iSeries

Shop on line at
omega.com

iSeries info:
omega.com/specs/iseries

For latest product manuals
omegam Manuel.info

iDR Monitor
iDR-AL Limit Alarm
Temperature & Process DIN Rail
It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.
TABLE OF CONTENTS

Part 1: Introduction ... 2
 1.1 Description ... 2
 1.2 Safety Considerations ... 3
 1.3 Before You Begin ... 4

Part 2: Setup .. 5
 2.1 Optional Remote Programmer Front Panel ... 5
 2.2 Front Panel Connections ... 6
 2.3 Electrical Installation ... 7
 2.3.1 Power Connections .. 7
 2.3.2 Thermocouple - Input Connection ... 8
 2.3.3 Two / Three / Four Wire RTD-Hookups ... 9
 2.3.4 Process Current - Wiring Hookup .. 10
 2.3.5 Process Voltage - Wiring Hookup .. 10
 2.3.6 Wiring Outputs - Wiring Hookup ... 11

Part 3: Operation: Configuration Mode .. 11
 3.1 Introduction .. 11
 Turning your Instrument On for the First Time Button Functions in Configuration Mode
 3.2 Menu Configuration ... 15
 3.2.1 ID Number ... 16
 3.2.2 Setpoints ... 17
 3.2.3 Configuration Menu .. 18
 3.2.4 Input Type Menu ... 19
 Input Type (Thermocouple) .. 20
 Input Type (RTD) ... 21
 Input Type (Process) .. 22
 3.2.5 Reading Configuration Menu ... 23
 3.2.6 Alarm 1 Menu .. 27
 3.2.7 Alarm 2 Menu .. 31
 3.2.8 Reading Adjust Menu .. 32
 3.2.9 Setpoint Deviation Menu/Field Calibration .. 33
 3.2.10 ID Code Menu ... 34
 3.2.11 Communication (Options) Menu .. 36
 3.2.12 Display Color Selection Menu ... 43

Part 4: Specifications .. 46

Part 5: Factory Preset Values ... 49

CE APPROVAL INFORMATION ... 50
LIST OF FIGURES:

Figure 2.1 Optional Remote Programmer Front Panel Display5
Figure 2.2 Front Panel Connections ...6
Figure 2.3 Main Power Connections ..7
Figure 2.4 Thermocouple Wiring Hookup ...8
Figure 2.5 Two/Three/Four-Wire RTD Wiring Hookup
a) RTD-1000 ohm/RTD-500 ohm ...9
b) RTD-100 ohm ..9
Figure 2.6 Process Current Wiring Hookup
(Internal and External Excitation) ...10
Figure 2.7 Process Voltage Wiring Hookup
(With Sensor Excitation and without Sensor Excitation)10
Figure 2.8 Output Wiring Hookup
a) Mechanical Relay and SSR Outputs11
b) Pulse and Analog Outputs ..11
Figure 2.9 Snubber Circuit Wiring Hookup11
Figure 2.10 Typical Wiring ...12
Figure 2.11 Communication Output Wiring Hookup
a) RS-232 Output ...13
b) RS-485 Output ..13
Figure 2.12 Excitation Output ..13
Figure 2.13 Embedded Ethernet ..13
Figure 3.1 Flow Chart for ID and Setpoints15
Figure 3.2 Flow Chart for Configuration Menu18
Figure 3.3 Flow Chart for Input Type Menu19
Figure 3.4 Flow Chart for Reading Configuration23
Figure 3.5 Flow Chart for Alarm 1 ..27
Figure 3.6 Flow Chart for Alarm 2 ..31
Figure 3.7 Flow Chart for Reading Adjust ..32
Figure 3.8 Flow Chart for Setpoint Deviation/Field Calibration33
Figure 3.9 Flow Chart for ID Code ...34
Figure 3.10 Flow Chart for Communication Option36
Figure 3.11 Flow Chart for Display Color Selection43

LIST OF TABLES:

Table 2.1 Front Panel Annunciators ...5
Table 2.2 Connectors ...6
Table 2.3 Power Connections ..7
Table 2.4 TC Wire Color Chart ..8
Table 3.1 Button Function in Configuration Mode14
Table 3.2 Conversion Table ...26
Table 4.1 Input Properties ...48
Table 5.1 Factory Preset Values ...49
NOTES, WARNINGS and CAUTIONS

Information that is especially important to note is identified by following labels:

- NOTE
- WARNING or CAUTION
- IMPORTANT

NOTE: Provides you with information that is important to successfully setup and use the Programmable Digital Meter.

CAUTION or WARNING: Tells you about the risk of electrical shock.

CAUTION, WARNING or IMPORTANT: Tells you of circumstances or practices that can effect the instrument’s functionality and must refer to accompanying documents.

TIP: Provides you helpful hints.
1.1 Description

This device can be purchased as monitor (read process value only), limit alarm with alarm menu but no PID control (specify -AL option), or as a controller.

• The iSeries offers unparalleled flexibility in process measurement. Each unit allows the user to select the input type, from 10 thermocouple types (J, K, T, E, R, S, B, C, N and J DIN), Pt RTDs (100, 500 or 1000 Ω, with either 385 or 392 curve), DC voltage, or DC current. The voltage/current inputs are fully scalable to virtually all engineering units, with selectable decimal point, perfect for use with pressure, flow or other process input.

• Options include programmable RS-232 or RS-485 serial communication and ethernet with an embedded web server. Analog Output is fully scalable and may be configured as a proportional controller or retransmission to follow your display. Universal power supply accepts 90 to 240 Vac. Low voltage power option accepts 24 Vac or 12 to 36 Vdc.

• The optional Remote Programmer features a large, three color programmable display with capability to change a color every time the Alarm is triggered.
1.2 Safety Considerations

This device is marked with the international caution symbol. It is important to read this manual before installing or commissioning this device as it contains important information relating to Safety and EMC (Electromagnetic Compatibility).

This instrument is a panel mount device protected in accordance with EN 61010-1:2001, electrical safety requirements for electrical equipment for measurement, control and laboratory. Installation of this instrument should be done by qualified personnel. In order to ensure safe operation, the following instructions should be followed.

This instrument has no power-on switch. An external switch or circuit-breaker shall be included in the building installation as a disconnecting device. It shall be marked to indicate this function, and it shall be in close proximity to the equipment within easy reach of the operator. The switch or circuit-breaker shall meet the relevant requirements of IEC 947–1 and IEC 947-3 (International Electrotechnical Commission). The switch shall not be incorporated in the main supply cord.

Furthermore, to provide protection against excessive energy being drawn from the main supply in case of a fault in the equipment, an overcurrent protection device shall be installed.

- Do not exceed voltage rating on the label located on the top of the instrument housing.
- Always disconnect power before changing signal and power connections.
- Do not use this instrument on a work bench without its case for safety reasons.
- Do not operate this instrument in flammable or explosive atmospheres.
- Do not expose this instrument to rain or moisture.
- Unit mounting should allow for adequate ventilation to ensure instrument does not exceed operating temperature rating.
- Use electrical wires with adequate size to handle mechanical strain and power requirements. Install without exposing bare wire outside the connector to minimize electrical shock hazards.

EMC Considerations

- Whenever EMC is an issue, always use shielded cables.
- Never run signal and power wires in the same conduit.
- Use signal wire connections with twisted-pair cables.
- Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.

Failure to follow all instructions and warnings may result in injury!
1.3 Before You Begin

Inspecting Your Shipment:

Remove the packing slip and verify that you have received everything listed. Inspect the container and equipment for signs of damage as soon as you receive the shipment. Note any evidence of rough handling in transit. Immediately report any damage to the shipping agent. The carrier will not honor damage claims unless all shipping material is saved for inspection. After examining and removing the contents, save the packing material and carton in the event reshipment is necessary.

Customer Service:

If you need assistance, please call the nearest Customer Service Department, listed in this manual.

Manuals, Software:

The latest Operation and Communication Manual as well as free configuration software are available at the website listed on the cover page of this manual or on the CD-ROM enclosed with your shipment.

For first-time users: Refer to the QuickStart Manual for basic operation and set-up instructions.

The following steps in this manual for configuring your device are explained by using the optional Remote Programmer Display (iDRP). If you have the Serial Communications/Ethernet Option (-C24, -C4EI or -EI) you can easily configure the controller on your computer or on-line.

To Reset the Meter:

When the monitor is in the "MENU" Mode, push once to direct monitor one step backward of the top menu item.

Push twice to reset monitor, prior to resuming "Run" Mode except after "Alarms", that will go to the "Run" Mode without resetting the monitor.
PART 2
SETUP

Refer to the Quick Start Guide for assembly and disassembly instructions.

2.1 Optional Remote Programmer Front Panel

![Figure 2.1 Optional Remote Programmer Front Panel Display](image)

Table 2.1 Front Panel Annunciators

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setpoint 1/ Alarm 1 indicator</td>
</tr>
<tr>
<td>2</td>
<td>Setpoint 2/ Alarm 2 indicator</td>
</tr>
<tr>
<td>°C</td>
<td>°C unit indicator</td>
</tr>
<tr>
<td>°F</td>
<td>°F unit indicator</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Changes display to Configuration Mode and advances through menu items*</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Used in Program Mode and peak recall*</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Used in Program Mode and valley recall*</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Accesses submenus in Configuration Mode and stores selected values*</td>
</tr>
</tbody>
</table>

* See Part 3 Operation: Configuration Mode
2.2 Front Panel Connections
The front panel connections are shown in Figures 2.2 and 2.3.

