<table>
<thead>
<tr>
<th>OMEGAnet® Online Service</th>
<th>Internet e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>omega.com</td>
<td>info@omega.com</td>
</tr>
</tbody>
</table>

Servicing North America:

USA:
- One Omega Drive, P.O. Box 4047
- Stamford CT 06907-2947
- TEL: (203) 359-1460
- e-mail: info@omega.com
- FAX: (203) 359-7700

Canada:
- 976 Bergar
- Laval (Quebec) H7L 5A1, Canada
- TEL: (514) 856-6928
- e-mail: info@omega.ca
- FAX: (514) 856-6866

For immediate technical or application assistance:

USA and Canada:
- Sales Service: 1-800-326-6924 / 1-800-TC-OMEGA®
- Customer Service: 1-800-622-2578 / 1-800-REST®
- Engineering Service: 1-800-872-9436 / 1-800-USA-WHEN®
- TEL/EASYLINK: 996404
- CABLE: OMEGA

Mexico:
- En Español: (011) 203-359-7803
- e-mail: espanol@omega.com
- FAX: (011) 203-359-7807
- info@omega.com.mx

Servicing Europe:

Benelux:
- Postbus 8034, 1180 LA Amstelveen, The Netherlands
- TEL: +31 (0)20 3472121
- Toll Free in Benelux: 0800 699344
- e-mail: sales@omegainternational.com
- FAX: +31 (0)20 634643

Czech Republic:
- Frystatska 184, 733 01 Karvina, Czech Republic
- TEL: +420 (0)59 6311899
- Toll Free: 0800-1-68342
- e-mail: info@omegaservic.cz
- FAX: +420 (0)59 6311114

France:
- 11, rue Jacques Cartier, 78280 Guyancourt, France
- TEL: +33 (0)1 61 37 5900
- Toll Free in France: 0800 466 342
- e-mail: sales@omega.fr
- FAX: +33 (0)1 61 37 5427

Germany/Austria:
- Dammelsstrasse 26, D-72392 Deckenpfarr, Germany
- TEL: +49 (0)7056 9398-0
- Toll Free in Germany: 0800 639 7678
- e-mail: info@omega.de
- FAX: +49 (0)7056 9398-29

United Kingdom:
- One Omega Drive, River Bend Technology Centre
- Northbank, Elles, Manchester
- M4 5BD United Kingdom
- TEL: +44 (0) 161 777 6621
- Toll Free in United Kingdom: 0800-466-488
- e-mail: sales@omega.co.uk
- FAX: +44 (0) 161 777 6622

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, human applications.

Ver 1.2 - March 2010
Table of Contents

OM-PQR1010

Safety Notice 2
Table of Contents 3
Introduction 5
Calibration 6
Features 7
Apply the Test Signals 10
Testing AC Voltage 11
Testing DC Voltage 12
Testing Temperature 13
Testing Humidity 14
Testing Current 15
Power Up Sequence 16

Communications

Connecting to the OM-PQR1010 17
OM-PQR1010 Host Communications Software 18
Installing the Software 19
File Menu 21
View Menu 22
Settings Menu 23
Set Baud Rate 24
Set Data Log Rate 25
Communications Menu 26
Data Log Report 27
Data Log Graph 28
Detail Report 30
Summary Report 31
Calibration 32

OM-PQR1010 Commands 33
C0 - Transmit the Command Menu 34
C1 - Transmit the Version Number 35
C2 - Transmit a Summary Report 36
C3 - Transmit a Detail Report 37
C4 - Transmit a Data Log 38
C5 - Clear all events, and data log 39
C6 - Configure the hardware 40
 Set the Date and Time 41
 Set the Baud Rate 42
 Set the Data Logging Rate 43
 Set the Thresholds 44
C90 - Continuous Voltage readings 45
CX - Hang up the Phone 46
Specifications

AC Channels 47
DC Channels 48
Current Channel 49
Temperature Channel 49
Humidity Channel 50
Mechanical 50
Operating Specifications 50
Interface 50
Data Storage 50

Power Terminology

Types of Power Problems 51
Dropout - Power Failure 52
Sag 53
Impulse 54
Common Mode Noise 55
Surge 56
High Frequency Noise 57
INTRODUCTION

This reference guide is designed to aid OM-PQR1010 users in the interpretation of AC power line problems.

This unit will detect a wide range of power disturbances including spikes, sags, surges, common mode noise, dropouts, and high frequency noise on 2 phases of voltage and 1 DC Channel, as well as test the Temperature, Humidity, and Current.

The OM-PQR1010 is one of a series of practical power line monitors, designed and priced to be outfitted to everyone who services or installs three phase electrical, and electronic equipment.

Electronic equipment is damaged more often by power disturbances than by fire, theft, and vandalism combined. Intermittent power problems are the most expensive hidden expense to the owners of microprocessor based equipment.

The OM-PQR1010 is easy to use and provides immediate and long term information for the technician and customer to understand power line disturbances.

To monitor the AC and DC circuits with the OM-PQR1010, connect the test leads between the circuits to be tested, and the connectors located on the back of the unit. Plug the line cord provided into a standard 110 volt or 220 volt outlet. After running an internal self test, the unit will start testing.
Included with the OM-PQR1010

Each OM-PQR1010 is supplied with a 6 foot power cord, RS232 communications cable with DB9F termination, Windows 98/NT/XP data analysis software, temperature probe, one set of AC voltage test leads and one set of DC voltage test leads. Humidity probe must be ordered separately, model no. OM-PQR-HUMIDITY.

