OME-WISE-7000 SERIES
Web-Based Intelligent PAC Controllers
It is the policy of OMEGA Engineering, Inc. to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, human applications.
# Table of Contents

1. Introduction .................................................................................................................. 5
2. Before Connection ........................................................................................................ 8
3. Website Overview ........................................................................................................ 10
4. Basic Setting ................................................................................................................ 12
   4.1 Name Setting ........................................................................................................... 12
   4.2 Ethernet Setting ...................................................................................................... 12
   4.3 Module Setting ....................................................................................................... 13
   4.4 Password Setting .................................................................................................... 15
5. Advanced Setting .......................................................................................................... 16
   5.1 DI Attribute Setting ............................................................................................... 16
   5.2 DO Attribute Setting ............................................................................................. 17
   5.3 AI Attribute Setting ............................................................................................... 19
   5.4 AO Attribute Setting ............................................................................................. 21
   5.5 Internal Register Setting ....................................................................................... 22
   5.6 Timer Setting ......................................................................................................... 23
   5.7 Email Setting ......................................................................................................... 24
   5.8 CGI Command Setting .......................................................................................... 26
   5.9 Recipe Setting ....................................................................................................... 26
   5.10 P2P Setting ......................................................................................................... 28
6. Rules Setting ................................................................................................................ 30
   6.1 IF Condition .......................................................................................................... 32
   6.2 THEN/ELSE Action .............................................................................................. 40
   6.3 Summary of the Rules ........................................................................................... 49
   6.4 Rule Manager ....................................................................................................... 51
7. Download to Module ................................................................................................... 54
8. Upload from Module .................................................................................................... 55
9. Channel Status ............................................................................................................. 56
10. Firmware Update ....................................................................................................... 57
    10.1 Introduction .......................................................................................................... 57
    10.2 Install / Uninstall OME-WISE-7000 Firmware Uploader .................................. 57
    10.3 Update OME-WISE-7000 firmware .................................................................... 60
Appendix I : Modbus Address Table ............................................................................. 63
Appendix II : Quick Start of CJC Settings for OME-WISE-7118/ OME-WISE-7119.. .......................... 71
List of Figures

Figure 1-1 : System Architecture .................................................................5
Figure 2-1 : The switch is located at the back of the controller .........................8
Figure 2-2 : Select “Search” function on MiniOS7 Utility ..................................8
Figure 2-3 : IP Setting button on MiniOS7 Scan ............................................9
Figure 2-4 : Network Settings page ...............................................................9
Figure 3-1 : Main page of OME-WISE-7000 Web UI ....................................10
Figure 3-2 : OME-WISE-7000 Web UI Operation Procedures ..........................11
Figure 4-1 : Name Setting page .....................................................................12
Figure 4-2 : The Name location in OME-WISE-7000 Web Page .....................12
Figure 4-3 : Ethernet setting page .................................................................13
Figure 4-4 : OME-WISE-7000 DI/DO module setting page ...........................14
Figure 4-5 : OME-WISE-7000 AI/DO module setting page ...........................14
Figure 4-6 : OME-WISE-7000 AI/AO module setting page ...........................15
Figure 4-7 : Password setting page ................................................................15
Figure 5-1 : DI Attribute setting page ..........................................................17
Figure 5-2 : DO Attribute setting page .........................................................18
Figure 5-3 : AI attribute setting page ............................................................19
Figure 5-4 : AI Deadband Operation(> or >= a numerical value) ......................20
Figure 5-5 : AI Deadband Operation(< or <= a numerical value) .....................21
Figure 5-6 : AI Deadband Operation(= a numerical value) ............................21
Figure 5-7 : AO Attribute setting page ..........................................................21
Figure 5-8 : Internal Register setting page .....................................................22
Figure 5-9 : Timer setting page .....................................................................23
Figure 5-10 : Email setting page ....................................................................24
Figure 5-11 : Email channel value encoded syntax .......................................25
Figure 5-12 : CGI Command setting page .....................................................26
Figure 5-13 : Recipe setting page ...................................................................27
Figure 5-14 : Recipe Action management.......................................................27
Figure 5-15 : P2P setting page .......................................................................28
Figure 5-16 : OME-WISE-7000 Controller Selection ....................................29
Figure 6-1 : Rules setting page .....................................................................30
Figure 6-2 : Enable rules, edit rules and status display ..................................30
Figure 6-3 : Rule setting page ........................................................................31
Figure 6-4 : AI condition setting page ...........................................................32
Figure 6-5 : DI condition setting page ............................................................33
Figure 6-6 : DI counter condition setting page ............................................34
Figure 6-7 : DO counter condition setting page ........................................... 35
Figure 6-8 : Internal register condition setting page .................................... 35
Figure 6-9 : Timer condition setting page .................................................. 36
Figure 6-10 : P2P IF Condition setting page .............................................. 37
Figure 6-11 : P2P IF Condition detail setting page .................................... 38
Figure 6-12 : Rule Status IF Condition setting page .................................. 38
Figure 6-13 : "One-Time Action" & "Repeat Action" Items ...................... 40
Figure 6-14 : AO action page ................................................................. 41
Figure 6-15 : DO action page ................................................................. 42
Figure 6-16 : DI counter action page ....................................................... 42
Figure 6-17 : DO counter action page ....................................................... 43
Figure 6-18 : Internal Register action page .............................................. 43
Figure 6-19 : Timer action page .............................................................. 44
Figure 6-20 : Email action page .............................................................. 45
Figure 6-21 : CGI Command action page ................................................ 46
Figure 6-22 : Recipe action page ............................................................. 46
Figure 6-23 : P2P action page ................................................................. 47
Figure 6-24 : P2P action detail setting page ............................................ 47
Figure 6-25 : Rule Status action page .................................................... 48
Figure 6-26 : Clear/Save Rules ............................................................... 49
Figure 6-27 : Rule setting main page ...................................................... 49
Figure 6-28 : Rule Manager setting page ................................................. 51
Figure 6-29 : Rule Copy setting page ...................................................... 51
Figure 6-30 : Rule Reset setting page ...................................................... 52
Figure 6-31 : Rule Reorder setting page ................................................ 52
Figure 6-32 : Rule Swap setting page ..................................................... 53
Figure 7-1 : Enter the password ................................................................ 54
Figure 7-2 : Showing download progress .............................................. 54
Figure 7-3 : Message showing a successful download .............................. 54
Figure 8-1 : Message showing a successful upload .................................. 55
Figure 9-1 : Channel Status page ............................................................ 56
Figure 10-1 : Install OME-WISE-7000 Firmware Uploader .................... 57
Figure 10-2 : Select installation directory .............................................. 58
Figure 10-3 : Display installation progress ............................................. 58
Figure 10-4 : Complete the installation ................................................... 58
Figure 10-5 : Remove OME-WISE-7000 Firmware Uploader (1) ........... 59
Figure 10-6 : Remove OME-WISE-7000 Firmware Uploader (2) ........... 59
Figure 10-7 : Complete uninstalling OME-WISE-7000 Firmware Uploader ... 60
Figure 10-8: Assign IP address .................................................................61
Figure 10-9: Select the OME-WISE-7000 firmware ....................................61
Figure 10-10: Upload firmware .................................................................62
Figure 10-11: Display firmware update progress .......................................62
Figure 10-12: Complete firmware update ...............................................62
1 Introduction

OME-WISE-7000 (Web Inside, Smart Engine) is a product series that functions as control units for use in remote logic control and monitoring in various industrial applications. OME-WISE-7000 offers a user-friendly and intuitive HMI interface that allows users to implement control logic on controllers just a few clicks away; no programming is required. With this powerful and easy-to-use software, it will minimize the learning curve, shorten time to market and dramatically reduce the labor and cost spent on system development. OME-WISE-7000 system architecture is shown as below:

Through Web browser, users can access Web Server on OME-WISE-7000 Series controllers to perform tasks such as logic edition and download. A Rule Engine will be set up to manage and deploy rules for controllers. The Rule Engine will check whether the rules are valid or not and determine the execution of actions under specific conditions, for examples: setting up I/O channel values, perform Timer tasks, sending Email under a specific condition. In addition, through the Modbus TCP Protocol, it enables SCADA software to control and monitor I/O channel or system status on controllers in real time.
OME-WISE-7000 system features:

◆ **IF-THEN-ELSE logic rules execution ability**
OME-WISE-7000 controller equips with an IF-THEN-ELSE logic Rule Engine, it offers up to 36 IF-THEN-ELSE rules for users to set up the logic content. After completing rule edition and downloading rules to the OME-WISE-7000 controller, the Rule Engine will loop execute the rules in accordance with the execute order under specific conditions.

◆ **No programming is required to implement logic content on controllers**
OME-WISE-7000 provides user-friendly Web UI pages for editing control logic on the controllers. It enables to implement logic edition by a few clicks on the mouse to set up and deploy logic rules without writing a single line of code.

◆ **No extra software tool is required; all operations can be done through the Web browsers**
OME-WISE-7000 HMI interface runs on regular Web browsers. To edit control logic, it only requires a browser to connect to the Web server on OME-WISE-7000 controller. No extra software tool installation is needed on the target PC.

◆ **Support various hardware controllers that are with different I/O types**
The wide range of I/O function modules provided allows users to find best solutions that meet their requirements.

◆ **Provide Timer operation**
OME-WISE-7000 features Timer function. It allows user to perform specific tasks such as time delay.

◆ **Real-time remote alarm via Email and CGI command sending functions**
OME-WISE-7000 supports Email and CGI command sending functions. Email functions are important functions for real-time message communication. The sending action can be added to the logic edition as part of logic control to provide real-time message transmission function or sending CGI command for device control in response to specific events.

