User's Guide

Shop online at

www.omega.com e-mail: info@omega.com

OME-A8111 ISA-BUS Multi-Functional Board Hardware Manual

OMEGAnet® Online Service
www.omega.com

Internet e-mail info@omega.com

Servicing North America:

	j	
USA: ISO 9001 Certified	One Omega Drive, P.O. Box 4047 Stamford CT 06907-0047 TEL: (203) 359-1660 e-mail: info@omega.com	FAX: (203) 359-7700
Canada:	976 Bergar Laval (Quebec) H7L 5A1, Canada TEL: (514) 856-6928 e-mail: info@omega.ca	FAX: (514) 856-6886
For imme	ediate technical or applica	tion assistance:
USA and Canada:	Sales Service: 1-800-826-6342 / 1-800-T Customer Service: 1-800-622-2378 / 1-8 Engineering Service: 1-800-872-9436 / TELEX: 996404 EASYLINK: 62968934	C-OMEGA® 800-622-BEST® 1-800-USA-WHEN®
Mexico:	En Español: (001) 203-359-7803 FAX: (001) 203-359-7807	e-mail: espanol@omega.com info@omega.com.mx
	Servicing Europe:	
Benelux:	Postbus 8034, 1180 LA Amstelveen, Th TEL: +31 (0)20 3472121 Toll Free in Benelux: 0800 0993344 e-mail: sales@omegaeng.nl	e Netherlands FAX: +31 (0)20 6434643
Czech Republic:	Frystatska 184, 733 01 Karviná, Czech 1 TEL: +420 (0)59 6311899 Toll Free: 0800-1-66342	Republic FAX: +420 (0)59 6311114 e-mail: info@omegashop.cz
France:	11, rue Jacques Cartier, 78280 Guyanco TEL: +33 (0)1 61 37 29 00 Toll Free in France: 0800 466 342 e-mail: sales@omega.fr	ourt, France FAX: +33 (0)1 30 57 54 27
Germany/Austria:	Daimlerstrasse 26, D-75392 Deckenpfro TEL: +49 (0)7056 9398-0 Toll Free in Germany: 0800 639 7678 e-mail: info@omega.de	onn, Germany FAX: +49 (0)7056 9398-29
United Kingdom: ISO 9002 Certified	One Omega Drive, River Bend Techno Northbank, Irlam, Manchester M44 5BD United Kingdom TEL: +44 (0)161 777 6611 Toll Free in United Kingdom: 0800-488 e-mail: sales@omega.co.uk	FAX: +44 (0)161 777 6622

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice. **WARNING**: These products are not designed for use in, and should not be used for, patient-connected applications.

OME-A-8111

Hardware User's Manual

Table of Contents

1. In	troduction	4
1.1	General Description	4
1.2	Features	4
1.3	Specifications	5
1.3.1	Power Consumption	5
1.3.2	Analog Inputs	5
1.3.3	A/D Converter	5
1.3.4	DA Converter	6
1.3.5	Digital I/O	6
1.3.6	Interrupt Channel	6
1.3.7	Programmable Timer/Counter	7
1.3.8	Applications	7
1.4	Product Check List	7
2. He	ardware Configuration	
2.1	Board Layout	8
2.2	I/O Base Address Setting	9
2.3	Jumper Setting	10
2.3.1	JP1 : D/A Internal Reference Voltage Selection	10
2.4	I/O Register Address	11
2.4.1	The 8254 Counter	12
2.4.2	A/D Input Buffer Register	12
2.4.3	D/A Output Latch Register	13
2.4.4	D/I Input Buffer Register	13
2.4.5	Clear Interrupt Request	14
2.4.6	A/D Gain Control Register	14
2.4.7	A/D Multiplex Control Register	15
2.4.8	A/D Mode Control Register	16
2.4.9	A/D Software Trigger Control Register	17
2.4.10	D/O Output Latch Register	18
2.5	Digital I/O	19
2.6	8254 Timer/Counter	20
2.7	A/D Conversion	21
2.7.1	A/D conversion flow	22

2.7.2	2 A/D Conversion Trigger Modes	22
2.7.3	A/D Transfer Modes	23
2.7.4	4 Using software trigger and polling transfer	23
2.8	D/A Conversion	24
2.9	Analog Input Signal Connection	25
2.10	Pin Assignment	26
2.11	Daughter Board	28
2.11	.1 OME-CA-4002	28
2.11	.2 OME-DB-16P	28
2.11	.3 OME-DB-16R	28
2.11	.4 OME-DB-37	28
3. Cal	ibration	29
3.1	Calibration VR Description	29
3.2	D/A Calibration Steps	30
3.3	A/D Calibration Steps	30
3.4	DI/O Testing	30

1. Introduction

1.1 General Description

The OME-A-8111 is a high performance, multifunction (analog and digital I/O) board for the PC AT compatible computer with the ISA bus. The OME-A-8111 provides programmable gain (1, 2, 4, 8 and 16). The OME-A-8111 contains a 12-bit ADC with up to 8 single-ended analog inputs. The maximum sample rate of the A/D converter is about 30K sample/sec. There is a 12-bit DAC with voltage outputs, 16 channels of TTL-compatible digital input, and 16 channels of TTL-compatible digital output.