CALIBRATION

The OM-PQR1010 monitors are designed to test the Power Line with a high degree of accuracy. In this unit all measurements are referenced to a state of the art, temperature compensated voltage source. It is recommended that each unit be calibrated annually by the factory as certain components may require calibration. Contact OMEGA for details on returning your unit for calibration.
Power and Environmental Quality Monitor

- User - Friendly
- Multi Channel - AC Voltage, DC Voltage, Current, Humidity and Temperature
- Disturbance Recorder and Voltage Logger
- Easy to Understand Reports
- Simple connection to a Computer or Terminal
- Made in USA

The OM-PQR1010 Power Quality Recorder is a state of the art, fully integrated instrument which measures, records, and reports power disturbances, aiding in the analysis of power quality in medical, commercial and industrial applications.

Disturbances detected on multiple channels are recorded by their time, date, magnitude, and duration in a non-volatile RAM memory. This data is then retrieved from the analyzer through its’ serial communications port.

Connections to the OM-PQR1010 are made between the safety connectors on the back of the unit, and the circuit panel to be tested. The power to operate the unit comes from any standard 110v / 220v AC outlet. Once plugged in, the OM-PQR1010 immediately begins testing the signals on the input connectors.
Monitor 2 AC Channels,

DC, Temperature and Humidity and Current
(with optional probes)

♦ User - Friendly
♦ Programmable
♦ Multiple Phase Monitoring
♦ Fast Impulse Detection
♦ Easy to Understand Reports
♦ Made in USA

The OM-PQR1010 Power Line Analyzer provides a complete analysis of your AC Power for a fraction of the cost of other Monitors.

Disturbances detected on the Hot and Neutral Lines, as well as Temperature and Humidity channels are recorded by their time, date, magnitude, and duration in a non-volatile RAM memory. This data is then retrieved from the analyzer through it’s serial communications port.

The power to operate the unit comes from any standard 110v / 220v AC outlet. Once plugged in, the OM-PQR1010 immediately begins testing the signals on the input connectors.
Features

♦ Measures all types of disturbances

 * Spikes
 * Sags
 * Line Frequency
 * Dropouts
 * Surges
 * Humidity
 * AC Voltage
 * Common Mode Noise
 * High Frequency Noise
 * Power Failures
 * Temperature

♦ Simple to operate

 1) Plug the power cord into a grounded outlet
 2) Periodically connect to a computer for reports

♦ Stores Disturbance events in non-volatile RAM

 * 32,000 Events in all
 * Will Data log all channels up to 32,000 readings
 (22.75 Days @ 1 sample per minute)

GRAPHICS SOFTWARE INCLUDED!

Provided with the OM-PQR1010 is the PQR HOST
COMMUNICATIONS Software. This software allows you to easily
download the data and display or print the DATALOG chart over
time, the PIE CHART of the summary of events or the
HISTOGRAM of the detail of events.

In addition to full Text Detail and Summary reports, event
information such as the Magnitude, Time, and Date of
each of the disturbances is also reported.
Apply the Test Signals:

The Voltages you are testing can KILL! Only a Licensed Electrician can connect the test leads to a distribution panel. Please use Care

All signals to be tested are applied to the TEST input jacks located on the back of the OM-PQR1010.

Apply AC voltage to the AC inputs at AC-1 and AC-2,
Apply the DC inputs to Port marked DC-1,
Plug the Optional Current Probe into jacks marked CURRENT,
Plug the temp probe into the port marked AUXILIARY,
Plug the Optional Humidity probe into the port marked HUMIDITY.

Note:
All signals are referenced to the safety ground of the unit. For both Safety reasons, and for the unit to measure signals properly, The unit MUST have a safety ground. (Plugging the OM-PQR1010 into a grounded outlet will take care of this)
Testing AC Voltage with the OM-PQR1010

The OM-PQR1010 has two channels of AC Voltage power line analyzing which are designed to obtain the maximum amount of useful data from the circuit under test, while requiring the minimum amount of setup time.

Data from the two AC input connectors starts being collected as soon as power is applied to the AC power connector located on the back of the unit. Data will continue to be gathered until the unit is powered down.

Long term voltage recording is known as Data Logging. The OM-PQR1010 samples the voltage on each of the AC inputs continuously, and stores the average reading once each minute (or at other selected intervals). There is enough data storage capacity in the unit to collect these readings on both channels for 11 days.

The OM-PQR1010 will continuously test the two phases of voltage for Sags, Surges, Power Failures, Dropouts, Impulses, High Frequency Noise, Line Frequency, and Phase changes. Any power quality problems that exceed the preset thresholds will be recorded in battery backed RAM, with the time and date stamp of the event. There is enough data storage capacity in the unit to collect up to 1500 of these readings on both channels.
Testing DC Voltage with the OM-PQR1010

The OM-PQR1010 has one channel for analyzing DC Voltage. This channel has a maximum input of +/-50V for testing low voltage supplies.

Data from the DC input connector starts being collected as soon as power is applied to the AC power connector located on the back of the unit. Data will continue to be gathered until the unit is powered down.

The OM-PQR1010 samples the voltage on the DC input continuously, and stores the average reading once each minute (or at other selected intervals). There is enough data storage capacity in the unit to collect these readings on this channel for 11 days.

The OM-PQR1010 will continuously test the DC input for Sags, Surges, Power Failures, Dropouts, Impulses, and High Frequency Noise. Any power quality problems that exceed the preset thresholds will be recorded in battery backed RAM, with the time and date stamp of the event. There is enough data storage capacity in the unit to collect up to 1500 of these readings.

OM-PQR1010 Back Panel

DC Input
+-50V
Testing Temperature with the OM-PQR1010

The OM-PQR1010 is equipped with a temperature input port. The included Temperature probe may be plugged into this port to provide Data logging and fault detection of the ambient temperature.

Data from the Temperature input port starts being collected as soon as power is applied to the AC power connector located on the back of the unit. Data will continue to be gathered until the unit is powered down.

The OM-PQR1010 samples the temperature port continuously, and stores the average reading once each minute (Data Logging) (or at other selected intervals). There is enough data storage capacity in the unit to collect these readings for 11 days.