![Diagram showing front panel connections]

Table 2.2 Connectors

<table>
<thead>
<tr>
<th>POWER</th>
<th>AC/DC Power Connector: All models</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>Input Connector: All models TC, PR (Process), RTD</td>
</tr>
<tr>
<td>OUTPUT 1</td>
<td>Based on one of the following models: Relay SPDT, Solid State Relay, Pulse</td>
</tr>
<tr>
<td>OUTPUT 2</td>
<td>Based on one of the following models: Relay SPDT, Solid State Relay, Pulse</td>
</tr>
<tr>
<td>OPTION</td>
<td>Based on one of the following models: RS-232C or RS-485 programmable Excitation</td>
</tr>
</tbody>
</table>

Note: Output 1 and 2 are for -AL Limit Alarm Option only.
2.3 Electrical Installation

2.3.1 Power Connections

⚠️ **Caution:** Do not connect power to your device until you have completed all input and output connections. Failure to do so may result in injury!

Connect the main power connections as shown in the figure below.

![Main Power Connections Diagram](image)

Table 2.3 Power Connections

<table>
<thead>
<tr>
<th>FUSE</th>
<th>Connector</th>
<th>For 115Vac</th>
<th>For 230Vac</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUSE 1</td>
<td>Power *</td>
<td>100 mA(T)</td>
<td>100 mA(T)</td>
<td>100 mA(T)</td>
</tr>
<tr>
<td>FUSE 2</td>
<td>Power *</td>
<td>N/A</td>
<td>N/A</td>
<td>400 mA(T)</td>
</tr>
</tbody>
</table>

For the low voltage power option, in order to maintain the same degree of protection as the standard high voltage input power units (90-240 Vac), always use a Safety Agency Approved DC or AC source with the same Overvoltage Category and pollution degree as the standard AC unit (90-240 Vac).

The Safety European Standard EN61010-1 for measurement, control, and laboratory equipment requires that fuses must be specified based on IEC127. This standard specifies for a Time-lag fuse, the letter code “T”. The above recommended fuses are of the type IEC127-2-sheet III. Be aware that there are significant differences between the requirements listed in the UL 248-14/CSA 248.14 and the IEC 127 fuse standards. As a result, no single fuse can carry all approval listings. A 1.0 Amp IEC fuse is approximately equivalent to a 1.4 Amp UL/CSA fuse. It is advised to consult the manufacturer’s data sheets for a cross-reference.

See Specification Section 7
2.3.2 Thermocouple

The figure below shows the wiring hookup for any thermocouple type. For example, for Type K hookup, connect the yellow wire to the "2" terminal and the red wire to the "1(-)" terminal.

When configuring your monitor, select Thermocouple and Thermocouple Type in the Input Type menu (see Part 3).

![Figure 2.4 Thermocouple Wiring Hookup](image)

Table 2.4 TC Wire Color Chart

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Input Connector</th>
<th>Jacket (external insulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terminal 1 (-)</td>
<td>Terminal 2 (+)</td>
</tr>
<tr>
<td>J</td>
<td>Red</td>
<td>White</td>
</tr>
<tr>
<td>K</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>T</td>
<td>Red</td>
<td>Blue</td>
</tr>
<tr>
<td>E</td>
<td>Red</td>
<td>Purple</td>
</tr>
<tr>
<td>N</td>
<td>Red</td>
<td>Orange</td>
</tr>
<tr>
<td>R</td>
<td>Red</td>
<td>Black</td>
</tr>
<tr>
<td>S</td>
<td>Red</td>
<td>Black</td>
</tr>
<tr>
<td>B</td>
<td>Red</td>
<td>Gray</td>
</tr>
</tbody>
</table>

If the input wires of the meter get disconnected or broken, it will display “Input (+) Open” message. For safety purpose you may want to set up your alarm to be triggered when input is open. See Alarm 1 and 2 chapters for details.
2.3.3 Two/Three/Four-Wire RTD

The figures below show the input connections and input connector jumpers (shown in bold lines) required to hookup a 2-, 3- or 4-wire RTD.

The **two-wire** connection is simplest method, but does not compensate for lead-wire temperature change and often requires calibration to cancel lead-wire resistance offset.

The **three-wire** connection works best with RTD leads closely equal in resistance. The device measures the RTD, plus upper and lower lead drop voltage and the subtracts twice the measured drop in the lower supply current lead producing excellent lead-resistance cancellation for balanced measurements.

The **four-wire** RTD hookup is applicable to unbalanced lead resistance and enables the device to measure and subtract the lead voltage, which produces the best lead-resistance cancellation.

When configuring your monitor, select RTD type and RTD value in the Input Type menu (see Part 3).

If the input wires of the meter get disconnected or broken, it will display “Input (+) Open” message except in case of 500/1000 Ω 2-wire RTD. In this case the display shows “Input (-) Open” message. For safety purpose you may want to set up your alarm to be triggered when input is open. See Alarm 1 & 2 chapters for details.
2.3.4 Process Current

The figure below shows the wiring hookup for Process Current 0 – 20 mA.

![Figure 2.6 Process Current Wiring Hookup (Internal and External Excitation)]

When configuring your instrument, select Process Type in the Input Type Menu (see Part 3).

2.3.5 Process Voltage

The figure below shows the wiring hookup for Process Voltage 0 – 100 mV, 0 – 1 V, 0 – 10 V.

![Figure 2.7 Process Voltage Wiring Hookup (with Sensor Excitation and without Sensor Excitation)]

RL - Voltage limited resistor, which allows to convert 24 Vdc internal excitation voltage to the appropriate process input value. For instance: if the potentiometer value is equal to 10 kΩ, the minimum RL is 14 kΩ for 10 V process input.

When configuring your instrument, select Process Type in the Input Type Menu (see Part 3).
2.3.6 Wiring Outputs

This meter, if ordered with -AL, Limit Alarm Option, has two, factory installed, outputs. The SPDT Mechanical Relay, SPST Solid State Relay and Pulse Output Connection are shown below.

![Diagram of output wiring connections]

Figure 2.8

a) Mechanical Relay and SSR
b) Pulse Output

Output Wiring Hookup

This device has snubber circuits designed to protect the contacts of the mechanical relays when it switches to inductive loads (i.e. solenoids, relays). These snubbers are internally connected between the Common (C) and Normally Open (NO) relay contacts of Output 1 and Output 2.

If you have an inductive load connected between Common (C) and Normally Closed (NC) contacts of the mechanical relays and you want to protect them from the rush current during the switching period, you have to connect an external snubber circuit between Common (C) and Normally Closed (NC) contacts as indicated in the figure below.

![Diagram of snubber circuits wiring]

Figure 2.9 Snubber Circuits Wiring Hookup
dc CONTROLLED SSR USED WITH TEMPERATURE CONTROLLER WITH dc VOLTAGE SSR DRIVER OUTPUT

ac CONTROLLED SSR USED WITH TEMPERATURE CONTROLLER WITH MECHANICAL RELAY OUTPUT

ac CONTROLLED SSR USED WITH TEMPERATURE CONTROLLER WITH TRIAC OUTPUT

Figure 2.10 Typical Applications
This device may have a programmable serial communication output. The RS-232 and RS-485 Output Connections are shown below.

Figure 2.11 Serial Communication
a) RS-232 Output Wiring Hookup b) RS-485 Output Wiring Hookup

This device has built-in excitation. The connections are shown below.

Figure 2.12 Excitation Output

This device may have the Ethernet with embedded web server option. The connections are shown below.

Figure 2.13 Embedded Ethernet
PART 3
OPERATION: Configuration Mode

3.1 Introduction

The instrument has two different modes of operation. The first, Run Mode, is used to display values for the Process Variable, and to display or clear Peak and Valley values. The other mode, Menu Configuration Mode, is used to navigate through the menu options and configure the unit. Part 3 of this manual will explain the Menu Configuration Mode. For your instrument to operate properly, the user must first "program" or configure the menu options.

Turning your Monitor On for the First Time

The device becomes active as soon as it is connected to a power source. It has no On or Off switch. The device at first momentarily shows the software version number, followed by reset \texttt{RST}, and then proceeds to the Run Mode.

For first-time users: Refer to the QuickStart Manual for basic operation and set-up instructions.

The following steps in this manual for configuring your device are explained by using the optional \textit{Remote Programmer Display (iDRP)}.

If you have the Serial Communications/Ethernet Option (-C24, -C4EI or -EI) you can easily configure the controller on your computer or on-line.

