iInstruNetLV
LabVIEW™ Drivers for instruNet™

User’s Guide

Software Version 2.1
Manual Version 2.1.2
8/11/02



Important Addendum

* Determining the actual sample rate
The sample rate (Hz) returned by Config Timing may be incorrect.

Due to the behavior of the controller, the actual sample rate used during
digitization may not be equal to the desired sample rate set using Config
Timing or Set Sample Rate. Unfortunately, the controller does not set the
sample rate until after digitization has been started. This means that the
sample rate returned by Config Timing may not be correct! By
experimentation, sample rates can be found where the desired sample
rate will be the same as the actual sample rate.

It is important to call Get Sample Rate once after digitization has begun to
determine the actual sample rate.

The example Vs illustrate calling Get Sample Rate just after beginning
digitization, but before any loops are begun that handle servicing the
buffers. The sample rate returned can easily be passed into the loop for
any real-time processing.

* LabVIEW 6i and front panel controls
Opening some VIs in LVG6i yields an error.

LabVIEW 6i no longer supports coercing the values of a sub-VlIs controls
when they are passed from a calling VI. LabVIEW 6i also no longer
supports suspending a VI when the value of a control is out of range.
Some of the instruNetLV Vls have front panel controls set to coerce the
value or suspend the VI if a control is out of range.

When these VIs are opened by LVG6i, a warning will be given that this
setting is not supported. This is not an indication that the VI will not work. If
the values passed to the VI are out of range, the appropriate instruNet
error will be returned.



Table of Contents

Introduction ... 6
ASSUMPLIONS ...ttt e e st te s e e sseeaeeneesseensesneesnennnens 6
System ReQUIFEMENTS .....oc.viieeeeee e e e 6
ADOUL INSTTUNEBLLV ...t 6
T T =1 | F= 1] o USSR 6

Using inStruNetLV ... 8
INITAIZATION ... 8
Accessing INStruNet Fields ... 8
Configuring instruNet with the Probe Dialog .........cccoiiiiniiiniiicee 8
Selecting Channels with the Probe Dialog ........cccoveiieecicceceeceeeeee 8
Saving and Recalling instruNet Configurations........c..ccccoeeeieiiiicie e 9
Digitizing WavefOrmMS ..o e 9
Digitizing Multiple Channels...........coooieiicieieeeceeee e 10
Outputting WavefOrmMs ...t 10

INStruNetLV Vis. ..., 11
Channel ValUES ...t 11
L= [ V=YL= S 12
DT 1= | S 14
D To 1 (4] e [ TSRS 15
LI L3 1LV RS SSP 18
I T o = SR 21
CONTIGUIATION.....eeiieee et ne s 22
INSTIUNET WO ... e 24
ShOW PrODE ... 25
=T o SRR 26
I T A1 Q1 o J S 27
0 A VZ= T o =T o PSRRI 30
{70 ] = 31
=10 ¢ 1V £ 32

Appendix A: Useful Numbers...........ccccooiiiiiiiinnnn..o. 34

Appendix B: Binary File Format................................. 49



Introduction

Assumptions

The following documentation assumes that the instruNet hardware, instruNet driver
files and LabVIEW are installed and functioning. If necessary, please refer to the
respective manuals for details. This documentation also assumes that you are familiar
with the operation and terminology of the computer (MacOS or Windows), instruNet
World and LabVIEW. Again, please refer to the documentation that comes with those
packages for any details.

System Requirements

instruNetLV requires at least LabVIEW 4. Therefore, system requirements are the same
as LabVIEW. An additional 6MB of free disk space is required for the instruNetLV files.
Using instruNetLV will require 500KB of RAM outside of the amount required by the
LabVIEW VIs due to the requirements of the instruNet driver called by instruNetLV.
instruNetLV supports both the NuBus and the PCI version of the instruNet controller
cards.

About instruNetLV

instruNetLV is a collection of LabVIEW Vls that provide the LabVIEW programmer with
an interface to GWI’s instruNet hardware. The advanced Vls allow direct access to the
entire instruNet World and to the GWI driver that controls instruNet. These Vls are
platform specific LabVIEW calls to the iNetLV() routine in the source code that ships with
instruNet. Under the MacOS this consists of CINs that call the GWI Code Resource,
while under Windows this consists of calls to the GWI DLL. Additional Vs for a platform
are built from the appropriate advanced VlIs and provide simplified access to specific
features of the instruNet hardware. These VIs replicate many of the routines found
throughout the source code provided with instruNet.

Installation

The instruNetLV collection of Vis ship as a self-extracting archive. Double-clicking on the
.sea or .exe file will produce folders and VI libraries containing the collection. The
Examples library contains several examples to help illustrate the use of the instruNetLV
Vls and may be placed anywhere you find convienent. The iNetLV 2 VIs folder contains
the VIs divided by function into a number of other folders or libraries. This folder is best
placed in the user.lib folder to provide access to the VIs from the function menu.

