RoHS 2 Compliant

iSeries

Shop on line at omega.com
www.omega.com
e-mail: info@omega.com
iSeries info: www.omega.com/specs/iseries

Temperature & Humidity
CNiTH-i8DH, i8DV, i16D, i32
Controller Manual
It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the mark to every appropriate device upon certification.

The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient-connected applications.

This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as the guide contains important information relating to safety and EMC.
TABLE OF CONTENTS

Part 1: Introduction .. 2
1.1 Description ... 2
1.2 Safety Considerations ... 3
1.3 Before You Begin .. 4

Part 2: Setup .. 5
2.1 Front Panel ... 6
2.2 Rear Panel Connections ... 6
2.3 Electrical Installation ... 7
2.3.1 Power Connections .. 7
2.3.2 Humidity and Temperature Probe .. 8
2.3.3 Wiring Outputs - Wiring Hookup .. 9
2.3.4 Dual Display Color Setup .. 11

Part 3: Operation: Configuration Mode .. 12
3.1 Introduction ... 12
3.1.1 Turning your Instrument On for the First Time ... 12
3.1.2 Buttons Functions in Configuration Mode .. 13
3.2 Menu Configuration .. 13
3.2.1 ID Number .. 14
3.2.2 Setpoints ... 15
3.2.3 Configuration Menu .. 15
3.2.4 Reading Configuration Menu .. 16
3.2.5 Alarm 1 Menu .. 17
3.2.6 Analog Output (Retransmission) Menu ... 21
3.2.7 Alarm 2 Menu .. 24
3.2.8 Loop Break Time Menu/Field Calibration ... 25
3.2.9 Output 1 Menu .. 27
3.2.10 Output 2 Menu ... 34
3.2.11 Ramp and Soak Menu ... 36
3.2.12 ID Code Menu .. 38
3.2.13 Communication (Options) Menu .. 40
3.2.14 Display Color Selection Menu ... 46

Part 4: Specifications ... 49

Part 5: Factory Preset Values .. 52

APPROVAL INFORMATION ... 54

LIST OF FIGURES:

Figure 2.1 Front Panel Display ... 5
Figure 2.2 Rear Panel Power and Output Connections 6
Figure 2.3 Rear Panel Input Connections .. 6
Figure 2.4 Main Power Connections .. 7
Figure 2.5 Probe Wiring Hookup ... 8
Figure 2.6 Output Connections:
 a) Mechanical Relay and SSR Outputs – Wiring Hookup 9
 b) Pulse and Analog Outputs – Wiring Hookup 9
Figure 2.7 Typical Application ... 9
Figure 2.8 Communication Output:
 a) RS-232 Output – Wiring Hookup .. 10
 b) RS-485 Output – Wiring Hookup .. 10
Figure 2.9 Excitation Output ... 10
Figure 2.10 Snubber Circuits Wiring Hookup .. 10
Figure 2.11 i/8D Locations of S1 and Selectable Jumper Positions 11
Figure 2.12 i/16D Location of S1 and Selectable Jumper Positions 11
Figure 3.1 Flow Chart for ID and Setpoints ... 13
Figure 3.2 Flow Chart for Configuration Menu 15
Figure 3.3 Flow Chart for Reading Configuration Menu 16
Figure 3.4 Flow Chart for Alarm 1 .. 17
Figure 3.5 Flow Chart for Analog Output (Retransmission) 21
Figure 3.6 Flow Chart for Alarm 2 .. 24
Figure 3.7 Flow Chart for Loop Break Time .. 25
Figure 3.8 Flow Chart for Output 1 .. 27
Figure 3.9 Flow Chart for Output 2 .. 34
Figure 3.10 Flow Chart for Ramp and Soak .. 36
Figure 3.11 Flow Chart for ID Code ... 38
Figure 3.12 Flow Chart for Communication Option 40
Figure 3.13 Flow Chart for Display Color Selection 46

LIST OF TABLES:

Table 2.1 Front Panel Annunciators ... 5
Table 2.2 Rear Panel Connector ... 6
Table 2.3 Fuse Requirement ... 7
Table 3.1 Button Function in Configuration Mode 12
Table 3.2 Command Letters and Suffix for iTH 41
Table 5.1 Factory Preset Values ... 52
NOTES, WARNINGS and CAUTIONS

Information that is especially important to note is identified by following labels:

- NOTE
- WARNING or CAUTION
- IMPORTANT
- TIP

NOTE: Provides you with information that is important to successfully setup and use the Programmable Digital Meter.

CAUTION or WARNING: Tells you about the risk of electrical shock.

CAUTION, WARNING or IMPORTANT: Tells you of circumstances or practices that can effect the instrument’s functionality and must refer to accompanying documents.

TIP: Provides you helpful hints.
PART 1
INTRODUCTION
1.1 Description

The iTH Series instruments monitor and control both temperature and relative humidity.
- Used with an iTH probe the controller comes with dual displays. The top displays relative humidity and the bottom displays temperature. Relative Humidity can be toggled with Temperature readings (by pressing the \button) or Dewpoint readings (by pressing the \button). Dewpoint is the temperature at which water vapor from the air begins to form droplets and condenses on surfaces that are colder than the dewpoint of air.

- The temperature and humidity control can be achieved by using on/off or PID heat/cool control strategy. Control can be optimized with an auto tune feature. The instrument offers a ramp to setpoint with timed soak period before switching off the output.

The instruments are simple to configure and use, while providing tremendous versatility and a wealth of powerful features. The iTH Series instruments are available either as monitors or controllers. The monitors are extremely accurate programmable digital panel meters displaying humidity, temperature, or dew point. The controllers also provide dual loop control for both humidity and temperature and are easily programmed for any control or alarming requirement from simple on-off to full autotune PID control.

The iTH family of meters and controllers are available in four true DIN Sizes with NEMA 4, IP65 splash resistant bezels: the ultra compact 1/32 DIN (the world’s smallest dual loop Humidity + Temperature controller); the popular midsize 1/16 DIN square bezel with dual display; the 1/8 DIN vertical, and the 1/8 DIN horizontal with the big bright 21mm digits.

The iTH series LED displays can be programmed to change color between Green, Amber, and Red at any set point or alarm point.

The iTH controller models offer a choice of two control or alarm outputs in almost any combination: solid state relays (SSR); Form "C" SPDT (Single Pole Double Throw) relays; pulsed 10 Vdc output for use with an external SSR; or Analog Output selectable for control or retransmission of the process value. Universal power supply accepts 90 to 240 Vac. Low voltage power option accepts 24 Vac or 12 to 36 Vdc.

The Networking and Communications options include direct Ethernet LAN connectivity with an Embedded Web Server, and serial communications. The -C24 serial communications option includes both RS-232 and RS-485. Protocols include both MODBUS and a straightforward ASCII protocol. The -C4EI option includes both Ethernet and RS-485 ASCII/MODBUS on one device.

The iTH Series meters and controllers are designed for easy integration with popular industrial automation, data acquisition and control programs as well as Microsoft Visual Basic and Excel. provides free configuration and data acquisition software and demos which makes it fast and easy to get up and running with many applications.
1.2 Safety Considerations

This device is marked with the international caution symbol. It is important to read this manual before installing or commissioning this device as it contains important information relating to Safety and EMC (Electromagnetic Compatibility).

This instrument is a panel mount device protected in accordance with EN 61010-1:2001, electrical safety requirements for electrical equipment for measurement, control and laboratory. Installation of this instrument should be done by qualified personnel. In order to ensure safe operation, the following instructions should be followed.

This instrument has no power-on switch. An external switch or circuit-breaker shall be included in the building installation as a disconnecting device. It shall be marked to indicate this function, and it shall be in close proximity to the equipment within easy reach of the operator. The switch or circuit-breaker shall meet the relevant requirements of IEC 947–1 and IEC 947-3 (International Electrotechnical Commission). The switch shall not be incorporated in the main supply cord.

Furthermore, to provide protection against excessive energy being drawn from the main supply in case of a fault in the equipment, an overcurrent protection device shall be installed.

- Do not exceed voltage rating on the label located on the top of the instrument housing.
- Always disconnect power before changing signal and power connections.
- Do not use this instrument on a work bench without its case for safety reasons.
- Do not operate this instrument in flammable or explosive atmospheres.
- Do not expose this instrument to rain or moisture.
- Unit mounting should allow for adequate ventilation to ensure instrument does not exceed operating temperature rating.
- Use electrical wires with adequate size to handle mechanical strain and power requirements. Install without exposing bare wire outside the connector to minimize electrical shock hazards.

EMC Considerations

- Whenever EMC is an issue, always use shielded cables.
- Never run signal and power wires in the same conduit.
- Use signal wire connections with twisted-pair cables.
- Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.

Failure to follow all instructions and warnings may result in injury!
1.3 Before You Begin

Inspecting Your Shipment:
Remove the packing slip and verify that you have received everything listed. Inspect the container and equipment for signs of damage as soon as you receive the shipment. Note any evidence of rough handling in transit. Immediately report any damage to the shipping agent. The carrier will not honor damage claims unless all shipping material is saved for inspection. After examining and removing the contents, save the packing material and carton in the event reshipment is necessary.

Customer Service:
If you need assistance, please call the nearest Customer Service Department, listed in this manual.

Manuals, Software:
The latest Operation and Communication Manual as well as free configuration software and ActiveX controls are available from the website listed in this manual or on the CD-ROM enclosed with your shipment.

For first-time users: Refer to the QuickStart Manual for basic operation and set-up instructions.

If you have the Serial Communications/Ethernet Option you can easily configure the controller on your computer or on-line.

To Disable Outputs:
To ensure that menu changes are properly stored, Standby Mode should be used during setup of the instrument. During Standby Mode, the instrument remains in a ready condition, but all outputs are disabled. Standby Mode is useful when maintenance of the system is necessary.

When the instrument is in "RUN" Mode, push twice to disable all outputs and alarms. It is now in "STANDBY" Mode. Push once more to resume "RUN" Mode.

PUSH TWICE to disable the system during an EMERGENCY.

To Reset the Meter:
When the controller is in the "MENU" Mode, push once to direct controller one step backward of the top menu item.

Push twice to reset controller, prior to resuming "Run" Mode except after "Alarms", that will go to the "Run" Mode without resetting the controller.
PART 2
SETUP
2.1 Front Panel

The upper display may be RH, Temperature or Dewpoint readings depending on your Reading Configuration selections. Factory defaults are shown in Figure 2.1. The Dual Display allows the user to observe the Relative Humidity or Dewpoint (upper display) and Temperature Value (lower display), at the same time.

Table 2.1 Front Panel Annunciators

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output 1/Setpoint 1/ Alarm 1 indicator</td>
</tr>
<tr>
<td>2</td>
<td>Output 2/Setpoint 2/ Alarm 2 indicator</td>
</tr>
<tr>
<td>°C</td>
<td>°C unit indicator for Temperature or Dewpoint</td>
</tr>
<tr>
<td>°F</td>
<td>°F unit indicator for Temperature or Dewpoint</td>
</tr>
<tr>
<td>%RH</td>
<td>Display shows the Percent Relative Humidity</td>
</tr>
<tr>
<td>D</td>
<td>Display shows the Dewpoint</td>
</tr>
<tr>
<td>☐</td>
<td>Changes display to Configuration Mode and advances through menu items*</td>
</tr>
<tr>
<td>☑</td>
<td>Used in Program Mode: On Dual Display: swaps the upper and lower displays from RH readings to Temperature readings. Note: this eliminates the small LED enunciators* On Single Display units: replaces RH readings to Temperature readings*</td>
</tr>
<tr>
<td>☘</td>
<td>Used in Program Mode: On Dual Display: changes upper display from RH readings to Dewpoint readings* On Single Display units: replaces RH readings to Dewpoint readings*</td>
</tr>
<tr>
<td>☘</td>
<td>Accesses submenus in Configuration Mode and stores selected values*</td>
</tr>
</tbody>
</table>

* See Part 3 Operation: Configuration Mode.
2.2 Rear Panel Connections

The rear panel connections are shown in Figures 2.2 and 2.3.

