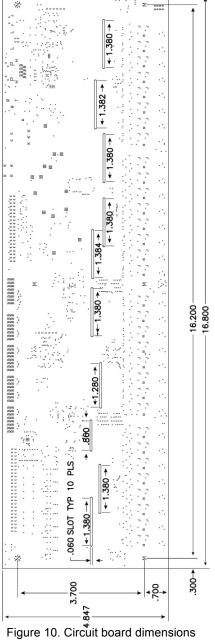



Figure 9. Enclosure dimensions – side

Specifications

All specifications are subject to change without notice.

Typical for 25°C unless otherwise specified.

Specifications in italic text are guaranteed by design.

Thermocouple input

Table 1. Generic analog input specifications

Parameter	Condition	Specification
A/D converter type		Delta-Sigma
A/D resolution		24-bit
Number of channels		32
Filtering options		50 Hz or 60 Hz noise filtering, software- selectable
Isolation	Between any TCx channel and chassis ground.	500 VDC absolute max
Channel configuration		Software-selectable to match thermocouple sensor type
Differential input voltage range		±78.125 mV
Absolute maximum input voltage	Between any two TCx inputs	±25 V (power on) ±25 V (power off)
Differential input impedance	50 Hz filtering, power on	$26 M\Omega$
Differential input impedance	60 Hz filtering, power on	20 MΩ
Lamest assument	Open thermocouple detect disabled	2 nA
Input current	Open thermocouple detect enabled	75 nA
Common mode neighbor	50 Hz filtering, at DC and f_{in} =50 Hz	110 dB
Common mode rejection	60 Hz filtering at DC and f _{in} =60 Hz	110 dB
Naisa naisatian	$50 Hz$ filtering at $f_{in} = 50 Hz$	80 dB typ.
Noise rejection	$60 Hz filtering at f_{in} = 60 Hz$	80 dB typ.
Input bandwidth	50 Hz filtering	22 Hz
input bandwidin	60 Hz filtering	26 Hz
Crosstalk	Between any two TCx inputs	-90 dB
Sample rate (Note 1)		3 Hz max (per channel)
	TCx channel to TCx channel	±1.40 V
Common mode voltage range (Note 2)	TCx channel relative to chassis ground, $f_{in} = 60 \text{ Hz}$	±3.5 VAC p-p
	TCx channel relative to chassis ground	±48 V DC
Input noise	50 Hz or 60 Hz filtering	510 nV rms
Gain error	50 Hz or 60 Hz filtering	0.004 % FSR
Offset error	50 Hz or 60 Hz filtering	$3 \mu V$
Management	Thermocouple type J,K,T,E,N	0.07°C
Measurement sensitivity (Note 3)	Thermocouple type R,S	0.18°C
(11000 5)	Thermocouple type B	0.60°C
Warm-up time		20 minutes min
Open thermocouple detect response time		1 second
CJC sensor accuracy	0°C to 45°C	±0.20°C typ ±0.40°C max

Note 1: The enabled thermocouple inputs are continuously converted at the maximum A/D converter rate.

Note 2: When thermocouple sensors are connected to different common mode voltages, the channels with floating thermocouples sensors will be biased to approximately the average value of the applied common mode voltages. Each of the applied common mode voltages must then be less than or equal to the average common mode voltage $\pm 1.40 \text{ V}$ or $[\text{CMV}_{\text{applied}} \leq (\text{CMV}_{\text{average}} \pm 1.4 \text{ V})]$.

- Note 2: When thermocouple sensors are connected to different common mode voltages, the channels with floating thermocouples sensors will be biased to approximately the average value of the applied common mode voltages. Each of the applied common mode voltages must then be less than or equal to the average common mode voltage $\pm 1.40 \text{ V}$ or $[\text{CMV}_{\text{applied}} \leq (\text{CMV}_{\text{average}} \pm 1.4 \text{ V})]$.
- **Note 3:** Measurement sensitivity is the smallest change in temperature that can be detected.

Channel configuration

Table 2. Channel configuration specification

Sensor Category	Condition	Specification
Thermocouple	J, K, S, R, B, E, T, N	32 differential channels

Note 4: Channel configuration is stored on EEPROM external to the isolated microcontroller by the firmware whenever any item is modified. Modification is performed by commands issued from an external application, and the configuration is made non-volatile through the use of the EEPROM.