By default, the MacOS version of the instruNetLV VIs use the PPC specific
iNetLV(PPC).vi as their core subVI. To use the instruNetLV VIs on a 68K MacOS
computer replace this subVI call with the 68K specific iNetLV(68K).vi. The VIs have
identical terminal arrangements, so no change in the wiring is necessary. LabVIEW will
ask you to save the changes to the instruNetLV Vls.



Since LabVIEW implements PPC CINs using the Shared Library Manager, the
iNetLV(PPC).Isb file must be in the same location as the iNetLV(PPC).vi. Since 68K
CINs are implemented using a Code Resource, the information within the
iNetLV(68K).Isb can be saved within the iNetLV(68K).vi. The iNetLV(68K).Isb file does
not have to be kept with the iNetLV(68K).vi, although this is recommended.



Using instruNetLV

Initialization (MacOS only)

Under the MacOS, when the core iNetLV(XXX).vi is first loaded into memory by
LabVIEW, an initialization procedure is performed. Any error during initialization is stored
and returned when the core VI is first called by LabVIEW. If an error occurs during
initialization, the core VI (and any other VIs that calls it) must be unloaded from memory,
the error corrected, and then the VIs may be loaded back into memory for another
attempt at initialization.

Accessing instruNet Fields

The key to understanding instruNet and the instruNetLV VIls is to know which field within
the instruNet World stores the desired information. Each aspect of the instruNet
hardware and driver has an associated field(s). Using instruNet is a matter of specifying
the appropriate field and how you wish to access the field. The instruNet manual
contains descriptions of the fields and their functions. The instruNet manual and
Appendix A of this manual contain listings of the useful numbers needed when
specifying and accessing fields. The instruNetLV Vls simplify this process by already
specifying the appropriate numbers for the desired action the VI is to perform. Most of
the instruNetLV VIs function in a straightforward manner; calling upon instruNet to
perform the action (e.g. returning a value) and then both instruNet and the VI stop
activity. Digitizing waveforms is a more complicated process that is discussed below.

Configuring instruNet with the Probe Dialog

The Show Probe Vls are a convenient method for providing the user with the ability to
configure aspects of instruNet. The dialog presented by these Vls provide a convenient
pre-built user interface. When your LabVIEW program calls the Show Probe VI you can
specify which aspect of instruNet for which to present the configuration dialog. The user
will then have the chance to specify the settings that are desired and click a button to exit
the dialog. For example, to bring up the probe dialog appropriate for configuring all of
the hardware settings of a channel (Sensor, Wiring, Range, etc.) call Show Probe(full)
2.vi with the necessary network, device, module and channel and with settingGroup in
equal to -3 (see SettingGroup Types in Appendix A). To bring up a dialog for configuring
just the input range for a channel call Show Probe(field) with the same above inputs
plus fieldNum in equal to 5 (see HARDWARE Settings in Appendix A).

Selecting Channels with the Probe Dialog

When the user clicks one of the buttons, the Show Probe VIs return the currently
accessed settings, such as the network, device, module, channel, settingGroup out,
and fieldNum out. This allows the Show Probe VIs to be used to give the user a simple
way to select a channel, field, etc. and return the choice to LabVIEW for further activity.



Saving and Recalling instruNet Configurations

Two VIs allow the complete configuration of the instruNet World to be saved and
recalled. Get Network Settings(XXX).vi will return the complete settings of the instruNet
World as an array and a scalar that can be saved to disk for later recall. Set Network
Settings(XXX).vi can then be used later with this data to completely configure the
instruNet World based on the stored settings.

Digitizing Waveforms

Digitizing waveforms requires that the instruNet driver be active in the background even
if no VI is currently running. This background activity begins when the instruNet Start
Record button is ‘pressed’ using Press Button 2.vi. The instruNet driver begins
digitization in the background using whatever settings for digitizing (e.g. which channels
are enabled), timing (e.g. sample rate) and triggering (e.g. trigger mode) were specified
beforehand. In order for the background activity to succeed, the instruNet driver must be
called periodically to allow the servicing of the buffers used to store the incoming data.
This is accomplished by calling Service All Buffers 2.vi several times a second within a
loop for as long as digitization is happening. To access the data (even while digitization
is occurring) you call Access Buffer 2.vi once for each channel that has been enabled.
This will return any new data in the channel’s buffer and does allow for the display of
data without interrupting digitization. Digitization will stop once the specified humber of
scans have occurred. Digitization can also be stopped at any time by using Press
Button 2.vi to ‘press’ the instruNet Stop Record button. This should be done even if
digitization has ended normally, since it ends the background activity of the instruNet
driver.

Digitize Channel Example.vi demonstrates the technique outlined above. The sequence
of steps is outlined below. All of these steps check for an error before they execute.