◆ **Fully P2P function between OME-WISE-7000 controllers**
OME-WISE-7000 offers P2P function that enables OME-WISE-7000 controllers
to directly communicate with other remote OME-WISE-7000 controllers on networks. All controllers can freely share their status information such as I/O channel value, DI/DO Counter or Internal Register to each others. The P2P operations can be incorporated into logic rules as Condition statements or Action statements for Condition evaluation criteria or Action executions.

◆ **Recipe function for Group Action operation**
OME-WISE-7000 provides Recipe function that allows to execute a sequence of actions previously saved in the Recipe to response to IF-THEN-ELSE logic rules Conditions. Different Recipe sets can be edited to meet various requirements for different applications.

◆ **Real-time monitoring system status of controllers**
OME-WISE-7000 supports Modbus TCP Protocol for users to perform real-time monitoring and control of the controllers. Please refer to Appendix 1 for the mapping table of controller system information and Modbus TCP protocol Address. In addition, OME-WISE-7000 provides an easy-to-view HMI web interface for real-time monitoring. It allows users to get important real time system information even without SCADA software.

◆ **Password protection for access control when download logic rules**
OME-WISE-7000 HMI web page offers password protection; it allows users to modify the password for access control when download the logic rules.

This document is intended to give you a full-range instruction to OME-WISE-7000 controllers. You will be able to learn how to edit logic of the rules and how to download the rules to the controllers for conditional execution.
2 Before Connection

Before connecting to OME-WISE-7000 Web HMI pages, please complete the following steps for network configuration. The network configuration of the controllers has to be set up for users to connect to Web server on OME-WISE-7000 controllers.

- Please make sure the Init/Normal switch on the controller has been switched to “Normal” position. Connect the controller to power supply and to the network. The Init/Normal switch position is shown as below:

  ![Figure 2-1: The switch is located at the back of the controller](image)

- Install and execute MiniOS7 Utility.
- On toolbar, select Connection→Search (shown as below). A ”MiniOS7 Scan” window will pop up and automatically start searching controllers in the network.

  ![Figure 2-2: Select “Search” function on MiniOS7 Utility](image)
◆ After finish searching, find the target controller and click "TCP Broadcast", and then click "IP Setting" button on the toolbar as shown below:

![IP Setting button on MiniOS7 Scan](image1.png)

**Figure 2-3 : IP Setting button on MiniOS7 Scan**

◆ Click "IP Setting" button, a network settings window will pop up. Input the information and click the "Set" button to complete the settings.

![Network Settings page](image2.png)

**Figure 2-4 : Network Settings page**

◆ After finish Network settings, reboot the controller for the changes to take effect.
3 Website Overview

Please use IE or Firefox browser to connect to Web server on OME-WISE-7000 controller. In order to get a better operation experience, 1280x1024 resolution is recommended. The main page of OME-WISE-7000 controller Web page is shown as below:

![Main page of OME-WISE-7000 Web UI](image)

**Figure 3-1 : Main page of OME-WISE-7000 Web UI**

Six buttons will appear on the upper part of the Web page:

- Basic Setting
- Advanced Setting
- Rules Setting
- Channel Status
- Upload from Module
- Download to Module

The main page will display the OME-WISE-7000 firmware version information, module information and general operating procedures.
The procedures are as follows:

![Diagram showing the sequence of settings]

**Figure 3-2 : OME-WISE-7000 Web UI Operation Procedures**

Please note: DO NOT refresh the Web page when you are editing the pages, otherwise the contents of all previous settings will be gone. And please remember all settings will take effect only when they have been downloaded to the modules, if you close the Web page before finishing “Download to Module”, all settings will be disappeared as well.

In addition, there is a language selection menu on the left region of the main page. OME-WISE-7000 Web UI offers: English, Traditional Chinese and Simplified Chinese for users to choose their prefer languages. The system will memorize previous language selection, and will automatically switch to the previously chosen language next time when connected to the OME-WISE-7000 Web UI. Please note: do not select the language during the process of Rule edition; otherwise the previous edited content might disappear. It is recommended to perform language selection at the beginning when connected to the OME-WISE-7000 Web UI or after finishing “Download to Module”.

More detail information of each button will be given in the following parts.
4 Basic Setting

Under the Basic Setting section, it allows to perform Name Setting, Ethernet Setting, Module Setting and Password Setting.

4.1 Name Setting

Name Setting Page is for you to give your controller a name for easy recognition and identification. Name Setting Page is shown as follow:

![Name Setting Page]

If you have already given a name to this controller, when you get on this page, the name you previously set up will be shown on the pane. After you modify or input the name, click Save to save the name. The name you input will appear on the top of the page as shown below. Please note: the Save button on Name Setting Page is for temporary storage only, to complete the Name Setting and save the change to the controller, please finish the process of “Download to Module”.

![The Name location in OME-WISE-7000 Web Page]

4.2 Ethernet Setting

Ethernet Setting allows you to set network configuration, web server port, and the NetID of Modbus TCP protocol on hardware devices. The following figure illustrates the configuration interface:
Each time when you enter this page, it will display current network configuration automatically read from the hardware devices. You can modify IP/Mask/Gateway configuration of the hardware devices in this section. After you finish modification, click “Save” and then all changes will be saved and written back to the hardware. You can also modify the web server port and the Modbus TCP NetID in the same way.

Please note: if you make any modification to the network configuration, the hardware device will reboot itself and re-connect to the web page automatically about 5 seconds later.

4.3 Module Setting

On the module configuration page, it allows users to set up configuration of AI/AO channels on Analog I/O Module such as: voltage range, current range, or operation modes. The hardware module will be automatically detected and will appear on the drop down list. The Module Setting page allows users to set up the following three types of module (different modules may equip with different I/O):

◆ DI/DO Module (Digital I/O module): includes OME-WISE-7142, OME-WISE-7144, OME-WISE-7151, OME-WISE-7152, OME-WISE-7160 and OME-WISE-7167 modules. These modules contain DI / DO channels only, therefore there is no need to set up configuration for channel operation. The setting page is shown as below:
AI / DO Module (Analog Input module): includes OME-WISE-7105, OME-WISE-7115, OME-WISE-7117, OME-WISE-7118Z and OME-WISE-7119 modules. These modules contain AI channel, therefore the voltage range, current range, or operation mode (such as Thermistor, RTD or Thermocouple) of each AI channel must be defined. If the AI channel is connected with Sensor Input (Thermistor, RTD or Thermocouple), WISE provide Celsius(°C) and Fahrenheit(°F) unit selection for the AI input. The setting page is shown as below:

AI / AO Module (Analog I/O module): OME-WISE-7126 module. This module equips with both AI and AO channel, therefore the voltage range or current range for each AI/ AO channel must be defined. The setting page is shown as below:
4.4 Password Setting

Password Setting allows users to change the password and password hint for access control when download logic rules. The Password Setting page is as follow:

![Password Setting Page](image)

Figure 4-7 : Password setting page

To avoid unauthorized access and altering of data; it is required for users to input password before they start to download control logic to the controllers. **The default password for access control is set as “wise”**. You can modify the password and password hint on this page. Password length is limited to 16 characters and the password hint length is limited to 20 characters.
5 Advanced Setting

Advanced Setting provides additional features and allows you to perform channel configuration on hardware devices. Click the Advanced Setting button, a column of buttons will appear on the left of the page:

- DI Attribute Setting
- DO Attribute Setting
- AI Attribute Setting
- AO Attribute Setting
- Internal Register Setting
- Timer Setting
- Email Setting
- CGI Setting
- Recipe Setting
- P2P Setting

Please note: In order to avoid possible error when performing rule definition (IF-THEN-ELSE), please always finish configuration in Advanced Setting before starting to define Rules. Avoid unnecessary change in Advanced Setting after you finishing rule definition. Unexpected errors might occur if you violate this sequence: Advanced Setting → Rule Setting. In case you make any modification, please double check your settings and Rules definition to make sure no errors are present.

For each module may carry different I/O channels, if the related DI Attribute Setting, DO Attribute Setting, AI Attribute Setting or AO Attribute Setting does not apply to the selected module, the corresponding buttons will appear “Disable”. The following sections will describe more detail information for these configurations.

5.1 DI Attribute Setting

DI Attribute setting page allows to set up detail DI channel counter configuration. The configuration page is shown as below:
Follow the following steps:

i. Specify the channel you are going to configure by selecting channel index from the dropdown list of channel field in “Module & Channel” section.

ii. Input Nickname for each I/O channel, this nickname will be displayed on the “Channel Status” page.

iii. Input the time interval in the “Filter” field. The time interval for filter is the minimum duration a signal has to present to make a change to the DI channel value. If the signal last shorter than this filter time interval, this signal change will be determined to be noise instead of a valid signal change. Default Filter time interval will be 0 and this value must be multiples of 10ms, for example, a setting of 20 would mean a 200 ms filter (20 x 10 ms).

iv. Please set the trigger criteria for triggering the counter to count. There are three criteria: HI to LOW, LOW to HI and Status Change. If you select “Disable” indicates that the counter of this DI channel will not function.

v. You can set the initial value of the counter in the “Initial Value” field. This counter will start counting from the initial count value. The default initial value is 0.

vi. Repeat steps i ~ v. After all DI channel settings are completed, click “Save” button to save the changes.