![Diagram of rear panel connections]

Figure 2.2 Rear Panel Power and Output Connections

Figure 2.3 Rear Panel Input Connections

Table 2.2 Rear Panel Connector

<table>
<thead>
<tr>
<th>POWER</th>
<th>AC/DC Power Connector: All models</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>iTH-PROBE</td>
</tr>
<tr>
<td>OUTPUT 1</td>
<td>Based on one of the following models:</td>
</tr>
<tr>
<td></td>
<td>Relay SPDT</td>
</tr>
<tr>
<td></td>
<td>Solid State Relay</td>
</tr>
<tr>
<td></td>
<td>Pulse</td>
</tr>
<tr>
<td></td>
<td>Analog Output (Voltage and Current)</td>
</tr>
<tr>
<td>OUTPUT 2</td>
<td>Based on one of the following models:</td>
</tr>
<tr>
<td></td>
<td>Relay SPDT</td>
</tr>
<tr>
<td></td>
<td>Solid State Relay</td>
</tr>
<tr>
<td></td>
<td>Pulse</td>
</tr>
<tr>
<td>OPTION</td>
<td>Based on one of the following models:</td>
</tr>
<tr>
<td></td>
<td>RS-232C or RS-485 programmable</td>
</tr>
<tr>
<td></td>
<td>Excitation</td>
</tr>
</tbody>
</table>
2.3 Electrical Installation

2.3.1 Power Connections

Caution: Do not connect power to your device until you have completed all input and output connections. Failure to do so may result in injury!

Connect the main power connections as shown in Figure 2.4.

![Figure 2.4 Main Power Connections](image)

<table>
<thead>
<tr>
<th>FUSE</th>
<th>Connector</th>
<th>Output Type</th>
<th>For 115Vac</th>
<th>For 230Vac</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUSE 1</td>
<td>Power</td>
<td>N/A</td>
<td>100 mA(T)</td>
<td>100 mA(T)</td>
<td>100 mA(T)</td>
</tr>
<tr>
<td>FUSE 2</td>
<td>Power</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>400 mA(T)</td>
</tr>
</tbody>
</table>

For the low voltage power option, in order to maintain the same degree of protection as the standard high voltage input power units (90 - 240 Vac), always use a Safety Agency Approved DC or AC source with the same Overvoltage Category and pollution degree as the standard AC unit (90 - 240 Vac).

The Safety European Standard EN61010-1 for measurement, control, and laboratory equipment requires that fuses must be specified based on IEC127. This standard specifies for a Time-lag fuse, the letter code “T”. The above recommended fuses are of the type IEC127-2-sheet III. Be aware that there are significant differences between the requirements listed in the UL 248-14/CSA 248.14 and the IEC 127 fuse standards. As a result, no single fuse can carry all approval listings. A 1.0 Amp IEC fuse is approximately equivalent to a 1.4 Amp UL/CSA fuse. It is advised to consult the manufacturer’s data sheets for a cross-reference.

Note: Use copper conductors only for power connections.

Table 2.3 Fuse Requirement (see specifications)

AC POWER 90 ~ 240 Vac
Equivalent DC POWER 110 ~ 375 Vdc

SW
L
N

LOW VOLTAGE POWER OPTION

Fuse 2
24 Vac
12 ~ 36 Vdc

Use copper conductors only for power connections
2.3.2 Humidity and Temperature Probe

The figure below shows the wiring hookup for the temperature and humidity probe.

Choose one which gives the best signal integrity-

1) Connect Probe’s Shield to RTN if Probe Housing is not connected to Earth Ground.

OR

2) Connect Probe’s Shield to Earth Ground if Probe Housing is not connected to Earth Ground.

Figure 2.5 Probe Wiring Hookup
2.3.3 Wiring Outputs

This meter has two factory installed outputs. The SPDT Mechanical Relay, SPST Solid State Relay, Pulse and Analog Output Connection are shown below.

![Wiring Diagrams](image-url)

Figure 2.6

a) Mechanical Relay and SSR Outputs Wiring Hookup

- **ac CONTROLLED SSR USED WITH TEMPERATURE CONTROLLER WITH dc VOLTAGE SSR DRIVER OUTPUT**

- **ac CONTROLLED SSR USED WITH TEMPERATURE CONTROLLER WITH MECHANICAL RELAY OUTPUT**

- **ac CONTROLLED SSR USED WITH TEMPERATURE CONTROLLER WITH TRIAC OUTPUT**

Figure 2.7 Typical Applications

- Use copper conductors only for power connections.

9
This device may have a programmable communication output. The RS-232 and RS-485 Output Connection are shown below.

Figure 2.8

a) RS-232 Output Wiring Hookup
b) RS-485 Output Wiring Hookup

This device may also have an excitation output.

Note

Excitation is not available if communication option is installed.

If the Dual Display model has a Low Voltage power supply option, then excitation is not available.

Figure 2.9

Excitation Output

This device has snubber circuits designed to protect the contacts of the mechanical relays when it switches to inductive loads (i.e. solenoids, relays). These snubbers are internally connected between the Common (C) and Normally Open (NO) relay contacts of Output 1 and Output 2.

Note

If you have an inductive load connected between Common (C) and Normally Closed (NC) contacts of the mechanical relays and you want to protect them from the rush current during the switching period, you have to connect an external snubber circuit between Common (C) and Normally Closed (NC) contacts as indicated in Figure 2.10.
2.3.4 Dual Display Color Setup

The dual display option allows the user to change the color of the upper and lower displays.

\textbf{Note}\textcopyright To change the color of the upper display, see \textbf{Section 3.2.14} (Display Color section).

To change the color of the lower display follow the instructions below:

The unit should be removed from the panel and opened.

\textbf{Note}\textcopyright Refer to the Quick Start Guide for assembly and disassembly instructions.

The S1 jumper is located on the back side of the display board.

The location of S1 and pin selection jumpers are shown below.

\textbf{⚠️} Use a jumper for GREEN or RED, never leave S1 open.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{i8DH.png}
\caption{i/8DH Location of S1 and Selectable Jumper Positions}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{i8DV.png}
\caption{i/8DV Location of S1 and Selectable Jumper Positions}
\end{figure}
PART 3
OPERATION: Configuration Mode

3.1 Introduction

The instrument has two different modes of operation. The first, Run Mode, is used to display Temperature and Relative Humidity. The other mode, Menu Configuration Mode, is used to navigate through the menu options and configure the controller. Part 3 of this manual will explain the Menu Configuration Mode. For your instrument to operate properly, the user must first "program" or configure the menu options.

Turning your Controller On for the First Time

The device becomes active as soon as it is connected to a power source. It has no On or Off switch. The device at first momentarily shows the software version number, followed by reset RST, and then proceeds to the Run Mode.

For first-time users: Refer to the QuickStart Manual for basic operation and set-up instructions.

If you have the Serial Communications/Ethernet Option you can easily configure the controller on your computer or on-line.

Table 3.1 Button Function in Configuration Mode

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU</td>
<td>To enter the Menu, the user must first press button. Use this button to advance/navigate to the next menu item. The user can navigate through all the top level menus by pressing . While a parameter is being modified, press to escape without saving the parameter.</td>
</tr>
<tr>
<td>(UP)</td>
<td>Press the up button to scroll through "flashing" selections. When a numerical value is displayed press this key to increase value of a parameter that is currently being modified. Pressing the button for approximately 3 seconds will speed up the rate at which the set point value increments. In the Run Mode, pressing the button changes display from RH readings to Temperature readings.</td>
</tr>
<tr>
<td>(DOWN)</td>
<td>Press the down button to go back to a previous Top Level Menu item. Press this button twice to reset the controller to the Run Mode. When a numerical value is flashing (except set point value) press to scroll digits from left to right allowing the user to select the desired digit to modify. When a setpoint value is displayed press to decrease value of a setpoint that is currently being modified. Pressing the button for approximately 3 seconds will speed up the rate at which the setpoint value is decremented. In the Run Mode, pressing the button changes from RH readings to Dewpoint readings.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Press the enter button to access the submenus from a Top Level Menu item. Press to store a submenu selection or after entering a value — the display will flash a message to confirm your selection. In the Run Mode, press twice to enable Standby Mode with flashing STBY.</td>
</tr>
</tbody>
</table>

Reset: Except for Alarms, modifying any settings of the menu configuration will reset the instrument prior to resuming Run Mode.
3.2 Menu Configuration

It is required that you put the controller in the Standby Mode for any configuration change other than Setpoints & Alarms.

Figure 3.1 Flow Chart for ID and Setpoints
3.2.1 ID Number

TO ENABLE/DISABLE OR CHANGE ID CODE, SEE SECTION 3.2.12.

If ID Code is Disabled or set as Default (0000) the menu will skip ID step to Setpoint Menu.

If ID Code is set to Full Security Level and user attempts to enter the Main Menu, they will be prompted for an ID Code.

If ID Code is set to Setpoint/ID Security Level and user attempts to enter the Configuration Menu, they will be prompted for an ID Code.

ENTERING YOUR NON-DEFAULT FULL SECURITY ID NUMBER.

Press 1) Display shows \textit{Id}.
Press 2) Display advances to \\
Press \& \textbf{3) Press } \& \textbf{to increase digit 0-9. Press } \& \textbf{to activate next digit (flashing). Continue to use } \& \textbf{and } \& \textbf{to enter your 4-digit ID code.}
Press 4) If the correct ID code is entered, the menu will advance to the Setpoint 1 Menu, otherwise an error message \textit{ERROR} will be displayed and the instrument will return to the Run Mode.

To change ID Code, see ID Menu in the Configuration section.

ENTERING YOUR NON-DEFAULT SETPOINT/ID SECURITY ID NUMBER.

Press 5) Display shows \textit{SP1} Setpoint 1 Menu.
Press 6) Display shows \textit{SP2} Setpoint 2 Menu.
Press 7) Display shows \textit{Id} ID Code Menu.
Press 8) Display advances to \\
Press \& \textbf{9) Use } \& \textbf{and } \& \textbf{to change your ID Code.}
Press 10) If correct ID Code is entered, the display will advance to the \textit{INPT} Input Menu, otherwise the error message \textit{ERROR} will be displayed and the controller will return to the Run Mode.

To prevent unauthorized tampering with the setup parameters, the instrument provides protection by requiring the user to enter the ID Code before allowing access to subsequent menus. If the ID Code entered does not match the ID Code stored, the controller responds with an error message and access to subsequent menus will be denied.

Use numbers that are easy for you to remember. If the ID Code is forgotten or lost, call customer service with your serial number to access and reset the default to 0000.
3.2.2 Set Points

SETPOINT 1:

1) Press ⬆️, if necessary until **SP1** prompt appears.
2) Display shows previous value of “Setpoint 1”.
3) Press ⬆️ and ⬇️ to increase or decrease Setpoint 1 respectively.

Holding ⬆️ & ⬇️ buttons down for approximately 3 seconds will speed up the rate at which the Setpoint value increments or decrements.