Table 3.1 Button Function in Configuration Mode

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{MENU}</td>
<td>To enter the Menu, the user must first press \textit{MENU} button. Use this button to advance/navigate to the next menu item. The user can navigate through all the top level menus by pressing \textit{MENU}. While a parameter is being modified, press \textit{MENU} to escape without saving the parameter.</td>
</tr>
<tr>
<td>\textit{UP}</td>
<td>Press the up \textit{UP} button to scroll through “flashing” selections. When a numerical value is displayed press this key to increase value of a parameter that is currently being modified. Holding the \textit{UP} button down for approximately 3 seconds will speed up the rate at which the set point value increments. In the Run Mode press \textit{UP} causes the display to flash the PEAK value – press again to return to the Run Mode.</td>
</tr>
<tr>
<td>\textit{DOWN}</td>
<td>Press the down \textit{DOWN} button to go back to a previous Top Level Menu item. Press this button twice to reset the unit to the Run Mode. When a numerical value is flashing (except set point value) press \textit{DOWN} to scroll digits from left to right allowing the user to select the desired digit to modify. When a setpoint value is displayed press \textit{DOWN} to decrease value of a setpoint that is currently being modified. Holding the \textit{DOWN} button down for approximately 3 seconds will speed up the rate at which the setpoint value is decremented. In the Run Mode press \textit{DOWN} causes the display to flash the VALLEY value – press again to return to the Run Mode.</td>
</tr>
<tr>
<td>\textit{ENTER}</td>
<td>Press the enter \textit{ENTER} button to access the submenus from a Top Level Menu item. Press \textit{ENTER} to store a submenu selection or after entering a value — the display will flash a \texttt{STEP} message to confirm your selection. To reset flashing Peak or Valley press \textit{ENTER}. In the Run Mode press \textit{ENTER} twice to enable Standby Mode with flashing \texttt{STBY}.</td>
</tr>
</tbody>
</table>

Reset: Except for Alarms, modifying any settings of the menu configuration will reset the instrument prior to resuming Run Mode.
3.2 Menu Configuration

Figure 3.1 Flow Chart for ID and Set Points Menu
3.2.1 ID Number Menu

SEE ID MENU SELECTION IN CONFIGURATION SECTION FOR ENABLE/DISABLE OR CHANGE ID CODE.

If ID Code is Disabled or set as Default (0000) the menu will skip ID step to Setpoint Menu.

If ID Code is set to Full Security Level and user attempts to enter the Main Menu, they will be prompted for an ID Code.

If ID Code is set to Set Point/ID Security Level and user attempts to enter the Configuration Menu, they will be prompted for an ID Code.

ENTERING YOUR NON-DEFAULT FULL SECURITY ID NUMBER.

Press 1) Display shows Id.
Press 2) Display advances to _____.
Press & 3) Press to increase digit 0-9. Press to activate next digit (flashing). Continue to use and to enter your 4-digit ID code.
Press 4) If the correct ID code is entered, the menu will advance to the Setpoint 1 Menu, otherwise an error message ERR will be displayed and the instrument will return to the Run Mode.

To change ID Code, see ID Menu in the Configuration section.

ENTERING YOUR NON-DEFAULT SET POINT/ID SECURITY ID NUMBER.

Press 5) Display shows SP1 Setpoint 1 Menu.
Press 6) Display shows SP2 Setpoint 2 Menu.
Press 7) Display shows Id ID Code Menu.
Press 8) Display advances to _____.
Press & 9) Use and to change your ID Code.
Press 10) If correct ID Code is entered, the display will advance to the INPT Input Menu, otherwise the error message ERR will be displayed and the unit will return to the Run Mode.

To prevent unauthorized tampering with the setup parameters, the instrument provides protection by requiring the user to enter the ID Code before allowing access to subsequent menus. If the ID Code entered does not match the ID Code stored, the unit responds with an error message and access to subsequent menus will be denied.

Use numbers that are easy for you to remember. If the ID Code is forgotten or lost, call customer service with your serial number to access and reset the default to 0000.
3.2.2 Set Points Menu

SETPOINT 1:

Press 1) Press \(\text{SP1} \), if necessary until \(\text{SP1} \) prompt appears.
Press 2) Display shows previous value of “Setpoint 1”.
Press \(\text{SP1} \) & \(\text{SP2} \) 3) Press \(\text{SP1} \) and \(\text{SP2} \) to increase or decrease Setpoint 1 respectively.

Holding \(\text{SP1} \) & \(\text{SP2} \) buttons down for approximately 3 seconds will speed up the rate at which the Setpoint value increments or decrements.

Press \(\text{SP1} \) & \(\text{SP2} \) 4) Continue to use \(\text{SP1} \) and \(\text{SP2} \) to enter your 4-digit Setpoint 1 value.
Press \(\text{SP1} \) 5) Display shows \(\text{STRd} \) stored message momentarily and then advance to \(\text{SP2} \) only, if a change was made, otherwise press \(\text{SP1} \) to advance to \(\text{SP2} \) Setpoint 2 Menu.

SETPOINT 2:

Press \(\text{SP1} \) 6) Display shows previous value of “Setpoint 2”.
Press \(\text{SP1} \) & \(\text{SP2} \) 7) Press \(\text{SP1} \) and \(\text{SP2} \) to increase or decrease Setpoint 2 respectively.

Holding \(\text{SP1} \) & \(\text{SP2} \) buttons down for approximately 3 seconds will speed up the rate at which the setpoint value increments or decrements.

Press \(\text{SP1} \) 8) Display shows \(\text{STRd} \) stored message momentarily and then advances to \(\text{CNFG} \) only, if a change was made, otherwise press \(\text{SP1} \) to advance to \(\text{CNFG} \) Configuration Menu.
3.2.3 Configuration Menu

Enter Configuration Menu:

Press \(\text{enter} \) 1) Press \(\text{enter} \), if necessary, until \text{CNFG} \ prompt appear.
Press \(\text{enter} \) 2) Display advance to \text{INPT} \ Input Menu.
Press \(\text{enter} \) 3) Press and release \(\text{enter} \) to scroll through all available menus of Configuration section.
3.2.4 Input Type Menu

Figure 3.3 Flow Chart for Input Type Menu
Input Type (Thermocouple)

ENTER INPUT TYPE MENU:

1) Press \(\text{CNFG} \), if necessary, until \(\text{CNFG} \) prompt appears.

2) Display advances to \(\text{INPT} \) Input Menu.

3) Display flashes \(\text{T.ç, RTD or PROC} \) (Thermocouple, RTD or Process). If the displayed input type is \(\text{T.ç} \), press \(\text{CNFG} \) to skip to step 6 (\(\text{T.ç} \) stops flashing).

THERMOCOUPLE SUBMENU:

4) Scroll through the available selection to \(\text{T.ç} \) (flashing).

5) Display shows \(\text{STRD} \) stored message momentarily and then \(\text{T.ç} \) (not flashing).

6) Display flashes previous thermocouple type selection. i.e. \(\text{J} \) (see below for types).

7) Scroll through the available thermocouple types to the selection of your choice.

8) Display shows \(\text{STRD} \) stored message momentarily and then advances to the \(\text{RDG} \) Reading Configuration Menu.

Note: Use the Input Type (Thermocouple) (RTD) or (Process) and verify your Electrical Installation (see **Section 2.3**).

Thermocouple Types: J, K, T, E, N, DIN J, R, S, B, C

Display: J K T E N DIN J R S B C
Input Type (RTD)

ENTER INPUT TYPE MENU:

1) Press \(\text{F1} \), if necessary, until \(\text{CHG} \) prompt appears.
2) Display advances to \(\text{INPT} \) Input Menu.
3) Display flashes \(\text{E.t.c, RTD or PROC} \) (Thermocouple, RTD or Process). If the displayed input type is \(\text{RTD} \), press \(\text{F2} \) to skip to step 6 (\(\text{RTD} \) stops flashing).

RTD SUBMENU:

4) Scroll through the available selection to \(\text{RTD} \) (flashing).
5) Display shows \(\text{STRD} \) stored message momentarily and then \(\text{RTD} \) (not flashing).
6) Display flashes previous RTD type selection i.e. 392.2 (see below for RTD types selection).
7) Scroll through the available RTD types to the selection of your choice.
8) Display shows \(\text{STRD} \) stored message momentarily and then advances to \(\text{RTD} \) RTD value.

RTD Types: 392 385
Display: 392.2, 392.3, 392.4, 385.2, 385.3, 385.4

Note: Last digit indicates: 2-, 3- or 4-wire input.

RTD VALUE SUBMENU:

9) Display flashes previous RTD value selection i.e. 100_ (see below for RTD value selection).
10) Scroll through the available RTD values to the selection of your choice.
11) Display shows \(\text{STRD} \) stored message momentarily and then advances to \(\text{RDG} \) Reading Configuration Menu.

RTD Values: 100 ohm 500 ohm 1000 ohm
Display: 100_, 500_, 1000
Input Type (Process)

ENTER INPUT TYPE MENU:

Press ☀ 1) Press ☀, if necessary, until [CHFG] prompt appears.
Press ☀ 2) Display advance to INPT Input Menu.
Press ☀ 3) Display flashes T.C., RTD or PROC (Thermocouple, RTD or Process). If the displayed input type is PROC, press ☀ to skip to step 6 (PROC stops flashing).