Compatible thermocouple sensors

Table 3. Compatible sensor type specifications

Parameter	Specification
	J: -210°C to 1200°C
	K:-270°C to 1372°C
Thermocouple	R: –50°C to 1768°C
	S: –50 °C to 1768 °C
	T: –270°C to 400°C
	N: –270°C to 1300°C
	E: –270°C to 1000°C
	B: 0°C to 1820°C

Accuracy

Thermocouple measurement accuracy

Table 4. Thermocouple accuracy specifications, including CJC measurement error. All specifications are (±).

Sensor	Sensor	Accuracy Error	Accuracy Error	Accuracy Error	Accuracy Error
Туре	Temperature (°C)	Maximum (°C), 15°C to 35°C	Typical (°C), 15°C to 35°C	Maximum (°C), 0°C to 45°C	Typical (°C), 0°C to 45°C
	-210	1.965	0.910	2.167	0.989
J	0	0.787	0.361	0.816	0.375
	1200	0.752	0.371	1.148	0.508
	-210	2.295	1.061	2.520	1.152
K	0	0.821	0.376	0.852	0.392
	1372	1.029	0.504	1.560	0.688
	-50	2.467	1.111	2.655	1.223
S	250	1.835	0.825	1.961	0.904
	1768	0.893	0.361	1.519	0.590
	-50	2.609	1.174	2.810	1.293
R	250	1.862	0.837	1.992	0.918
	1768	0.754	0.305	1.346	0.520
	250	2.450	1.090	2.707	1.254
В	700	0.937	0.424	1.136	0.520
	1820	0.610	0.300	1.056	0.467
	-200	1.754	0.811	1.933	0.880
E	0	0.775	0.355	0.806	0.369
	1000	0.657	0.323	0.989	0.437
	-200	2.005	0.923	2.207	1.005
Т	0	0.836	0.382	0.874	0.400
	400	0.544	0.255	0.659	0.297
	-200	2.255	1.038	2.481	1.134
N	0	0.908	0.415	0.949	0.437
	1300	0.718	0.357	1.157	0.510

Thermocouple measurement accuracy specifications include polynomial linearization, cold-junction compensation, and system noise. The accuracy specifications assume the device is operated within its enclosure and with the enclosure in a horizontal, upright orientation. The board should also be warmed up for the recommended 20 minutes. If the maximum digital output load of 3.2 amps is applied, add an additional 0.30°C to the typical and maximum accuracy specifications listed above. Errors shown do not include inherent thermocouple error. Contact your thermocouple supplier for details on the actual thermocouple accuracy error.

Digital input/output

Table 5. Digital input specifications

Parameter	Specification
Number of inputs	8 channels
Configuration	Fixed input
Input voltage range	0 V to +15 V
Input type	CMOS (Schmitt trigger)
Input characteristics	100 kΩ pull-up resistor, 28.7 kΩ series resistor
Maximum input voltage range	0 V to +20 V max (power on/off, relative to IGND pins)
Pull-up configuration	All pins pulled up to +5 V via individual 100 k Ω resistors using slide switch SW5. SW5 default positions are on (pulled up.)
Transfer rate (software paced)	500 port reads per second typ.
Input high voltage	1.3 V min, 2.2 V max
Input low voltage	1.5 V max, 0.6 V min
Schmitt trigger hysteresis	0.4 V min, 1.2 V max

Table 6. Digital output specifications

Parameter	Specification
Number of outputs	32 channels, shared with alarms
Configuration	Open drain output
Output characteristics	100 kΩ pull-up, open drain (DMOS transistor)
Pull-up configuration	All pins pulled up to $+5$ V via individual $100 \text{ k}\Omega$ resistors using slide switches SW1-SW4. The default positions for SW1-4 are on (pulled up.)
Transfer rate (software-paced)	Digital output – 500 port writes per second typ.
Output voltage range	0 V to +5 V (internal 100 k Ω pull-up resistors connected to +5 V by default) 0 V to +15 V max (using external pull up resistor)
Off state leakage current	$0.1\mu\mathrm{A}$
Sink current capability	100 mA max (continuous) per output pin
DMOS transistor on-resistance (drain to source)	4 Ω

Note 5: Ground pins labeled IGND are isolated from AGND and chassis ground.