5.2 DO Attribute Setting

DO Attribute Setting page allows to set up detail configuration of DO channel, including Power On value, Counter and Pulse Output. You don’t need to finish all configurations; configure the one(s) according to your
needs. The configuration page is shown as below:

Follow the following steps:

i. Specify the channel you are going to configure by selecting channel index from the dropdown list of channel field in “Module & Channel” section.

ii. Input Nickname for each I/O channel, this nickname will be displayed on the “Channel Status” page.

iii. You can specify the initial status to be “ON” or to be “OFF” when the hardware device is power on. Select the value from the dropdown list of “Power On Value” field. The default value is “OFF”.

iv. You can set the trigger criteria for triggering the counter to count. There are three criteria: HI to LOW, LOW to HI and Status Change. This field cannot be “Disable” if you want to use the counter function of this channel. You can also specify the initial value of the counter in the “Initial Value” field. This counter will start counting from the initial count value. The default initial value is 0.

v. If you check the Enable pulse output checkbox, it will allow this DO channel to perform pulse output. In Pulse Output mode, the selected DO channel will generate a square wave according to specified parameters (Pulse High and Pulse Low). Pulse High and Pulse Low are required and has to be entered in multiples of 10ms. Pulse High indicates the “ON” time duration and Pulse Low indicates the “OFF” time duration in a periodic Pulse cycle.

vi. Repeat steps i ~ v. After all DO channel settings are completed, click
“Save” button to save the changes.

5.3 AI Attribute Setting

AI Attribute Setting section is for specifying a Deadband value and a scale range for the AI channel on the OME-WISE-7000 controller. As we know, when the controller receives a signal from AI channel, if the change of this value received matches the evaluation criteria that was previously defined in Condition statements; the result of this IF-THEN-ELSE evaluation will be “true”. In order to avoid signal oscillation that may result in instability to the status changes, the user can set up a Deadband value for the AI channel; when there is a change to the AI channel, the actions will occur when this change matches the evaluation criteria value plus or minus the Deadband value. The AI attribute configuration page is shown as below:

![AI Attribute Setting Page](image)

Figure 5-3: AI attribute setting page

Follow the following steps:

i. Specify the channel you are going to configure by selecting channel index from the dropdown list of channel field in “Module & Channel” section.

ii. Input Nickname for each I/O channel, this nickname will be displayed on the “Channel Status” page.

iii. You can set the Deadband value of this AI channel in the “Deadband” field, on the right side of the Deadband field, the AI channel value range will be displayed. For example, the channel value range is -500mV~500mV in Figure 5-3. The default Deadband value is 0.

iv. In the “Scale” field, AI channel raw data can be set to operate with linear proportion between “MIN” and “MAX” values. IF Condition will use the adjusted value in the logic Rule operation, and the AI value retrieved from Modbus TCP and Web HMI would be the adjusted value. The default value for MAX and MIN is 0, it mean
disable the Scale function.

v. Repeat steps i ~ iv. After all AI Channel settings are completed, click “Save” button to save the changes.

There are three operation styles for AI Deadband. Detail description is as below. The AI Channel setting in following examples is 0mA ~ 20mA.

(1) When AI > or >= a numerical value:
Assuming the Deadband value is set to be 2 mA, and the following statements are defined in the related logic Rule: IF AI0>10mA, THEN DO=ON, ELSE DO=OFF, that means, when AI0 receives a signal that exceed 10mA, the DO channel will change to ON immediately, however, when the AI0 channel value drops and becomes lower than 10mA, the DO channel will not change back to OFF immediately until the value reaches 8mA (10mA minus the Deadband value 2mA), as shown in following figure.

(2) When AI < or <= a numerical value:
Assuming the Deadband value is set to be 2 mA, and the following statements are defined in the related logic Rule: IF AI0<10mA, THEN DO=ON, ELSE DO=OFF, that means, when AI0 receives a signal which is lower than 10mA, the DO channel will change to ON immediately, however, when the AI0 channel value exceed 10mA, the DO channel will not change back to OFF immediately until the value reaches 12mA (10mA plus the Deadband value 2mA), as shown in following figure.
(3) When AI = a numerical value:
Assuming the Deadband value is set to be 1 mA, and the following statements are defined in the related logic Rule: IF AI0 = 9mA, THEN DO=ON, ELSE DO=OFF, that means, when AI0 receives a signal between 8mA (9mA minus the deadband value 1mA) and 10mA (9mA plus the deadband value 1mA), the DO channel will change to ON immediately. However, when the AI0 channel value exceed 10mA, or is lower than 8mA, the DO channel will change to OFF, as shown in following figure.

5.4 AO Attribute Setting
AO Attribute Setting page allows to set up initial value of the AO channel. The configuration page is shown as below:

![AO Attribute Setting Page](image-url)
Follow the following steps:

i. Specify the channel you are going to configure by selecting channel index from the dropdown list of channel field in “Module & Channel” section.

ii. Input Nickname for each I/O channel, this nickname will be displayed on the “Channel Status” page.

iii. You can set the initial value of the AO channel in the “Power On Value” field. The hardware device will output this value when is power on. The default initial value is 0.

iv. Repeat steps i ~ iii. After all AO Channel settings are completed, click “Save” button to save the changes.

5.5 Internal Register Setting
OME-WISE-7000 provides 48 Internal Registers; they can be used to hold temporary variables and to read/write data via Modbus address. The configuration page is shown as below:

![Internal Register Setting Page]

**Figure 5-8 : Internal Register setting page**

Follow the following steps:

i. A checkbox appears in front of each Internal Register; check the checkbox to enable the Internal Register. Input a value if you want to
set a default value for that Internal Register, and set the nicknames for the Internal Register, this nickname will be displayed on the “Channel Status” page.

ii. After you finish all Internal Registers selections and settings, click “Save” button to save the settings.

5.6 Timer Setting

OME-WISE-7000 provides 12 groups Timer for timing functions. The Timer status can be “Not Timeout” or “Timeout”. They can be included in the IF Condition statements. The Timer Action can be “Start” or “Reset”. The Start Action will start to run the Timer and if the Start Action is triggered one more time when the Timer is running, the Timer will restart again. The Reset action will reset the Timer and stop running the Timer. The Timer will be in “Timeout” status only when the Timer is running and reached the setting time, otherwise, the status of Timer will remain in “Not Timeout”. The Timer setting interface is shown as below:

![Figure 5-9 : Timer setting page]

Follow the following steps:

i. “Timer Amount” field is required. Select the total number of timer you are going to use from the dropdown list.

ii. Specify the timer you want to set up by selecting its index number from the dropdown list of the “Index” field.

iii. “Period” field is required for each timer; please input the period interval in units of seconds.

iv. Specify the initial status of each timer from the dropdown list of the “Initial Status” field. Select “Start” indicates the timer will start to count as soon as the hardware device is power up. “Stop” indicates the Timer will remain off when the hardware device is power up; it will not be activated until being triggered under certain conditions. The default setting of initial Status is “Stop”.

23
v. Repeat steps ii ~ iv. After all timer settings are completed, click “Save” button to save the changes.

5.7 Email Setting
OME-WISE-7000 supports up to 12 Email messages. This function allows sending pre-input Email message(s) to pre-set Email receiver(s) under certain conditions. The configuration page is shown as below:

![Email setting page]

Figure 5-10: Email setting page

Follow the following steps:

i. Specify the numbers of email messages you want to set up from the dropdown list of the “E-mail Amount” field.

ii. Specify the email group number from the dropdown list of the “Index” field.

iii. Enter the IP or the domain name of the SMTP server in the “SMTP Server” field.

iv. If SMTP server requires account and password validation, please
select the Authentication Checkbox, and continue steps v~vi to login into the SMTP server. If SMTP server don’t need account and password validation, uncheck the Authentication Checkbox and skip steps v~vi, go directly to step vii.

v. Enter the SMTP server login ID in the “Login ID” field.
vi. Enter the SMTP server password in the “Password” field.

vii. Enter the sender’s name in the “Sender Name” field.

viii. Enter the sender’s email address in the “Sender Email Address” field.

ix. Enter the receiver’s email address in the “1st ~5th Receiver Email address” field. Please note: you can input up to 5 receivers, at least one email address has to be entered. Please enter the email address in sequence to avoid possible error.

x. Enter the email subject in the “Subject” field.

xi. Enter the content in the “Content” field. The length of the content cannot exceed 160 characters. In addition, Email provides an encoded string that allow user to add current channel value into Email content. The syntax is shown as below:

```
$aiN
```

Variables are prefixed with a dollar sign $ to get the value of the current channel.