PROCESS SUBMENU:

Press ☀ 4) Scroll through the available selection to PROC (flashing).
Press ☀ 5) Display shows STRD stored message momentarily and then [PROC] (not flashing).
Press ☀ 6) Display flashes previous Process type selection. i.e. 0-10 (see below for Process types selection).
Press ☀ 7) Scroll through the available Process types to the selection of your choice.
Press ☀ 8) Display shows STRD stored message and then advances to Rdg Reading Configuration Menu.

Process Types: 100 mV 1 V 10 V 0 – 20 mA
Display: 0-0.1 0-1.0 0-10 0-20

For 4-20 mA Input select 0-20 mA then adjust the Input/Reading accordingly. To adjust 4-20 mA input, see example under INPUT/READING Submenu. The factory preset value is 4-20 mA.
3.2.5 Reading Configuration Menu

ENTER READING CONFIGURATION MENU:

Press 1) Press , if necessary, until \texttt{CNFG} prompt appears.
Press 2) Display advances to \texttt{INPT} Input Menu.
Press 3) Display advances to \texttt{RDG} Reading Configuration Menu.
Press 4) Display advances to \texttt{DEC} Decimal Point.

DECIMAL POINT SUBMENU:

Press 5) Display flashes previous selection for Decimal location.
Press 6) Scroll though the available selections and choose Decimal location: \texttt{FFFF} or \texttt{FFF.F} (also \texttt{FF.FF} and \texttt{F.FFF} — if \texttt{PROC} Process type was selected in the Input Type Menu).
Press 7) Display shows \texttt{STRD} stored message momentarily and then advances to \texttt{TEMP} Temperature Unit.

Note: Decimal Point for Process Input Type is passive.
TEMPERATURE UNIT SUBMENU:

- Press 8) Display flashes previous Temperature Unit selection.
- Press 9) Scroll through the available selections to the Temperature Unit of your choice: °F or °C.
- Press 10) Display shows STRD stored message momentarily and then advances to FLTR Filter Constant.

FILTER CONSTANT SUBMENU:

- Press 11) Display flashes previous selection for Filter Constant.
- Press 12) Scroll through the available selections:

 - 0001, 0002, 0004, 0008, 0016, 0032, 0064, 0128

- Press 13) Display shows STRD stored message momentarily only, if change were made, otherwise press to advance to the next menu.

Note

If Process was selected in the Input Type Menu the display will advance to IW.Rd Input/Reading Submenu, otherwise the display advances to the ALR1 Alarm 1 Menu.

The Filter Constant Submenu allows the user to specify the number of readings stored in the Digital Averaging Filter. A filter value of 2 is approximately equal to 1 second RC low pass time constant.
Reading Configuration (If Process was selected)

INPUT/READING (SCALE AND OFFSET) SUBMENU:

Input Voltage or Current can be converted or scaled into values appropriate for the process or signal being measured. So, a reading may be displayed, for example, in units of weight or velocity instead of in amperes or volts.

The instrument determines Scale and Offset values based on two user-provided input values entered with the corresponding readings. Note that “In1” Input 1 and “In2” Input 2 are represented and entered as a product of the input voltage/current and the conversion number from the Table 3.1.

The following instructions include details for a specific scenario in which a 4-20 mA input (in the 20 mA Process Mode) is to be represented as a measurement of 0-100 percent.

1. **Press**
 - Press at the **In1** Input 1 prompt. Display shows **In1** Input 1 submenu.
 - Press
 - Display shows Input 1 value with 1st digit flashing.
 - Press &
 - Use and buttons to enter **In1** value.
 - The **In1** value = min. input value * conversion number.
 - Disregard the position of the decimal point (2000 counts may actually appear as “200.0”, “20.00”, or “2.000”).
 - Example: 4 mA as 4(mA) x 500 = 2000.

2. **Press**
 - Display advances to **Rd1** Reading 1 Submenu.
 - Press &
 - Use and buttons to enter **Rd1** value.
 - This value represents **In1** in terms of some meaningful engineering units. To show the 4 mA as zero percent enter **Rd1** value = 0000.
 - Example: **Rd1** value = 0000.

3. **Press**
 - Display shows **In2** Input 2 Submenu.
 - Press
 - Display shows Input 2 value with 1st digit flashing.
 - The **In2** value = max. input value * conversion number.
 - Example: 20(mA) x 500 = 10000 (9999).

4. **Press**
 - Use and buttons to enter **In2** value.
 - Press
 - Display advances to **Rd2** Reading 2 Submenu.
 - Press &
 - Use and buttons to enter **Rd2** value.
 - Example: **Rd2** value = 0100.

5. **Press**
 - Display flashes **St Rd** stored message momentarily and then advances to **Alr1** only, if change were made, otherwise press to advance to **Alr1** Alarm 1 Menu.
Conversion number is a coefficient of conversion between input values and real full display range (10000 counts). See Table 3.2 below for proper conversion number.

Table 3.2 Conversion Table

<table>
<thead>
<tr>
<th>RANGE</th>
<th>CONVERSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>10000 / (100 x 1) = 100</td>
</tr>
<tr>
<td>1 V</td>
<td>10000 / (1000 x 1) = 10</td>
</tr>
<tr>
<td>10 V</td>
<td>10000 / (1000 x 10) = 1</td>
</tr>
<tr>
<td>0 -20 mA</td>
<td>10000 / (20 x 1) = 500</td>
</tr>
</tbody>
</table>
3.2.6 Alarm 1 Menu

ENTER ALARM 1 MENU:

Press \(\ast \) 1) Press \(\ast \), if necessary, until CNFG prompt appears.
Press \(\ast \) 2) Display advances to INPT Input Menu.
Press \(\ast \) 3) Press \(\ast \), if necessary, until display advances to ALR1 Alarm 1 Menu.
Press \(\ast \) 4) Display advances to Alarm 1 ENBL Enable or DSBL Disable Submenu and flashes the previous selection.

Figure 3.5 Flow Chart for Alarm 1 Menu
ALARM 1 ENABLE/DISABLE SUBMENU:

Press ➔ 5) Scroll though the available selection until **ENbl** displays to use Alarm 1.

Press ➔ 6) Display shows **Strd** stored message momentarily and then advances to **Absa** only if it was changed, otherwise press ➔ to advance to **Absa** Alarm 1 Absolute/Deviation Submenu.

Note If **dSbl** Alarm 1 Disabled was selected, all submenus of Alarm 1 Menu will be skipped and meter advances to **ALR2** Alarm 2 Menu.

ALARM 1 ABSOLUTE/DEVIATION SUBMENU:

Press ➔ 7) Display flashes previous selection. Press ➔ to **Absa** Absolute or **Dev** Deviation.

Press ➔ 8) Display shows **Strd** stored message momentarily and then advances to **LtcH** only if it was changed, otherwise press ➔ to advance to **LtcH** Alarm 1 Latch/Unlatch Submenu.

Absolute Mode allows Alarm 1 to function independently from Setpoint 1. If the process being monitored does not change often, then "Absolute" Mode is recommended.

Deviation Mode allows changes to Setpoint 1 to be made automatically to Alarm 1. Deviation Mode is typically the ideal mode if the process temperature changes often. In Deviation Mode, set Alarm 1 a certain number of degrees or counts away from Setpoint 1 — this relation remains fixed even if Setpoint 1 is changed.

ALARM 1 LATCH/UNLATCH SUBMENU:

Press ➔ 9) Display flashes previous selection. Press ➔ to **LtcH** Latched or **Unlt** Unlatched.

Press ➔ 10) Display shows **Strd** stored message momentarily and then advances to **Actv** only, if it was changed, otherwise press ➔ to advance to **Actv** Active Submenu.

Latched Mode: Alarm remains "latched" until reset. To reset already latched alarm, select Alarm Latch and press Max twice (i.e. Unlatch and then back to Latch) or from a Run Mode, push ➔ twice to put the monitor in Standby Mode and then push ➔ one more time to return to the Run Mode.

Unlatched Mode: Alarm remains latched only as long as the alarm condition is true.
ACTIVE SUBMENU:

Press 13) Display flashes previous selection. Press to scroll through the available selections: Above, Below, HI/Lo HI/Low and Band. (Band is active if Deviation was selected).

Press 14) Display shows stored message momentarily and then advances to only if it was changed, otherwise press to advance to Alarm Enable/Disable at Power On Submenu.

Above: Alarm 1 condition triggered when the process variable is greater than the Alarm Hi Value (Low value ignored).

Below: Alarm 1 condition triggered when the process variable is less than the Alarm Low Value (Hi value ignored).

Hi/Low: Alarm 1 condition triggered when the process variable is less than the Alarm Low Value or above the Hi Value.

Band: Alarm 1 condition triggered when the process variable is above or below the "band" set around Setpoint 1. Band equals Hi Value (Low Value ignored). A "band" is set around the set point by the instrument only in the "Deviation" Mode.

The Band for the AL 1 would be following the Setpoint 1 value
The Band for the AL 2 would be following the Setpoint 2 value.

The Band or the Deviation Value should be entered under:

- AL1 High (if they want Alarm 1)
- AL2 High (if they want Alarm 2)
- AL Low value is ignored in the Band mode.