The OM-PQR1010 will continuously test the Temperature input for Sags, and Surges. Any deviations that exceed the preset thresholds will be recorded in battery backed RAM, with the time and date stamp of the event. There is enough data storage capacity in the unit to collect up to 1500 of these readings.
Testing Humidity with the OM-PQR1010

The OM-PQR1010 is equipped with a Humidity input port. The optional Humidity probe may be plugged into this port to provide Data logging and fault detection of the ambient Humidity.

Data from the Humidity input port starts being collected as soon as power is applied to the AC power connector located on the back of the unit. Data will continue to be gathered until the unit is powered down.

The OM-PQR1010 samples the Humidity port continuously, and stores the average reading once each minute (Data Logging) (or at other selected intervals). There is enough data storage capacity in the unit to collect these readings for 11 days.

The OM-PQR1010 will continuously test the Humidity input for Sags, and Surges. Any deviations that exceed the preset thresholds will be recorded in battery backed RAM, with the time and date stamp of the event. There is enough data storage capacity in the unit to collect up to 1500 of these readings.
Testing Current with the OM-PQR1010

The OM-PQR1010 is equipped with a pair of banana jacks designed to accept a Current Transducer (CT). The output of the CT will provide the signal necessary for the OM-PQR1010 to record data about the quality of the line being tested.

Data from the CT starts being collected as soon as power is applied to the AC power connector located on the back of the unit. Data will continue to be gathered until the unit is powered down.

The OM-PQR1010 samples the Current channel continuously, and stores the average reading once each minute (or at other selected intervals). There is enough data storage capacity in the unit to collect these readings for 11 days.

The OM-PQR1010 will continuously test the Current Channel for Sags, and Surges. Any deviations that exceed the preset thresholds will be recorded in battery backed RAM, with the time and date stamp of the event. There is enough data storage capacity in the unit to collect up to 1500 of these readings.
Power Up Sequence

Apply AC or DC Power:

There is a Unit Status LED on the back of the OM-PQR1010. This LED is used to indicate system diagnostics status, and Channel operational status.

When the OM-PQR1010 is first connected to AC or DC power (110VAC or 220 VAC, or 12/24V DC), it will go through a series of power on diagnostics. The status of these tests can be seen in the Channel Status LED located on the back panel. While the initial tests are being executed, (approximately 10 seconds long) the Red LED will be blinking. After the tests are completed, the LED will turn off briefly, and then turn on steady.

The LED will blink for ten seconds, whenever there is a disturbance detected on any input, or the serial port has been accessed.

As soon as the diagnostics have completed, the OM-PQR1010 is on-line, and monitoring the input channels. The unit should be left on-line testing for at least a 72 hour period.
Connecting to the OM-PQR1010

DIRECT:

The serial port connector on the back of the OM-PQR1010 is a 9 pin DB style RS232. The pinout is as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
</tbody>
</table>

To establish a connection with this port and a PC, a Null modem cable must be used. This type of cable connects the Transmit Data pin on the PC to the Receive Data pin on the OM-PQR1010, and the Transmit Data pin on the OM-PQR1010 to the Receive Data pin on the PC. It also connects the Ground pins together.

The OM-PQR1010 is configured to operate at 19,200 baud, with 8 data bits, 1 stop bit, and no parity checking.

MODEM:

Use a straight cable (not a null modem) when connecting to a modem.

Power the OM-PQR1010 and the Modem up at the same time after connecting the cable, and the OM-PQR1010 will auto config the Hayse compatible Modem for auto answer mode, at 19,200 baud. If the modem is not Hayse compatible, configure it to answer the phone on 2 rings, with a Baud rate of 19,200, 8 data bits, 1 stop bit, and no parity checking.
PQR Host Communications Software:

The OM-PQR1010 is provided with the Powertronics Host Communications Software. When the OM-PQR1010 is connected to a computer with a null modem cable, the Host software provides several functions:

- Automatically connect to the OM-PQR1010
- Configure the OM-PQR1010’s settings
- Download data from the OM-PQR1010 and Save on the computer
- Generate Reports, Charts and Graphs from the downloaded data

![Graph showing time history plot of AC1 and AC2 data]
Installing the PQR Host Communications Software

- Put Disk 1 provided with your unit into your disk drive.

Select or Double click on **SETUP**

A series of files will be copied to your computer’s RAM

To prevent any software conflicts, you should close any other applications programs running before continuing with the PQR Host software installation, then click on **OK**.

Click on the Computer Button to start the installation.
Clicking on CONTINUE will allow the installation to complete.

The PQR Host communications software can now be started.

- Click on START
- Select PROGRAMS
- Select POWERTRONICS

This Screen is the starting point for working with the OM-PQR1010.
File Menu

The "File" menu contains options for using data files that are stored on disk.

Open
Select the "Open" menu item to open a data log, detail report, or summary report that is stored on disk. After specifying the desired file, the program will open a window that contains the data from the file.

Close
Select the "Close" menu item to close the active window.

Print
Select the "Print" option to send the active window to a printer. This menu item will display a Print Dialog for the user to select which printer to use and to specify the desired settings.

Memory Files
The program will keep track of the last four files that have been used, and keep their names and locations in memory. To reopen any of these files, simply select the menu item with the desired file's name. The program will display the contents of the file in a new window.

Exit
Select the "Exit" menu item to close all windows and exit the program.

Other options that are sometimes shown:

Save
Select the "Save" menu item to save the active data file to its current file name and location.

Save As...
Select the "Save As..." menu item to save the active data file to a new file name and location.
View Menu

The "View" menu contains items used to control what tools are visible and available to the user in the main program window.

Toolbar

Select the "Toolbar" menu item to toggle the toolbar. The toolbar contains the buttons for opening and printing files.