1.2 Features

- The maximum sample rate of the A/D converter is about 30 K sample/sec
- Software selective input ranges
- PC AT compatible ISA bus
- A/D trigger mode: software trigger, pacer trigger
- 8 single-ended analog input channels:

Programmable gain: 1, 2, 4, 8, 16

Input range: ±5 V, ±2.5 V, ±1.25 V, ±0.625 V, ±0.3125 V

- 1 output channel: 12-bit D/A voltage output, 0~5 V or 0~10 V
- 16 digital inputs /16 digital outputs (TTL compatible)
- Interrupt handling

1.3 Specifications

1.3.1 Power Consumption

- +5V @ 300 mA maximum
- +12V @ 60 mA maximum
- -12V @ 30 mA maximum
- Operating temperature: $0^{\circ}C \sim 50^{\circ}C$

1.3.2 Analog Inputs

- Channels: 8 single-ended
- Input range: (software programmable)
 Bipolar: ±5 V, ±2.5 V, ±1.25 V, ±0.625 V, ±0.3125 V
- Input current: 250 nA max (125 nA typical) at 25°C
- On-chip sample and hold
- Over voltage: continuous single channel to **70Vp-p**

1.3.3 A/D Converter

- Type: successive approximation, Burr Brown ADS 774
- Conversion time: 8μ sec.
- Accuracy: ± 1 bit
- Resolution: 12-bit

1.3.4 DA Converter

- Channels : 1 independent
- Type : 12-bit multiplying , Analog device AD-7948
- Linearity : $\pm 1/2$ bit
- Output Range : 0~5 V or 0~10 V jumper selected , may be used with other AC or DC reference input. Maximum output limit ± 10V
- Output Drive : $\pm 5 \text{ mA}$
- Settling Time : 0.6 microseconds to 0.01% for full scale step

1.3.5 Digital I/O

- Output port : 16 bits, TTL compatible
- Input port : 16 bits, TTL compatible

1.3.6 Interrupt Channel

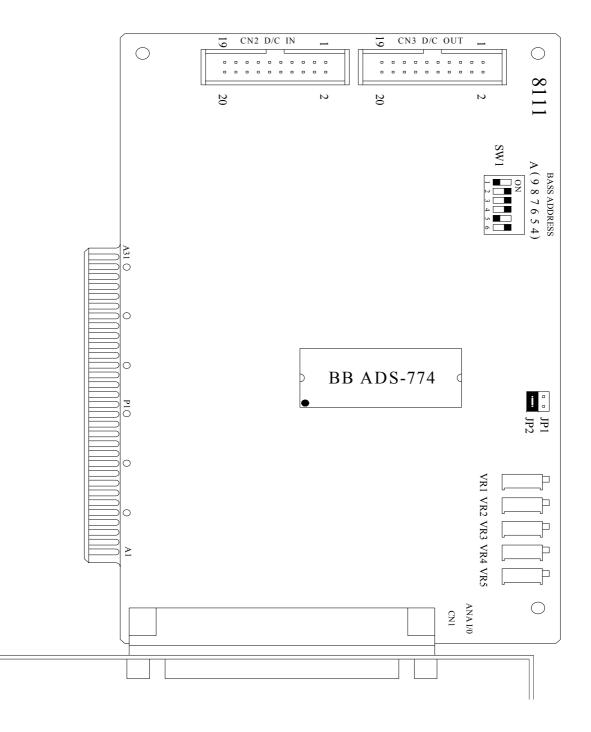
- Level : 3,4,5,6,7 jumper selectable
- Enable : Via control register

1.3.7 Programmable Timer/Counter

- Type : 82C54 -8 programmable timer/counter
- Counters: The counter1 and counter2 are cascaded as a 32-bit pacer timer.
- Pacer output : 0.00047 Hz to 0.5 MHz
- Input Gate : TTL compatible
- Internal Clock : 2 MHz

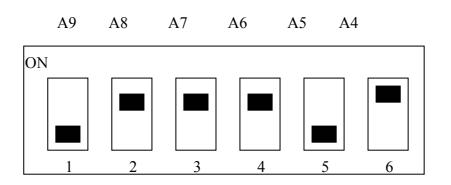
1.3.8 Applications

- Signal analysis
- FFT & frequency analysis
- Transient analysis
- Production test
- Process control
- Vibration analysis
- Energy management
- Industrial and laboratory measurement and control


1.4 Product Check List

In addition to this manual, the package includes the following items:

- OME-A-8111 multifunction card
- OME-A-8111 utility diskette/CD ROM


2. Hardware Configuration

2.1 Board Layout

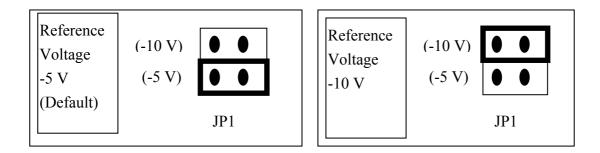
2.2 I/O Base Address Setting

The OME-A-8111 occupies 16 consecutive locations in I/O address space. The base address is set by DIP switch SW1. The default address is 0x220 as shown below:

SW1 : BASE ADDRESS

BASE ADDR	A9	A8	A7	A6	A5	A4
200-20F	OFF	ON	ON	ON	ON	ON
210-21F	OFF	ON	ON	ON	ON	OFF
220-22F(☑)	OFF	ON	ON	ON	OFF	ON
230-23F	OFF	ON	ON	ON	OFF	OFF
:	:	:	:	:	:	:
300-30F	OFF	OFF	ON	ON	ON	ON
:	:	:	:	:	:	:
3F0-3FF	OFF	OFF	OFF	OFF	OFF	

(☑): default base address is 0x220


ADDRESS	DEVICE	ADDRESS	DEVICE
000-1FF	PC reserved	320-32F	XT Hard Disk
200-20F	Game/control	378-37F	Parallel Printer
210-21F	XT Expansion Unit	380-38F	SDLC
238-23F	Bus Mouse/Alt. Bus Mouse	3A0-3AF	SDLC
278-27F	Parallel Printer	3B0-3BF	MDA/Parallel Printer
2B0-2DF	EGA	3C0-3CF	EGA
2E0-2E7	AT GPIB	3D0-3DF	CGA
2E8-2EF	Serial Port	3E8-3EF	Serial Port
2F8-2FF	Serial Port	3F0-3F7	Floppy Disk
300-31F	Prototype Card	3F8-3FF	Serial Port

The PC I/O port mapping is given below.

2.3 Jumper Setting

2.3.1 JP1 : D/A Internal Reference Voltage

Selection

Select (-5 V) : D/A voltage output = 0 to 5 V (both channels) Select (-10 V) : D/A voltage output = 0 to 10 V (both channels)

2.4 I/O Register Address

The OME-A-8111 occupies 16 consecutive PC I/O addresses. The following table lists the registers and their locations.

Address	Read	Write
Base+0	8254 Counter 0	8254 Counter 0
Base+1	8254 Counter 1	8254 Counter 1
Base+2	8254 Counter 2	8254 Counter 2
Base+3	Reserved	8254 Counter Control
Base+4	A/D Low Byte	D/A Channel 0 Low Byte
Base+5	A/D High Byte	D/A Channel 0 High Byte
Base+6	DI Low Byte	Reserved
Base+7	DI High Byte	Reserved
Base+8	Reserved	A/D Clear Interrupt Request
Base+9	Reserved	A/D Gain Control
Base+A	Reserved	A/D Multiplexer Control
Base+B	Reserved	A/D Mode Control
Base+C	Reserved	A/D Software Trigger Control
Base+D	Reserved	DO Low Byte
Base+E	Reserved	DO High Byte
Base+F	Reserved	Reserved

2.4.1 The 8254 Counter

The 8254 Programmable timer/counter has 4 registers from Base+0 through Base+3. For detailed programming information about the 8254, please refer to Intel's "Microsystem Components Handbook".

Address	Read	Write
Base+0	8254 Counter 0	8254 Counter 0
Base+1	8254 Counter 1	8254 Counter 1
Base+2	8254 Counter 2	8254 Counter 2
Base+3	Reserved	8254 Counter Control

2.4.2 A/D Input Buffer Register

(READ)	Base+4: A/D Low Byte Data Format								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
D7	D6	D5	D4	D3	D2	D1	D0		

(READ) Base+5: A/D High Byte Data For	nat
---------------------------------------	-----

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	READY	D11	D10	D9	D8

A/D 12 bit data: D11.....D0, D11 = MSB, D0 = LSB

READY = 1: A/D 12 bits data not ready

= 0: A/D 12 bits data is ready

The low 8 bits of A/D data are stored in address BASE+4 and the high 4 bits of data are stored in address BASE+5. The READY bit is used as an indicator for A/D conversion. When a A/D conversion is completed, the READY bit will be cleared to zero (Low).

2.4.3 D/A Output Latch Register

(WRITE) Base+4: Channel 1 D/A Low Byte Data Format									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
D7	D6	D5	D4	D3	D2	D1	D0		

(WRITE) Base+5: Channel 1 D/A High Byte Data Format

Bit 7			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
X	Х	Х	Х	D11	D10	D9	D8

D/A 12 bit output data: D11...D0, D11 = MSB, D0 = LSB, X = don't care

The D/A converter will convert the 12 bits of digital data to analog output. The low 8 bits of D/A channel are stored in address BASE+4 with the high 4 bits are stored in address BASE+5. The D/A output latch registers are designed as a "double buffered" structure, so the analog output latch registers will be updated until the high 4 bits of digital data are written. The users should send the low 8 bits first and then send the high 4 bits to update the 12 bits of AD output latch registers

NOTE: Send low 8 bits first, then send high 4 bits.