Example: if customer requires a Deviation Value of ±10 degrees around a setpoint (using Output 2 as alarm)

- Alarm 2: - Deviation
- Contact Closure type: Deviation---Band
- AL2 High: 10 (Band they want around Setpoint 2)

Then the Band Value is to be entered under AL2 HI: 10 not 80+10 = 90
Analog to Digital Converter (ADC) Replacement Procedure

1. Turn off the power to the system.
2. Remove the power cables from the ADC.
3. Disconnect the existing ADC from the bus connections.
4. Connect the new ADC to the bus connections.
5. Install the screws to secure the ADC firmly in place.
6. Reconnect the power cables to the ADC.
7. Turn on the power to the system.

Note: Before performing any maintenance, ensure that the power is turned off to avoid electric shocks.

ALARM ENABLE/DISABLE AT POWER ON:

Press 15) Display flashes previous selection. Press ▲ to enable or ▼ disable.

Press 16) Display shows stored message. Momentarily and then advances to ALR.L only if it was changed, otherwise press to advance to the ALR.L Alarm 1 Low Value Submenu.

If the alarm is enabled at Power On, the alarm will be active right after reset. If the alarm is disabled at Power On, the alarm will become enabled when the process value enters the non alarm area. The alarm is not active while the process value is approaching Setpoint 1.

ALARM 1 LOW VALUE SUBMENU:

Press 17) Display flashes 1st digit of previous value. Use ▲ and ▼ to enter new value.

Press 18) Use ▲ and ▼ to enter Alarm 1 Low Value.

Press 19) Display shows stored message momentarily and then advances to ALR.H only, if it was changed, otherwise press to advance to ALR.H Alarm 1 Hi Value Submenu.

ALARM 1 HI VALUE SUBMENU:

Press 20) Display flashes 1st digit of previous value. Use ▲ and ▼ to enter new value.

Press 21) Use ▲ and ▼ to enter Alarm1 Hi Value.

Press 22) Display shows stored message momentarily and then advances to the next menu only, if it was changed, otherwise press to advance to the next menu.
3.2.7 Alarm 2 Menu

Figure 3.6 Flow Chart for Alarm 2 Menu

ENTER ALARM 2 MENU:

Press 1) Press if necessary, until CNFG prompt appears.
Press 2) Display advances to INPT Input Menu.
Press 3) Press if necessary, until display advances to ALR2 Alarm 2 Menu.
Press 4) Display advances to Alarm 2 Enable or Disable Submenu.

ALARM 2 ENABLE/DISABLE SUBMENU:

Press 6) Display shows stored message momentarily and then advances to Abs only if it was changed, otherwise press to advance to Absolute/Deviation Submenu.

If Alarm 2 Disabled was selected, all submenus of Alarm 2 will be skipped and meter advances to Cold Junction (C.J.) Reading Adjust Menu.

The remaining Alarm 2 menu items are identical to Alarm 1 Menu. Modifying Alarm Settings will not reset the instrument.
3.2.8 Reading Adjust Menu

Figure 3.7 Flow Chart for Reading Adjust Menu

ENTER READING ADJUST MENU:

1. Press , if necessary, until prompt appears.
2. Display advances to Input Menu.
3. Press , if necessary, until Display advances to Reading Adjust Menu.

READING ADJUST VALUE SUBMENU:

4. Display flashes 1st digit of previous Reading Adjust value.
5. Press and buttons to enter a new Reading Adjust value (-1999 to 9999).
6. Display shows stored message momentarily and then advances to Setpoint Deviation Menu.

Reading Offset Adjust allows the user to fine tune a minor error of the transducer, however some applications may require a large offset adjust. (Displayed Process Value = Measured Process Value ±R.ADJ).

Reading Adjust value is adjustable between -1999 to 9999.

3.2.9 Setpoint Deviation Menu / Field Calibration

Figure 3.8 Flow Chart for Setpoint Deviation Menu / Field Calibration

ENTER SETPOINT DEVIATION MENU:

1. Press , if necessary, until prompt appears.
2. Display advances to Input Menu.
3. Press , if necessary, until Display advances to Setpoint Deviation Menu.
3.2.9 Setpoint Deviation Menu / Field Calibration (continued)

SETPOINT DEVIATION ENABLE/DISABLE SUBMENU:

Press 4) Display advances to Setpoint Deviation Enable or Disable Submenu and flashes the previous selection.
Press 5) Scroll through the available selections: Enable or Disable.
Press 6) Display shows stored message momentarily and then advances to the next menu item.

Setpoint Deviation menu, if “enabled”, allows changes to Setpoint 1 to be made automatically to Setpoint 2. This mode is very helpful if the Process value changes often. In Setpoint Deviation Mode, set SP2 a certain number of degrees or counts away from SP1 - this relation remains fixed when SP1 is changed. For instance: Setting SP1=200 and SP2=20 and enabling SP.DV means that the absolute value of SP2=220. Moving SP1 to 300, the absolute value of SP2 becomes 320.

THERMOCOUPLE FIELD CALIBRATION SUBMENU:

⚠️ CAUTION: Do not perform the following steps until you fully understand this entire section.

Note: RTD and Process are perfectly calibrated. This section is applicable to Thermocouple (TC) calibration only.

Be sure that the TC being used to calibrate the meter is of the type selected in the TC submenu. Place the TC in an ice-bath (or other 0°C / 32°F environment). In ambient temperature conditions: connect the TC to the meter, apply power to the meter.

⚠️ CAUTION: Do not proceed with TC calibration unless the above conditions have been in effect for at least one hour.

Press 7) Display shows CAL*
Press 8) Display shows flashing 0000
Press * 9) Display will still show flashing 0000
Press * 10) Display shows OUT (meaning Calibration is complete)

* If you accidently engage the flashing (CAL° alert) simply re-press the last button you pressed, to avoid unintentionally mis-calibrating your meter.
3.2.10 ID Code Menu

Figure 3.9 Flow Chart for ID Code Menu

ENTER ID CODE MENU:

- Press ø 1) Press ø, if necessary, until CHFG prompt appears.
- Press ø 2) Display advances to INPT Input Menu.
- Press ø 3) Press ø, if necessary, until display advances to ID ID Code Menu.

ENTERING OR CHANGING YOUR (NON-DEFAULT) ID CODE:

- Press ø 4) Display advances to ______ with 1st under score flashing.
- Press ø & ø 5) Press ø and ø to enter your 4-digit “ID Code” number.

Note: If entered “ID Code” is incorrect display shows ERR Error message momentarily and then skips to the Run Mode.

- Press ø 7) Display flashes the first digit of previous entered “ID Code” number.
- Press ø & ø 8) Press ø and ø buttons to enter your new “ID Code” number.
- Press ø 9) Display shows STRD stored message momentarily and then advances to the FULL Full Security Submenu.
ENTERING OR CHANGING YOUR (DEFAULT) ID CODE:

Enter "Id" menu (Repeat steps from 1 to 3).

Press 10) Display advances to \texttt{CH. Id} Change ID Code Submenu.
Press 11) Display shows \texttt{0000} message with flashing 1st digit.

Note: If you want to change your default “ID Code” you can do it now, otherwise press \(\textbf{p}\) and menu will skip to \texttt{FULL} Full Security Submenu.

Press 13) Display shows \texttt{STRD} stored message momentarily and then advances to the \texttt{FULL} Full Security Submenu.

FULL SECURITY LEVEL SUBMENU:

Press 14) Display flashes \texttt{ENbl} Enable or \texttt{DSbl} Disable.
Press 15) Scroll through the available selections: “Enable” or “Disable”.
Press 16) Display shows \texttt{STRD} stored message momentarily and then advances to \texttt{SP. Id} Setpoint/ID Submenu.

Note: If "Full" Security Level is "Enabled" and the user attempts to enter the Main Menu, they will be prompted for an ID Code. The ID Code should be correct to enter the instrument Menu item.

SETPOINT/IP SECURITY LEVEL SUBMENU:

This Security Level can be functional only if \texttt{FULL} Security Level is Disabled.

Press 17) Display flashes \texttt{ENbl} Enable or \texttt{DSbl} Disable.
Press 18) Scroll through the available selections: “Enable” or “Disable”.
Press 19) Display shows \texttt{STRD} stored message momentarily and then advances to \texttt{COMM} Communication Submenu.

Note: If "Setpoint/ID" Security Level is "Enabled" and the user attempts to advance into the \texttt{CNFG} Configuration Menu, he will be prompted for ID Code number. The ID Code should be correct to proceed into the Configuration Menu, otherwise display will show an Error and skip to the Run Mode.

Note: If “Full” and “Setpoint/ID” Security Levels are "Disabled", the ID code will be “Disabled” and user will not be asked for ID Code to enter the Menu items (“ID” Submenu will not show up in “ID/Setpoint” Menu).
3.2.11 Communication Option Menu

Purchasing this unit with Serial Communications permits an instrument to be configured or monitored from an IBM PC compatible computer using software available at the website listed on the cover page of this manual or on the CD-ROM enclosed with your shipment. For complete instructions on the use of the Communications Option, refer to the Serial Communications Reference Manual.