4) Continue to use ⬆️ and ⬇️ to enter your 4-digit Setpoint 1 value.
5) Display shows **STRD** stored message momentarily and then advances to **SP2** only, if a change was made, otherwise press ⬆️ to advance to **SP2** Setpoint 2 Menu.

SETPOINT 2:

6) Display shows previous value of “Setpoint 2”.
7) Press ⬆️ and ⬇️ to increase or decrease Setpoint 2 respectively.

Holding ⬆️ & ⬇️ buttons down for approximately 3 seconds will speed up the rate at which the setpoint value increments or decrements.

8) Display shows **STRD** stored message momentarily and then advances to **CNFG** only, if a change was made, otherwise press ⬆️ to advance to **CNFG** Configuration Menu.

3.2.3 Configuration Menu

![Figure 3.2 Flow Chart for Configuration Menu](image-url)
3.2.4 Reading Configuration

It is required that you put the controller in the Standby Mode for any configuration change other than Set Points & Alarms.

![Flow Chart for Reading Configuration Menu](image)

ENTER READING CONFIGURATION MENU:
- Press [a] 1) Press [a], if necessary, until CHFG prompt appears.
- Press [d] 2) Display advances to RDG Reading Configuration Menu.
- Press [d] 3) Display advances to SNSR Sensor.

SENSOR SUBMENU:
- Press [d] 4) Sensor selection for Autotune, Loop, or Ramp and Soak °F, °C is for temperature and %RH is for Humidity.

TEMPERATURE UNIT SUBMENU:
- Press [b] 5) Display flashes previous Temperature Unit selection.
- Press [d] 6) Scroll through the available selections to the Temperature Unit of your choice: °F or °C.
- Press [d] 7) Display shows STRD stored message momentarily and then advances to FLTR Filter Constant.

FILTER CONSTANT SUBMENU:
- Press [b] 9) Scroll through the available selections: 0001, 0002, 0004, 0008, 0016, 0032, 0064, 0128.
- Press [d] 10) Display shows STRD stored message momentarily only, if change was made, otherwise press [a] to advance to the next menu.

The Filter Constant Submenu allows the user to specify the number of readings stored in the Digital Averaging Filter.

Tip
For PID control select filter value 0001-0004. A filter value of 2 is approximately equal to 1 second RC low pass time constant.
3.2.5 Alarm 1

This unit is equipped with two physical outputs that can only be configured as follows: Alarm 1 & Alarm 2, Alarm 1 & Output 2, Output 1 & Alarm 2, Output 1 & Output 2, Analog Out 1 & Alarm 2, Analog Out 1 & Output 2. Analog Out available only if Analog Output Option board is factory installed. Alarm1 will only work for Humidity, not Temperature.

If Analog Output Option is installed, the controller will skip Alarm 1 Menu item to Analog Output.

Alarm must be DISABLED if Ramp is ENABLED.

Alarm 1 is designed to monitor the humidity value around Setpoint 1 and Alarm 2 is designed to monitor the temperature value around Setpoint 2.

Figure 3.4 Flow Chart for Alarm 1

ENTER ALARM 1 MENU:

- Press **2** if necessary, until **ENT** prompt appears.
- Press **1**) Display advances to **RDG** Reading Configuration Menu.
- Press **2**) Press **a**, until Display advances to **ALRM 1** Alarm 1 Menu.
- Press **3**) Display advances to Alarm 1 **ENBL** Enable or **DSBL** Disable Submenu and flashes the previous selection.

ALARM 1 ENABLE/DISABLE SUBMENU:

Press ▲ 5) Scroll though the available selection until **ENbl** displays to use Alarm 1.

Press ◁ 6) Display shows **Strd** stored message momentarily and then advances to **Absa** only if it was changed, otherwise press ◀ to advance to **Absa** Alarm 1 Absolute/Deviation Submenu.

Note: If **DSbl** Alarm 1 Disabled was selected, all submenus of Alarm 1 Menu will be skipped and meter advances to **PLR2** Alarm 2 Menu. If **ENbl** Alarm 1 Enabled was selected, Output 1 would be automatically Disabled.

ALARM 1 ABSOLUTE/DEVIATION SUBMENU:

Press ▲ 7) Display flashes previous selection. Press ▲ to **Absa** Absolute or ◁ **_Dev** Deviation.

Press ◁ 8) Display shows **Strd** stored message momentarily (only if it was changed) and then advances to **LtcH**.

Absolute Mode allows Alarm 1 to function independently from Setpoint 1. If the process being monitored does not change often, then "Absolute" Mode is recommended. The absolute Setpoint values are placed in the Alarm 1 Low and Hi values.

Deviation Mode allows Alarm 1 trigger at the Setpoint 1 value, as long as the Alarm 1 Low and Hi values equal 0. Deviation mode is typically the ideal mode if the process temperature changes often.

ALARM 1 LATCH/UNLATCH SUBMENU:

Press ▲ 9) Display flashes previous selection. Press ▲ to **LtcH** Latched or ◁ **Unlt** Unlatched.

Press ◁ 10) Display shows **Strd** stored message momentarily (only if it was changed) and then advances to **LtcL**.

Latched Mode: Relay remains "latched" until reset. To reset already latched alarm, select Alarm Latch and press Max twice (i.e. Unlatch and then back to Latch) or from a Run Mode, push ◁ twice to put the controller in Standby Mode and then push ◁ one more time to return to the Run Mode.

Unlatched Mode: Relay remains latched only as long as the alarm condition is true.
CONTACT CLOSURE SUBMENU:

Press 📈 11) Display flashes previous selection. Press ⇑ to \(\text{N.c.} \) Normally Closed or \(\text{N.o.} \) Normally Open.

Press 📈 12) Display shows \(\text{STRD} \) stored message momentarily (only if it was changed) and then advances to \(\text{ACTV} \).

Normally Open: If this feature is selected, then the relay is "energized" only when an alarm condition occurs.

Normally Closed: "Fail Safe" Mode. Relay is energized under "normal" conditions and becomes de-energized during alarm or power failure.

ACTIVE SUBMENU:

Press 📈 13) Display flashes previous selection. Press ⇑ to scroll through the available selections: \(\text{AB\,\,\,O\,\,\,V} \) Above, \(\text{BE\,\,\,L\,\,\,O} \) Below, \(\text{HI\,\,\,L\,\,\,O} \) HI/Low and \(\text{BA\,\,\,N\,\,\,D} \) Band. (Band is active if \(\text{L\,\,\,O\,\,\,D} \) Deviation was selected).

Press 📈 14) Display shows \(\text{STRD} \) stored message momentarily (only if it was changed) and then advances to \(\text{A.P.o.N} \).

Above: In **Absolute Mode**, Alarm 1 is triggered when the process variable is greater than the Alarm Hi Value (Low value ignored). In **Deviation Mode**, Alarm 1 is triggered at the Setpoint plus any offset placed in the Alarm Hi value.

Below: In **Absolute Mode**, Alarm 1 is triggered when the process variable is less than the Alarm Low Value (Hi value ignored). In **Deviation Mode**, Alarm 1 is triggered at the Setpoint plus any offset placed in the Alarm Low value.

Hi/Low: In **Absolute Mode**, Alarm 1 is triggered when the process variable is less than the Alarm Low Value or above the Hi Value. In **Deviation Mode**, Alarm 1 is triggered when the process variable is less than the Setpoint minus any offset in the Alarm Low or greater than the Setpoint plus any offset in the Alarm Hi value.

Band: Alarm 1 is triggered when the process variable is above or below the "band" set around Setpoint 1. Band equals Hi Value (Low Value ignored). A "band" is set around the Setpoint by the instrument only in the "Deviation" Mode.
ALARM ENABLE/DISABLE AT POWER ON:

Press ‡ 15) Display flashes previous selection. Press ‡ to Enbl enable or Dsbl disable.
Press ‡ 16) Display shows Strd stored message. momentarily (only if it was changed) and then advances to Alr.L.

Note: If Alarm at Power On is enabled, the alarm will be active when an alarm condition occurs. If Alarm at Power On is disabled, the alarm will not be active (even if an alarm condition exists) unless the process value moves into a non-alarm condition and back into an alarm condition.

ALARM 1 LOW VALUE SUBMENU:

Press ‡ 17) Display flashes 1st digit of previous value. Use ‡ and ‡ to enter new value.
Press ‡ & ‡ 18) Use ‡ and ‡ to enter Alarm 1 Low Value.
Press ‡ 19) Display shows Strd storage message momentarily (only if it was changed) and then advances to Alr.H.

ALARM 1 HI VALUE SUBMENU:

Press ‡ 20) Display flashes 1st digit of previous value. Use ‡ and ‡ to enter new value.
Press ‡ & ‡ 21) Use ‡ and ‡ to enter Alarm1 Hi Value.
Press ‡ 22) Display shows Strd stored message momentarily (only if it was changed) and then advances to the next menu.
3.2.6 Analog Output (Retransmission)

Analog Output works only for Humidity Readings and can be configured as Retransmission or Control outputs. This section will explain Retransmission Output.

This unit is equipped with two physical outputs that can only be configured as follows: **Alarm 1 & Alarm 2, Alarm 1 & Output 2, Output 1 & Alarm 2, Output 1 & Output 2, Analog Out 1 & Alarm 2, Analog Out 1 & Output 2.** Analog Output is available only if Analog Output Option board is factory installed.

If Analog Output Option is not installed, the instrument will skip to Alarm 2 Menu.

![Figure 3.5 Flow Chart for Analog Output (Retransmission)](image)

ENTER ANALOG OUTPUT MENU:

- **Press** if necessary, until **CNFG** prompt appears.
- **Press** 2) Display advances to **RDG** Reading Configuration Menu.
- **Press** if necessary, until Display advances to **ANLG** Analog Output Menu.
- **Press** 4) Display advances to Analog Output **ENBL** Enable or **DSBL** Disable Submenu and flashes the previous selection.
ANALOG OUTPUT ENABLE/DISABLE SUBMENU:
- Press \(\uparrow \) 5) Scroll through the available selection until **Enbl** displays to use Analog Output Retransmission (output proportional to the input signal).
- Press \(\downarrow \) 6) Display shows **Strd** stored message momentarily and then advances to **Curr** or **Volt** Submenu only if it was changed, otherwise press \(\uparrow \) to advance to **Curr** or **Volt** Current/Voltage Submenu.

Note: If **dsbl** Analog Output **Disabled** was selected, all submenus of Analog Output Menu will be skipped and the meter will advance to **Alr2** Alarm 2 Menu. If **Enbl** Analog Output **Enabled** was selected, Output 1 would be automatically **Disabled**, and reassigned as Analog Output.

CURRENT/VOLTAGE SUBMENU:
- Press \(\uparrow \) 7) Display flashes **Curr** Current or **Volt** Voltage.
- Press \(\uparrow \) 8) Scroll through the available selection: Current or Voltage (Example **Volt**).
- Press \(\uparrow \) 9) Display shows **Strd** stored message momentarily and then advances to **rd1** Submenu only if it was changed, otherwise press \(\uparrow \) to advance to **rd1** Reading 1 Submenu.

READING 1:
- Press \(\uparrow \) 10) Display flashes 1st digit of previous “Reading 1” value.
- Press \(\uparrow \) & \(\downarrow \) 11) Enter “Reading 1” value. (Example 0000)
- Press \(\uparrow \) 12) Display advances to **Out.1** Out 1 Submenu.