Status Bar

Select the "Status Bar" menu item to toggle the status bar at the bottom of the main program window. The status bar displays the program's current COM port and baud rate settings.
Settings Menu

The "Settings" menu contains items that allow the user to specify certain settings for communication between the software and the PQR device. The menu also provides an interface for setting the PQR device parameters.

COM Port 1 - COM Port 4

The "COM Port" menu items are used to specify which computer COM port the PQR device is connected to. Selecting one of the options will change the program setting to that particular port. The current settings are indicated by a check mark next in the Settings menu. The current COM port setting is also displayed in the status bar at the bottom of the main program window.

Set Date/Time

Select the "Set Date/Time" menu item to set the device date and time.

A dialog box will be displayed that provides the user an interface with which to specify the date and time. The settings will be defaulted to the current date and time, or to the date and time specified previously in the same program session.

After inputting the desired date and time, pressing the "Okay" button will instruct the program to set the device to the specified settings. This process may take a few seconds.
Set Baud Rate

The "Set Baud Rate" menu option allows the user to specify the data rate to be used when communicating with the device. The program will display a dialog box with the six valid baud rates to select from: 1200, 2400, 4800, 9600, 14400, 19200 and 38400. After selecting the desired baud rate, pressing the "Okay" button will instruct the program to set the device baud rate. This process may take a few seconds. The program baud rate setting will also be set to the selected setting.

When the rate is changed, the new setting is saved in FLASH RAM, and is used as the power up default until the next time the setting is changed.
Set Data Logger

The "Set Data Logger" menu item allows the user to specify the device data logging rate, or the time in between data log samples. The user will be provided six choices: 1 second, 5 seconds, 10 seconds, 30 seconds, 1 minute, or 4 minutes. After selecting the desired logging interval, pressing the "Okay" button will instruct the program to set the device setting. This process may take a few seconds.

When the rate is changed, the setting is NOT saved in non-volatile RAM. The power up default is one sample per minute.

Set Thresholds

The "Set Thresholds" menu item allows the user to specify the thresholds at which the device will trigger events. The user will be provided a dialog box with input fields to specify the surge, sag, and power failure thresholds for all available lines. Entering zero will set the unit to test at 5% and 10% limits. Entering a value between 1 and 999 will set the actual voltage for the unit to trip at. Leaving a field blank will keep the threshold set to its current value. After specifying the desired settings, pressing the "Okay" button will instruct the program to set the device settings. This process may take a few seconds.
Communications Menu

The "Communications" menu contains items that allow the user to retrieve data from the PQR device.

When you click on any of these functions, the PQR Host Communications software will automatically scan your serial ports looking for the connected PQR D52. The software will attempt to match the communications settings to the PQR D52, and will then perform the selected function.

For example, when you click on the Data Log report, the software will locate the PQR D52, and start downloading the data. The status of the download is reported as:

The blocks will count up until all of the data is downloaded and saved in the data file.
Data Log

Selecting the "Data Log" menu item will download a listing of the voltages measured on all of the input channels since the unit was put on-line and the RAM was cleared. Before starting the transmission, the user will be asked to specify the name and location of a file to write the data to. After the transfer is complete, the program will automatically open a data window containing the downloaded data.

This is the text report showing the Date and Time of the reading, the voltage on each of the Hot and Neutral Lines as well as the readings from the Temperature and Humidity sensors.

Notice that the Graph option now shows up on your toolbar. Since you now have data available, you can generate the charts and graphs that represent that data.
Data Log Graph

Select the **Plot Time History** selection under **Graph**

Select 1 or 2 of the available channels to graph

Once the channels are selected, and the **Okay** button is clicked, the software will scan the data file and generate a chart showing the data in chart form.

Data Log chart of Voltage on AC1 and AC2 Channels
This is the chart generated from a day's worth of data logging on a 120V AC Line.

By holding down your Left Mouse Button you create a selection box. You can drag your mouse, and create a ZOOM Area around your data. When you release the mouse button, the data in the ZOOM area is expanded to fill the screen area.

Double clicking on the chart will return it to original size.
Detail Report

Selecting the "Detail Report" menu item will download a listing of all the disturbances saved since the unit was put on-line and the RAM was cleared. Before starting the transmission, the user will be asked to specify the name and location of a file to write the data to. After the transfer is complete, the program will automatically open a data window containing the downloaded data. Each event is described by the date, time, phase, event type, and magnitude of that disturbance.

<table>
<thead>
<tr>
<th>Month-Day-Year, Time, Channel, Event Type, Voltage Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb/27/04, 07:58:06.40 DC Ch 1, Impulse, 121 V Peak</td>
</tr>
<tr>
<td>Feb/27/04, 07:58:06.41 DC Ch 1, Impulse, 171 V Peak</td>
</tr>
<tr>
<td>May/06/04, 14:48:12.11 AC Ch 1, Power Restore, 114 V</td>
</tr>
<tr>
<td>May/06/04, 14:48:12.11 AC Ch 2, Power Restore, 115 V</td>
</tr>
<tr>
<td>May/06/04, 14:48:12.28 DC Ch 1, Power Restore, 19 V</td>
</tr>
<tr>
<td>May/06/04, 15:37:48.99 AC Ch 1, Power Restore, 116 V</td>
</tr>
<tr>
<td>May/06/04, 15:37:48.99 AC Ch 2, Power Restore, 116 V</td>
</tr>
<tr>
<td>May/06/04, 15:37:48.99 DC Ch 1, Power Restore, 20 V</td>
</tr>
<tr>
<td>May/06/04, 15:44:15.49 AC Ch 1, Impulse, 107 V Peak</td>
</tr>
<tr>
<td>May/07/04, 09:25:59.01 DC Ch 1, Impulse, 116 V Peak</td>
</tr>
<tr>
<td>May/07/04, 09:29:29.00 DC Ch 1, Impulse, 138 V Peak</td>
</tr>
</tbody>
</table>
Summary Report

Selecting the "Summary Report" menu item will download a listing of counts of all the disturbances detected since the unit was put on-line and the RAM was cleared. Before starting the transmission, the user will be asked to specify the name and location of a file to write the data to. After the transfer is complete, the program will automatically open a data window containing the downloaded data. Each event is described by the phase, event type, magnitude, and quantity of that disturbance.