2.4.4 D/I Input Buffer Register

(READ)	READ) Base+6: D/I Input Buffer Low Byte Data Format							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
D7	D6	D5	D4	D3	D2	D1	D0	

(F	READ)	Base+7: D	/I In	put Bu	ıffer	High	Byte	Data I	Format

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D15	D14	D13	D12	D11	D10	D9	D8

D/I 16 bit input data: D15...D0, D15 = MSB, D0 = LSB

OME-A-8111 provides 16 TTL compatible digital inputs. The low 8 bits are stored in address BASE+6. The high 8 bits are stored in address BASE+7.

2.4.5 Clear Interrupt Request

(WKIIE)	(WKITE) Base+8. Clear Interrupt Request Format								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Х	Х	Х	Х	Х	Х	Х	Х		

(WRITE) Base+8: Clear Interrupt Request Format

X = don't care, XXXXXXX = any 8 bit data is valid

If OME-A-8111 is working in the interrupt transfer mode, an on-board hardware status bit will be set after each A/D conversion. This bit must be **cleared by the software** before next hardware interrupt. Writing any value to address BASE+8 will clear this hardware bit and the hardware will generate another interrupt when next the A/D conversion is completed.

2.4.6 A/D Gain Control Register

(WRITE)	Base+9: A/D Gain Control Register Format
(mining)	Duse 9. 11 D Guill Control Register 1 office

Y	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Х	Х	Х	Х	Х	GAIN2	GAIN1	GAIN0

The <u>OME-A-8111 provides a gain factor of 1/2/4/8/16.</u> The gain controls register control the gain of the A/D input signal. Bipolar/Unipolar will affect the gain factor.

NOTE: If the gain control code is changed, the hardware needs to have extra gain settling time. The gain settling time is different for different gain control code. The software driver does not monitor the gain settling time, so the user needs to delay the gain settling time if the gain changed.

OME-A-8111 GAIN CONTROL CODE TABLE

GAIN	Input Range	GAIN2	GAIN1	GAIN0	Settling Time
1	+/- 5V	0	0	0	2.1 µs
2	+/- 2.5V	0	0	1	2.5 μs
4	+/- 1.25V	0	1	0	2.7 μs
8	+/- 0.0625V	0	1	1	3.6 µs
16	+/- 0.03125V	1	0	0	4.1 μs

2.4.7 A/D Multiplex Control Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Rif 7	Bit 1	Bit 0
Х	Х	Х	Х	Х	D2	D1	D0

(WRITE) Base+A : A/D Multiplexer Control Register Format

A/D input channel selection data =3 bits: D2...D0, D2=MSB, D0=LSB, X=don't care

Channel	Bit_2	Bit_1	Bit_0
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

NOTE: The settling time of the multiplexer depends on the source resistance of input sources.

Approx. Source resistance = $0.1 \text{ K}\Omega \rightarrow$ Approx. Settling time = 3 µs.

Approx. Source resistance = $1 \text{ K}\Omega \rightarrow \text{Approx. Settling time} = 5 \,\mu\text{s.}$

Approx. Source resistance = $10 \text{ K}\Omega \rightarrow \text{Approx. Settling time} = 10 \ \mu\text{s.}$

Approx. Source resistance = $100 \text{ K}\Omega \rightarrow \text{Approx}$. Settling time = $100 \mu s$.

Sec 2.4.6 gives information about settling time delay.

A/D Mode Control Register 2.4.8

((WRITE) Base+B: A/D Mode Control Register Format									
F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
2	X	SI2	SI1	SI0	Х	D2	D1	D0		

X=don't care

Мо	de Se	elect	Trigge	er Type	Transfer Type		
D2	D1	D0	Software Trig	Pacer Trig	Software	Interrupt	
0	0	0	Select	Х	Select	Х	
0	0	1	Select	Х	Select	Х	
0	1	0	Х	Select	Х	Х	
1	1	0	X	Select	Select	Select	

X=disable

SI2	SI1	SIO	IRQ Level
0	0	0	IRQ2
0	0	1	Not used
0	1	0	IRQ2
0	1	1	IRQ3
1	0	0	IRQ4
1	0	1	IRQ5
1	1	0	IRQ6
1	1	1	IRQ7

The A/D conversion operation can be divided into 2 stages, trigger stage and transfer stage. The trigger stage will generate a trigger signal to the A/D converter and the transfer stage will transfer the results to the CPU.

The trigger method may be an internal trigger or an external trigger. The internal trigger can be a software trigger or a pacer trigger. The software trigger is very simple but can not control the sampling rate very precisely. In software trigger mode, the program issues a software trigger command (sec. 2.4.9) any time needed. Then the program will poll the A/D status bit until the ready bit is 0 (sec. 2.4.2).