Temperature alarms

Table 7. Temperature alarm specifications

Parameter	Specification
Number of alarms	32, shared with digital output
Alarm functionality	Each alarm controls its associated digital output line as an alarm output. When an alarm is enabled, its associated output line is driven to the appropriate state determined by the alarm options and input temperature. The alarm configurations are stored in non-volatile memory and loaded at power on.
Alarm input modes	 Alarm when input temperature >= T1, reset alarm when input temperature < T2 Alarm when input temperature <= T1, reset alarm when input temperature > T2 Alarm when input temperature is < T1 or > T2 Note: T1 and T2 may be independently set for each alarm.
Alarm error modes	 Alarm on temperature reading only Alarm on temperature reading, open thermocouple, or common-mode voltage error Alarm on open thermocouple or common-mode voltage error only
Alarm output modes	 Disabled, digital output line may be used for normal operation Enabled, active high output (output line goes high when alarm condition is met) Enabled, active low output (output line goes low when alarm condition is met) Alarm output may be latched and will not clear unless explicitly cleared by the user
Alarm latency (Note 6)	1 second, max

Note 6: Alarm settings are applied when changed and at power-on. Temperatures are constantly converted on enabled channels and processed for alarm conditions regardless of the communications connectivity.

Memory

Table 8. Memory specifications

Parameter	Specification
EEPROM	8,192 bytes

Microcontroller

Table 9. Microcontroller specifications

Parameter	Specification	
Туре	One high-performance 32-bit RISC microcontroller (communications) One high-performance 32-bit RISC microcontroller (measurement)	

Power

Table 10. Power specifications

Parameter	Conditions	Specification
Supply current		330 mA typ, 610 mA max 550 mA typ, 1000 mA max (with OMB- DAQ-TC-RACK-EXP32 connected)
External power input (Note 5)		+5 VDC ± 5% (+5 VDC power supply provided)
Power switch		Rocker type
External power supply (included)	Omega Engineering p/n OMB-DAQ-TC-RACK-PS	+5 VDC, 10 W, 5% regulation
External power input voltage	$4.0 \text{ V} > \text{V}_{\text{ext}} > 5.75 \text{ V}$	PWR LED = Off (power fault)
supervisor limits	$4.0 \text{ V} < \text{V}_{\text{ext}} < 5.75 \text{ V}$	PWR LED = On
Chassis ground connection		6-32 screw on rear of enclosure

Note 7: Voltage specification applies at barrel plug power input. The power supply provided with the device meets this specification at the rated total power supply current. If a different power supply is used, small line resistances could cause significant voltage drop between the power supply and the barrel plug input.

USB

Table 11. USB specifications

Parameter	Specification	
Device type	USB 2.0 full speed	
Device compatibility	USB 1.1, USB 2.0, USB 3.0	
Connector	Standard B	
Cable length	5 meters max	
Power	Self-powered (no USB current consumed)	

Network

Ethernet connection

Table 12. Ethernet connection specifications

Parameter	Specification		
Ethernet type	100 Base-TX 10 Base-T		
Communication rates	10/100 Mbps, auto-negotiated		
Connector	RJ-45, 8 position		
Cable length	100 meters max		
Additional parameters	HP Auto-MDIX support		

Network interface

Table 13. Factory default specifications

Parameter	Specification	
Protocols used	TCP/IP (IPv4 only), UDP	
Network ports used	UDP:54211 (discovery) TCP:54211 (commands)	
Network IP configuration DHCP + link-local, DHCP, static, link-local		
Network name	TC-32-xxxxxx, where xxxxxx are the lower 6 digits of the device MAC address	
Network name publication	By NBNS (responds to b-node broadcasts, therefore only available on the local subnet)	

Network factory default settings

Table 14. Factory default specifications

Parameter	Specification
Factory default IP address	192.168.0.101
Factory default subnet mask	255.255.255.0
Factory default gateway	192.168.0.1
Factory default DHCP setting	DHCP + link-local enabled