Selecting the Chart options from this report allows you to generate a pie chart showing the distribution of the detected events.
Calibration Mode

Selecting the "Calibration Mode" menu item will command the device to begin transmitting the current voltage readings to the computer. The voltage readings are then displayed in a special window. The voltage readings will be updated approximately once a second. No other command can be performed while the program is in calibration mode. To end the transmission, user must press the "Stop Transmission" button; otherwise, the transmission will automatically stop after about two minutes.

Clear Data

Selecting the "Clear Data" menu item will clear all of the events and data log information stored in the internal battery backed RAM in the device. The summary report quantities will be reset to zero, and the data logging will start tracking voltage again. The program will ask the user for confirmation before transmitting the "Clear" command to the device.

Note: A large amount of time may be necessary in the cases where data is transmitted from the device to the computer. The exact duration is dependent upon the baud rate setting and the amount of data being downloaded. In these cases ("Data Log", "Detail Report", and "Summary Report"), a status window is displayed allowing the user to modify the progress of the transmission. The status window shows a running count of blocks written to disk during the current transmission. The block count provides an approximate measure of the amount of data that has been transferred, and the actual size of a block depends on the baud rate setting. The user can cut a transmission short by simply pressing the "Cancel" button.
Other Communications

In the event that you would like to communicate with the PQR 1010 without using the PQR Host Communications software, you can connect using most other terminal emulator software.

Commands:

The PQR 1010 will respond to commands received through the serial port. All commands are started with a C. Entering C, followed by the command number will initiate the function.

The commands are as follows:

C0 Transmit the Command Menu
C1 Transmit the Unit Version number
C2 Transmit a Summary Report
C3 Transmit a Detail Report
C4 Transmit a Data Log of recorded voltage
C5 Clear all events, and data log
C6 Set the Date and Time
C90 Continuous transmission of channels readings
CX Hang up the phone

After the PQR 1010 has completed the task initiated by the operator command, it returns on-line to it's monitoring duties. Each of the commands are detailed in the following pages.
C0 - Transmit the Command Menu:

This command will transmit the Command Menu back to the operator through the serial port. This is usually the first command to be issued when the operator is connected to the OM-PQR1010.

Transmit or type: C0, or CONNECT

The OM-PQR1010 will respond after after several seconds with:

This Menu can be called up any time the operator is connected to the unit, and the Menu is transmitted automatically upon receipt of the word CONNECT from a modem.
C1 - Transmit the Version Number:

This command will transmit the Model Name and Version Number back to the operator through the serial port.

Transmit or type: C1

The OM-PQR1010 will respond with:

```
Omega  PQR 1010 Ver V3.6  ** PQR SERIES **  May/07/04 - ID: 060111
```

The Version Number refers to the Firmware Program stored in the PROM located inside the unit. This number is needed whenever the operator contacts OMEGA technical support specialists.
C2 - Transmit a Summary Report:

Transmit or type: C2

The OM-PQR1010 will respond by transmitting a report that is a count of all the disturbances detected since the unit was put on-line, and the RAM was cleared:

```
Omega  PQR 1010 Ver V3.6 - Summary Report as of May/07/04 - ID: 060111
AC Ch 1, Impulse, , ,1
AC Ch 1, Power Restore, , ,1
AC Ch 2, Power Restore, , ,1
DC Ch 1, Impulse, , ,4
DC Ch 1, Power Restore, , ,1
```

Each event type is described by the Channel Number, Event Type, Magnitude, and Quantity of that disturbance.

Typing, or Transmitting the Escape character at any time will terminate the transmission of this report.
C3 - Transmit a Detail Report:

Transmit or type: **C3**

The OM-PQR1010 will respond by transmitting the Detail Report of all disturbances saved since the unit was put on-line, and the RAM was cleared:

Each event is described by the Time, Date, Channel Number, Event Type, and Magnitude of that disturbance.

```
Omega  PQR 1010 Ver V3.6 - Detail Report as of May/07/04 - ID: 060111:8
May/05/04, 07:58:06.40,DC Ch 1, Impulse, 121,V Peak
May/05/04, 07:58:06.41,DC Ch 1, Impulse, 171,V Peak
May/06/04, 14:48:12.11,AC Ch 1, Power Restore, 114,V
May/06/04, 14:48:12.11,AC Ch 2, Power Restore, 115,V
May/06/04, 14:48:12.28,DC Ch 1, Power Restore, 19,V
May/06/04, 15:44:15.49,AC Ch 1, Impulse, 107,V Peak
May/07/04, 09:25:59.01,DC Ch 1, Impulse, 116,V Peak
May/07/04, 09:29:29.80,DC Ch 1, Impulse, 138,V Peak
```

Typing, or Transmitting the Escape character at any time will terminate the transmission of this report.

Typing the Space bar will Pause or re-start the report.
C4 - Transmit a Data Log Report:

Transmit or type: C4

The OM-PQR1010 will respond by transmitting the Listing of the voltages measured on all input channels each minute (or at other programmed time) since the unit was put on-line, and the RAM was cleared:

Each line of the transmission has the Time and Date that the data was recorded, and the sample of the average reading summed for one minute.