OUT 1:
- Press \(\uparrow \) 13) Display flashes 1st digit of previous “Out 1” value.
- Press \(\uparrow \) & \(\downarrow \) 14) Enter “Out 1” value. (Example 00.00)
- Press \(\uparrow \) 15) Display advances to **rd2** Reading 2 Submenu.

READING 2:
- Press \(\uparrow \) 16) Display flashes 1st digit of previous “Reading 2” value.
- Press \(\uparrow \) & \(\downarrow \) 17) Enter “Reading 2” value. (Example 100.0)
- Press \(\uparrow \) 18) Display advances to **Out.2** Out 2 Submenu.

OUT 2:
- Press \(\uparrow \) 19) Display flashes 1st digit of previous “Out 2” value.
- Press \(\uparrow \) & \(\downarrow \) 20) Enter “Out 2” value. (Example 10.00)
- Press \(\uparrow \) 21) Display advances to the **Alr2** Alarm 2 Menu.

Note: The above example (also the factory default) is for 0-10 V of the entire range of the Humidity Input and Analog Output. For 0-20 mA output you need to set “Analog Type” to Current and OUT 2 to 20.00.
Accuracy of Analog Output board is +/-1% of FS (Full Scale) when following conditions are satisfied:
1. The input is not scaled below 1% of Input FS (10 mV @ 1 V or 0.2 mA @ 20 mA input ranges).
2. Analog Output is not scaled below 3% of Output FS (300 mV @ 10 V or 0.6 mA @ 20 mA output ranges).

Otherwise certain corrections need to be applied. **For example:**

For entire range of Humidity Input, the Analog Output on 10 V FS scaled for 300 mV output range:

\[
\begin{align*}
\text{Rd1} &= 0000, \quad \text{Out1} = 00.00 \\
\text{RD2} &= 100.0, \quad \text{Out2} = 00.30
\end{align*}
\]

The measured output will be as follows:

\[
\begin{align*}
\text{Rd1} &= 0000, \quad \text{Out1} = -0.07 \text{ V} \\
\text{Rd2} &= 100.0, \quad \text{Out2} = 0.23 \text{ V}
\end{align*}
\]

This means that for 300 mV output range we have -70 mV offset at zero and at full scale. In order to compensate this 70 mV offset the **correct scaling** will be as follows:

\[
\begin{align*}
\text{Rd1} &= 0000, \quad \text{Out1} = 00.07 \\
\text{Rd2} &= 100.0, \quad \text{Out2} = 00.37
\end{align*}
\]

The above corrections need to be applied only for **Input scaled below 1% of FS** and **Output scaled below 3% of FS** or if you need the **Analog Output accuracy to be better than 1% of FS**.
3.2.7 Alarm 2

This unit is equipped with two physical outputs that can only be configured as follows: Alarm 1 & Alarm 2, Alarm 1 & Output 2, Output 1 & Alarm 2, Output 1 & Output 2, Analog Out 1 & Alarm 2, Analog Out 1 & Output 2. Analog Out available only if Analog Output Option board is factory installed. Alarm 2 only works for Temperature, not Humidity.

Note: Alarm must be DISABLED if Ramp is ENABLED.

![Flow Chart for Alarm 2](image)

Figure 3.6 Flow Chart for Alarm 2

ENTER ALARM 2 MENU:

Press \(\odot \) 1) Press \(\odot \), if necessary, until ENFG prompt appears.

Press \(\odot \) 2) Display advances to RDG Reading Configuration Menu.

Press \(\odot \) 3) Press \(\odot \), if necessary, until Display advances to ALR2 Alarm 2 Menu.

Press \(\odot \) 4) Display advances to Alarm 2 ENBL Enable or DSBL Disable Submenu.

ALARM 2 ENABLE/DISABLE SUBMENU:

5) Display flashes previous selection. Press \(\odot \) until ENBL displays to use Alarm 2.

Press \(\odot \) 6) Display shows STRD stored message momentarily and then advances to ABSO only if it was changed, otherwise press \(\odot \) to advance to ABSO Absolute/Deviation Submenu.

If DSBL Alarm 2 Disabled was selected, all submenus of Alarm 2 will be skipped and meter advances to LOOP Loop Break Time Menu. If ENBL Alarm 2 Enabled was selected, Output 2 will automatically Disabled, and reassigned as Alarm 2.

Note: The remaining Alarm 2 menu items are identical to Alarm 1 Menu. Modifying Alarm Settings will not reset the instrument.
3.2.8 Loop Break Time

Figure 3.7 Flow Chart for Loop Break Time

ENTER LOOP BREAK TIME MENU:
1. Press \(\bigcirc \) if necessary, until \(\text{CHFG} \) prompt appears.
2. Press \(\bigcirc \), if necessary, until \(\text{RDG} \) Reading Configuration Menu.
3. Press \(\bigcirc \), if necessary, until \(\text{LOOP} \) Loop Break Time Menu.
4. Display advances to Loop Break Time \(\text{ENBL} \) Enable or \(\text{DSBL} \) Disable Submenu and flashes the previous selection.

LOOP BREAK ENABLE/DISABLE SUBMENU:
5. Scroll through the available selections: \(\text{ENBL} \) or \(\text{DSBL} \).
6. Display shows \(\text{STRD} \) stored message momentarily and then advances to \(\text{L.B.TM} \) Loop Break Time Value Submenu.

Loop Break is an additional safety feature intended to monitor the rate of change of the process value, while approaching the SP1, if on the Sensor Menu \(\text{DRRh} \) is selected, or SP2 if \(\text{°F,°C} \) is selected. It is strictly intended as an additional warning system, therefore its use is entirely optional. An active Loop Break will cause the Process Value digits to blink in a rotating pattern. If the process value reaches the set point the blinking will stop and \(\text{BR.ALM} \) Break Alarm warning will flash, and Output 1 will be turned off.

LOOP BREAK TIME VALUE SUBMENU:
7. Display flashes 1st digit of previous Loop Value.
8. Press \(\bigcirc \) and \(\bigtriangledown \) buttons to enter a new Loop Value (0 to 99.59).
9. Display shows \(\text{STRD} \) stored message momentarily and then advances to \(\text{R.ADJ} \) Reading Adjust Menu.

Loop Break Time Value allows the user to determine the time interval in MM:SS (from zero to 99 minutes and 59 seconds) that the Process Value changes at least 10 counts. At the specified time interval, if the process value change is less than the stated rate, flashing \(\text{B.TM} \) will be displayed, the output will be de-energized, and Alarm energized. Loop break time will be disabled when the Process Value (PV) enters the control band.

It is required that you put the controller in the Standby Mode for any configuration change other than Set Points & Alarms.

Loop Break Alarm can work on the RH or Temperature function of the selection made on the Sensor Menu.
READING ADJUST SUBMENU:
Press 10) Display flashes 1st digit of previous reading adjust value.
Press a & b 11) Press a and b buttons to enter a new Reading Adjust value (-1999 to 9999).
Press c 12) Display shows STRD stored message momentarily and then advances to S.P.dV Setpoint Deviation Menu.

Reading Offset Adjust
For Relative Humidity, the controller allows the user to fine tune a minor error of the transducer, however some applications may require a large offset adjust. (Displayed Process Value = Measured Process Value ± R.ADJ).
R.ADJ is adjustable between -19.99 to 99.99

SETPOINT DEVIATION ENABLE/DISABLE SUBMENU:
Press 13) Display advances to Setpoint Deviation ENBL Enable or DSBL Disable Submenu and flashes the previous selection.
Press 14) Scroll through the available selections: ENBL or DSBL.
Press 15) Display shows STRD stored message momentarily and then advances to OUT1 Menu.

Setpoint Deviation Submenu, if “enabled”, allows changes to Setpoint 1 to be made automatically to Setpoint 2. This mode is very helpful if the Process Value changes often. In Setpoint Deviation Mode, set SP2 a certain number of degrees or counts away from SP1 - this relation remains fixed when SP1 is changed. For instance: Setting SP1=200 and SP2=20 and enabling S.P.dV means that the absolute value of SP2=220. Moving SP1 to 300, the absolute value of SP2 becomes 320.
3.2.9 Output 1

Alarm 1 and Output 1 or Analog Output (Retransmission) share the same contacts on the rear panel connector. If Alarm 1 or Analog Output (Retransmission) is Enabled, Output 1 is automatically Disabled.

![Flow Chart for Output 1](image)

Figure 3.8 Flow Chart for Output 1
ENTER OUTPUT 1 MENU:

1) Press \(\circ \), if necessary, until **CHFG** prompt appears.

2) Display advances to **RDG** Reading Configuration Menu.

3) Press \(\circ \), if necessary, until Display advances to **OUT1** Output 1 Menu.

4) Display advances to **SELF** Self Submenu.

SELF SUBMENU:

The Self Option allows the output of the instrument to be controlled manually from the front panel.

5) Display flashes the current setting of Self, **ENBL** Enabled or **DSBL** Disabled.

6) Press the \(\circ \) button to select between Enable and Disable.

7) If Self **ENBL** Enabled was selected, display shows **STRD** stored message momentarily and then advances to the next menu (Output 1 setting is completed).

8) If Self **DSBL** Disabled was selected, display shows **STRD** stored message momentarily and then advances to **OPL0** Minimum/Percent Low Submenu of Output 1 Menu.

Note

There is a shorter way to Enable or Disable Self Mode. From a Run Mode, press \(\circ \) and then press \(\circ \). Self Mode is Enabled now. Press \(\circ \) or \(\circ \) to display **MXX.X**. To disable Self, press \(\circ \) and then press \(\circ \). Display goes to the Run Mode. Self Mode is Disabled now.

MINIMUM/PERCENT LOW SUBMENU:

Specify in percent, the minimum value (0000) for control output. If the output is analog proportional (Current or Voltage), then the minimum voltage or current, in percent, is specified. If the output is time proportional (Relay, SSR or Pulse), then the minimum duty-cycle, in percent, is specified.

9) Display flashes 1st digit of previous “Percent Low” setting.

10) Use \(\circ \) and \(\circ \) buttons to enter a new value for “Percent Low”.

11) Display shows **STRD** stored message momentarily and then advances to **SPH1** Maximum/Percent High Submenu.
MAXIMUM/PERCENT HIGH SUBMENU:

Specify in percent, the maximum value (99) for control output. If the output is analog proportional (Current or Voltage), then the maximum voltage or current, in percent, is specified. If the output is time proportional (Relay, SSR, or Pulse), then the maximum duty-cycle, in percent, is specified.

Press 12) Display flashes 1st digit of previous “Percent High” setting.
Press 13) Use and buttons to enter a new value for “Percent High”.
Press 14) Display shows stored message momentarily and then advances to Control Type Submenu.

Example: On an Analog Output of 0~10 Vdc, a setting of %LO = 10 and %HI = 90, cause the minimum on the control output to be 1 V and the maximum on the control output to be 9 V. The same setting on a time proportional output, will cause 10% duty cycle for the minimum control output and 90% duty cycle for maximum control output. To disable %LO/HI, set LO to 00 and HI to 99. If %LO/HI is at other values than the default (%LO = 00, %HI = 99), SOAK is disabled.

*CONTROL TYPE OUTPUT:

(Relay, SSR, Pulse or Analog)
Press 15) Display flashes On/Off or Proportional, Integral, Derivative.
Press 16) Scroll through the available selections: “ON/OFF” or “PID”.
Press 17) Display flashes stored message momentarily and then advances to Action Type Submenu.