Network security

Table 15. Factory default specifications

Parameter	Specification	
Security implementation	TCP sockets are not opened unless application sends the correct PIN code (stored in non-volatile memory, may be changed by user, default value 0000)	
Number of concurrent sessions	1	
Vulnerabilities	TCP Sequence Number Approximation Vulnerability	

LED displays and the factory reset button

Table 16. LED and button configurations

Parameter	Specification		
POWER LED (top)	Indicates power on. Blinks when blink command is sent. Both the POWER and ACTIVITY LEDs blink in firmware upgrade mode.		
ACTIVITY LED	On when there is a valid connection and blinks when a command is sent to the OMB-DAQ-TC-RACK. Both the POWER and ACTIVITY LEDs blink in firmware upgrade mode.		
ALARM LED	Indicates that an alarm condition is met.		
OPEN TC LED (bottom)	Indicates that there is an open thermocouple condition.		
Factory reset button When held for 3 seconds, the LEDs turn off for a short time, indicat process. When the LEDs turn back on, reset is complete and the fac network settings are restored.			

Environment

Table 17. Environmental specifications

Parameter Specification	
Operating temperature range	0°C to 45°C
Storage temperature range	−40°C to 85°C
Humidity	0°C to 90% non-condensing

Mechanical

Table 18. Mechanical specifications

Parameter	Specification	
Dimensions $(L \times W \times H)$	482.6 × 128.6 × 43.18 mm (19 × 6.15 × 1.74 in.)	

Signal I/O connectors

Table 19. Connector specifications

Parameter	Specification
User accessible I/O connectors (excluding USB and Ethernet)	Thermocouple inputs, digital I/O connector, expansion connector, chassis ground
Thermocouple connector type	Thermocouple Mini-Jack (Omega PCC-SMP-V-U-100)
Digital I/O connector type	50-pin IDC header
Compatible cable for the 50-pin DIO connector	C50FF-2, C50FF-15
Compatible accessory products with the C50FF-2 and C50FF-15 cables	CIO-MINI50
Expansion connector type	40-pin IDC header
Compatible cables for the 40-pin expansion connector	C40FF-2
Chassis ground connector	6-32 screw

Table 20. Thermocouple connector pinout

Pin	Signal Name	Pin Description	Pin	Signal Name	Pin Description
J1	TC0(+)	CH0 sensor input (+)	J17	TC16(+)	CH16 sensor input (+)
JI	TC0(-)	CH0 sensor input (–)	J17	TC16(-)	CH16 sensor input (–)
J2	TC1(+)	CH1 sensor input (+)	J18	TC17(+)	CH17 sensor input (+)
	TC1(-)	CH1 sensor input (–)	310	TC17(-)	CH17 sensor input (–)
J3	TC2(+)	CH2 sensor input (+)	J19	TC18(+)	CH18 sensor input (+)
JS	TC2(-)	CH2 sensor input (–)	319	TC18(-)	CH18 sensor input (–)
J4	TC3(+)	CH3 sensor input (+)	J20	TC19(+)	CH19 sensor input (+)
J4	TC3(-)	CH3 sensor input (–)	J20	TC19(-)	CH19 sensor input (–)
J5	TC4(+)	CH4 sensor input (+)	104	TC20(+)	CH20 sensor input (+)
Jo	TC4(-)	CH4 sensor input (–)	J21	TC20(-)	CH20 sensor input (–)
ıc	TC5(+)	CH5 sensor input (+)	100	TC21(+)	CH21 sensor input (+)
J6	TC5(-)	CH5 sensor input (–)	J22	TC21(-)	CH21 sensor input (–)
J7	TC6(+)	CH6 sensor input (+)	J23	TC22(+)	CH22 sensor input (+)
J/	TC6(-)	CH6 sensor input (–)	J23	TC22(-)	CH22 sensor input (–)
J8	TC7(+)	CH7 sensor input (+)	J24	TC23(+)	CH23 sensor input (+)
Jo	TC7(-)	CH7 sensor input (–)	J24	TC23(-)	CH23 sensor input (–)
2	TC8(+)	CH8 sensor input (+)	105	TC24(+)	CH24 sensor input (+)
J9	TC8(-)	CH8 sensor input (–)	J25	TC24(-)	CH24 sensor input (–)
J10	TC9(+)	CH9 sensor input (+)	100	TC25(+)	CH25 sensor input (+)
310	TC9(-)	CH9 sensor input (–)	J26	TC25(-)	CH25 sensor input (–)
J11	TC10(+)	CH10 sensor input (+)	J27	TC26(+)	CH26 sensor input (+)
JII	TC10(-)	CH10 sensor input (–)	J27	TC26(-)	CH26 sensor input (–)
J12	TC11(+)	CH11 sensor input (+)	J28	TC27(+)	CH27 sensor input (+)
J12	TC11(-)	CH11 sensor input (–)	J20	TC27(-)	CH27 sensor input (–)
J13	TC12(+)	CH12 sensor input (+)	J29	TC28(+)	CH28 sensor input (+)
313	TC12(-)	CH12 sensor input (–)	329	TC28(-)	CH28 sensor input (–)
J14	TC13(+)	CH13 sensor input (+)	J30	TC29(+)	CH29 sensor input (+)
J 14	TC13(-)	CH13 sensor input (–)	330	TC29(-)	CH29 sensor input (–)
J15	TC14(+)	CH14 sensor input (+)	J31	TC30(+)	CH30 sensor input (+)
115	TC14(-)	CH14 sensor input (–)	J31	TC30(-)	CH30 sensor input (–)
116	TC15(+)	CH15 sensor input (+)	122	TC31(+)	CH31 sensor input (+)
J16	TC15(-)	CH15 sensor input (–)	J32	TC31(-)	CH31 sensor input (–)