<table>
<thead>
<tr>
<th>Time</th>
<th>AC1</th>
<th>AC2</th>
<th>T1</th>
<th>Hum</th>
<th>DC1</th>
<th>Voltage</th>
<th>Cur</th>
</tr>
</thead>
<tbody>
<tr>
<td>May/06/04, 14:42:25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+0.0</td>
<td>0</td>
</tr>
<tr>
<td>May/06/04, 14:43:25</td>
<td>AC1</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
</tr>
<tr>
<td>May/06/04, 14:44:25</td>
<td>0</td>
<td>0</td>
<td>T1</td>
<td>Hum</td>
<td>0</td>
<td>+0.0</td>
<td>0</td>
</tr>
<tr>
<td>May/06/04, 14:45:25</td>
<td>0</td>
<td>0</td>
<td>T1</td>
<td>0</td>
<td>0</td>
<td>+0.0</td>
<td>0</td>
</tr>
<tr>
<td>May/06/04, 14:46:25</td>
<td>AC1</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
</tr>
<tr>
<td>May/06/04, 14:47:25</td>
<td>AC1</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
<td>AC2</td>
</tr>
<tr>
<td>May/06/04, 14:48:25</td>
<td>AC1</td>
<td>115</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>56</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 14:51:39</td>
<td>AC1</td>
<td>115</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>69</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 14:52:48</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>67</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 14:53:48</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>67</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 14:54:48</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>67</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 14:55:48</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>66</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 14:56:48</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>66</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 14:57:54</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>66</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 14:58:54</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>66</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 14:59:54</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>66</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 15:00:54</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>66</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 15:01:54</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>66</td>
<td>Hum</td>
</tr>
<tr>
<td>May/06/04, 15:02:54</td>
<td>AC1</td>
<td>116</td>
<td>AC2</td>
<td>116</td>
<td>T1</td>
<td>66</td>
<td>Hum</td>
</tr>
</tbody>
</table>

Typing, or Transmitting the Escape character at any time will terminate the transmission of this report.

Typing the Space bar will Pause or re-start the report.
C5 - Clear all events, and data log:

This Command will clear all of the events, and all of the Data log information stored in the internal Battery backed RAM. The summary report quantities will be reset to zero, and the Data Logging will start tracking voltage again.

Transmit or type: C5

Are You Sure you want to CLEAR ALL DATA on this board? Y

The OM-PQR1010 will respond by transmitting the following message

To clear the data, answer this question with a CAPITAL Y

Are You Sure you want to CLEAR ALL DATA on this board? Y
Testing RAM |-----------------| - Ram test Passed
Clearing Ram ------------------------ Done

The unit will then test and clear all internal RAM.
The following text will be transmitted during the RAM clear operation.
C6 - Configure the PQR Hardware:

This command will transmit the Setup Command Menu back to the operator through the serial port.

Transmit or type: C6

The OM-PQR1010 will respond with:

This Menu can be called up any time the operator is connected to the unit.

These are your Setup Options:

<table>
<thead>
<tr>
<th>Settings</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Set the Date and Time</td>
<td>May/07/04 09:30:49</td>
</tr>
<tr>
<td>2 - Set the Baud Rate</td>
<td>19,200 Baud</td>
</tr>
<tr>
<td>3 - Select a Data Logging Sample rate</td>
<td>1 Minute</td>
</tr>
<tr>
<td>4 - Set the Sag, Surge, and Power fail thresholds</td>
<td></td>
</tr>
</tbody>
</table>

ESC - Exit this Menu

The Current Settings show how the OM-PQR1010 is configured at that time.
C6 - (Option 1) Set the Date and Time:

This Command allows the operator to change the Time and Date setting inside the OM-PQR1010.

Select Option 1:

The OM-PQR1010 will respond by transmitting the following message

Input the Date and Time in the format MM/DD/YY,HH:MM:SS

MM = Month,	Jan = 01, Feb = 02, Mar = 03, Apr = 04, May = 05, Jun = 06, Jul = 07, Aug = 08, Sep = 09, Oct = 10, Nov = 11, Dec = 12
DD = Day,	1st = 01, ... 31st = 31
YY = Year,	2001 = 01
HH = Hour,	1:00 AM = 01, 1:00 PM = 13
MM = Minute,	0 = 00, 59 = 59
SS = Second,	0 = 00, 59 = 59

The data must be entered in the format shown, including commas slashes, and colons. After entering the Time and Date, enter a Carriage Return.
C6 - (Option 2) Set the Baud Rate:

This Command allows the operator to change the communications Baud rate setting inside the OM-PQR1010.

Select a Baud Rate - Currently set to 19,200 Baud

1) 1200 2) 2400 3) 4800
4) 9600 5) 14400 6) 19200
7) 38400

WARNING - You will need to change the rate on your terminal to match the PQR New Rate:

Select Option 2: 2

The OM-PQR1010 will respond by transmitting the following message

Typing the number indicated next to the desired rate will change the rate of the OM-PQR1010 immediately to the new rate

Note:

Changing the baud rate breaks the connection between the OM-PQR1010 and the communications device it is connected to. The rate on the connected device must be changed to match the new rate of the OM-PQR1010.

When the rate is changed, the new setting is saved in Non-Volatile RAM, and is used as the power up default until the next time the setting is changed.
C6 - (Option 3) Set the Data Logger:

This Command allows the operator to change the interval between data logger readings inside the OM-PQR1010.

Select Option 3: 3

The OM-PQR1010 will respond by transmitting the following message

| Enter the number of seconds between Data log samples |
|-----------------------------|-------------|-----------------|
| 1) 1 Sec | 2) 5 Sec | 3) 10 Sec |
| 4) 30 Sec | 5) 1 Min | 6) 4 Min |

Any other choice sets rate to 1 Minute (default).

New Rate :

Typing the number indicated next to the desired rate will change the rate of the OM-PQR1010 immediately to the new rate.

Note:

When the rate is changed, the new setting is saved in Non-Volatile RAM, and is used as the power up default until the next time the setting is changed.
C6 - (Option 4) Set the Surge, Sag, and Power Fail:

This Command allows the operator to change the threshold points for the OM-PQR1010 events.