The pacer trigger can control the sampling rate very precisely. So the converted data can be used to reconstruct the waveform of the analog input signal. In pacer trigger mode, the pacer timer will periodically generate trigger signals to the A/D converter. This converted data can be transfer to the CPU by polling or interrupt or DMA transfer method.

The software driver provides three **polling or interrupt-transfer** methods. The polling subroutine, A8111 AD PollingVar() or A822 AD PollingArray(), sets the A/D mode control register to **0x01.** This control word means software trigger and polling transfer. The interrupt subroutine, A822 AD INT START(...), sets the A/D mode control mode register to ox06. This control word means pacer trigger and interrupt transfer. The interrupt subroutine, A822 AD DMA START(...), sets the A/D mode control register to 0x06 This control word means pacer trigger and DMA transfer.

A/D Software Trigger Control Register 2.4.9

(WRITE)	(WRITE) Base+C : A/D Software Trigger Control Register Format						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Х	Х	Х	Х	Х	Х	Х	Х

X=don't care, XXXXXXX=any 8 bits data is validate

The A/D converter can be triggered by software trigger or pacer trigger. Detailed information is given in sec.2.4.8 and 2.7. Writing any value to address BASE+C will generate a trigger pulse to the A/D converter and initiate an A/D conversion operation. The address BASE+5 offers a ready bit to indicate that an A/D conversion is complete.

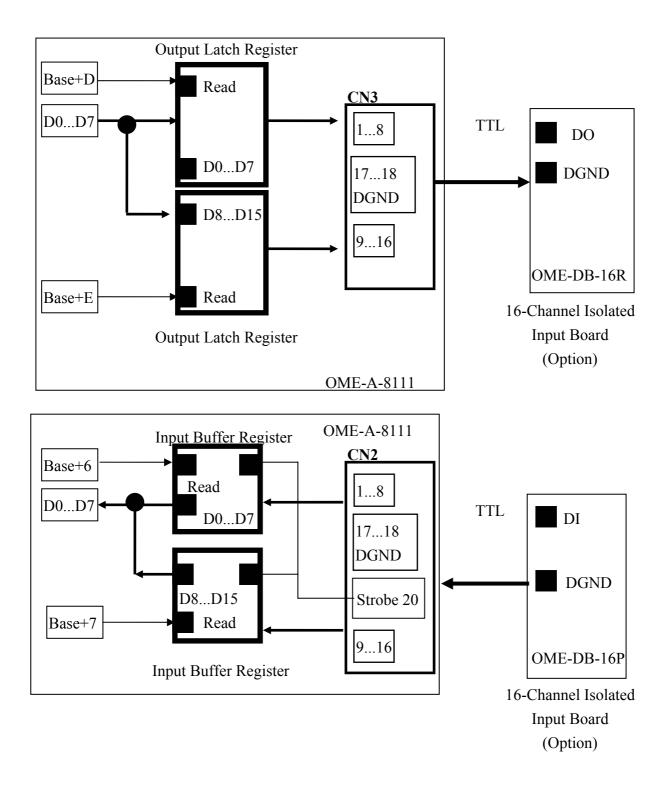
The software driver uses this control word to detect the OME-A-8111 hardware board. The software initiates a software trigger and checks the ready bit. If the ready bit cannot clear to zero in a fixed time, the software driver will return an error message. If there is an error in the I/O BASE address setting, the ready bit will not be cleared to zero. The software driver, A8111 CheckAddress(), uses this method to detect the status of the I/O BASE address setting.

2.4.10 D/O Output Latch Register

(WRITE) Base D. D/O Output Laten Low Byte Data Format							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7	D6	D5	D4	D3	D2	D1	D0

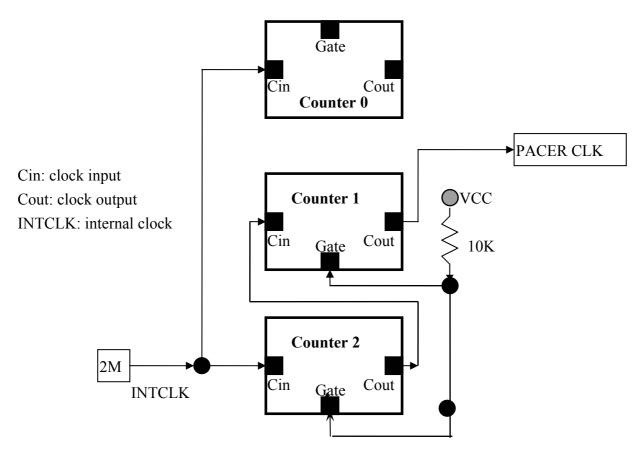
(WRITE)	Base+D: D/O Out	nut Latch Low F	Ryte Data Format
	Dase D. D/O Out	put Laten Low L	Jyte Data I Officiat