Table 21. Digital I/O connector (J33) pinout

Pin	Signal Name	I Name Pin Description		Signal Name	Pin Description
1	DOUT0	Digital Output 0/ Alarm Output 0	2 DOUT1		Digital Output 1/ Alarm Output 1
3	DOUT2	Digital Output 2/ Alarm Output 2	4	DOUT3	Digital Output 3/ Alarm Output 3
5	DOUT4	Digital Output 4/ Alarm Output 4	6	DOUT5	Digital Output 5/ Alarm Output 5
7	DOUT6	Digital Output 6/ Alarm Output 6	8	DOUT7	Digital Output 7/ Alarm Output 7
9	DOUT8	Digital Output 8/ Alarm Output 8	10	DOUT9	Digital Output 9/ Alarm Output 9
11	DOUT10	Digital Output 10/ Alarm Output 10	12	DOUT11	Digital Output 11/ Alarm Output 11
13	DOUT12	Digital Output 12/ Alarm Output 12	14	DOUT13	Digital Output 13/ Alarm Output 13
15	DOUT14	Digital Output 14/ Alarm Output 14	16	DOUT15	Digital Output 15/ Alarm Output 15
17	IGND	Isolated Digital GND	18	IGND	Isolated Digital GND
19	IGND	Isolated Digital GND	20	IGND	Isolated Digital GND
21	DOUT16	Digital Output 16/ Alarm Output 16	22	DOUT17	Digital Output 17 / Alarm Output 17
23	DOUT18	Digital Output 18/ Alarm Output 18	24	DOUT19	Digital Output 19/ Alarm Output 19
25	DOUT20	Digital Output 20/ Alarm Output 20	26	DOUT21	Digital Output 21/ Alarm Output 21
27	DOUT22	Digital Output 22/ Alarm Output 22	28	DOUT23	Digital Output 23/ Alarm Output 23
29	DOUT24	Digital Output 24/ Alarm Output 24	30	DOUT25	Digital Output 25 / Alarm Output 25
31	DOUT26	Digital Output 26/ Alarm Output 26	32	DOUT27	Digital Output 27/ Alarm Output 27
33	DOUT28	Digital Output 28/ Alarm Output 28	34	DOUT29	Digital Output 29/ Alarm Output 29
35	DOUT30	Digital Output 30/ Alarm Output 30	36	DOUT31	Digital Output 31/ Alarm Output 31
37	IGND	Isolated Digital GND	38	IGND	Isolated Digital GND
39	IGND	Isolated Digital GND	40	IGND	Isolated Digital GND
41	DIN0	Digital Input 0	42	DIN1	Digital Input 1
43	DIN2	Digital Input 2	44	DIN3	Digital Input 3
45	DIN4	Digital Input 4	46	DIN5	Digital Input 5
47	DIN6	Digital Input 6	48	DIN7	Digital Input 7
49	IGND	Isolated Digital GND	50	IGND	Isolated Digital GND