Figure 3.10 Flow Chart for Communication Option Menu
ENTER COMMUNICATION OPTION MENU:

Press © 1) Press ©, if necessary, until CHFG prompt appears.
Press © 2) Display advances to INPUT Input Menu.
Press © 3) Press ©, if necessary, until display advances to COMM Communication Options Menu.
Press © 4) Display advances to C.PAR Communication Parameters Submenu.

If Communication Option is not installed, the display shows NONE and skips to the Color Display Menu.

COMMUNICATION PARAMETERS SUBMENU:

Allows the user to adjust Serial Communications Settings of the instrument. When connecting an instrument to a computer or other device, the Communications Parameters must match. Generally the default settings (as shown in Section 5) should be utilized.

Press © 5) Display advances to baud Baud Submenu.

BAUD SUBMENU:

Press © 6) Display flashes previous selection for baud value.
Press © 7) Scroll through the available selections: 300, 600, 1200, 2400, 4800, 9600, 19.2K.
Press © 8) Display shows stored message momentarily and then advances to PR ty only, if it was changed, otherwise press © to advance to PR ty Parity Submenu.

PARITY SUBMENU:

Press © 9) Display flashes previous selection for “Parity”.
Press © 10) Scroll through the available selections: NO, ODD, EVEN.
Press © 11) Display shows stored message momentarily and then advances to data only, if it was changed, otherwise press © to advance to data Data Bit Submenu.

DATA BIT SUBMENU:

Press © 12) Display flashes previous selection for “Data Bit”.
Press © 13) Scroll through the available selections: 7-BIT, 8-BIT.
Press © 14) Display shows stored message and then advances to STOP only, if it was changed, otherwise press © to advance to STOP Stop Bit Submenu.
STOP BIT SUBMENU:

Press 15) Display flashes previous selection for “Stop Bit”.
Press 16) Scroll through the available selections: 1-BIT, 2-BIT.
Press 17) Display shows stored message momentarily and then advances to Bus Format Submenu.

BUS FORMAT SUBMENU:

Determines Communications Standards and Command/Data Formats for transferring information into and out of the unit via the Serial Communications Bus. Bus Format Submenus essentially determine how and when data can be accessed via the Serial Communications of the device.

MODBUS PROTOCOL SUBMENU:

Press 19) Display flashes previous selection for Modbus.
Press 20) Scroll through the available selections: NO, YES.
Press 21) Display shows stored message momentarily and then advances to Line Feed Submenu.

To select iSeries Protocol, set Modbus Submenu to “No”.
To select Modbus Protocol, set Modbus Submenu to “Yes”.

If Modbus Protocol was selected, the following Communications Parameters must be set as: No Parity, 8-bit Data Bit, 1-Stop Bit. Do not attempt to change these parameters.

LINE FEED SUBMENU:

Determines if data sent to the instrument will have a Line Feed appended to the end - useful for viewing or logging results on separate lines when displayed on communications software at a computer.

Press 22) Display flashes previous selection for “Line Feed”.
Press 23) Scroll through the available selections: NO, YES.
Press 24) Display shows stored message momentarily and then advances to Echo Submenu.
ECHO SUBMENU:

When valid commands are sent to the instrument, this determines whether the command will be echoed to the Serial Bus. Use of echo is recommended in most situations, especially to help verify that data was received and recognized by the monitor.

- Press (25) Display flashes previous selection for “Echo”.
- Press (26) Scroll through the available selections: NO, YES.
- Press (27) Display flashes stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Communication Standard Submenu.

COMMUNICATION INTERFACE STANDARD SUBMENU:

Determines whether device should be connected to an RS-232C serial port (as is commonly used on IBM PC-compatible computers) or via an RS-485 bus connected through appropriate RS-232/485 converter. When used in RS-485 Mode, the device must be accessed with an appropriate Address Value as selected in the Address Submenu described later.

- Press (28) Display flashes previous selection for “Standard”.
- Press (30) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Data Flow Mode Submenu.

DATA FLOW MODE SUBMENU:

Determines whether the instrument will wait for commands and data requests from the Serial Bus or whether the instrument will send data automatically and continuously to the Serial Bus. Devices configured for the RS-485 Communications Standard operate properly only under Command Mode.

- Press (31) Display flashes previous selection for “Mode”.
- Press (32) Scroll through the available selections: “Command”, “Continuous”.
- Press (33) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Data Separation Submenu.
DATA SEPARATION CHARACTER SUBMENU:

Determines whether data sent from the device in Continuous Data Flow Mode will be separated by spaces or by Carriage Returns.

Press

34) Display flashes previous selection for “Separation” Submenu.

Press

35) Scroll through the available selections: SPACE “Space” or

 CAR “Carriage Return”.

Press

36) Display shows STored stored message momentarily and then advances to DAT. only, if it was changed, otherwise press

 to advance to DAT. Data Format Submenu.

DATA FORMAT SUBMENU:

Preformatted data can be sent automatically or upon request from the unit. Use the Data Format Submenus to determine what data will be sent in this preformatted data string. Refer to the iSeries Communications Manual for more information about the data format. At least one of the following suboptions must be enabled and hence output data to the Serial Bus.

Note: This menu is applicable for Continuous Mode of RS-232 communication.

Press

37) Display advances to STAT Alarm Status Submenu.

ALARM STATUS SUBMENU:

Includes Alarm Status bytes in the data string.

Press

38) Display flashes previous selection for “Status” (alarm status).

Press

39) Scroll through the available selections: NO, YES.

Press

40) Display shows STored stored message momentarily and then advances to RDNG only, if it was changed, otherwise press

 to advance to RDNG Reading Submenu.

MAIN READING SUBMENU:

Includes Main Reading in the data string.

Press

41) Display flashes previous selection for “Reading”.

Press

42) Scroll through the available selections: NO, YES.

Press

43) Display shows STored stored message momentarily and then advances to PEAK only, if it was changed, otherwise press

 to advance to PEAK Peak Submenu.
PEAK VALUE SUBMENU:
Includes Peak Value in the data string.

Press 44) Display flashes previous selection for PEAK Submenu.
Press 45) Scroll through the available selections: NO, YES.
Press 46) Display shows STRD stored message momentarily and then
advances to VALY only, if it was changed, otherwise press to
advance to VALY Valley Submenu.

VALLEY VALUE SUBMENU:
Includes Valley Value in the data string.

Press 47) Display flashes previous selection for “Valley”.
Press 48) Scroll through the available selections: NO, YES.
Press 49) Display shows STRD stored message momentarily and then
advances to UNIT only, if it was changed, otherwise press to
advance to UNIT Temperature Unit Submenu.

TEMPERATURE UNIT SUBMENU:
Includes a byte in the data string to indicate whether reading is in Celsius or
Fahrenheit.

Press 50) Display flashes previous selection for UNIT.
Press 51) Scroll through the available selections: NO, YES.
Press 52) Display shows STRD stored message momentarily and then
advances to ADDR only, if it was changed, otherwise press to
advance to ADDR Address Setup Submenu.

ADDRESS SETUP SUBMENU:

This menu is applicable to the RS-485 Option only.

Press 53) Display advances to “Address Value” (0000 to 0199)
Submenu.

ADDRESS VALUE SUBMENU:

Press 54) Display flashes 1st digit of previously stored Address Value.
Press 55) Press and to enter new “Address Value”.
Press 56) Display shows STRD stored message momentarily and then
advances to TR.TM Transmit Time Interval Submenu.
TRANSMIT TIME INTERVAL SUBMENU:

This menu is applicable if “Continuous” Mode was selected in the “Data Flow Mode” Submenu and the device is configured as an RS-232C Standard device. Also, one or more options under the Data Format Submenu must be enabled.

Press 57) Display advances to “Transmit Time Value” Submenu.

TRANSMIT TIME INTERVAL VALUE SUBMENU:

Determines the interval at which data will be emitted to the RS-232 Serial Bus when the instrument is in Continuous Data Flow Mode.

Press & 59) Press and to enter new “Transmit Time Value”, e.g. 0030 will send the data every 30 seconds in Continuous Mode.
Press 60) Display shows STRD stored message momentarily and then advances to COLR only, if it was changed, otherwise press to advance to COLR Color Display Selection Menu.

For more details, refer to the Communication Manual available at the website listed on the cover page of this manual or on the CD-ROM enclosed with your shipment.
3.2.12 Display Color Selection Menu

This submenu allows the user to select the color of the display.

Figure 3.11 Flow Chart for Display Color Selection Menu

ENTER DISPLAY COLOR SELECTION MENU:

1. Press , if necessary, until **CHFG** prompt appears.
2. Display advances to **INPT** Input Menu.
3. Press , if necessary, until display advances to **COLR** Display Color Selection Menu.
4. Display advances to **N.CLR** Normal Color Submenu.

NORMAL COLOR DISPLAY SUBMENU:

5. Display flashes the previous selection for “Normal Color”.
6. Scroll through the available selections: **GRN**, **RED** or **AMBR**.
7. Display shows **STRD** stored message momentarily and then advances to **1.CLR** only, if it was changed, otherwise press to advance to **1.CLR** Alarm 1 Display Color Submenu.