(WRITE) Base+E: D/O Output Latch High Byte Data Format


Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D15	D14	D13	D12	D11	D10	D9	D8

D/O 16 bits output data: D15...D0, D15=MSB, D0=LSB

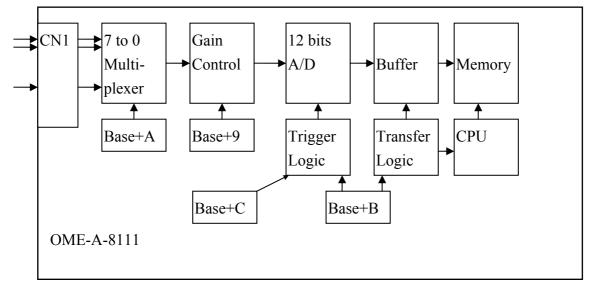
The OME-A-8111 provides 16 TTL compatible digital outputs. The low 8 bits are stored in address **BASE+D**. The high 8 bits are stored in address **BASE+E**


2.5 Digital I/O

The OME-A-8111 provides 16 digital input channels and 16 digital output channels. All levels are TTL compatible. The connections diagram and block diagram are given below:

2.6 8254 Timer/Counter

The 8254 Programmable timer/counter has 4 registers from Base+0 through Base+3. For detailed programming information about 8254, please refer to Intel's "Microsystem Components Handbook". The block diagram is as below.


Counter0, counter1 and counter2 are all 16 bit counters. Counter 1 and counter 2 cascade as a 32-bit timer. The 32-bit timer is used as a **pacer timer**.

2.7 A/D Conversion

This section explains how to perform A/D conversions. The A/D conversion can be performed **by software trigger by pacer trigger.** At the end of the A/D conversion, it is possible to transfer data by **polling and interrupt** before using the A/D conversion function; users should notice the following issues:

- A/D data register, BASE+4/BASE+5, stores the A/D conversion data (sec. 2.4.2)
- A/D gain control register, BASE+9, select gain (sec. 2.4.6)
- A/D multiplex control register, BASE+A, select analog input
- A/D mode control register, BASE+B, select trigger type and transfer type (sec. 2.4.8)
- A/D software trigger control register, BASE+C (sec. 2.4.9)

The block diagram is given below:

(sec. 2.4.7)

2.7.1 A/D conversion flow

Then the user must decide which A/D conversion mode will be used. The software driver supports three different modes. The user can control the A/D conversion by polling mode very easily (sec. 2.4.9). It is recommended to use the software driver if using interrupt or DMA mode.

The analog input signals come from CN1.

The multiplexer can accept 8 single-ended lines into the gain control module. The gain control module also needs settling time if the gain control code changed. Because the software **doesn't monitor the settling time**, <u>the user should reserve enough settling time</u> <u>if switching from one channel to the next (sec. 2.4.6).</u>

The output of the gain control module feeds into the A/D converter. The A/D converter needs a trigger signal to start an A/D conversion cycle. The OME-A-8111 supports software trigger or pacer trigger mode.

2.7.2 A/D Conversion Trigger Modes

OME-A-8111 supports two trigger modes.

1: <u>Software Trigger :</u>

Writes any value to the A/D software trigger control register, BASE+A, will initiate an A/D conversion cycle. This mode is very simple but very difficult to control the sampling rate.

2: <u>Pacer Trigger Mode :</u>

The block diagram of the pacer timer is shown in section 2.6. The pacer timer can give very precise sampling rates.

2.7.3 A/D Transfer Modes

OME-A-8111 supports two transfer modes.

1: polling transfer :

This mode can be used with all trigger modes. Detailed information is given in section 2.4.8. The software scans A/D high byte data register, BASE+5, until READY_BIT=0. The low byte data is also ready in BASE+4.

2: interrupt transfer :

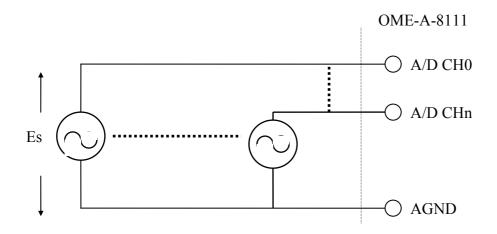
This mode can be used with pacer trigger or external trigger. Detailed information is given in section 2.4.8. The user can set the IRQ level by register mode. A hardware interrupt signal is sent to the PC when an A/D conversion is completed.