<table>
<thead>
<tr>
<th>The variable type:</th>
<th>The channel index.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ai  AI channel value</td>
<td>Please note: Do not input the un-existed channel index.</td>
</tr>
<tr>
<td>ao  AO channel value</td>
<td></td>
</tr>
<tr>
<td>di  DI channel value</td>
<td></td>
</tr>
<tr>
<td>do  DO channel value</td>
<td></td>
</tr>
<tr>
<td>ci  DI counter value</td>
<td></td>
</tr>
<tr>
<td>co  DO counter value</td>
<td></td>
</tr>
<tr>
<td>ir  Internal Register</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-11 : Email channel value encoded syntax

The user can also add channel value encoded string into Email content from the I/O channel selection interface.

xii. Repeat steps ii ~ xi. After all email groups settings are completed, click “Save” button to save the changes.
5.8 CGI Command Setting
OME-WISE-7000 offers up to 12 sets of CGI Command setting. This function allows sending pre-input CGI Command to pre-set Remote Server under certain conditions. The configuration page is shown as below:

![Figure 5-12: CGI Command setting page](image)

Follow the following steps:

i. Specify the numbers of CGI Commands you want to set up from the dropdown list of the “CGI Amount” field.

ii. Specify the CGI group number from the dropdown list of the “Index” field.

iii. Enter the Remote Server IP, Port number and CGI Command in the “CGI Command” field.

iv. Enter the number in the “Retry Count” field. It means the retry number OME-WISE-7000 will try when it can't connect with Remote Server.

v. Enter the number in the “Retry Interval” field. It means the time interval between each retry connection. The unit is Second

vi. Repeat steps ii ~ v. After all CGI groups settings are completed, click “Save” button to save the changes

5.9 Recipe Setting
OME-WISE-7000 offers up to 12 sets of Recipe setting. A sequence of actions can be stored and saved in a Recipe, users can setup to execute this sequence of actions that was previously stored in the Recipe when an IF condition is matched. A Recipe contains a sequence of actions, therefore, we can say a Recipe is a macro for Actions. The configuration page for Recipe Setting is shown as below:
Follow the following steps:

i. Select the total number of Recipe you are going to use from the dropdown list of the Recipe Amount field.

ii. Assign an index number to the Recipe from the dropdown list of the “Index” field.

iii. Select a THEN/ELSE Action from the dropdown list of the Action field.

iv. Click the Add button. A THEN/ELSE Action Setting page will appear for you to set up related THEN/ELSE Action Settings, please refer to THEN/ELSE Action.

v. After you finish setting up THEN/ELSE Action Settings, the page will refresh automatically and the Actions will be listed on Recipe.

In order to meet application requirement, for some Actions, OME-WISE-7000 offers options to execute the Action one-time or repeatedly.
• One Time: When the IF Condition is TRUE, this Action will be executed once and only once. This Action will not be executed again until the IF Condition turns to be TRUE again.
• Repeat: When the IF Condition is TRUE, this Action will be executed repeatedly until the IF Condition turns to be FALSE.

vi. All selected Actions will be listed on the Recipe page. Click on the radio checkbox to select the target Action, you can edit the selected Action by click on Edit button, or delete the Action from the list by click on Delete button. To rearrange the order of the Action, click the Move Up or Move Down button to move the target Action to the desired order. To delete all Actions, click on the Clear All button to remove all actions from the list.

vii. Repeat steps ii ~ vi. After all Recipe settings are completed, click “Save” button to save the changes.

5.10 P2P Setting
OME-WISE-7000 supports up to 8 P2P Setting. This function enables OME-WISE-7000 controllers to communicate with other remote controllers directly. The remote controllers can freely share their data such as I/O value, DI/DO Counter or Internal Register status information with local OME-WISE-7000 controller. The configuration page is shown as below:

Follow the following steps:
- Select the total number of P2P settings you are going to use from the dropdown list.
- Assign an index number to the P2P setting from the dropdown list.

![Figure 5-15: P2P setting page](image)
of the “Index” field.

iii. In the “IP” field, input the IP of the remote OME-WISE-7000 controller that you want to communicate with.

iv. In the “Scan Interval” field, input the time interval in seconds. The controller will communicate with the target remote controller every specified time-interval. The default value is 5 seconds.

v. In the “Modbus TCP NetID” field, input the NetID of the remote OME-WISE-7000 controller.

vi. In the Module Type field, select OME-WISE-7000 as the type of the remote controller. OME-WISE-7000 offers various controllers to choose from. The configuration page for OME-WISE-7000 is shown as below:

![Figure 5-16: OME-WISE-7000 Controller Selection](image)

vii. In the Module Name, select the name of the remote OME-WISE-7000 controller from the dropdown list.

viii. Repeat steps ii ~ vii. After all P2P settings are completed, click “Save” button to save the changes.
6 Rules Setting

After finishing all Advanced Setting configurations, the user can start to edit IF-THEN-ELSE rules. Click the “Rules Setting” button, a Rule Manager table will appear, and the list of rules will be displayed on the left side of the page. At the left side of the page, the status of each rule will be displayed. And at the right side of the page will show detail content of each rule that was previously defined by the users. The rule setting page is shown as below:

![Rule Manager Table](image)

**Figure 6-1 : Rules setting page**

On the left side of the page, a Rule Manager table will appear at the top of the page. (More detail information for Rule Manager will follow.) Under the Rule Manager table, the list of rule contains four items:

![Rule Manager Table](image)

**Figure 6-2 : Enable rules, edit rules and status display**
◆ **Enable**: A checkbox appears before each rule; check the checkbox to enable the rule and this rule will be executed after being downloaded, otherwise it will only be stored temporarily.

◆ **No.**: Indicates the identification number of the rule. To avoid possible error, it is recommended to assign the identification number in sequence.

◆ **Edit**: Click the Edit button to edit detail logic content of the rule.

◆ **Status**: “OK” indicates this rule is successfully defined. “Error” indicates there is error occurs. Please note: if you make modification in Advanced Setting after finish defining the rules, it might cause unexpected error due to the changes, some variables may no longer exist. Therefore, in case you make any modification, please double check your settings and Rules definition to make sure no errors are present.

Click the “Edit” button, the Rules Setting page will appear:

![Rules Setting Page](image)

**Figure 6-3 : Rule setting page**

The rule number will be displayed at the top of the page. The Description field provides a space for users to make a brief description of this Rule. An IF-THEN-ELSE Rule setting table appears under the description section. Each Rule offer 3 IF conditions. The user could create IF(condition) statements by selecting appropriate operator (AND, OR) from the dropdown list. In order to avoid possible errors, the design of this table is foolproof: The user has to finish setting up Condition1 before moving on Condition2, and so on. Each Rule also offers 3 THEN actions, and 3 ELSE actions. More detail information will follow.
6.1 IF Condition

In IF Condition statement, the following values or their status can be included as evaluation criteria:

- AI
- DI
- DI Counter
- DO Counter
- Internal Register
- Timer
- P2P
- Rule Status

If the hardware device equips with AI or DI channel, their corresponding AI or DI channel will automatically appear on the list. To include subjects other than AI or DI channels in the IF Condition statement; they have to be pre-defined in Advanced Setting first. The subjects that already being defined in Advanced Setting will appear on the dropdown list of IF Condition. Select the subject you want to use, and then click right side button, a window will pop up for you to edit detail information.

6.1.1 AI

AI channel value can be used as evaluation criteria for IF condition statement; the editing page for AI Condition Setting is shown as below:

![AI Condition Setting](image)

**Figure 6-4 : AI condition setting page**

Follow the following steps:

i. Select the channel that you are going to use the value as evaluation criteria for IF condition statement. Specify the channel from the dropdown list of channel field in the “Module & Channel” section.

ii. Set up the expression statement for this channel value. Select an operator from “=”,”>”,”<”,”>=” or “<=”.

iii. Specify the evaluation value. If this AI channel value match the
evaluation criteria, the result of this condition evaluation will be “true”.

You can compare the AI channel value with the following 3 values for condition evaluation:

- **Self-Defined value**: Giving a self-defined value to compare with the AI channel value.

<table>
<thead>
<tr>
<th>Module &amp; Channel</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OME-WISE-7126 Ch 0</td>
<td>=</td>
<td>Assign Value as 0</td>
</tr>
</tbody>
</table>

- **AI Channel value**: Using other AI channel values from the local module to compare with the AI channel value.

<table>
<thead>
<tr>
<th>Module &amp; Channel</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OME-WISE-7126 Ch 2</td>
<td>=</td>
<td>AI</td>
</tr>
</tbody>
</table>

- **Internal Register**: Using the internal register value to compare with the AI channel value.

<table>
<thead>
<tr>
<th>Module &amp; Channel</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OME-WISE-7126 Ch 0</td>
<td>=</td>
<td>Internal Register 1</td>
</tr>
</tbody>
</table>

iv. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

### 6.1.2 DI

DI channel value can be used as evaluation criteria for IF condition statement; the editing page for DI Condition Setting is shown as below:

**Figure 6-5**: DI condition setting page

Follow the following steps:

i. Select the channel that you are going to use the value as evaluation criteria for IF condition statement. Specify the channel from the dropdown list of channel field in “Module & Channel” section.

ii. Define the evaluation criteria of the status in IF statement to be “OFF” “ON” “ON to OFF” “OFF to ON” or “Change”. Once the
DI channel value matches the evaluation criteria, the result of this condition evaluation will be “true”. Please note: If the statement involves state transitions: “ON to OFF”, “OFF to ON” and “Change”, the action will be executed only once and only at the moment when the state transition occurs.

iii. Click “Save” button to save the settings. This popup window will be closed and return to the Rule settings page.

6.1.3 DI Counter

DI counter value can be used as evaluation criteria for IF condition statement; the editing page for DI counter Condition Setting is shown as follow:

![DI Counter Condition Setting](image)

**Figure 6-6 : DI counter condition setting page**

Follow the following steps:

i. Select the channel that you are going to use the value as evaluation criteria for IF condition statement. Specify the channel from the dropdown list of channel field in the “Module & Channel” section.

ii. Set up the expression statement for this counter value. Select an operator from “=”, “>”, “<”, “>=”, “<=” or “Change”. If the operator is “=”, “>”, “<”, “>=” or “<=”, an evaluation value has to be specified; if the DI counter value match the evaluation criteria, the result of this condition evaluation will be “true”. If the operator is “Change”, the condition will be “true” when there is a change to the counter value. The action will be executed only once and only at the moment when DO Counter experience a change.

iii. Click “Save” button to save the settings. This popup window will be closed and return to the Rule settings page.