The ON/OFF control is a coarse way of controlling the process. The “Dead Band” improves the cycling associated with the On/Off control. The PID control is best for processes where the Setpoint is continuously changing and/or a tight control of the process variable is required. PID control requires tuning and adjustment of the “Proportional”, “Integral or Reset” and “Derivative or Rate” terms by a trial-and-error method. The instrument provides an "Auto Tuning" feature making the tuning process automatic, possibly optimum.

* If Analog Output (Current/Voltage) is your control Output 1, this menu i.e. CTRL type will not appear, instead 4-20 Current will be displayed. Select ENBL for a 4-20 mA current (2-10 V Voltage) outputs or DSBL for a 0-20 mA current (0-10 V Voltage) outputs. If 4-20 mA is enabled, %HI/LO setting will have no effect.

Both Current and Voltage control outputs are active simultaneously.
ACTION TYPE SUBMENU:

The error that results from the measurement of the Process Variable may be positive or negative since it may be greater or smaller than the Setpoint. If a positive error should cause the instrument output to increase (i.e. cooling), it would be called Direct Acting. If a negative error should cause the output to increase (i.e. heating), it would be called Reverse Acting.

Press 18) Display flashes DRct Direct or Rvrs Reverse.
Press 19) Scroll through the available selections: “Direct” or “Reverse”.
Press 20) Display shows STRD stored message momentarily and then advances to Auto only, if it was changed, otherwise press to advance to Auto Auto PID Submenu (if PID Control Type was selected).

If “ON/OFF” was selected in the Control Type, the display skips to the Dead Band Submenu.

AUTO PID SUBMENU:

Press 21) Display flashes ENbl or DSbl.
Press 22) Scroll through the available selections: “Enable” or “Disable”.
Press 23) Display shows STRD stored message momentarily and then advances to ANtl only, if it was changed, otherwise press to advance to ANtl Anti Integral Submenu.

If “Enabled”, the controller can determine, by enabling Start PID, the optimum values for the three adjustments — Proportional, Reset and Rate corresponding to P, I, and D. These values may be changed once the auto tuning is complete.

If “Disabled” is selected, the user will manually enter these three adjustment values. If you want the instrument to do the auto PID and the P, PI or PID, first select auto disable and enter 0000 for unwanted parameter. i.e. for PI enter 0000 for the rate.

ANTI INTEGRAL SUBMENU:

Press 24) Display flashes ENbl or DSbl.
Press 25) Scroll through the available selections: “Enable” or “Disable”.
Press 26) Display shows STRD stored message momentarily and then advances to STRT only, if it was changed, otherwise press to advance to STRT to Start Auto Tune PID Submenu (If auto PID was Enabled).

If Auto PID was disabled display advances to Prop Proportional Band Submenu.
If Anti Integral (Anti Windup) Submenu “Enabled”, this feature allows the error term outside the proportional band to be calculated and accumulated for integration. This may be an important feature in applications where fast response time is desirable.

START AUTO TUNE PID:
Press 27) Display flashes **ENBL** or **DSBL**.
Press 28) Scroll through the available selections: “Enable” or “Disable”.
Press 29) Display shows **STRD** stored message momentarily and then advances to **CYCL** only, if it was changed, otherwise press 2 to advance to **CYCL** Cycle Time Submenu.

If “Enabled”, an output needs to be selected from the Reading Configuration Menu °F, °C, or °ORH. This way the microcontroller knows which one of the outputs to Autotune for Temperature or Humidity. Also, the controller is ready to calculate P, PI or PID parameters. The instrument performs this by activating the output and observing the delay and rate at which the Process Value changes. The setpoints must be at least 18°F (10°C) or 10%RH above the (PV) Process Value in order to perform Auto Tune, otherwise an error message will be displayed.

To start Auto Tune PID select PID, enable Auto PID and enable Start PID. Sometimes Auto PID parameter needs fine tuning i.e. for each 5°F overshoot increase the Proportional Band (PB) by 15% and for each ±1°F fluctuation at the Setpoint (SP) increase reset by 20%.

Once started, display shows **R.EVT** with letters blinking in the rotating pattern. When auto tune stops, display will show process value. Do not perform any operations or settings before first stopping Auto Tune. Any alarms or other output is disabled during Auto Tune.

If “AUTO PID” was “DISABLED”, the display will show the following three submenus. This allows the user to manually enter values for Proportional, Reset and Rate terms corresponding to P, I, and D. It also can be used for auto PID for disabling unwanted parameter i.e. PI enter 0000 for rate.

PROPORTIONAL BAND SUBMENU:
Press 30) Display flashes 1st digit of the previous P PROP Proportional band value.
Press 31) Press and buttons to enter a new “Proportional Band” value.
Press 32) Display shows **STRD** stored message momentarily and then advances to **REST** only, if it was changed, otherwise press 2 to advance to **REST** Reset Setup Submenu.

Proportional band is in degrees of temperature or counts of process. Proportional band is defined, as the change in the instrument input to cause a 100% change in the controller output.
RESET SETUP SUBMENU:

Press 33) Display flashes 1st digit of the previous Reset value.
Press 34) Press and buttons to enter a new “Reset” value.
Press 35) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Rate Setup Submenu.

Reset unit is in seconds 0-3999.

RATE SETUP SUBMENU:

Press 36) Display flashes 1st digit of previous Rate value.
Press 37) Press and buttons to enter a new Rate value.
Press 38) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Cycle Time submenu for RTD and Thermocouple types.

Rate unit is in seconds 000.0-399.9.

Note: If the Output 1 is Analog Option the display skips to Damping Factor.

CYCLE TIME SUBMENU:

Press 39) Display flashes 1st digit of the previous Cycle Time value.
Press 40) Press and buttons to enter a new “Cycle Time” value. (1 to 199 seconds)
Press 41) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Damping Factor Submenu.

A Cycle Time selected between 1 and 199 seconds determines the total On/Off time of each proportional cycle. For example, a 15 second cycle time means that every 15 seconds the output will turn on for part or all of the cycle. For Relay control outputs, do not select a cycle time of less than 7 seconds or the relays’ lifetime will be shortened. For a cycle time of less than 7 seconds select SSR or DC pulse. Use an external SSR with the DC pulse option for higher currents (higher than 1 Amp).
DAMPING FACTOR SUBMENU:

Press ⬆️ 42) Display flashes the previous “Damping Factor” selection.
Press ⬆️ 43) Scroll through the available selections: 0000, 0001, 0002, 0003, 0004, 0005, 0006, 0007.
Press ⬆️ 44) Display flashes STRD stored message and then advances to OUT2 only, if it was changed, otherwise press ⬇️ to advance to OUT2 Output 2 Menu.

Damping Factor is a measure of speed, overshoot, and undershoot in which the process variable responds to the output changes of the instrument, which were used during the Auto Tune. This value is typically set to the ratio of Rate to Reset. This Default value is (0003). For fast response time, this value should be decreased while for slow response time it should be increased.

The "DEADBAND" Submenu will only appear if "ON/OFF" was selected from the "Control Type" Menu.

DEADBAND SUBMENU:

Press ⬆️ 45) Display flashes 1st digit of the previous dead Deadband value.
Press ⬆️ & ⬇️ 46) Press ⬆️ and ⬇️ buttons to enter a new “Deadband” value.
Press ⬆️ 47) Display shows STRD stored message and then advances to OUT2 only, if it was changed, otherwise press ⬇️ to advance to OUT2 Output 2 Menu.

Dead Band units are the same as Proportional Band units.

The Dead Band or neutral zone is the percentage (humidity) or number of degrees around the Setpoint which the Process Variable must pass above or below the Setpoint, before the output changes state.
3.2.10 Output 2

Output 2 and Alarm 2 share the same contacts on the rear panel connector. If Alarm 2 is Enabled, Output 2 is automatically Disabled.

It is required that you put the controller in the Standby Mode for any configuration change other than Set Points & Alarms. Alarm 2 and Output 2 works for Temperature only.

Figure 3.9 Flow Chart for Output 2

ENTER OUTPUT 2 MENU:

1. Press \(\text{a} \), if necessary, until \(\text{CNFG} \) prompt appears.
2. Press \(\text{d} \), if necessary, until Display advances to \(\text{RDG} \) Reading Configuration Menu.
3. Press \(\text{a} \), if necessary, until Display advances to \(\text{OUT2} \) Output 2 Menu.
4. Press \(\text{d} \), if necessary, until Display advances to \(\text{CTRL} \) Control Type Submenu.

CONTROL TYPE SUBMENU:

5. Display flashes \(\text{ON/OFF} \) ON/OFF, or \(\text{PID} \) PID.
6. Scroll through the available selections: “ON/OFF” or “PID”.
7. Display shows \(\text{STRD} \) stored message momentarily and then advances to \(\text{ACTN} \) only, if it was changed, otherwise press \(\text{a} \) to advance to \(\text{ACTN} \) Action Type Submenu.

The ON/OFF control is a coarse way of controlling the Process. The “Dead Band” improves the cycling associated with the ON/Off control. The PID control is best for processes where the Setpoint is continuously changing and/or tight control of the Process Variable is required.
ACTION TYPE SUBMENU:
The error that results from the measurement of the Process Variable may be positive or negative since it may be greater or smaller than the Setpoint. If a positive error should cause the instrument output to increase (i.e. cooling), it would be called Direct Acting. If a negative error should cause the output to decrease (i.e. heating), it would be called Reverse Acting.

Press ▼ 8) Display flashes Direct or Reverse.
Press ▲ 9) Scroll through the available selections: “Direct” or “Reverse”.
Press ◁ 10) Display shows stored message momentarily and then advances to Auto only, if it was changed, otherwise press ▼ to advance to Auto Auto PID Submenu (If PID Control type was selected).

If ON/OFF was selected in the Control Type, the display skips to the Dead Band Submenu.

AUTO PID SUBMENU:
Press ▼ 11) Display flashes Enable or Disable.
Press ▲ 12) Scroll through the available selections: “Enable” or “Disable”.

If "Enabled", the PID parameter of Output 1 will be copied to Output 2.

Press ◁ 13) Display shows stored message momentarily and then advances to the next submenu only, if it was changed, otherwise press ▼ to advance to the next submenu.

If AUTO PID was ENABLED", the display skips to the CYCL CYCLE TIME submenu. If "AUTO PID" was "DISABLED", the display will show PROPORTIONAL BAND Submenu allowing the user to manually enter the Proportional Band value.

Refer to “Proportional Band”, “Reset”, “Rate”, and “Cycle Time” Submenus of “Output 1” Menu.

DEADBAND SUBMENU: The DEADBAND Submenu will only appear if the ON/OFF was selected from the "Control Type" Submenu.
Press ▼ 14) Display flashes 1st digit of the previous “Dead Band” value.
Press ▲ & ◁ 15) Press ▲ and ◁ buttons to enter a new “Dead Band” value.
Press ◁ 16) Display shows stored message momentarily and then advances to RAMP only, if it was changed, otherwise press ▼ to advance to RAMP Ramp Value Menu.

Dead Band units are the same as Proportional Band units.

The Dead Band is the number of degrees or counts around the Setpoint which the Process Variable must pass through before the output changes state.
3.2.11 Ramp & Soak

Alarm must be DISABLED if Ramp is ENABLED.

It is required that you put the controller in the Standby Mode for any configuration change other than Set Points & Alarms.

If $\text{d} \quad \text{or} \quad \text{r} \quad \text{h}$ is selected in the Reading Configuration Menu the unit will ramp only on humidity, but if $\text{f} \quad \text{or} \quad \text{c}$ is selected, both humidity and temperature will ramp to Setpoint.

