Output :

Voltage: Output: 0-5V, 0-10V Source Impedance: <10 ohms Drive: 10mA, max. (1K ohms, min. @ 10V) Current: Output: 0-1mA, 0-20mA, 4-20mA Source Impedance: >100K ohms Compliance: 0-1mA; 7.5V, max. (7.5K ohms, max.) 0-20mA; 12V, max. (600 ohms, max.) 4-20mA; 12V, max. (600 ohms, max.) **LED** Indication RUN (green): On when unit is powered flashes at 8Hz when input is 7% above max. INPUT (yellow): On while calibrating the input level OUTPUT (red): On while calibrating the output level Accuracy (Including Linearity & Hysteresis): ±0.1% of span, typical, ±0.2% max. ±0.5% of span, maximum (100mV range) Stability: ±0.025%/°C of selected input span, typical. Response Time (10 to 90%): 250mSec., typical. **Common Mode Rejection:** DC to 60Hz: 90dB Isolation: 1800VDC between input, output and power. EMC Compliance (CE Mark): Emmissions: EN50081-1; Immunity: EN50082-2; Safety: EN50178 Humidity (Non-Condensing): Operating: 15 to 95% @ 45°C Soak: 90% for 24 hours @ 65°C **Temperature Range:**

Operating: 0 to 55°C (32 to 131°F) Storage: -25 to 70°C (-13 to 158°F) Power: Consumption: 1.5W typical, 2.5W max. Range: 100 to 240 VAC ±10%, 50 to 400 Hz Wire Terminations: Screw terminals for 12-22 AWG Shipping Weight: 0.48 lbs. Agency Approvals: UL recognized per standard UL508 (File No. E99775) CE Compliance per EMC directive 89/3/36 EEC and Low Voltage 73/23/EEC.

Terminal	Connection	Terminal	Connection	
A1	Output (+)	C3	Input Voltage (Line)	
A2	Output (-)	C4	Not Used	
A3	Not Used	C5	Input (Neutral)	
A4	Not Used	C6	Input Current (Line)	
A5	Not Used	P1	AC Power (Hot)	
A6	Not Used	P2	Not Used	
C1	Not Used	P3	Not Used	
C2	Not Used	P4	AC Power (Neutral)	

Dimensions

OF OMEGA

omega.com info@omega.com Servicing North America:

U.S.A.:

Omega Engineering, Inc., One Omega Drive, P.O. Box 4047, Stamford, CT 06907-0047 USA Toll-Free: 1-800-826-6342 (USA & Canada only) Customer Service: 1-800-622-2378 (USA & Canada only) Engineering Service: 1-800-872-9436 (USA & Canada only) Tel: (203) 359-1660 Fax: (203) 359-7700 e-mail: info @omega.com

For Other Locations Visit omega.com/worldwide

The information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains, and reserves the right to alter specifications without notice

WARRANTY/DISCLAIMER

OMEGA ENGINEERING. INC., warrants this unit to be free of defects in materials and workmanship for a period of 13 months from date of purchase OMEGA's WARRANTY adds an additional one (1) month grace period to the normal one (1) year product warranty to cover handling and shipping time. This ensures that OMEGA's Warranty to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product. If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return

(AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current

the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs. OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREB' ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABLITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages. CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic

WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence. The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit

charges. Have the OMEGA.

FOR WARRANTY RETURNS, please have the following nformation available BEFORE contacting OMEGA.

- Purchase order number which the product was PURCHASED,
 Model and serial number of the product under warranty, and
- 3. Repair instructions and/or specific problems relative to
- Purchase Order number to cover the COST of the repair 2. Model and serial number of the product and

FOR NON-WARRANTY RETURNS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting

3. Repair instructions and/or specific problems relative to the product. the product OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords customers the latest technology and engineering. OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© COPYRIGHT 2015 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, translated, or reduced to any electronic medium-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

CEOMEGA® **DRI-AC AC Powered AC Input DIN Rail Signal Conditioner** INSTRUCTION M5475/0715 SHEET Shop online at omega.com[™] e-mail: info@omega.com For latest product manuals: www.omegamanual.info

- Eliminates Ground Loops
- Field Configurable Input Ranges
- Field Configurable Output Ranges
- Touch Calibration Technology

Description

The DRI-AC is a DIN rail mount, AC input signal conditioner scale output. Input ranges such as 180-200V or 0-20V are possible with 1800VDC isolation between input, output and power. The using the 0-200V range. field configurable input and output offers flexible, wide ranging capability for scaling, converting or buffering AC inputs ranging from 5mA to 100mAAC or 50mV to 300VAC.

For current inputs above 100mA, it is recommended that an input shunt resistor be used and the DRI-AC be configured for Application The DRI-AC is useful in applications requiring an isolated, conditioned DC output from an AC signal. Typical applications include energy management, load shedding, motor current/load monitoring, locked rotor detection, isolation and data acquisition. The output of the DRI-AC can drive a digital meter for direct display or can interface with alarm or control devices including

the proper input range. For example, a 5A current transformer output can use the C006 shunt resistor (0.1 ohm, 5W) with the input of the DRI-AC set for 0-500mVAC. The DC output of the DRI-AC is proportional to the average of the fully-rectified AC input signal, and is calibrated for sine waves between 40-400Hz. PLCs and computers.