2.7.4 Using software trigger and polling transfer

If the user needs to directly control the A/D converter without the OME-A-8111 software driver, it is recommended to use software trigger and polling transfer. The program steps are listed as below:

- Send 0x01 to A/D mode control register (software trigger + polling transfer) (refer to sec. 2.4.8).
- 2. Send channel number to multiplexer control register (refer to sec. 2.4.7).
- 3. Send the gain control code value to gain control register (refer to sec. 2.4.6).
- 4. Delay the settling time (refer to sec. 2.4.6 and sec. 2.4.6).
- 5. Send any value to the software trigger control register in order to generate a software rigger signal (refer to sec. 2.4.9).
- 6. Scan the READY bit of the A/D high byte data until READY=0 (refer to sec. 2.4.2).
- 7. Read the 12 bits of A/D data (refer to sec. 2.4.2).
- Convert these 12 bits of binary data to floating point value (refer to OME-A-8111 DOS Software Manual, sec. 4.7 and sec. 4.8)

2.8 D/A Conversion


The OME-A-8111 provides two 12-bit D/A converters. Before using the D/A conversion function, user should notice the following issues:

- D/A output register, BASE+4/BASE+5/BASE+6/BASE+7 (sec. 2.4.3).
- JP1/JP2 selects internal/external reference voltage (sec. 2.4.1).

NOTE: The DA output latch registers are designed as a "double buffered" structure. <u>The</u> <u>user must send the low byte data first, then send the high byte</u> <u>data to store the DA 12-bit digital data</u>. If the user only sends the high byte data, then the low byte data will be still the previous value. Also, if the user sends high byte first then sends low byte, the low byte data of DA is still held in the previous one.

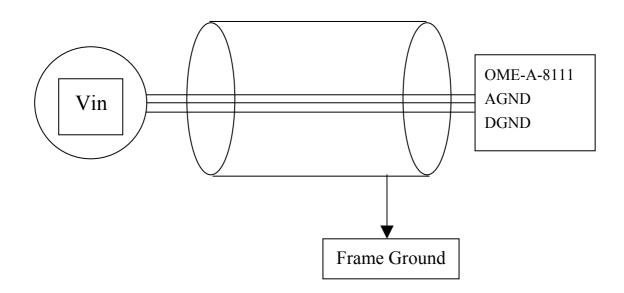

2.9 Analog Input Signal Connection

FIG 1: Connecting analog input configuration

Signal Shielding

- Signal shielding connections are shown in Fig1.
- Use single-point connection to **frame ground (not AGND or DGND)**

2.10 Pin Assignment

The OME-A-8111 provides three connectors. Connect 1, CN1 functions for analog input & analog output input. Connector 2, CN2, functions as 16 digital outputs. Connector 3, CN3, function as a digital output.

CN1/CN2/CN3 Pin Assignment

Pin Number	Description	Pin Number	Description
1	A/D Analog Input Channel 0	20	Analog GND
2	A/D Analog Input Channel 1	21	Analog GND
3	A/D Analog Input Channel 2	22	Analog GND
4	A/D Analog Input Channel 3	23	Analog GND
5	A/D Analog Input Channel 4	24	Analog GND
6	A/D Analog Input Channel 5	25	Analog GND
7	A/D Analog Input Channel 6	26	Analog GND
8	A/D Analog Input Channel 7	27	Analog GND
9	Not Used	28	Analog GND
10	Analog GND	29	Analog GND
11	Not Used	30	D/A Analog Voltage output
12	Not Used	31	Not Used
13	Not Used	32	Not Used
14	Analog GND	33	Not Used
15	Analog GND	34	Not Used
16	Not Used	35	Not Used
17	Not Used	36	Not Used
18	Not Used	37	Not Used
19	PCB's + 5V output		

CN1: Analog input/Analog output/Connect Pin Assignment.

Pin Number	Description	Pin Number	Description
1	Digital Input 0/TTL	2	Digital Input 1/TTL
3	Digital Input 2/TTL	4	Digital Input 3/TTL
5	Digital Input 4/TTL	6	Digital Input 5/TTL
7	Digital Input 6/TTL	8	Digital Input 7/TTL
9	Digital Input 8/TTL	10	Digital Input 9/TTL
11	Digital Input 10/TTL	12	Digital Input 11/TTL
13	Digital Input 12/TTL	14	Digital Input 13/TTL
15	Digital Input 14/TTL	16	Digital Input 15/TTL
17	PCB's GND output	18	PCB's GND output
19	PCB's + 5V output	20	STROBE

CN2: Analog input/Analog output/Connect Pin Assignment.

CN3: Analog input/Analog output/Connect Pin Assignment.

Pin Number	Description	Pin Number	Description
1	Digital output 0/TTL	2	Digital output 1/TTL
3	Digital output 2/TTL	4	Digital output 3/TTL
5	Digital output 4/TTL	6	Digital output 5/TTL
7	Digital output 6/TTL	8	Digital output 7/TTL
9	Digital output 8/TTL	10	Digital output 9/TTL
11	Digital output 10/TTL	12	Digital output 11/TTL
13	Digital output 12/TTL	14	Digital output 13/TTL
15	Digital output 14/TTL	16	Digital output 15/TTL
17	PCB's GND output	18	PCB's GND output
19	PCB's + 5V output	20	PCB's +12V output

2.11 Daughter Board

The OME-A-8111 can be connected with many different daughter boards. The function of these daughter boards is described as follows.