![Flow Chart for Ramp and Soak](image-url)

Figure 3.10 Flow Chart for Ramp and Soak

ENTER RAMP AND SOAK MENU:

Press 1) Press Θ, if necessary, until CHFG prompt appears.
Press 2) Display advances to RDG Reading Configuration Menu.
Press 3) Press Θ, if necessary, until Display advances to RAMP Ramp and SOAK Soak Menu.

RAMP ENABLE/DISABLE SUBMENU:

Press 4) Display advances to “Ramp Enable/Disable” Submenu and flashes ENBL or DSBL.
Press 5) Scroll through the available selections: “Enable” or “Disable”.
Press 6) Display shows STRD stored message momentarily and then advances to SOAK Soak Enable/Disable Menu.

If RAMP Disable was selected, display skips to the next menu item (ID Code).
SOAK ENABLE/DISABLE SUBMENU:

Press 7) Display flashes Enbl or dsbl.
Press 8) Scroll through the available selections: “Enable” or “Disable”.
Press 9) Display shows Strd stored message momentarily and then advances to “Ramp Value” Submenu.

Ramp & Soak provides users with the flexibility to slowly bring the Process Variable (PV) to the desired setpoint. Ramp & Soak values are specified in HH.MM format. The Ramp value indicates the time specified to bring the process variable to Setpoint 1 (SP1). Once the set point is reached, the PID takes over and the Process Variable will be controlled at the desired set point indefinitely. If Soak is enabled, PID will control the Process Variable at the specified Setpoint for the duration of Soak time and then will turn off Output 1. To start a new Ramp/Soak cycle, reset the instrument by pressing and then button.

An active Ramp/Soak will change SP1 one degree above the PV and will cause the most significant digit to blink. The SP1 will be incremented by one degree until it reaches the original SP1. The minimum Ramp time must be at least twice the time that it will take the PV to reach the Setpoint Value (SV) with OUT1 fully ON.

RAMP VALUE SUBMENU:

Press 10) Display flashes 1st digit of previous stored “Ramp Value”.
Press 11) Press and buttons to enter a new “Ramp Value”.
Press 12) Display shows Strd stored message momentarily and then advances to “Soak Value” Submenu.

SOAK VALUE SUBMENU:

Press 13) Display flashes 1st digit of previous stored “Soak Value”.
Press 14) Press and buttons to enter a new “Soak Value”.
Press 15) Display shows Strd stored message and advances to the Id ID Code Menu.

The Ramp and Soak time is 00:00 to 99:59 i.e. HH.MM. (from zero to 99 hours and 59 minutes) During Ramp & Soak do not perform any operations or settings before first stopping it. Any alarms or other output are disabled during this time. To stop Ramp & Soak first put instrument into Standby Mode, then go to Ramp & Soak Menu and disable it.
3.2.12 ID CODE

Figure 3.11 Flow Chart for ID Code

ENTER ID CODE MENU:

Press 1) Press , if necessary, until CNFG prompt appears.
Press 2) Display advances to RDG Reading Configuration Menu.
Press 3) Press , if necessary, until Display advances to ID ID Code Menu.

ENTERING OR CHANGING YOUR (NON-DEFAULT) ID CODE:

Press 4) Display advances to with 1st under score flashing.
Press 5) Press and to enter your 4-digit “ID Code” number.

Note

If entered “ID Code” is incorrect display shows Error message momentarily and then skips to the Run Mode.

Press 7) Display flashes the first digit of previous entered “ID Code” number.
Press 8) Press buttons to enter your new “ID Code” number.
Press 9) Display shows stored message momentarily and then advances to the Full Security Submenu.
ENTERING OR CHANGING YOUR (DEFAULT) ID CODE:

Enter \texttt{Id} menu (Repeat steps from 1 to 3).

Press \textbf{10}) Display advances to \texttt{CH. Id} Change ID Code Submenu.
Press \textbf{11}) Display shows \texttt{0000} message with flashing 1st digit.

If you want to change your default “ID Code” you can do it now, otherwise press \textbf{12} and menu will skip to \textbf{Full} Full Security Submenu.

Press \textbf{12} & \textbf{15}) Press \textbf{12} and \textbf{15} buttons to enter your new “ID Code” number.
Press \textbf{13} & \textbf{16}) Display shows \texttt{STRD} stored message momentarily and then advances to \textbf{Full} Full Security Submenu.

FULL SECURITY LEVEL SUBMENU:

Press \textbf{14}) Display flashes \texttt{ENbl} Enable or \texttt{DSbl} Disable.
Press \textbf{15}) Scroll through the available selections: “Enable” or “Disable”.
Press \textbf{16}) Display shows \texttt{STRD} stored message momentarily and then advances to \textbf{Sp. Id} Setpoint/ID Submenu.

If "Full" Security Level is "Enabled" and the user attempts to enter the Main Menu, they will be prompted for an ID Code. The ID Code should be correct to enter the instrument Menu item.

SETPOINT/ID SECURITY LEVEL SUBMENU:

This Security Level can be functional only if \textbf{Full} Security Level is Disabled.

Press \textbf{17}) Display flashes \texttt{ENbl} Enable or \texttt{DSbl} Disable.
Press \textbf{18}) Scroll through the available selections: “Enable” or “Disable”.
Press \textbf{19}) Display shows \texttt{STRD} stored message momentarily and then advances to \textbf{Comm} Communication Submenu.

If "Setpoint/ID" Security Level is "Enabled" and the user attempts to advance into the \textbf{CNFG} Configuration Menu, he will be prompted for ID Code number. The ID Code should be correct to proceed into the Configuration Menu, otherwise display will show an Error and skip to the Run Mode.

If “\textbf{Full}” and “\textbf{Setpoint/ID}” Security Levels are "\textbf{Disabled}", the ID code will be “\textbf{Disabled}” and user will not be asked for ID Code to enter the Menu items (“\textbf{ID}” Submenu will not show up in “\textbf{ID/Setpoint}” Menu).
3.2.13 COMMUNICATION OPTION

Purchasing the controller with Serial Communications permits an instrument to be configured or monitored from an IBM PC compatible computer using software available from the website or on the CD-ROM enclosed with your shipment.

For complete instructions on the use of the Communications Option, refer to the Serial Communications Reference Manual.

Figure 3.12 Flow Chart for Communication Option
The following table are the exceptions to the Serial Communication Manual's Table 5.3

Table 3.2 Command Letters and Suffix for iTH

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Index</th>
<th>Function</th>
<th>Command Bytes</th>
<th># Of Characters</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>01</td>
<td>Send RH Reading</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>02</td>
<td>Send Temperature Reading</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>03</td>
<td>Send Dewpoint Reading</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

ENTER COMMUNICATION OPTION MENU:

Press ☀ 1) Press ☀, if necessary, until CNFG prompt appears.
Press ☀ 2) Display advances to RDG Reading Configuration Menu.
Press ☀ 3) Press ☀, if necessary, until Display advances to COMM Communication Options Menu.
Press ☀ 4) Display advances to C.PAR Communication Parameters Submenu.

COMMUNICATION PARAMETERS SUBMENU:

Allows the user to adjust Serial Communications Settings of the instrument. When connecting an instrument to a computer or other device, the Communications Parameters must match. Generally the default settings (as shown in Section 5) should be utilized.

Press ☀ 5) Display advances to baud Baud Submenu.

BAUD SUBMENU:

Press ☀ 6) Display flashes previous selection for baud value.
Press ☀ 7) Scroll through the available selections: 300, 600, 1200, 2400, 4800, 9600, 19.2K.
Press ☀ 8) Display shows STRD stored message momentarily and then advances to PRTY only, if it was changed, otherwise press ☀ to advance to PRTY Parity Submenu.

PARITY SUBMENU:

Press ☀ 9) Display flashes previous selection for “Parity”.
Press ☀ 10) Scroll through the available selections: NO, ODD, EVEN.
Press ☀ 11) Display shows STRD stored message momentarily and then advances to DATA only, if it was changed, otherwise press ☀ to advance to DATA Data Bit Submenu.

DATA BIT SUBMENU:

Press ☀ 12) Display flashes previous selection for “Data Bit”.
Press ☀ 13) Scroll through the available selections: 7-BIT, 8-BIT.
Press ☀ 14) Display shows STRD stored message and then advances to STOP only, if it was changed, otherwise press ☀ to advance to STOP Stop Bit Submenu.
STOP BIT SUBMENU:

Press 15) Display flashes previous selection for “Stop Bit”.
Press 16) Scroll through the available selections: 1-BIT, 2-BIT.
Press 17) Display shows stored message momentarily and then advances to Bus Format Submenu.

BUS FORMAT SUBMENU:

Determines Communications Standards and Command/Data Formats for transferring information into and out of the controller via the Serial Communications Bus. Bus Format submenus essentially determine how and when data can be accessed via the Serial Communications of the device.

MODBUS PROTOCOL SUBMENU:

Press 20) Scroll through the available selections: NO, YES.
Press 21) Display shows stored message momentarily and then advances to Line Feed Submenu.

To select iSeries Protocol, set Modbus submenu to “No”.
To select Modbus Protocol, set Modbus submenu to “Yes”.

If Modbus Protocol was selected, the following Communications Parameters must be set as: No Parity, 8-bit Data Bit, 1-Stop Bit. Do not attempt to change these parameters.

LINE FEED SUBMENU:

Determines if data sent from the instrument will have a Line Feed appended to the end - useful for viewing or logging results on separate lines when displayed on communications software at a computer.

Press 22) Display flashes previous selection for “Line Feed”.
Press 23) Scroll through the available selections: NO, YES.
Press 24) Display shows stored message momentarily and then advances to Echo Submenu.

ECHO SUBMENU:

When valid commands are sent to the instrument, this determines whether the command will be echoed to the Serial Bus. Use of echo is recommended in most situations, especially to help verify that data was received and recognized by the controller.
Press ▲ 25) Display flashes previous selection for “Echo”.
Press ▼ 26) Scroll through the available selections: NO, YES.
Press ▲ 27) Display flashes STRD stored message momentarily and then advances to STND only if it was changed, otherwise press ▼ to advance to STND Communication Standard Submenu.

COMMUNICATION INTERFACE STANDARD SUBMENU:

Determines whether device should be connected to an RS-232C serial port (as is commonly used on IBM PC-compatible computers) or via an RS-485 bus connected through appropriate RS-232/485 converter. When used in RS-485 Mode, the device must be accessed with an appropriate Address Value as selected in the Address Submenu described later.

Press ▲ 28) Display flashes previous selection for “Standard”.
Press ▲ 30) Display shows STRD stored message momentarily and then advances to Mode only, if it was changed, otherwise press ▼ to advance to Mode Data Flow Mode Submenu.

DATA FLOW MODE SUBMENU:

Determines whether the instrument will wait for commands and data requests from the Serial Bus or whether the instrument will send data automatically and continuously to the Serial Bus. Devices configured for the RS-485 Communications Standard operate properly only under Command Mode.

Press ▲ 31) Display flashes previous selection for “Mode”.
Press ▼ 32) Scroll through the available selections: CMD, “Command”, CONT “Continuous”.
Press ▲ 33) Display shows STRD stored message momentarily and then advances to SEPR only, if it was changed, otherwise press ▼ to advance to SEPR Data Separation Submenu.

DATA SEPARATION CHARACTER SUBMENU:

Determines whether data sent from the device in Continuous Data Flow Mode will be separated by spaces or by Carriage Returns.