6.1.4 DO Counter

DO counter value can be used as evaluation criteria for IF condition statement; the editing page for DO counter Condition Setting is shown as follow:
Follow the following steps:

i. Select the channel that you are going to use the value as evaluation criteria for IF condition statement. Specify the channel from the dropdown list of channel field in the “Module & Channel” section.

ii. Set up the expression statement for this counter value. Select an operator from “=”, “>”, “<”, “>=”, “<=” or “change”. If the operator is “=”, “>”, “<”, “>=” or “<=”, an evaluation value has to be specified; if this DO counter value match the evaluation criteria, the result of this condition evaluation will be “true”. If the operator is “Change”, the condition will be true when there is a change to the counter value. The action will be executed only once and only at the moment when DO Counter experience a change.

iii. Click “Save” button to save the settings. This popup window will be closed and return to the Rule settings page.

6.1.5 Internal Register

Internal Register value can be used as evaluation criteria for IF condition statement; the editing page for Internal Register Condition Setting is shown as follow:

Follow the following steps:

i. Select the Internal Register that you are going to use the value as evaluation criteria for IF condition statement. Specify the Internal Register Index from the dropdown list of “Index” field.

ii. Set up the expression statement for this Internal Register value.
Select an operator from “=",">","<","\geq" or "\leq".

iii. Specify the evaluation value. If this Internal Register value match the evaluation criteria, the result of this condition evaluation will be “true”.
You can compare the Internal Register with the following 3 values for condition evaluation:
- Self-Defined value: Giving a self-defined value to compare with the Internal Register value.
- AI Channel value: Using AI channel values from the local module to compare with the Internal Register value.
- Internal Register: Using other internal register value to compare with the Internal Register value.

iv. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

6.1.6 Timer
Timer condition can be used as evaluation criteria for IF condition statement; the editing page for timer condition setting is shown as follow:

![Timer Condition Setting Page](image)

Follow the following steps:
1. Select the timer that you are going to use its status as evaluation criteria for IF condition statement. Specify the timer index from
the dropdown list of “Index” field.

ii. Define the evaluation criteria of the timer status in IF statement to be “Not timeout” or “Timeout”. If the timer status match the evaluation criteria, the result of this condition evaluation will be “true”.

iii. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

6.1.7 P2P

Through P2P function, the data (DI, AI, DI/DO Counter or Internal Register) from remote OME-WISE-7000 controllers can be retrieved and can be incorporated into IF Condition statements. To set up P2P condition Setting, first of all, you will need to assign an index number and specify what data you are going to use in the IF condition statements. Secondly, you will need to set up detail settings for the Condition settings. The configuration page for setting up index and condition is shown as below:

![P2P Condition Setting](image)

**Figure 6-10 : P2P IF Condition setting page**

Follow the following steps:

i. Assign an index number to the P2P Condition Setting from the dropdown list of the “Index” field.

ii. Specify the data for use in the Condition statements from the dropdown list in the Condition field.

iii. Click on the button, a Condition setting page will appear for setting up detail information of the Condition settings. The configuration page for Condition settings is shown as below:
iv. For detail information of Condition Setting, please refer to IF Condition; sections regarding DI, AI, DI Counter, DO Counter, and Internal Register.

v. Click “Save” button to save the settings. The popup Condition Setting page will be closed and return to P2P Condition setting page.

vi. On the P2P Condition setting page, click “Save” button to save the settings. The P2P Condition setting page will be closed and return to the Rule Setting page.

6.1.8 Rule Status
The Rule Status (if the Rule is disabled or enabled) can be used as evaluation criteria for IF condition statement. Please note: there must be at least one edited rule on OME-WISE-7000 controller for setting up Rule Status in the IF Condition Setting page. The editing page for Rule Status Condition Setting is shown as below:

Figure 6-12 : Rule Status IF Condition setting page
Follow the following steps:

i. Specify the index number of the Rule that is going to be used in the IF Condition statement from the dropdown list of the “Index” field.

ii. Specify the Rule status to be Disable or Enable from the dropdown list of the “Status” field. When the Rule status matches the specified status, the evaluation result will be “true”.

iii. Click “Save” button to save the settings. The Rule Status Condition Setting page will be closed and return to the Rule setting page.
6.2 THEN/ELSE Action

In the THEN/ELSE Action statement, the following values or status can be included:

- AO
- DO
- DI Counter
- DO Counter
- Internal Register
- Timer
- Email
- CGI
- Recipe
- P2P
- Rule Status

Select the component for Action statement from the combo box, and then click the right side button, a window will pop up for you to edit detail information. The THEN Action statement will be executed only when the result of IF condition statement is found “true”; otherwise the ELSE Action statement will be executed. In order to meet application requirement, for some Actions, OME-WISE-7000 offers options to execute the Action one-time or repeatedly.

- One Time: when the IF Condition is TRUE, this Action will be executed once and only once. This Action will not be executed again until the IF Condition turns to be TRUE again.
- Repeat: when the IF Condition is TRUE, this Action will be executed repeatedly until the IF Condition turns to be FALSE.

![Figure 6-13: "One-Time Action" & "Repeat Action" Items](image)

6.2.1 AO

You can execute an action in AO channel in THEN/ELSE Action statement; the editing page for AO Action is shown as follow:
Follow the following steps:

i. From the dropdown list of the “Module & Channel” field, select the AO channel index to execute actions.

ii. Specify the Operator in the “Operator” field. The 3 operators are as follow:
   - “=”: Indicate assign the new AO channel value as the value in “Value” field.
   - “+=” : Indicate assign the new AO channel value as the original AO channel value plus the value in “Value” field.
   - “−=” : Indicate assign the new AO channel value as the original AO channel value minus the value in “Value” field.

iii. In the “Value” field, 4 sources can be used as value:
   - Self-Defined Value: giving a value defined by user
   - AI Channel value: using AI channel values from the local module
   - AO Channel value: using AO channel values from the local module
   - Internal Register: using value of Internal Register
iv. Click “Save” button to save the settings. The popup window will be closed and will return to the rule setting page.

6.2.2 DO

You can execute an action in DO channel in the THEN/ELSE Action statement; the editing page for DO Action is shown as follow:

![DO Action Setting](image)

**Figure 6-15 : DO action page**

Follow the following steps:

i. Select the DO channel to execute actions from the dropdown list of channel field in the “Module & Channel” section.

ii. Specify the output value of DO Channel from the dropdown list of the “Channel Value” field. The output value can be “OFF”, “ON” or “Pulse Output”. Please note: to make “Pulse Output” option available here, you have to enable “Pulse Output” in Advanced Setting before editing Rules Setting.

iii. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

6.2.3 DI Counter

You can reset DI counter in the THEN/ELSE Action statement; the editing page for DI counter Action is shown as follow:

![DI Counter Action Setting](image)

**Figure 6-16 : DI counter action page**

Follow the following steps:

i. Select the DI channel to reset DI counter from the dropdown list of channel field in the “Module & Channel” section.

ii. Click “Save” button to save the settings. The popup window will
be closed and return to the Rule settings page.

6.2.4 DO Counter
You can reset DO counter in THEN/ELSE Action statement; the editing page for DO counter Action is shown as below:

```
Figure 6-17 : DO counter action page
```

Follow the following steps:
1. Select the DO channel to reset DO counter from the dropdown list of channel field in the “Module & Channel” section.
2. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

6.2.5 Internal Register
You can modify the value of Internal Register in the THEN/ELSE Action statement; the editing page for Internal Register Action Setting is shown as below:

```
Figure 6-18 : Internal Register action page
```

Follow the following steps:
1. Select the pre-defined Internal Register from the dropdown list of the “Index” field. Please note: the Internal Register you select has to be enabled in Advanced Setting.
2. Specify the Operator in the “Operator” field. The 3 operators are as follow:
   - “=” : Indicate assign the new Internal Register value as the value in “Value” field.
   - “+=” : Indicate assign the new Internal Register value as the
original Internal Register value plus the value in “Value” field.
- “−=”: Indicate assign the new Internal Register value as the original Internal Register value minus the value in “Value” field.

iii. In the “Value” field, 4 sources can be used as value:
- Self-Defined Value: giving a value defined by user

<table>
<thead>
<tr>
<th>Index</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>=</td>
<td>0</td>
</tr>
</tbody>
</table>

- AI Channel value: using AI channel values from the local module

<table>
<thead>
<tr>
<th>Index</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>=</td>
<td>AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OME-WSE-7126 Ch 3</td>
</tr>
</tbody>
</table>

- AO Channel value: using AO channel values from the local module

<table>
<thead>
<tr>
<th>Index</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>=</td>
<td>AO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OME-WSE-7126 Ch 1</td>
</tr>
</tbody>
</table>

- Internal Register: using value of Internal Register

<table>
<thead>
<tr>
<th>Index</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>=</td>
<td>Internal Register</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

iv. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

6.2.6 Timer
You can change the Timer status (to stop or to start the Timer) in the THEN/ELSE Action statement; the editing page for Timer Action Setting is shown as below:

Figure 6-19: Timer action page
Follow the following steps:

i. Select the pre-defined Timer from the dropdown list of the “Index” field.

ii. Please note: the Timer you select has to be enabled in Advanced Setting.

iii. Specify you want to “Reset” or “Start” this Timer when this THEN/ELSE Action statement is executed.

iv. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

6.2.7 Email
You can send a message to an Email group when executing a THEN/ELSE Action statement; the editing page is shown as below:

![Email Action Setting](image)

Follow the following steps:

i. Select the pre-set Email group from the dropdown list of the “Index” field. The Email group information will be displayed for you to verify if this is the Email group you are going to send the message to.

ii. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

6.2.8 CGI
You can send a CGI Command to a Remote Server when executing a THEN/ELSE Action statement; the editing page is shown as below:
Follow the following steps:

i. Select the pre-set CGI Command action from the dropdown list of the “Index” field. Please note: the CGI Command Index you select has to be enabled in Advanced Setting.

ii. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

### 6.2.9 Recipe

You can execute a Recipe action in THEN/ELSE Action statement; the editing page for Recipe Action is shown as follow:

![Recipe Action Setting](image)

Follow the following steps:

i. Select the pre-set Recipe action from the dropdown list of the “Index” field. Please note: the Recipe Index you select has to be enabled in Advanced Setting.

ii. Click “Save” button to save the settings. The popup window will be closed and return to the Rule settings page.