Touch Calibration Technology

The DRI-AC has three diagnostic LEDs. The green (RUN) LED The DRI-AC utilizes Touch Calibration technology which greatly simplifies calibration. The thermal drift and mechanical variis used for diagnostics to indicate that power is on. It will flash ability of the potentiometers has been removed and replaced guickly if the input signal is above the calibrated range or slowly with a digitally stable circuit. Once the unit is configured via if the input signal is below range. It is on continuously when the DIP switches for voltage or current, the pushbutton is used to unit is functioning within the calibrated range. precisely calibrate the minimum and maximum levels.

To set the input level within the dip switch configured range, simply apply the high input signal (voltage or current) and push the CAL button. The low input signal is then applied and push-Configuration ing the CAL button again stores the low input signal. The high The DRI-AC can be configured for input ranges from 50mV to 300V or 5mA to 100mA, with >90% input offset or it will and low input levels are stored in nonvolatile memory and correspond to the high and low output levels. These output levels adjust down to <10% of full scale input span (except on the are precisely adjusted using the input signal. 100mV/10mA range in which maximum offset or gain adjustment is 50%).

Touch Calibration technology enables precise calibration and provides more than 90% offset of the zero value and adjustment Unless a specific custom calibration is specified, the factory down to 10% of the full scale input span for most of the 16 switch presets the DRI-AC as follows: selectable input ranges. For example, the dipswitch configured 0-200V input range could be calibrated via pushbutton for 0-80V Input Range: 0 -500mV (i.e. 60% span reduction) or offset to a range of 120-200V (i.e. Calibrated Output: 4-20mA 60% offset and 60% span reduction). If the output was configured For other I/O ranges, refer to the tables. for 0-10V, then 120-200V input would correspond to the 0-10V full

Provides an Isolated DC Output in Proportion to an AC Input

- DIN Rail Mounting with IQRL
- Universal AC Power 85 to 265 VAC
- Plug-in Terminals

Advanced digital technology combined with ASIC technology allows the DRI-AC to be field configured for virtually any AC input to DC output within the limits specified.

Diagnostic LEDS

The yellow (INPUT) LED is on while calibrating the input level. The red (OUTPUT) LED is on while calibrating the output level.

WARNING: Do not change switch settings with power applied. Severe damage will result!

1. With power off, snap off the faceplate by lifting the right edge away from the heatsink. Slide the heatsink forward and off the module.

2. Choose the desired range from Tables 1-3. Return the heatsink to its original position and attach the faceplate before beginning calibration.

Calibration

For best results, calibration should be performed in the operating installation, allowing at least one hour for thermal stability of the system. If pre-calibration on a test bench is preferred, then an output load equal to the input impedance of the device connected to the DRI-AC output is recommended, along with a 1 hour warm up period.

1. For best results install the module on to a piece of DIN rail or the ACPB rail mounting accessories if desired. See the ACPB rail Data sheet for details.

Note: An ACPB rail is required to power the modules. See ordering information.

2. Connect the input to a calibrated AC source and the output to a voltage or current meter. Apply power and allow the system to reach thermal equilibrium (approx. 20 minutes).

3. Adjust the input signal to the desired maximum and observe that the green LED is on or flashing. Push the CAL button and

Table 1: Input Range Settings									
Ranges			Selector SW1						
AC Voltage	AC Current	1	2	3	4	5	6	7	
100mV	10mA								
200mV	20mA								
500mV	50mA			•		•			
1V	100mA								
2V									
5V						•			
10V									
20V									
50V			•			•			
100V									
200V									
300V				•				-	
Kev: ■ = 1 = ON or Closed									

Table 2: Output Range Settings

Ranges	Selector SW2							
Output	1	2	3	4	5	6	7	8
0 to 5V								
0 to 10V								
0 to 1mA								
4 to 20mA							-	
0 to 20mA								
Key: ■ = 1 = ON or Closed								

hold it down for more than 5 seconds (until the yellow and Green LEDs are flashing), then release the button.

Note: To quit the calibration mode and reset the unit, push and hold the CAL button for more than 5 seconds. Or, wait for more than two minutes and the unit will timeout and automatically reset to the previously stored calibration.

4. When the yellow and green LEDs stop flashing, the yellow and red LEDs will be on. Push the CAL button momentarily (the yellow and green LEDs will now be on).

5. Apply the maximum input signal level desired and push the CAL button to store. The yellow LED will now be on.

6. Apply the minimum input signal level desired and push the CAL button to store. The green and red LED will now be on.

7. Adjust the input signal while monitoring the output signal until the output is at the desired maximum level (e.g. 20.00mA), then push the CAL button to store (the red LED will be on).

8. Adjust the input signal while monitoring the output signal until the output is at the desired minimum level (e.g. 4.00mA), then push the CAL button to store (the yellow, green and red LEDs will be on).

9. To finish calibration, push the CAL button once again. The green LED will be on if the input is within the calibrated range.

Table 3: Input Type Settings

Input Turpe	SW1				
input type	8				
Current					
Voltage					
Key: ■ = 1 = On or Closed					