Press ▲ 34) Display flashes previous selection for “Separation” Submenu.
Press ▼ 35) Scroll through the available selections: SPCE “Space” or _CR_ “Carriage Return”.
Press ▲ 36) Display shows STRD stored message momentarily and then advances to DAT.F only, if it was changed, otherwise press ▼ to advance to DAT.F Data Format Submenu.
DATA FORMAT SUBMENU:

Preformatted data can be sent automatically or upon request from the controller. Use the Data Format Submenus to determine what data will be sent in this preformatted data string. Refer to the iSeries Communications Manual for more information about the data format. At least one of the following suboptions must be enabled and hence output data to the Serial Bus.

Note: This menu is applicable for Continuous Mode of RS-232 communication.

Press 37) Display advances to STAT Alarm Status Submenu.

ALARM STATUS SUBMENU:

Includes Alarm Status bytes in the data string.

Press 38) Display flashes previous selection for “Status” (alarm status).
Press 39) Scroll through the available selections: NO, YES.
Press 40) Display shows STRD stored message momentarily and then advances to HUMD only, if it was changed, otherwise press to advance to HUMD Humidity Submenu.

HUMIDITY READING SUBMENU:

Includes Humidity Reading in the data string.

Press 41) Display flashes HUMD.
Press 42) Scroll through the available selections: NO, YES.
Press 43) Display shows STRD stored message momentarily and then advances to TEMP only, if it was changed, otherwise press to advance to TEMP Temperature Submenu.

TEMPERATURE READING SUBMENU:

Includes Temperature Reading in the data string.

Press 44) Display flashes TEMP.
Press 45) Scroll through the available selections: NO, YES.
Press 46) Display shows STRD stored message momentarily and then advances to DEU only, it was changed, otherwise press to advance to DEU Dewpoint Submenu.

DEWPOINT READING SUBMENU:

Includes Dewpoint Reading in the data string.

Press 47) Display flashes DEU.
Press 48) Scroll through the available selections: NO, YES.
Press 49) Display shows STRD stored message momentarily and then advances to UNIT only, if it was changed, otherwise press to advance to UNIT Temperature Unit Submenu.
TEMPERATURE UNIT SUBMENU:
Includes a byte in the data string to indicate whether reading is in Celsius or Fahrenheit.

- Press 50) Display flashes previous selection for UNIT.
- Press 51) Scroll through the available selections: NO, YES.
- Press 52) Display shows stored message momentarily and then advances to ADDR only, if it was changed, otherwise press to advance to ADDR Address Setup Submenu.

ADDRESS SETUP SUBMENU:

This menu is applicable to the RS-485 Option only.

- Press 53) Display advances to “Address Value” (0000 to 0199) Submenu.

ADDRESS VALUE SUBMENU:

- Press 54) Display flashes 1st digit of previously stored Address Value.
- Press 55) Press and to enter new “Address Value”.
- Press 56) Display shows stored message momentarily and then advances to ER.EM only, if it was changed, otherwise press to advance to ER.EM Transmit Time Interval Submenu.

TRANSMIT TIME INTERVAL SUBMENU:

This menu is applicable if “Continuous” Mode was selected in the “Data Flow Mode” Submenu and the device is configured as an RS-232C Standard device. Also, one or more options under the Data Format Submenu must be enabled.

- Press 57) Display advances to “Transmit Time Value” Submenu.

TRANSMIT TIME INTERVAL VALUE SUBMENU:

Determines the interval at which data will be emitted to the RS-232 Serial Bus when the instrument is in Continuous Data Flow Mode.

- Press 59) Press and to enter new “Transmit Time Value”, e.g. 0030 will send the data every 30 seconds in Continuous Mode.
- Press 60) Display shows stored message momentarily and then advances to CLR only, if it was changed, otherwise press to advance to CLR Color Display Selection Menu.

For more details, refer to the Serial Communication Manual available at the website listed in the cover page of this manual.
3.2.14 DISPLAY COLOR SELECTION

This submenu allows the user to select the color of the upper display.

Figure 3.13 Flow Chart for Display Color Selection

ENTER DISPLAY COLOR SELECTION MENU:
Press 1) Press if necessary, until CHFG prompt appears.
Press 2) Display advances to RdG Reading Configuration Menu.
Press 3) Press if necessary, until Display advances to COLR Display Color Selection Menu.
Press 4) Display advances to NCLR Normal Color Submenu.

NORMAL COLOR DISPLAY SUBMENU:
Press 5) Display flashes the previous selection for “Normal Color”.
Press 6) Scroll through the available selections: GRN, RED or AMBR.
Press 7) Display shows STRD stored message momentarily and then advances to NCLR only, if it was changed, otherwise press CLR to advance to NCLR Alarm 1 Display Color Submenu.

The menu below allows the user to change the color of the upper display when Alarm 1 is triggered.

ALARM 1 DISPLAY COLOR SUBMENU:
Press 8) Display flashes previous selection for “Alarm 1 Color Display”.
Press 9) Scroll through the available selections: GRN, RED or AMBR.
Press 10) Display shows STRD stored message momentarily and then advances to ACLR only, if it was changed, otherwise press CLR to advance to ACLR Alarm 2 Display Color Submenu.

A color change is based on the Relative Humidity value only. If this value causes an alarm condition, the upper display will change to the selected Alarm 1 Color. A color change will occur whether Alarm 1 is enabled or disabled.
ALARM 2 DISPLAY COLOR SUBMENU:

Press **11**) Display flashes previous selection for “Alarm 2 Color Display”.
Press **12**) Scroll through the available selections: **GRN, RED** or **AMBR**.
Press **13**) Display shows **STD** stored message momentarily and then momentarily shows the software version number, followed by **RSE** Reset, and then proceeds to the Run Mode.

IN ORDER TO DISPLAY ONE COLOR, SET THE SAME DISPLAY COLOR ON ALL THREE SUBMENUS ABOVE.

Example 1:
Output 1 & Output 2 = SSR
Alarm Setup: Absolute, Above, Alarm 2 HI Value “ALR.H” = 200, Alarm 1 HI Value “ALR.H” = 400

Display Colors change sequences:

```
<table>
<thead>
<tr>
<th>GREEN</th>
<th>RED</th>
<th>AMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>AL2.H = 200 AL1.H = 400</td>
</tr>
</tbody>
</table>
```

Example 2:
Output 1 & Output 2 = Pulse
Alarm Setup: Absolute, Below, Alarm 2 Low Value “ALR.L” = 300, Alarm 1 Low Value “ALR.L” = 100
Color Display Setup: "N.CLR" = Green, "1.CLR" = Amber, "2.CLR" = Red

Display Colors change sequences:

```
<table>
<thead>
<tr>
<th>AMBER</th>
<th>RED</th>
<th>GREEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AL1.L = 100 AL2.L = 300</td>
<td></td>
</tr>
</tbody>
</table>
```
Example 3:
Output 1 = Analog Output (Alarm 1 disabled), Setpoint 1 = 300,
Output 2 = Relay, Setpoint 2 = 200
Alarm 1 & 2 Setup: Deviation, Band, “ALR.H” = 10

Display Colors change sequences:

<table>
<thead>
<tr>
<th>RED</th>
<th>RED</th>
<th>RED</th>
<th>GREEN</th>
<th>RED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
</tr>
</tbody>
</table>

Alarm 1 is designed to monitor the Process Value around the Setpoint 1. Alarm 2 is designed to monitor the Process Value around the Setpoint 2. If Analog Output Option board is installed (Alarm 1 is disabled), only Alarm 2 is active and only two colors are available.

Example 4:
Output 1 = Relay, Setpoint 1 = 200
Output 2 = Relay, Setpoint 2 = 200
Alarm 1 Setup: Deviation, Band, “ALR.H” = 20
Alarm 2 Setup: Deviation, Hi/Low, “ALR.H” = 10, “ALR.L” = 5

Display colors change sequences:

<table>
<thead>
<tr>
<th>AMBER</th>
<th>RED</th>
<th>GREEN</th>
<th>GREEN</th>
<th>RED</th>
<th>AMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>180</td>
<td>195</td>
<td>200</td>
<td>210</td>
<td>220</td>
</tr>
</tbody>
</table>

Reset: The instrument automatically resets after the last menu of the Configuration Mode has been entered. After the instrument resets, it advances to the Run Mode.
PART 4
SPECIFICATIONS
SENSOR SPECIFICATIONS
Relative Humidity (RH)
Accuracy/Range: ±2% for 10 to 90% RH
±3% for 0 to 10%RH and 90 to 100%RH
Non-linearity: ±3%
Hysteresis: ±1% RH
Response Time:
4 sec (63% slowly moving air)
Repeatability: ±0.1%
Resolution: 0.03%, 12bit
NOTE: Reconditioning of the probe may be necessary if the probe is stored for a period of time in a harsh environment (e.g. high humidity or exposure to chemicals). To recondition the probe: heat probe for 1 day at 100°C to return it to calibration conditions.

Temperature (T)
Accuracy/Range*:
±1°C (±2°F) for -40 to 0°C and 80 to 123.8°C
(-40 to 32°F and 176 to 254°F)
±0.5°C (±1°F) for 0 to 80°C (32 to 176°F)
*NOTE: extended temperature range is for Probe only, the Controller’s operating temperature is 0-50°C
Response Time:
5 sec (63% slowly moving air)
Repeatability: ±0.1°C
Resolution: 0.01°C, 14 bit

METER SPECIFICATIONS
NMRR: 60 dB
CMRR: 120 dB
A/D Conversion:
12 bit RH and 14 bit Temperature
Reading Rate:
2 samples per seconds max.
Digital Filter: Programmable
Decimal Selection:
None, 0.1 for temp and humidity
Warm up to Rated Accuracy: 30 min.

Display
4-digit, 9-segment LED
• 10.2mm (0.40”): i32, i16D, i8DV
• 10.2mm (0.40”) & 21mm (0.83”): i8DH
red, green and amber programmable colors for process variable, set point and temperature units

CONTROL
Action
Reverse (heat) or direct (cool)
Modes
Time and Amplitude Proportional Control Modes; selectable Manual or Auto PID, Proportional, Proportional with Integral, Proportional with Derivative with Anti-reset Windup and ON/OFF
Rate
0 to 399.9 seconds
Reset
0 to 3999 seconds
Cycle Time
1 to 199 seconds; set to 0 for ON/OFF operation
Gain
0.5 to 100% of span; Setpoints 1 or 2
Damping
0000 to 0008
Soak
00.00 to 99.59 (HH:MM), or OFF
Ramp to Setpoint
00.00 to 99.59 (HH:MM), or OFF
Auto Tune
Operator initiated from front panel for one input at a time only
CONTROL OUTPUT 1 & 2
Relay
250 Vac or 30 Vdc @ 3 A (Resistive Load); configurable for on/off, PID and Ramp and Soak
Output 1: SPDT type, can be configured as Alarm 1 output
Output 2: SPDT type, can be configured as Alarm 2 output
SSR
20-265 Vac @ 0.05-0.5 A (Resistive Load); continuous
DC Pulse
Non-Isolated; 10 Vdc @ 20 mA
Analog Output (Output 1 only)
Non-Isolated, Proportional 0 to 10 Vdc or 0 to 20 mA; 500 Ω max

ALARM 1 & 2 (programmable):
Type
Same as Output 1 & 2
Operation
High/low, above/below, band, latch/unlatch, normally open/normally closed and process/deviation; front panel configurations

ANALOG OUTPUT (programmable)
Non-Isolated, Retransmission 0 to 10 Vdc or 0 to 20 mA, 500 Ω max (Output 1 only). Accuracy is ± 1% of FS when following conditions are satisfied.
1) Input is not scaled below 1% of Input FS.
2) Analog Output is not scaled below 3% of Output FS.