### 6.2.10 P2P

Through P2P function, the data (DO,AO or Internal Register) from remote OME-WISE-7000 controllers can be incorporated into THEN/ELSE Action statements. To set up P2P Action Setting, first of all, you will need to assign an index number and specify what data you are going to use in the Action statements. Secondly, you will need to set up detail settings for the Action settings. The
configuration page for setting up index and Action is shown as below:

![P2P Action Setting](image1)

*Figure 6-23: P2P action page*

Follow the following steps:

i. Assign an index number to the P2P Action Setting from the dropdown list of the “Index” field.

ii. Specify the data for use in the Action statements from the dropdown list in the Action field.

iii. Click on the button, an Action setting page will appear for setting up detail information of the Action settings. The configuration page for Action settings is shown as below:

![P2P Action Setting](image2)

*Figure 6-24: P2P action detail setting page*

iv. For detail information of Action Setting, please refer to
THEN/ELSE Action: sections regarding DO, AO, and Internal Register.

v. Click “Save” button to save the settings. The popup Action Setting page will be closed and return to P2P Action

vi. On the P2P Action setting page, click “Save” button to save the settings. The P2P Action setting page will be closed and return to the Rule Setting page.

6.2.11 Rule Status

The Rule Status can be modified to be Disable or Enable in the Action. The editing page for Rule Status Action Setting is shown as below:

![Rule Status Action Setting](image)

Follow the following steps:

i. Specify the index number of the Rule (It has to be a previously saved Rule) that is going to be changed in the Action Condition statement from the dropdown list of the “Index” field.

ii. Specify the Rule status to be Disable or Enable from the dropdown list of the “Status” field. When the Action being executed, the Rule status will be changed to specified status.

iii. Click “Save” button to save the settings. The Rule Status Action Setting page will be closed and return to the Rule setting page.
6.3 Summary of the Rules

After you finish editing all IF condition and THEN / ELSE action statements for a rule, return to the Rules Setting page and click “Save” to save all settings of this rule. Please note: if you want to clear previous settings, after you click “Clear” button, you have to click “Save” to make sure this “Clear” status is saved. Rules Setting page is shown as below:

Figure 6-26: Clear/Save Rules

Each time you finish editing a Rule will go back to the Rules Setting main page. All statements of edited Rules will be displayed. Rules Setting main page is shown as below:

Figure 6-27: Rule setting main page
Click “Rules Setting” button to display detail rules description. Rules can be downloaded to the hardware device immediately after you successfully set up one or more rule(s).
6.4 Rule Manager

The Rule Manager allows easy modification and deployment with existing rules. By a few simple steps, users can easily change the rule orders or make modification with previously edited rules. The Rule Manager table is shown as below:

![Rule Manager Table]

Rule Manager setting page

Rule Manager offers 4 functions:

- **Copy**: Copy the content of previously edited rule to another rule. Click “Copy” button, a window as shown below will pop up:

![Rule Copy Window]

Rule Copy setting page

Select the source rule from the first field, and then select the destination(s) from the second fields (multiple rule destinations is allowed). Click “Save” button to copy the content of the source rule to all destination rules.
◆ **Reset**: allows to clear rule content of previously edited rules. Click “Reset” button, a window as shown below will pop up:

![Rule Reset](image)

*Figure 6-30: Rule Reset setting page*

Rules that are previously edited will be listed on the page, select the rule to be cleared and then click “Save” button, the rule you select will be reset.

◆ **Reorder**: reorder existing rules. Click “Reorder” button, a window as shown below will pop up:

![Rule Reorder](image)

*Figure 6-31: Rule Reorder setting page*

A menu will appear at the top of the page, it contains a drop down list for selecting the target rule, and a pair of “Move Up”/“Move Down” buttons to move target rule to the desired location. All rule locations will be listed in sequence (currently support 36 rule locations). If the rule content of a specific rule location has been previously edited, “Rule Content X” (X : rule sequence index) will appear. If the rule content of the rule location is blank, it will be specified as “None”. To reorder a rule, select the target rule from the dropdown list, the corresponding “Rule content X” font will
turn to blue from its usual black. Click on “Move Up”/“Move Down” buttons to move the selected rule to the desired location and then click “Save” to save the settings.

◆ **Swap**: Exchange the Rule content of a pair of rules. Click Swap button, a window as shown below will pop up:

```
<table>
<thead>
<tr>
<th>Rule Swap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1</td>
</tr>
</tbody>
</table>
```

![Figure 6-32: Rule Swap setting page](image)

From the left side drop down list, select the first rule (has to be previously edited), and select the second rule from the right side drop down list (the rule content can be blank), click “Save” to swap the rule content.
7 Download to Module

Download button allows you to download edited rules from Web UI to hardware devices. Click the “Download to Module” button, a popup window will appear for user to input the password:

![Password Entry](image)

**Figure 7-1 : Enter the password**

If the password is incorrect, the download will not be processed, the download process will be started only when the correct password is entered. Current download progress will be displayed as below:

![Download Progress](image)

**Figure 7-2 : Showing download progress**

When the download process is finished, the popup window will notify the user the process is completed:

![Download Complete](image)

**Figure 7-3 : Message showing a successful download**

Close the popup window and go back to the Rules Setting window. About 3 seconds after the download is completed, the hardware device will automatically reboot and start to run the rules that have been downloaded. At this time, you can still edit or modify the content of the rules.
8 Upload from Module

Upload button allows you to retrieve Rules Setting information from the hardware devices and edit them at this Rules Setting page. Click “Upload from Module” to start the upload process. When the upload process is finished, the window showing progress status will notify the user the process is completed:

![The upload process is completed.](image)

**Figure 8-1 : Message showing a successful upload**

Click “close” to close the upload process window to finish upload. Now the rules have been uploaded from hardware devices to the web page, you can modify and download the edited rules to the hardware devices later again.
9 Channel Status

Channel Status function offers an easy-to-view monitoring page that allows users to view important controller information in real time without SCADA software. The Channel Status page is shown as below:

![Channel Status Page]

The Channel Status page will show the values of DI / DO / AI / AO channel, DI/DO counter, and the Internal Register. If you give nicknames to the I/O channels or Internal Registers, the nicknames will be shown on this page as well. You can modify the values of the DO channels with the value buttons on this page. This page will be updated once every 10 seconds, showing the latest data of the controllers.
10 Firmware Update

10.1 Introduction
OME-WISE-7000 Firmware Uploader is a software tool provides a user friendly interface to easily update OME-WISE-7000 firmware that runs on OME-WISE-7000 hardware devices. With a few clicks, users could upload the latest OME-WISE-7000 firmware to the hardware.

System Requirements:
- Make sure you have installed Microsoft .NET Framework Version 2.0 (or later)
  - You can download Microsoft .NET Framework Version 2.0 from the link below:
  - You can download Microsoft .Net Framework Version 3.5 from the link below:

10.2 Install / Uninstall OME-WISE-7000 Firmware Uploader
10.2.1 Install OME-WISE-7000 Firmware Uploader
Follow the steps below to install OME-WISE-7000 Firmware Uploader:
- Obtain the OME-WISE-7000 Firmware Uploader setup file (OME-WISE-7000 Firmware Uploader Setup 1.x.exe).
- Double click the setup file to install the file, you will see a window pop up as below, click [Next] to continue.

![Figure 10-1: Install OME-WISE-7000 Firmware Uploader](image)
Choose the installation location to install OME-WISE-7000 Firmware Uploader. Click [Install] to start the installation.

Figure 10-2: Select installation directory

The installation progress will be shown as below; please wait until the installation is completed.

Figure 10-3: Display installation progress

When the installation is completed, click [Finish] to close the process.

Figure 10-4: Complete the installation
10.2.2 Uninstall OME-WISE-7000 Firmware Uploader

Follow the steps below to uninstall OME-WISE-7000 Firmware Uploader:

- Click [Start] → [All Programs] → [OMEGA] → [OME-WISE-7000 Firmware Uploader], and then click “Uninstall” under the [OME-WISE-7000 Firmware Uploader] category.

- You will see a window pop up as below, click [Next] to continue.

![Figure 10-5: Remove OME-WISE-7000 Firmware Uploader (1)](image)

- Click [Uninstall] to uninstall the program.

![Figure 10-6: Remove OME-WISE-7000 Firmware Uploader (2)](image)
When the uninstall process is completed, click [Finish] to finish the uninstallation.

![Image of uninstall process](image)

**Figure 10-7 : Complete uninstalling OME-WISE-7000 Firmware Uploader**

### 10.3 Update OME-WISE-7000 firmware

Please follow the six steps below to update the OME-WISE-7000 firmware program on the hardware devices:

#### 10.3.1 Before update

- Please visit our product web site (http://www.omega.com/) or contact OMEGA service to obtain the latest version of the firmware program. Copy the file to the computer that you previously installed OME-WISE-7000 Firmware Uploader.
- Connect the hardware device that you are going to update OME-WISE-7000 firmware to the network. Please verify and make a note of the hardware device IP address, you will need it later in the process.