2.11.1 OME-CA-4002

The OME-CA-4002 is a 37-pin D-Sub male connector. It can directly connect to a 37-pin D-sub connector.

2.11.2 OME-DB-16P

The OME-DB-16P is a **16-channel isolated digital input** board. The OME-A-8111 provides a 16 channel, non-isolated, TTL-compatible digital inputs from CN2. If connecting to the OME-DB-16P, the OME-A-8111 can provide 16 channels of isolated digital input signals. Isolation can protect the PC if an abnormal input signal is occurs.

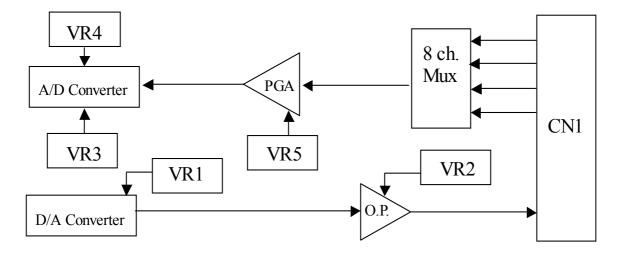
2.11.3 OME-DB-16R

The OME-DB-16R provides a **16-channel SPDT relay output.** The OME-A-8111 provides a 16 channel, TTL-compatible digital output from CN3. If connecting to the OME-DB-16R, the OME-A-8111 can provide a 16-channel relay output to control power devices.

2.11.4 OME-DB-37

The OME-DB-37 is a general-purpose screw terminal board. It provides a 37-pin connector. This board directly connects to a 37-pin D-sub connector. It is suitable for easy signal connection and measurement.

3. Calibration


The OME-A-8111 is calibrated to its best state of operation. For environments with large vibration, recalibration is recommended. Before calibrating the OME-A-8111, users should have the following items:

- One 6-digit multi-meter.
- One stable voltage source (4.9988V)
- Diagnostic program: this program is included in the delivered package and will guide the user to in proceeding with the calibration.

3.1 Calibration VR Description

There are seven VRs on the OME-A-8111. Calibration is needed to adjust all seven VRs.

VR Num.	Description
VR1	D/A Gain adjustment
VR2	D/A Offset adjustment
VR3	A/D Offset adjustment
VR4	A/D's Gain adjustment
VR5	A/D's PGA(Programmable Gain Amplifier) Offset Adjustment

3.2 D/A Calibration Steps

- 1. Run A8111CAL.EXE
- 2. Connect D/A channel0,, pin 30 of CN1 to DVM
- 3. Adjust VR1 until DVM=5.0000V
- 4. Press "Enter" key
- 5. Adjust VR2 until DVM=0.0000V

3.3 A/D Calibration Steps

- 1. Press "Enter" key
- 2. Connot A/D Channel 0 to analog ground, CN1-Pin1 to CN1-Pin20.
- 3. Input stable DC 4.9988V to A/d channel 1, pin2 of CN1.
- 4. Connect DVM to TP1(-) & (+).
- 5. Adjust VR5 until DVM=0.0000V.
- 6. Press <Enter> Key.
- 7. Adjust VR4 until A/D data shows 4094 or 4095.
- 8. Press <Enter> Key
- 9. Adjust VR3 until A/D data shows 2047 or 2048.
- 10. Repeat step_3 to step_11 until:

A/D channel 0 input 4.9988V \rightarrow A/D reading 4094 or 4095.

A/D channel 0 input 0 V \rightarrow A/D reading 2047 or 2048.

11. Press <Enter> Key.

3.4 DI/O Testing

- 12. Use 20-pin flat cable (OME-CA-2010, OME-CA-2020 Option) to link CN2 to CN3.
- 13. Press <Enter> Key.

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of **13 months** from date of purchase. OMEGA's WARRANTY adds an additional one (1) month grace period to the normal **one (1) year product warranty** to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR **WARRANTY** RETURNS, please have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number under which the product was PURCHASED,
- 2. Model and serial number of the product under warranty, and
- 3. Repair instructions and/or specific problems relative to the product.

FOR **NON-WARRANTY** REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number to cover the COST of the repair,
- 2. Model and serial number of the product, and
- 3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2002 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

Shop online at www.omega.com

TEMPERATURE

- 🗹 Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- ☑ Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- 🗹 Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

- ☑ Transducers & Strain Gages
- 🗹 Load Cells & Pressure Gages
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL

- 🗹 Rotameters, Gas Mass Flowmeters & Flow Computers
- Air Velocity Indicators
- Turbine/Paddlewheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY

- PH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- 🗹 Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION

- Data Acquisition & Engineering Software
- Communications-Based Acquisition Systems
- Plug-in Cards for Apple, IBM & Compatibles
- Datalogging Systems
- Recorders, Printers & Plotters

HEATERS

- 🗹 Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- ☑ Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL

- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
- 🗹 Air, Soil & Water Monitors
- 🗹 Industrial Water & Wastewater Treatment
- PH, Conductivity & Dissolved Oxygen Instruments