The menu below allows the user to change the color of display when alarm is triggered.

ALARM 1 DISPLAY COLOR SUBMENU:

8. Display flashes previous selection for “Alarm 1 Color Display”.
9. Scroll through the available selections: **GRN**, **RED** or **AMBR**.
10. Display shows **STRD** stored message momentarily and then advances to **2.CLR** only, if it was changed, otherwise press to advance to **2.CLR** Alarm 2 Display Color Submenu.
ALARM 2 DISPLAY COLOR SUBMENU:

Press 11) Display flashes previous selection for “Alarm 2 Color Display”.
Press 12) Scroll through the available selections: GRN, RED or AMBR.
Press 13) Display shows stored message momentarily and then momentarily shows the software version number, followed by Reset, and then proceeds to the Run Mode.

IN ORDER TO DISPLAY ONE COLOR, SET THE SAME DISPLAY COLOR ON ALL THREE SUBMENUS ABOVE.

If user wants the display to change color every time that both Alarm 1 and Alarm 2 are triggered, the Alarm values should be set in such a way that Alarm 1 value is always on the top of Alarm 2 value, otherwise value of Alarm 1 will overwrite value of Alarm 2 and Display Color would not change when Alarm 2 is triggered.

Example 1:
Alarm Setup: Absolute, Above, Alarm 2 HI Value “ALR.H” = 200, Alarm 1 HI Value “ALR.H” = 400

Display Colors change sequences:

```
GREEN  |  RED  |  AMBER
-----------------  |  -----------------  |  -----------------
0  AL2.H = 200  AL1.H = 400
```

Example 2:
Alarm Setup: Absolute, Below, Alarm 2 Low Value “ALR.L” = 300, Alarm 1 Low Value “ALR.L” = 100
Color Display Setup: "N.CLR" = Green, "1.CLR" = Amber, "2.CLR" = Red

Display Colors change sequences:

```
AMBER  |  RED  |  GREEN
-----------------  |  -----------------  |  -----------------
0  AL1.L = 100  AL2.L = 300
```
Example 3:
Setpoint 1 = 300,
Setpoint 2 = 200
Alarm 1 & 2 Setup: Deviation, Band, “ALR.H” = 10

Display Colors change sequences:

<table>
<thead>
<tr>
<th>AMBER</th>
<th>AMBER</th>
<th>AMBER</th>
<th>GREEN</th>
<th>AMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
</tr>
</tbody>
</table>

Alarm 1 is designed to monitor the Process Value around the Setpoint 1. Alarm 2 is designed to monitor the Process Value around the Setpoint 2.

Example 4:
Setpoint 1 = 200
Setpoint 2 = 200
Alarm 1 Setup: Deviation, Band, “ALR.H” = 20
Alarm 2 Setup: Deviation, Hi/Low, “ALR.H” = 10, “ALR.L” = 5

Display colors change sequences:

<table>
<thead>
<tr>
<th>AMBER</th>
<th>RED</th>
<th>GREEN</th>
<th>GREEN</th>
<th>RED</th>
<th>AMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>180</td>
<td>195</td>
<td>200</td>
<td>210</td>
<td>220</td>
</tr>
</tbody>
</table>

Reset: The instrument automatically resets after the last menu of the Configuration Mode has been entered. After the instrument resets, it advances to the Run Mode.
PART 4
SPECIFICATIONS

Accuracy
±0.5°C temp; 0.03% reading process

Resolution
1°/0.1°; 10 µV process

Temperature Stability
1) RTD: 0.04°C/°C
2) TC @ 25°C (77°F): 0.05°C/°C
- Cold Junction Compensation
3) Process: 50 ppm/°C

NMRR 60 dB
CMRR 120 dB

A/D Conversion
Dual slope

Reading Rate
3 samples per second

Digital Filter
Programmable

Remote Programmer Display
(optional)
4-digit, 9-segment LED, 21mm (0.83") red, green and amber programmable colors for process variable, set point and temperature units

Warm up to Rated Accuracy
30 min.

INPUT
Input Types
Thermocouple, RTD, Analog Voltage, Analog Current

Thermocouple Type (ITS 90)

Thermocouple Lead Resistance
100 ohm max

RTD Input (ITS 68)
100/500/1000 Ω Pt sensor, 2-, 3- or 4-wire; 0.00385 or 0.00392 curve

Voltage Input
0 to 100 mV, 0 to 1 V, 0 to 10 Vdc

Input Impedance
10 MΩ for 100 mV
1 MΩ for 1 or 10 Vdc

Current Input
0 to 20 mA (5 ohm load)

Configuration
Single-ended

Polarity
Unipolar

Step Response
0.7 sec for 99.9%

Decimal Selection
None, 0.1 for temperature
None, 0.1, 0.01 or 0.001 for process

Setpoint Adjustment
-1999 to 9999 counts

Span Adjustment
0.001 to 9999 counts

Offset Adjustment
-1999 to +9999

NETWORK AND COMMUNICATIONS
(Optional -C24, -C4EI, -EI)
Ethernet: Standards Compliance
IEEE 802.3 10Base-T

Supported Protocols: TCP/IP, ARP, HTTPGET

RS-232/RS-422/RS-485/MODBUS:
Selectable from menu; both ASCII and modbus protocol selectable from menu. Programmable 300 to 19.2 K baud; complete programmable setup capability; program to transmit current display, alarm status, min/max, actual measured input value and status.

RS-485: Addressable from 0 to 199

Connection: Screw terminals
ALARM 1 & 2
Programmable to display color change
Relay* 250 Vac or 30 Vdc @ 3 A (Resistive Load); configurable for on/off, PID and Ramp and Soak
Output 1*: SPDT type, can be configured as Alarm 1 output
Output 2*: SPDT type, can be configured as Alarm 2 output
SSR* 20-265 Vac @ 0.05-0.5 A (Resistive Load); continuous
DC Pulse* Non-Isolated; 10 Vdc @ 20 mA
* Only with -AL Limit Alarm Option
Operation High/low, above/below, band, latch/unlatch, normally open/normally closed and process/deviation; front panel configurations

EXCITATION
24 Vdc @ 25 mA
Not available for:
Low Power Option (-DC), Serial Communication Option (-C24) or Ethernet Option (-C4EI)

INSULATION
Power to Input/Output
2300 Vac per 1 min. test
1500 Vac per 1 min. test (Low Voltage/Power Option)
Power to Relays/SSR Outputs
2300 Vac per 1 min. test
Relays/SSR to Relay/SSR Outputs
2300 Vac per 1 min. test
RS-232/485 to Inputs/Outputs
500 Vac per 1 min. test
Approvals UL, C-UL, and see CE Approval Section

GENERAL
Line Voltage/Power
90-240 Vac +/-10%, 50-400 Hz*
110-375 Vdc, equivalent voltage, 4 W

* No CE compliance above 60 Hz
Low Voltage/Power Option
12-36 Vdc, 3 W**

External power source must meet Safety Agency Approvals.
** Units can be powered safely with 24 Vac power but, no Certification for CE/UL are claimed.

External Fuse Required
Time-Delay, UL 248-14 listed:
100 mA/250 V
400 mA/250 V (Low Voltage/Power Option)
Time-Lag, IEC 127-3 recognized:
100 mA/250 V
400 mA/250 V (Low Voltage/Power Option)

Environmental Conditions
All models: 0 to 55°C (32 to 131°F), 90% RH non-condensing
i8C: 0 to 50°C (32 to 122°F) for UL only. 90% RH non-condensing

Dimensions
Standard Unit iDR:
92.5H x 125.2D x 24.9 mm W
(3.64 x 4.93 x 0.98")

Ethernet Unit iDR-EI / iDR-C4EI:
92.5H x 125.2D x 39.8 mm W
(3.64 x 4.93 x 1.55")

Optional Remote Programmer iDRP:
48H x 96x 39 mm D
(1.89 x 3.78 x 1.55")

1/8 DIN Panel Cutout
Optional Remote Programmer iDRP:
45 H x 92 mm W
(1.772" x 3.622 ")

Weight
Standard Unit iDR:
181g (0.4lb)

Ethernet Unit iDR-EI / iDR-C4EI:
204g (0.45lb)