Select Option 4: 4

The OM-PQR1010 will respond by transmitting the following message.

To set a fixed threshold, type the desired number of the setting:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Type</th>
<th>Setting</th>
<th>Temperature Surge Setting</th>
<th>Error Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC channel 1</td>
<td>Surge Threshold</td>
<td>(5%,10%)</td>
<td>98</td>
<td>5%</td>
</tr>
<tr>
<td>AC channel 1</td>
<td>Sag Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC channel 1</td>
<td>Power Failure</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC channel 2</td>
<td>Surge Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC channel 2</td>
<td>Sag Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC channel 2</td>
<td>Power Failure</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity Ch.</td>
<td>Surge Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity Ch.</td>
<td>Sag Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Channel</td>
<td>Surge Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Channel</td>
<td>Sag Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Channel</td>
<td>Power Failure</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp channel</td>
<td>Surge Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp channel</td>
<td>Sag Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Channel</td>
<td>Surge Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Channel</td>
<td>Sag Threshold</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Channel</td>
<td>Power Failure</td>
<td>(5%,10%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setup Completed

To set the Temperature Surge setting to 98 degrees, type 98 at Temp channel - Surge Threshold : (5%,10%) .. : 98 followed by a carriage return.

The OM-PQR1010 will calculate the nearest trip point, and respond (96d), indicating that it will now trip at 96 degrees.

To set the Temperature Surge setting to trip at 5% and 10%, type 0 at Temp channel - Surge Threshold : (5%,10%) .. : 0 followed by a carriage return.

The OM-PQR1010 will respond (5%,10%), indicating that it will now trip at 5% and 10% above the average value.

Note:

These settings are saved in Non-Volatile RAM, and are used as the power up default.
C90 - Continuous Transmission of channels voltage:

This Command allows the operator to view the readings present on each of the AC, DC Aux, and Current channels.

Transmit or type: \textbf{C90}

The OM-PQR1010 will respond by transmitting the following:

\begin{verbatim}
Unit Off-Line - entering Calibration mode
Ph1: 120V Ph2: 117V Aux: 68 DC1 +6.3V DC2: 413V Cur: 11A
Unit returning to On-Line mode
\end{verbatim}

The unit will send this reading continuously, resulting in the screen being updated about three times a second.

This command is helpful in confirming the unit is properly connected to the signals under test. If there is no signal attached to the test input, the reading will be zero.

To quit the test, send any character to the unit, or wait for 30 seconds when the unit will return to the on-line testing mode on it’s own.
CX - Hang up the phone:

This Command allows the operator to disconnect the signal from a phone line on a Modem attached to the OM-PQR1010.

Transmit or type: CX

The OM-PQR1010 will respond by transmitting the following:

Thank you, and good bye.
+++ ATH0

Having sent this message, the unit then sends the hang-up command to the modem. If there is a modem connected, and it had the phone off-hook, it would put the phone on-hook.
AC Channels Specifications

RMS Voltage (Data Logging):
- Range: 80 - 480 Vac RMS
- Accuracy: +/- 1.5%
- Sample rate: Programmable - range 1 reading per second to 1 reading per 4 minutes

Sags/Surges:
- Threshold: 5% and 10% of average RMS
- Duration limits: 1 cycle or 20 milliseconds
- Accuracy: +/- 1.5%

Dropouts:
- Threshold: Less than 10V rms
- Duration limits: Longer than 8 ms, Shorter than 80ms

Power Failure:
- Threshold: Less than 10V rms
- Duration limits: Longer than 80ms

Impulses:
- 2 Channels: 20V to >2500 Vpeak
- Resolution: thresholds 5 volt steps
- Accuracy: +/- 10%
- Pulse detection: 500 nano seconds above threshold

High Frequency Noise:
- Range: 2 volts peak, 10 Khz - 10 Mhz
- Accuracy: +/- 10%
- Response time: 1 milli second

Line Frequency:
- Range: 40 - 400 Hz
- Accuracy: +/- 1%
- Response time: 1 AC cycle
- Threshold: +/- 2% deviation from average
DC Channel Specifications

RMS Voltage (Data Logging):
- Ch #1 Range: +/-1 to +/-52 Vdc
- Accuracy: +/- 1.5%
- Sample rate: Programmable - range 1 reading per second to 1 reading per 4 minutes

Sags/Surges:
- Threshold: 5% and 10% of average
- Duration limits: 20 milliseconds
- Accuracy: +/- 1.5%

Dropouts:
- Threshold: Less than 10% of average
- Duration limits: Longer than 8 ms, Shorter than 80ms

Power Failure:
- Threshold: Less than 10% of average
- Duration limits: Longer than 80ms

Impulses:
- 2 Channels: 20V to >2500 Vpeak
- Resolution: thresholds 5V steps
- Accuracy: +/- 10%
- Pulse detection: 500 nano seconds above threshold

High Frequency Noise:
- Range: 2 volts peak, 10 Khz - 10 Mhz
- Accuracy: +/- 10%
- Response time: 1 milli second
Current Channel

RMS Current (Data Logging):
- Range: 0.2 amps to 1000 amps rms
- Accuracy: +/- 1.5%
- Sample rate: Programmable - range 1 reading per second to 1 reading per 4 minutes

Sags/Surges:
- Threshold: 5% and 10% of average
- Duration limits: 20 milliseconds
- Accuracy: +/- 1.5%

Dropouts:
- Threshold: Less than 10% of average
- Duration limits: Longer than 8 ms, Shorter than 80 ms

Power Failure:
- Threshold: Less than 10% of average
- Duration limits: Longer than 80 ms

Temperature Channel

Temperature (Data Logging):
- Range: 20 to 250 degrees (0.02 - 2.5 vdc)
- Accuracy: +/- 1%
- Sample rate: Programmable - range 1 reading per second to 1 reading per 4 minutes