#### 10.3.2 Execute OME-WISE-7000 Firmware Uploader

- Taking Windows XP as an example: click [Start] → [All Programs] → [OMEGA] → [OME-WISE-7000 Firmware Uploader], and then click “OME-WISE-7000 Firmware Uploader” under the [OME-WISE-7000 Firmware Uploader] category to start the program.
10.3.3 Set up Hardware IP

Enter the IP address of the OME-WISE-7000 hardware device that you are going to update OME-WISE-7000 firmware, as shown in the following figure.

![Figure 10-8: Assign IP address](image)

10.3.4 Select OME-WISE-7000 firmware file

Click “Firmware File” button; browse the file through the File Dialog Box to select the appropriate OME-WISE-7000 firmware version. As shown in the following figure:

![Figure 10-9: Select the OME-WISE-7000 firmware](image)

10.3.5 Upload OME-WISE-7000 firmware program

Click “Upload Firmware” button to start update OME-WISE-7000 firmware to the hardware device.
Figure 10-10 : Upload firmware

The status of OME-WISE-7000 firmware update progress will be shown as below:

Figure 10-11 : Display firmware update progress

When completing update of the OME-WISE-7000 firmware, a pop-up window will appear to inform the user. Close the window to finish firmware upload.

Figure 10-12 : Complete firmware update

10.3.6 Module reboot automatically

After complete the firmware update process, OME-WISE-7000 module will automatically reboot. The new updated firmware will take effect after the reboot.
Appendix I : Modbus Address Table

OME-WISE-7000 allows you to retrieve data on hardware devices via Modbus TCP.

Please Note :

- The addresses are in **Base 0** format
- The addresses are listed in **Decimal** format
- The **default value of NetID is 1**, and you can modify the NetID value in the Ethernet Setting page. (Please refer to 4.2 Ethernet Setting).
- If the data is displayed in Floating format (AI channel value, AO channel value or Internal Register, etc.), each record of data will take two registers to hold the data. The following code example demonstrates how to join the two registers into one floating point value.

```c
float register_to_float(short r1, short r2)
{
    float f;
    int *a = &f;
    *a = r1;
    a++;
    *a = r2;
    return f;
}
```

Please note: for the compilers are different (big endian or little endian), the floating point composing order might be different. For example: if r1 represent the address of 30040 register and r2 represent the address of 30041 register, to join r1 and r2 to a floating point, in the system is big endian system you will need to call:

```c
float value = register_to_float(r1, r2);
```

Instead, if the system is little endian system, you will need to call:

```c
float value = register_to_float(r2, r1);
```

**PS:** if you are not sure your editor belongs to which system, try both systems to find the accurate one.
1. System Data

The following table lists the Modbus address of OME-WISE-7000 system information:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Modbus Address</th>
<th>Length</th>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Coils Output, Unit : Coil(8 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reboot switch</td>
<td>00000</td>
<td>1</td>
<td>Byte</td>
<td>1=reboot</td>
</tr>
<tr>
<td><strong>Input Register, Unit : Register(16 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Name</td>
<td>30000</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>30002</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Alive Counter</td>
<td>30004</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>Cycle Time</td>
<td>30005</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>MAC Address 1</td>
<td>30006</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>MAC Address 2</td>
<td>30007</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>MAC Address 3</td>
<td>30008</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>MAC Address 4</td>
<td>30009</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>MAC Address 5</td>
<td>30010</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>MAC Address 6</td>
<td>30011</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Web Port</td>
<td>30012</td>
<td>1</td>
<td>Int</td>
<td>1~65535</td>
</tr>
<tr>
<td>Modbus TCP NetID</td>
<td>30013</td>
<td>1</td>
<td>Int</td>
<td>1~255</td>
</tr>
<tr>
<td><strong>Holding Register, Unit : Register(16 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet IP 1</td>
<td>40000</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Ethernet IP 2</td>
<td>40001</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Ethernet IP 3</td>
<td>40002</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Ethernet IP 4</td>
<td>40003</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Subnet Mask 1</td>
<td>40004</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Subnet Mask 2</td>
<td>40005</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Subnet Mask 3</td>
<td>40006</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Subnet Mask 4</td>
<td>40007</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Gateway 1</td>
<td>40008</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Gateway 2</td>
<td>40009</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Gateway 3</td>
<td>40010</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
<tr>
<td>Gateway 4</td>
<td>40011</td>
<td>1</td>
<td>Int</td>
<td>0~255</td>
</tr>
</tbody>
</table>
2. Channel Data
   The following lists all Modbus address tables of OME-WISE-7000 modules I/O channel data.

◆ OME-WISE-7105, OME-WISE-7117 (4 DO, 8 AI channel) or
OME-WISE-7115 (7 AI channel)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Modbus Address</th>
<th>Length</th>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Coils Outputs, Unit : Coil(8 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO Ch.0</td>
<td>00020</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.1</td>
<td>00021</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.2</td>
<td>00022</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.3</td>
<td>00023</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td><strong>Input Register, Unit : Register(16 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI Ch.0</td>
<td>30020</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.1</td>
<td>30022</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.2</td>
<td>30024</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.3</td>
<td>30026</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.4</td>
<td>30028</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.5</td>
<td>30030</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.6</td>
<td>30032</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.7</td>
<td>30034</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>DO Counter 0</td>
<td>30080</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 1</td>
<td>30081</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 2</td>
<td>30082</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 3</td>
<td>30083</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
</tbody>
</table>

◆ OME-WISE-7118Z (6 DO, 10 AI channel) or OME-WISE-7119 (4 DO, 8 AI channel)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Modbus Address</th>
<th>Length</th>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>Type</td>
<td>Value</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td><strong>Coils Outputs, Unit : Coil(8 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CJC Enable</td>
<td>00001</td>
<td>1</td>
<td>Byte</td>
<td></td>
</tr>
<tr>
<td>CJC Setting Switch</td>
<td>00002</td>
<td>1</td>
<td>Byte</td>
<td></td>
</tr>
<tr>
<td>DO Ch.0</td>
<td>00020</td>
<td>1</td>
<td>Byte</td>
<td></td>
</tr>
<tr>
<td>DO Ch.1</td>
<td>00021</td>
<td>1</td>
<td>Byte</td>
<td></td>
</tr>
<tr>
<td>DO Ch.2</td>
<td>00022</td>
<td>1</td>
<td>Byte</td>
<td></td>
</tr>
<tr>
<td>DO Ch.3</td>
<td>00023</td>
<td>1</td>
<td>Byte</td>
<td></td>
</tr>
<tr>
<td>DO Ch.4</td>
<td>00024</td>
<td>1</td>
<td>Byte</td>
<td></td>
</tr>
<tr>
<td>DO Ch.5</td>
<td>00025</td>
<td>1</td>
<td>Byte</td>
<td></td>
</tr>
<tr>
<td><strong>Input Register, Unit :Register(16 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CJC Value</td>
<td>30014</td>
<td>1</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>AI Ch.0</td>
<td>30020</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>AI Ch.1</td>
<td>30022</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>AI Ch.2</td>
<td>30024</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>AI Ch.3</td>
<td>30026</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>AI Ch.4</td>
<td>30028</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>AI Ch.5</td>
<td>30030</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>AI Ch.6</td>
<td>30032</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>AI Ch.7</td>
<td>30034</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>AI Ch.8</td>
<td>30036</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>AI Ch.9</td>
<td>30038</td>
<td>2</td>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>DO Counter 0</td>
<td>30080</td>
<td>1</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>DO Counter 1</td>
<td>30081</td>
<td>1</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>DO Counter 2</td>
<td>30082</td>
<td>1</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>DO Counter 3</td>
<td>30083</td>
<td>1</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>DO Counter 4</td>
<td>30084</td>
<td>1</td>
<td>Int</td>
<td></td>
</tr>
</tbody>
</table>
### Holding Register, Unit : Register(16 Bits)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Modbus Address</th>
<th>Length</th>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJC Update Setting</td>
<td>40012</td>
<td>1</td>
<td>Int</td>
<td>0=CJC Stop, 1=CJC Start, 2=Read Once</td>
</tr>
<tr>
<td>CJC Total Offset</td>
<td>40013</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 0</td>
<td>40020</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 1</td>
<td>40021</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 2</td>
<td>40022</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 3</td>
<td>40023</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 4</td>
<td>40024</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 5</td>
<td>40025</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 6</td>
<td>40026</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 7</td>
<td>40027</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 8</td>
<td>40028</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
<tr>
<td>CJC offset of AI channel 9</td>
<td>40029</td>
<td>1</td>
<td>Int</td>
<td>-4096~4095</td>
</tr>
</tbody>
</table>

#### OME-WISE-7126 (2 DI、2 DO、6 AI、2 AO channel)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Modbus Address</th>
<th>Length</th>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Coils Outputs, Unit : Coil(8 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO Ch.0</td>
<td>00020</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.1</td>
<td>00021</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td><strong>Discrete Inputs, Unit : Discrete Input (8 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI Ch.0</td>
<td>10020</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.1</td>
<td>10021</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td><strong>Input Register, Unit : Register(16 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Modbus Address</td>
<td>Length</td>
<td>Data Type</td>
<td>Range</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>--------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>AI Ch.0</td>
<td>30020</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.1</td>
<td>30022</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.2</td>
<td>30024</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.3</td>
<td>30026</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.4</td>
<td>30028</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AI Ch.5</td>
<td>30030</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>DI Counter 0</td>
<td>30060</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 1</td>
<td>30061</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 0</td>
<td>30080</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 1</td>
<td>30081</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
</tbody>
</table>