NETWORK AND COMMUNICATIONS (Optional -C24, -C4EI, -EI)
Ethernet: Standards Compliance IEEE 802.3 10Base-T
Supported Protocols: TCP/IP, ARP, HTTPGET
RS-232/RS-422/RS-485/MODBUS:
Selectable from menu; both ASCII and modbus protocol selectable from menu.
Programmable 300 to 19.2 K baud; complete programmable setup capability; program to transmit current display, alarm status, min/max, actual measured input value and status.
RS-485
Addressable from 0 to 199
Connection
Screw terminals

EXCITATION
(optional in place of Communication)
24 Vdc @ 25 mA
Not available for Low Power Option

INSULATION
Power to Input/Output
2300 Vac per 1 min. test
1500 Vac per 1 min. test (Low Voltage/Power Option)
Power to Relays/SSR Outputs
2300 Vac per 1 min. test
Relays/SSR to Relay/SSR Outputs
2300 Vac per 1 min. test
RS-232/485 to Inputs/Outputs
500 Vac per 1 min. test

APPROVALS
UL, C-UL, and see Approval Section
GENERAL
Line Voltage/Power
90-240 Vac +/-10%, 50-400 Hz*
110-375 Vdc, equivalent voltage
4 W, power for i32 Models
5 W, power for i8DV, i8DH, i16D Models
* No compliance above 60 Hz

Low Voltage/Power Option
12-36 Vdc or 24 Vac** +/-10%, 3 W
External power source must meet Safety Agency Approvals.

** Units can be powered safely with 24 Vac power but, no Certification for UL are claimed.

External Fuse Required
Time-Delay, UL 248-14 listed:
100 mA/250 V
400 mA/250 V (Low Voltage/Power Option)
Time-Lag, IEC 127-3 recognized:
100 mA/250 V
400 mA/250 V (Low Voltage/Power Option)

Environmental Conditions
• i32: 0 to 55°C (32 to 131°F), 90% RH non-condensing
• i8DV, i8DH, i16D:
 0 to 50°C (32 to 122°F), 90% RH non-condensing
• Cable: operating temperature 0-105°C (32 to 221°F)

Protection
NEMA-4x/Type 4/IP65 front bezel:
i32, i16D
NEMA-1/Type 1 front bezel: i8DH, i8DV

Dimensions
i/8 Series:
48 H x 96 W x 127 mm D
(1.89 x 3.78 x 5")
i/16 Series:
48 H x 48 W x 127 mm D
(1.89 x 1.89 x 5")
i/32 Series:
25.4 H x 48 W x 127 mm D
(1.0 x 1.89 x 5")

Industrial Probe iTHP-2:
16mm Dia. x 51mm Long (0.63” x 2”) with 0.9m long (3’) cable

Industrial Probe iTHP-5:
16mm Dia. x 137mm Long (0.63” x 5”) with 6.1m long (20’) cable

Material: Probe Housing, SS316

Panel Cutout
i/8 Series:
45 H x 92 mm W (1.772" x 3.622"), 1/8 DIN
i/16 Series:
45 mm (1.772") square, 1/16 DIN
i/32 Series:
22.5 H x 45 mm W (0.886" x 1.772"), 1/32 DIN

Weight
i/8 Series: 295 g (0.65 lb)
i/16 Series: 159 g (0.35 lb)
i/32 Series: 127 g (0.28 lb)
PART 5
FACTORY PRESET VALUES

Table 5.1 Factory preset value

<table>
<thead>
<tr>
<th>MENU ITEMS</th>
<th>FACTORY PRESET VALUES</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Point 1 (SP1)</td>
<td>000.0</td>
<td></td>
</tr>
<tr>
<td>Set Point 2 (SP2)</td>
<td>000.0</td>
<td></td>
</tr>
</tbody>
</table>

Reading Configuration (RDG):

Sensor (SENS)	%RH	
Decimal Point	FFF,F	not menu selectable
Temperature unit (TEMP)	°F	
Filter value (FLtR)	0004	

Alarm 1 & 2:

Alarm 1 (ALR1), Alarm 2 (ALR2)	Disable (dSbL)	
Absolute/Deviation (AbSO/dEV)	Absolute (AbSO)	
Latch/Unlatch (LtCH/UNLt)	Unlatch (UNLt)	
Contact Closure (Ct.CL)	Normally Open (N.O.)	
Active (ACTV)	Above (AbOV)	
Alarm At Power On (A.P.ON)	Disable (dSbL)	Alarm 1 only
Alarm Low (ALR.L)	000.0	
Alarm High (ALR.H)	80.0	

LOOP:

Loop Break Time (LOOP)	Disable (dSbL)	
Loop Value (B.tIM)	00:59	
Reading Adjust Value (R.AdJ)	000.0	
Setpoint Deviation (SP.dV)	Disabled (dSbL)	

ANALOG OUTPUT (Retransmission):

Analog Output (ANLG)	Enabled (ENbL)	
Current/Voltage (CURR/VOLt)	Voltage (VOLt)	
Scale and Offset	Reading: 0 - 100.0 cts, Output: 0 - 10 V	

OUTPUT 1 & 2:

<p>| Self (SELF) | Disabled (dSbL) | Output 1 only |
| % Low Value (%LO) | 0000 | Output 1 only |
| % High Value (%HI) | 0099 | Output 1 only |
| Control Type (CtRL) | On/Off | |
| Action Type (ACTN) | Reverse (RVRS) | |
| Dead Band (dEAd) | 020.0 | |
| PID Auto (AUTO) | Disable (dSbL) | |
| Anti Integral (ANTI) | Disable (dSbL) | Output 1 only |
| Proportion Value (PROP) | 020.0 | |
| Reset Value (REST) | 0180 | |
| Rate Value (RATe) | 0000 | |
| Cycle Value (CYCL) | 0007 | |
| Damping Factor (DPNG) | 0003 | |</p>
<table>
<thead>
<tr>
<th>MENU ITEMS</th>
<th>FACTORY PRESET VALUES</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp & Soak (RAMP):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp (RAMP)</td>
<td>Disable (dSbL)</td>
<td></td>
</tr>
<tr>
<td>Soak (SOAK)</td>
<td>Disable (dSbL)</td>
<td></td>
</tr>
<tr>
<td>Ramp Value (RAMP)</td>
<td>00:00</td>
<td></td>
</tr>
<tr>
<td>Soak Value (SOAK)</td>
<td>00:00</td>
<td></td>
</tr>
<tr>
<td>ID:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID Value</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Full ID (FULL)</td>
<td>Disable (dSbL)</td>
<td></td>
</tr>
<tr>
<td>Set Point ID (Id.SP)</td>
<td>Disable (dSbL)</td>
<td></td>
</tr>
<tr>
<td>Communication Parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate (BAUd)</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Parity (PRtY)</td>
<td>Odd</td>
<td></td>
</tr>
<tr>
<td>Data bit (DAtA)</td>
<td>7 bit</td>
<td></td>
</tr>
<tr>
<td>Stop Bit (STOP)</td>
<td>1 bit</td>
<td></td>
</tr>
<tr>
<td>Modbus Protocol (M.bUS)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Line Feed (LF)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Echo (ECHO)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Standard Interface (StNd)</td>
<td>RS-232 (232C)</td>
<td></td>
</tr>
<tr>
<td>Command Mode (MOdE)</td>
<td>Command (CMd)</td>
<td></td>
</tr>
<tr>
<td>Separation (SEPR)</td>
<td>Space (SPCE)</td>
<td></td>
</tr>
<tr>
<td>Alarm Status (StAt)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Humidity (HUMd)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Temperature (TEMP)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Dewpoint (dEU)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Units (UNIt)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multipoint Address (AddR)</td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>Transmit Time (tR.tM)</td>
<td>0016</td>
<td></td>
</tr>
<tr>
<td>Display Color (COLR):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Color (N.CLR)</td>
<td>Green (GRN)</td>
<td></td>
</tr>
<tr>
<td>Alarm 1 Color (1.CLR)</td>
<td>Red (RED)</td>
<td></td>
</tr>
<tr>
<td>Alarm 2 Color (2.CLR)</td>
<td>Amber (AMbR)</td>
<td></td>
</tr>
</tbody>
</table>
PART 6
APPROVALS INFORMATION

Electrical Safety EN61010-1:2001
Safety requirements for electrical equipment for measurement, control and laboratory.

Double Insulation
Pollution Degree 2

Dielectric withstand Test per 1 min

- Power to Input/Output: 2300Vac (3250Vdc)
- Power to Input/Output: 1500Vac (2120Vdc)
 (Low Voltage dc Power Option*)
- Power to Relays/SSR Output: 2300Vac (3250Vdc)
- Ethernet to Inputs: 1500Vac (2120Vdc)
- Isolated RS232 to Inputs: 500Vac (720Vdc)
- Isolated Analog to Inputs: 500Vac (720Vdc)
- Analog/Pulse to Inputs: No Isolation

Measurement Category I

Category I are measurements performed on circuits not directly connected to the Mains Supply (power). Maximum Line-to-Neutral working voltage is 50Vac/dc. This unit should not be used in Measurement Categories II, III, IV.

Transients Overvoltage Surge (1.2 / 50uS pulse)

- Input Power: 2500V
- Input Power: 1500V
 (Low Voltage dc Power Option*)
- Ethernet: 1500V
- Input/Output Signals: 500V

Note: *Units configured for external low power dc voltage, 12-36Vdc

Immunity and Emissions requirements for electrical equipment for measurement, control and laboratory.

- EMC Emissions Table 4, Class B of EN61326
- EMC Immunity** Table 1 of EN61326

Note: **I/O signal and control lines require shielded cables and these cables must be located on conductive cable trays or in conduits. Furthermore, the length of these cables should not exceed 30 meters

Refer to the EMC and Safety installation considerations (Guidelines) of this manual for additional information.
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of **one (1) year** from the date of purchase. In addition to OMEGA's standard warranty period, OMEGA Engineering will extend the warranty period for **four (4) additional years** if the warranty card enclosed with each instrument is returned to OMEGA.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:
1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of product, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

© Copyright 2005 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

TRADEMARK NOTICE: ®, omega.com®, ©OMEGA® and ™ are Trademarks of OMEGA ENGINEERING, INC.

PATENT NOTICE: This product is covered by one or more of the following patents: U.S. Pat. No. Des. 336,895; 5,274,577; 6,243,021 / CANADA 2052599; 2052600 / ITALY 1249456; 1250938 / FRANCE BREVET No. 91 12756 / SPAIN 2039150; 2048066 / UK PATENT No. GB2 249 837; GB2 248 954 / GERMANY DE 41 34398 C2. The “Meter Bezel Design” is a Trademark of NEWPORT Electronics, Inc. Used under License. Other US and International Patents pending or applied for.
Where Do I Find Everything I Need for Process Measurement and Control?
OMEGA...Of Course!
Shop online at www.omega.com

TEMPERATURE
- Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
- Transducers & Strain Gauges
- Load Cells & Pressure Gauges
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL
- Rotameters, Gas Mass Flowmeters & Flow Computers
- Air Velocity Indicators
- Turbine/Paddlewheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY
- pH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION
- Data Acquisition & Engineering Software
- Communications-Based Acquisition Systems
- Plug-in Cards for Apple, IBM & Compatibles
- Datalogging Systems
- Recorders, Printers & Plotters

HEATERS
- Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL
- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
- Air, Soil & Water Monitors
- Industrial Water & Wastewater Treatment
- pH, Conductivity & Dissolved Oxygen Instruments