Sags/Surges:
- Threshold: 5% and 10% of average
- Duration limits: 2 seconds
- Accuracy: +/- 1.5%
Humidity Channel

Humidity: (Data Logging):
- Range: 20 to 250 degrees (0.02 - 2.5 vdc)
- Accuracy: +/- 1%
- Sample rate: Programmable - range 1 reading per second to 1 reading per 4 minutes

Sags/Surges:
- Threshold: 5% and 10% of average
- Duration limits: 2 seconds
- Accuracy: +/- 1.5%

Mechanical Specifications

- Weight: 4 pounds
- Size: 8” wide x 10” deep, x 2” high
- Power Cord: 6 feet

Operating Specifications

- Temperature: 0 - 50 degrees C
- Humidity: 10% to 80% (non condensing)
- AC Voltage: 80 - 260 volts ac
- DC Voltage: 12 - 30 volts dc
- Current: 0.1 amp
- Line Frequency: DC - 400 Hz

Serial Interface Specifications

- Connector: DB9 - RS 232C
- Baud Rate: Programmable - 1200 to 19,200 baud
- Protocol: 8 Data, 1 Stop, No Parity bits

Data Storage Specifications

- Summary Event Count: 56,000 of each event type
- Detail Storage: 56,000 events total
- Data Retention: 99 Years without power
Types of Power Problems
and what they look like.

There are many types of power problems that can affect the quality of the AC power being delivered to a piece of equipment. Different types of problems will have different effects on the operation, or even life expectancy of this equipment. Knowing what these problems are, and what some of the consequences are of having these problems, can help in the process of identifying what can be done to help protect this equipment.

The following pages describe several of the more common types of Power disturbances, and list what some of the causes are.

- Dropout - Power Failure
- Sag
- Impulse
- Common Mode Noise
- Surge
- High Frequency Noise

Figure PT 1 Typical AC Waveform
DROPOUT (NOTCH)

A condition where a portion of the sine wave has a lower than expected value or is missing entirely, usually for a portion of a cycle. These types of problems can be caused when large motors are started, Lightning arresters are employed (during a lightning hit), or when electrical equipment fails. Dropouts can lead to failures in computers and electronic equipment, reduced life of motors and flickering lights.

POWER FAILURE

When the duration of a dropout exceeds 1 cycle it is usually referred to as a Power Failure, or Blackout. This problem is the easiest to observe.

Figure PT 2 - Dropout
SAG
(UNDER-VOLTAGE, DIP, or BROWNOUT)

A power sag (or low line voltage) is a decrease in line voltage of at least 10% of the average line voltage for half a cycle or longer. The power sag is often caused by large inductive equipment (e.g. photocopy, postage equipment) being applied on the same AC line as is being tested. Sags can be caused by external factors as well, such as large power draining equipment used in other buildings. Sags can be particularly detrimental to electronic equipment because of the malfunctions caused by the sudden decrease of available voltage to the power supply. Complete failure rarely occurs, and often the equipment user continues to operate the device, unaware of the potential logic circuit problems that may have occurred.

Figure PT 3 - Sag
IMPULSE
(SPIKE, SURGE)

The spike is a surge of energy superimposed on the AC line, usually with a relatively short duration. Spikes can potentially have the most serious effects on electronic equipment due to their high energy content, and the Integrated Circuits inability to absorb the energy. Many events can cause spikes, such as lightning bolts, utility grid switching, switching inductive loads on and off, and SCR (Silicon Control Rectifier) dimmers. Although properly designed equipment has some built-in spike protection, repeated hits by high energy spikes can eventually render these components useless.

Figure PT 4 - Impulse
COMMON MODE NOISE

In single phase power systems, as found in many countries such as the USA, the load (computer or equipment) is connected between the hot and neutral line. Usually the neutral line is connected to earth ground at the service entrance, so that in effect the neutral line should have 0 volts at the load. At a typical site, voltage is induced onto the neutral line by other equipment. This voltage can appear in the form of impulses, or a continuous pseudo sine wave.

Figure PT 5 - Common Mode Noise
SURGE
(SWELL OR OVER-VOLTAGE)

A power surge is the opposite of a sag and is often referred to as "High Line Voltage". A surge is defined as an increase in line voltage above 128 volts (on a 115V Line) for a half cycle or longer. Like the sag, the power surge is often caused by large inductive loads being applied on the same line. Power surges cause some of the most dangerous occurrences, and their results are the most difficult to correct.
HIGH FREQUENCY NOISE

High frequency noise can be caused by electronic equipment feeding internal noise back onto the power line, or logic induced noise from switching power supplies. This noise is transferred to the AC line causing disturbances greater than 2V peak-to-peak superimposed on the AC sine wave (normal mode noise). This noise can cause internal component degradation and eventual system failure. During this degradation period, system lockups, resets and data transfer will increase.

Figure PT 7 - High Frequency Noise
WARRANTY/ DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 13 months from date of purchase. OMEGA’s WARRANTY adds an additional one (1) month grace period to the normal one (1) year product warranty to cover handling and shipping time. This ensures that OMEGA’s customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA’s control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/ DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/ INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.
© Copyright 2004 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.
Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!
Shop online at omega.com

TEMPERATURE
- Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- Wire Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
- Transducers & Strain Gages
- Load Cells & Pressure Gages
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL
- Rotameters, Gas Mass Flowmeters & Flow Computers
- Air Velocity Indicators
- Turbine/Fixed-wheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY
- pH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION
- Data Acquisition & Engineering Software
- Communications-Based Acquisition Systems
- Plug-in Cards for Apple, IBM & Compatibles
- Data Logging Systems
- Recorders, Printers & Plotters

HEATERS
- Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL
- Metering & Control Instrumentation
- Refrigeration
- Pumps & Tubing
- Air, Soil & Water Monitors
- Industrial Water & Wastewater Treatment
- pH, Conductivity & Dissolved Oxygen Instruments