Optional Remote Programmer iDRP:
159g (0.35lb)
<table>
<thead>
<tr>
<th>TC</th>
<th>Input Type</th>
<th>Range</th>
<th>Accuracy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Iron-Constantan</td>
<td>-210 to 760°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-346 to 1400°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>K</td>
<td>CHROMEGA°-</td>
<td>-270 to -160°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>ALOMEGA®</td>
<td>-160 to 1372°C</td>
<td>0.4°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-454 to -256°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-256 to 2502°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>T</td>
<td>Copper-Constantan</td>
<td>-270 to -190°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-190 to 400°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-454 to -310°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-310 to 752°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>E</td>
<td>CHROMEGA-</td>
<td>-270 to -220°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>Constantan</td>
<td>-220 to 1000°C</td>
<td>0.4°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-454 to -364°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-364 to 1832°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>R</td>
<td>Pt/13%Rh-Pt</td>
<td>-50 to 40°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 to 1788°C</td>
<td>0.5°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-58 to 104°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104 to 3250°F</td>
<td>0.9°F</td>
</tr>
<tr>
<td>S</td>
<td>Pt/10%Rh-Pt</td>
<td>-50 to 100°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 to 1768°C</td>
<td>0.5°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-58 to 212°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>212 to 3214°F</td>
<td>0.9°F</td>
</tr>
<tr>
<td>B</td>
<td>30%Rh-Pt/</td>
<td>200 to 640°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>6%Rh-Pt</td>
<td>640 to 1820°C</td>
<td>0.5°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>212 to 1184°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1184 to 3308°F</td>
<td>0.9°F</td>
</tr>
<tr>
<td>C</td>
<td>5%Re-W/</td>
<td>0 to 2354°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td>26%Re-W</td>
<td>32 to 4253°F</td>
<td>0.7°F</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Nicrosil-Nisil</td>
<td>-250 to -100°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-100 to 1300°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-418 to -148°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-148 to 2372°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>L</td>
<td>J</td>
<td>-200 to 900°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td>DIN</td>
<td>-328 to 1652°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>RTD</td>
<td>Pt, 0.00385, 100 Ω, 500 Ω, 1000 Ω</td>
<td>200 to 900°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-328 to 1652°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>RTD</td>
<td>Pt, 0.00392, 100 Ω, 500 Ω, 1000 Ω</td>
<td>-200 to 850°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-328 to 1562°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>PROCESS</td>
<td>Voltage</td>
<td>0 to 100 mV, 0 to 1 V, 0 to 10 Vdc</td>
<td>0.03% rdg</td>
</tr>
<tr>
<td>PROCESS</td>
<td>Current</td>
<td>0 to 20 mA, 4 to 20 mA</td>
<td>0.03% rdg</td>
</tr>
</tbody>
</table>
PART 5 FACTORY PRESET VALUES

Table 5.1 Factory Preset Values

<table>
<thead>
<tr>
<th>MENU ITEMS</th>
<th>FACTORY PRESET VALUES</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Point 1 (SP1)</td>
<td>000.0</td>
<td></td>
</tr>
<tr>
<td>Set Point 2 (SP2)</td>
<td>000.0</td>
<td></td>
</tr>
<tr>
<td>Input:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Type (INPT)</td>
<td>TC, type K</td>
<td></td>
</tr>
<tr>
<td>Reading Configuration (RDG):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal Point (DEC.P)</td>
<td>FFF.F</td>
<td></td>
</tr>
<tr>
<td>Temperature unit (TEMP)</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td>Filter value (FLTR)</td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td>Alarm 1 & 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm 1 (ALR1), Alarm 2 (ALR2)</td>
<td>Disable (DSBL)</td>
<td></td>
</tr>
<tr>
<td>Absolute/Deviation (ABSO/DEV)</td>
<td>Absolute (ABSO)</td>
<td></td>
</tr>
<tr>
<td>Latch/Unlatch (LTCH/UNLT)</td>
<td>Unlatch (UNLT)</td>
<td></td>
</tr>
<tr>
<td>Active (ACTV)</td>
<td>Above (ABOV)</td>
<td></td>
</tr>
<tr>
<td>Alarm At Power On (A.P.ON)</td>
<td>Disable (DSBL)</td>
<td>Alarm 1 only</td>
</tr>
<tr>
<td>Alarm Low (ALR.L)</td>
<td>-100.0</td>
<td></td>
</tr>
<tr>
<td>Alarm High (ALR.H)</td>
<td>400.0</td>
<td></td>
</tr>
<tr>
<td>Reading Adjust Value (R.ADJ)</td>
<td>000.0</td>
<td></td>
</tr>
<tr>
<td>Sepoint Deviation (SP.dV)</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>ID:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID Value</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Full ID (FULL)</td>
<td>Disable (DSBL)</td>
<td></td>
</tr>
<tr>
<td>Set Point ID (ID.SP)</td>
<td>Disable (DSBL)</td>
<td></td>
</tr>
<tr>
<td>Communication Parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate (BAUD)</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Parity (PRTY)</td>
<td>Odd</td>
<td></td>
</tr>
<tr>
<td>Data bit (DATA)</td>
<td>7 bit</td>
<td></td>
</tr>
<tr>
<td>Stop Bit</td>
<td>1 bit</td>
<td></td>
</tr>
<tr>
<td>Modbus Protocol (M.BUS)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Line Feed (LF)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Echo (ECHO)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Standard Interface (STND)</td>
<td>RS232 (232C)</td>
<td></td>
</tr>
<tr>
<td>Command Mode (MODE)</td>
<td>Command (CMD)</td>
<td></td>
</tr>
<tr>
<td>Separation (SEPR)</td>
<td>Space (SPCE)</td>
<td></td>
</tr>
<tr>
<td>Alarm Status (STAT)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Reading (RDNG)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Valley (VALY)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Units (UNIT)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multipoint Address (ADDR)</td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>Transmit Time (TR.TM)</td>
<td>0016</td>
<td></td>
</tr>
<tr>
<td>Display Color (COLR):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Color (N.CLRL)</td>
<td>Green (GRN)</td>
<td></td>
</tr>
<tr>
<td>Alarm 1 Color (1.CLRL)</td>
<td>Red (RED)</td>
<td></td>
</tr>
<tr>
<td>Alarm 2 Color (2.CLRL)</td>
<td>Amber (AMBR)</td>
<td></td>
</tr>
</tbody>
</table>
This product conforms to the EMC directive 89/336/EEC amended by 93/68/EEC, and with the European Low Voltage Directive 72/23/EEC.

Electrical Safety EN61010-1:2001
Safety requirements for electrical equipment for measurement, control and laboratory.

Double Insulation

Pollution Degree 2

Dielectric withstand Test per 1 min

- Power to Input/Output: 2300Vac (3250Vdc)
- Power to Input/Output: 1500Vac (2120Vdc) (Low Voltage dc Power Option*)
- Power to Relays/SSR Output: 2300Vac (3250Vdc)
- Ethernet to Inputs: 1500Vac (2120Vdc)
- Isolated RS232 to Inputs: 500Vac (720Vdc)
- Isolated Analog to Inputs: 500Vac (720Vdc)
- Analog/Pulse to Inputs: No Isolation

Measurement Category I
Category I are measurements performed on circuits not directly connected to the Mains Supply (power). Maximum Line-to-Neutral working voltage is 50Vac/dc. This unit should not be used in Measurement Categories II, III, IV.

Transients Overvoltage Surge (1.2 / 50uS pulse)

- Input Power: 2500V
- Input Power: 1500V (Low Voltage dc Power Option*)
- Ethernet: 1500V
- Input/Output Signals: 500V

*Note: *Units configured for external low power dc voltage, 12-36Vdc

Immunity and Emissions requirements for electrical equipment for measurement, control and laboratory.

- EMC Emissions Table 4, Class B of EN61326
- EMC Immunity** Table 1 of EN61326

Note: **I/O signal and control lines require shielded cables and these cables must be located on conductive cable trays or in conduits. Furthermore, the length of these cables should not exceed 30 meters**

Refer to the EMC and Safety installation considerations (Guidelines) of this manual for additional information.
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of one (1) year from the date of purchase. In addition to OMEGA’s standard warranty period, OMEGA Engineering will extend the warranty period for four (4) additional years if the warranty card enclosed with each instrument is returned to OMEGA.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA’s control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

DIRECT ALL WARRANTY AND REPAIR REQUESTS/INQUIRIES TO OMEGA’S CUSTOMER SERVICE DEPARTMENT. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:
1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of product, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

© Copyright 2006 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

TRADEMARK NOTICE: ®, omega.com®, OMEGA® and ® are Trademarks of OMEGA ENGINEERING, INC.

PATENT NOTICE: This product is covered by one or more of the following patents: U.S. Pat. No. Des. 336,895; 5,274,577; 6,243,021 / CANADA 2052599; 2052600 / ITALY 1249456; 1250938 / FRANCE BREVET No. 91 12756 / SPAIN 2039150; 2048066 / UK PATENT No. GB2 249 837; GB2 248 954 / GERMANY DE 41 34398 C2. The “Meter Bezel Design” is a Trademark of NEWPORT Electronics, Inc. Used under License. Other US and International Patents pending or applied for.
Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

Shop on line at omega.com

TEMPERATURE
- Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
- Transducers & Strain Gauges
- Load Cells & Pressure Gauges
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL
- Rotameters, Gas Mass Flowmeters & Flow Computers
- Air Velocity Indicators
- Turbine / Paddlewheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY
- pH Electrodes, Testers & Accessories
- Benchtop / Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION
- Data Acquisition & Engineering Software
- Communications-Based Acquisition Systems
- Plug-in Cards for Apple, IBM & Compatibles
- Datalogging Systems
- Recorders, Printers & Plotters

HEATERS
- Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL
- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
- Air, Soil & Water Monitors
- Industrial Water & Wastewater Treatment
- pH, Conductivity & Dissolved Oxygen Instruments