**Holding Register, Unit : Register(16 Bits)**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Modbus Address</th>
<th>Length</th>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO Ch.0</td>
<td>40020</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
<tr>
<td>AO Ch.1</td>
<td>40022</td>
<td>2</td>
<td>Float</td>
<td>By Channel Type Setting</td>
</tr>
</tbody>
</table>

- **OME-WISE-7142、OME-WISE-7144、OME-WISE-7151、OME-WISE-7152、OME-WISE-7160、OME-WISE-7167 (Maximum 16 DI channel and 8 DO channel)**

According to the channel numbers of OME-WISE-7000 DI/DO Module, you can look up the address of the OME-WISE-7000 DI/DO Module channel from the following table:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Modbus Address</th>
<th>Length</th>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO Ch.0</td>
<td>00020</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.1</td>
<td>00021</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.2</td>
<td>00022</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.3</td>
<td>00023</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.4</td>
<td>00024</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.5</td>
<td>00025</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.6</td>
<td>00026</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DO Ch.7</td>
<td>00027</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---</td>
<td>------</td>
<td>------------</td>
</tr>
</tbody>
</table>

**Discrete Inputs, Unit : Discrete Input (8 Bits)**

<table>
<thead>
<tr>
<th>DI Ch.0</th>
<th>10020</th>
<th>1</th>
<th>Byte</th>
<th>0=OFF, 1=ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI Ch.1</td>
<td>10021</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.2</td>
<td>10022</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.3</td>
<td>10023</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.4</td>
<td>10024</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.5</td>
<td>10025</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.6</td>
<td>10026</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.7</td>
<td>10027</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.8</td>
<td>10028</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.9</td>
<td>10029</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.10</td>
<td>10030</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.11</td>
<td>10031</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.12</td>
<td>10032</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.13</td>
<td>10033</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.14</td>
<td>10034</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
<tr>
<td>DI Ch.15</td>
<td>10035</td>
<td>1</td>
<td>Byte</td>
<td>0=OFF, 1=ON</td>
</tr>
</tbody>
</table>

**Input Register, Unit :Register(16 Bits)**

<table>
<thead>
<tr>
<th>DI Counter 0</th>
<th>30060</th>
<th>1</th>
<th>Int</th>
<th>0~65535</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI Counter 1</td>
<td>30061</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 2</td>
<td>30062</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 3</td>
<td>30063</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 4</td>
<td>30064</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 5</td>
<td>30065</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 6</td>
<td>30066</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 7</td>
<td>30067</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 8</td>
<td>30068</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 9</td>
<td>30069</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 10</td>
<td>30070</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 11</td>
<td>30071</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 12</td>
<td>30072</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 13</td>
<td>30073</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 14</td>
<td>30074</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DI Counter 15</td>
<td>30075</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 0</td>
<td>30080</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 1</td>
<td>30081</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Modbus Address</td>
<td>Length</td>
<td>Data Type</td>
<td>Range</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>DO Counter 2</td>
<td>30082</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 3</td>
<td>30083</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 4</td>
<td>30084</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 5</td>
<td>30085</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 6</td>
<td>30086</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
<tr>
<td>DO Counter 7</td>
<td>30087</td>
<td>1</td>
<td>Int</td>
<td>0~65535</td>
</tr>
</tbody>
</table>

3. Internal Register Data

This table stores 48 sets of Internal Register data provided by OME-WISE-7000 controller.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Modbus Address</th>
<th>Length</th>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Holding Register, Unit : Register(16 Bits)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Register 01</td>
<td>40040</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 02</td>
<td>40042</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 03</td>
<td>40044</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 04</td>
<td>40046</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 05</td>
<td>40048</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 06</td>
<td>40050</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 07</td>
<td>40052</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 08</td>
<td>40054</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 09</td>
<td>40056</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 10</td>
<td>40058</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 45</td>
<td>40128</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 46</td>
<td>40130</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 47</td>
<td>40132</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
<tr>
<td>Internal Register 48</td>
<td>40134</td>
<td>2</td>
<td>Float</td>
<td>Floating Point</td>
</tr>
</tbody>
</table>
Appendix II : Quick Start of CJC Settings for OME-WISE-7118/OME-WISE-7119

1. Enter the Module Setting page of Basic Setting.
2. Check the CJC Enable checkbox.
3. You can set the total offset value of CJC in the “CJC Total Offset” field. Please notice that the offset unit is 0.01°C or 0.018°F.
4. Select the CJC Update setting to “CJC Start”.
5. Also, you can set the CJC offset for each channel if the channel type was thermocouple.
6. Press the Save button to save the settings.
7. Download the rules and the channel settings to the OME-WISE-7000 module.
8. You can check the CJC value on the Channel Status page.
### Channel Status Page

#### DO Channel

<table>
<thead>
<tr>
<th>Channel</th>
<th>Channel0</th>
<th>Channel1</th>
<th>Channel2</th>
<th>Channel3</th>
<th>Channel4</th>
<th>Channel5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Current</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Power</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>At Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volt</td>
<td>0 VDC</td>
<td>0 VDC</td>
<td>0 VDC</td>
<td>0 VDC</td>
<td>0 VDC</td>
<td>0 VDC</td>
</tr>
</tbody>
</table>

#### Internal Register

<table>
<thead>
<tr>
<th>No 01</th>
<th>No 02</th>
<th>No 03</th>
<th>No 04</th>
<th>No 05</th>
<th>No 06</th>
<th>No 07</th>
<th>No 08</th>
<th>No 09</th>
<th>No 10</th>
<th>No 11</th>
<th>No 12</th>
<th>No 13</th>
<th>No 14</th>
<th>No 15</th>
<th>No 16</th>
<th>No 17</th>
<th>No 18</th>
<th>No 19</th>
<th>No 20</th>
<th>No 21</th>
<th>No 22</th>
<th>No 23</th>
<th>No 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

---

8

---

72
WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 13 months from date of purchase. OMEGA’s WARRANTY adds an additional one (1) month grace period to the normal one (1) year product warranty to cover handling and shipping time. This ensures that OMEGA’s customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA’s control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:
1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2012 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.
Where Do I Find Everything I Need for Process Measurement and Control?

OMEGA...Of Course!

Shop online at omega.com

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>DATA ACQUISITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Thermocouple, RTD &amp; Thermistor Probes, Connectors, Panels &amp; Assemblies</td>
<td></td>
</tr>
<tr>
<td>✔ Wire: Thermocouple, RTD &amp; Thermistor</td>
<td></td>
</tr>
<tr>
<td>✔ Calibrators &amp; Ice Point References</td>
<td></td>
</tr>
<tr>
<td>✔ Recorders, Controllers &amp; Process Monitors</td>
<td></td>
</tr>
<tr>
<td>✔ Infrared Pyrometers</td>
<td></td>
</tr>
<tr>
<td>✔ Data Acquisition &amp; Engineering Software</td>
<td></td>
</tr>
<tr>
<td>✔ Communications-Based Acquisition Systems</td>
<td></td>
</tr>
<tr>
<td>✔ Plug-in Cards for Apple, IBM &amp; Compatibles</td>
<td></td>
</tr>
<tr>
<td>✔ Datalogging Systems</td>
<td></td>
</tr>
<tr>
<td>✔ Recorders, Printers &amp; Plotters</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE, STRAIN AND FORCE</th>
<th>HEATERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Transducers &amp; Strain Gauges</td>
<td></td>
</tr>
<tr>
<td>✔ Load Cells &amp; Pressure Gauges</td>
<td></td>
</tr>
<tr>
<td>✔ Displacement Transducers</td>
<td></td>
</tr>
<tr>
<td>✔ Instrumentation &amp; Accessories</td>
<td></td>
</tr>
<tr>
<td>✔ Heating Cable</td>
<td></td>
</tr>
<tr>
<td>✔ Cartridge &amp; Strip Heaters</td>
<td></td>
</tr>
<tr>
<td>✔ Immersion &amp; Band Heaters</td>
<td></td>
</tr>
<tr>
<td>✔ Flexible Heaters</td>
<td></td>
</tr>
<tr>
<td>✔ Laboratory Heaters</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLOW/LEVEL</th>
<th>ENVIRONMENTAL MONITORING AND CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Rotameters, Gas Mass Flowmeters &amp; Flow Computers</td>
<td></td>
</tr>
<tr>
<td>✔ Air Velocity Indicators</td>
<td></td>
</tr>
<tr>
<td>✔ Turbine/Paddlewheel Systems</td>
<td></td>
</tr>
<tr>
<td>✔ Totalizers &amp; Batch Controllers</td>
<td></td>
</tr>
<tr>
<td>✔ Metering &amp; Control Instrumentation</td>
<td></td>
</tr>
<tr>
<td>✔ Refractometers</td>
<td></td>
</tr>
<tr>
<td>✔ Pumps &amp; Tubing</td>
<td></td>
</tr>
<tr>
<td>✔ Air, Soil &amp; Water Monitors</td>
<td></td>
</tr>
<tr>
<td>✔ Industrial Water &amp; Wastewater Treatment</td>
<td></td>
</tr>
<tr>
<td>✔ pH, Conductivity &amp; Dissolved Oxygen Instruments</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH/CONDUCTIVITY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ pH Electrodes, Testers &amp; Accessories</td>
<td></td>
</tr>
<tr>
<td>✔ Benchtop/Laboratory Meters</td>
<td></td>
</tr>
<tr>
<td>✔ Controllers, Calibrators, Simulators &amp; Pumps</td>
<td></td>
</tr>
<tr>
<td>✔ Industrial pH &amp; Conductivity Equipment</td>
<td></td>
</tr>
</tbody>
</table>