Table 22. Expansion connector (J34) pinout

Pin	Signal Name	Pin Description	Pin	Signal Name	Pin Description	
1	+12VA (Note)	+12 VA power output	Note 8	2	AGND	Isolated Analog GND
3	+12VA	+12 VA power output		4	AGND	Isolated Analog GND
5	+5VA	+5 VA power output		6	AGND	Isolated Analog GND
7	+5VA	+5 VA power output		8	AGND	Isolated Analog GND
9	+5VA	+5 VA power output		10	AGND	Isolated Analog GND
11	+5VA	+5 VA power output		12	AGND	Isolated Analog GND
13	+3.3VA	+3.3 VA power output		14	AGND	Isolated Analog GND
15	+3.3VA	+3.3 VA power output		16	AGND	Isolated Analog GND
17	+3.3VA	+3.3 VA power output		18	AGND	Isolated Analog GND
19	+3.3VA	+3.3 VA power output		20	AGND	Isolated Analog GND
21	CS	Chip select		22	AGND	Isolated Analog GND
23	SCK	Serial clock		24	AGND	Isolated Analog GND
25	MOSI	Master output data		26	AGND	Isolated Analog GND
27	MISO	Master input data		28	AGND	Isolated Analog GND
29	IRQ	Interrupt request		30	AGND	Isolated Analog GND
31	RSVD	Reserved		32	AGND	Isolated Analog GND
33	RSVD	Reserved		34	AGND	Isolated Analog GND
35	RSVD	Reserved		36	AGND	Isolated Analog GND
37	RSVD	Reserved		38	AGND	Isolated Analog GND
39	EXP_DETECT	EXP detection		40	AGND	Isolated Analog GND

Note 8: Power supplies (+12 VA, +5 VA, 3.3 VA) located at connector J34 are intended for use with the OMB-DAQ-TC-RACK-EXP32 expansion device only.

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of **13 months** from date of purchase. OMEGA's WARRANTY adds an additional one (1) month grace period to the normal **one** (1) **year product warranty** to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR **WARRANTY** RETURNS, please have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number under which the product was PURCHASED,
- 2. Model and serial number of the product under warranty, and
- 3. Repair instructions and/or specific problems relative to the product.

FOR **NON-WARRANTY** REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number to cover the COST of the repair,
- 2. Model and serial number of the product, and
- 3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2016 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

Shop online at omega.com[™]

TEMPERATURE

☑ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies

✓ Wire: Thermocouple, RTD & Thermistor

☑ Calibrators & Ice Point References

Recorders, Controllers & Process Monitors

☑ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

☑ Transducers & Strain Gages

☑ Displacement Transducers

☑ Instrumentation & Accessories

FLOW/LEVEL

☑ Rotameters, Gas Mass Flowmeters & Flow Computers

☑ Turbine/Paddlewheel Systems

☑ Totalizers & Batch Controllers

pH/CONDUCTIVITY

☑ Benchtop/Laboratory Meters

☑ Controllers, Calibrators, Simulators & Pumps

☑ Industrial pH & Conductivity Equipment

DATA ACQUISITION

☑ Data Acquisition & Engineering Software

Communications-Based Acquisition Systems

Plug-in Cards for Apple, IBM & Compatibles

☑ Data Logging Systems

Recorders, Printers & Plotters

HEATERS

Heating Cable

☑ Cartridge & Strip Heaters

☑ Immersion & Band Heaters

Flexible Heaters

Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL

✓ Metering & Control Instrumentation

☑ Refractometers

Pumps & Tubing

Air, Soil & Water Monitors

☑ Industrial Water & Wastewater Treatment