1) Call Press Button 2.vi with Network Clear as the input. This tells instruNet to clear
the state of the network allowing the remaining VlIs to configure the digitization with a
clear state. This will disable digitization of all channels. This call takes several seconds
and isn't necessary if you know the state of the network.

2) Call Set Timing Values 2.vi to configure the timing values used by instruNet during
the digitization. Needs to be done only once if you know they have been already defined.
3) Call Set Trigger Values 2.vi to configure the trigger values used by instruNet during
the digitization. Needs to be done only once if you know they have already been defined.
4) Call Channel On-Off 2.vi to enable digitization of the desired channel of instruNet.
Needs to be done only once if this has already been defined.

5) Call Press Button 2.vi with Record Start as the input. This tells instruNet to begin
digitization of the enabled channel. Digitization will use the trigger values and timing
values specified in earlier steps.

6) From within a loop call Service All Buffers 2.vi repeatedly to give instruNet the
chance to service the digitization process. Check the values returned for the status of
the digitization. Also from within the loop, call Access Buffer 2.vi to pull any new data
from the channel’s buffer, display it on a chart and append it to an array with any
previous data. This loop stops when the user presses the Front Panel’s Stop button, if
there is an error reported, or once the digitization is complete.



7) Call Press Button 2.vi with Record Stop as the input to tell instruNet to stop the
digitization process.

Digitizing Multiple Channels

Acquiring waveforms from multiple channels requires enabling multiple channels and
handling multiple buffers with repeated calls to Channel On-Off.vi and Access Buffer
2.vi. If multiple networks are available this may also require additional calls to Service
All Buffers.vi. This process is simplified by using the three Vis designed to work with a
list of channels (Enable List.vi, Access List.vi and Service List.vi). All of these VIs use
an array to specify a list of input channels to process. Digitize List Example.vi illustrates
the use of these Vs to acquire multiple channesl. This example uses the same Vls as
Digitize Channel Example.vi to configure the timing and triggering of the digitization.

Outputting Waveforms

The instruNetLV VIs can be used to output a waveform during digitization. The first step
is to enable digitization of an output channel (e.g. Vout 3) with Channel On-Off 2.vi. Once
the channel has been enabled for digitization, the channels’ buffer needs to be filled
with the waveform to output. Load Buffer 2.vi accomplishes this step. Once the buffer is
filled with the waveform, the process of digitization will output the waveform. The sample
rate, etc. of the output is determined by the same timing values used to acquire a
waveform.

In-Out Example.vi illustrates the output of a waveform simultaneously with acquisition
by adding the output of a sine wave to Digitize Channel Example.vi.

Output of a waveform only requires that Service All Buffers 2.vi be called periodically.
Access Buffer 2.vi is only required to acquire an input channel’s data.

10



iInstruNetLV 2.1 Vis

This section is an annotated list of the VIs grouped by function. Some of the Vls are
identical in function to VIs present in version 1 of instruNetLV but have modified inputs
and outputs. These VIs have a Roman numeral two appended to the original Vs
name (e.g. Get Field(SGL) 2.vi). Many of the controls and indicators are shared by the
Vls and are only described the first time they are encountered.

Channel Values
These Vls read or write to the specified channel's valueEu field of the GENERAL
settingGroup. The value is in engineering units and as a SGL.

Get Channel(SGL) 2.vi
Returns the value as a 32bit floating point (SGL).
address i sl address ool

Channel

. g value read
eIrar i o errar) e S ——

address in Cluster
address out Cluster
A cluster that specifies an address within the instruNet World. The value of address in is
passed to address out to facilitate dataflow programming.
network us
NETWORK number {0...numNetworks}, 0 = Driver, 1 = 1st controller installed in the
computer.

device us
DEVICE number {0...numDevices}, 0 = Controller, 1 = 1st device on network

module us
MODULE number within a hardware DEVICE {1...32}. Many devices have only 1
module.

channel us
Hardware CHANNEL number {1...32}. Each device contains a number of channels,
each of which has it's own channel number.

error in Cluster
error out Cluster
If the value for status in the error in cluster is true than no action is taken and the error in
passed to error out. Otherwise, any error reported by the VI is passed to error out.
status Boolean
True if an error has been reported.

code 132

The error code generated by the call to the instruNet driver. See the instruNet manual
or the listing in Appendix A for details.

11



source String
The VI responsible for the error.

value read SGL
The value read from the channel in engineering units.

Set Channel(SGL) 2.vi
Sets the value using a 32bit floating point (SGL).
addregs in et g ddress out

Channcl

value to write E—Fal
i
el in [na eror) et errar out
value to write SGL

The value to write to the channel in engineering units.

Field Values

These Vs return the value of the specified field (the value read or string read indicators)
in the representation indicated.

Get Field(132) 2.vi
Returns the value as a signed 32bit integer (132).
settings group ar type —————
address i s —— gddress out
[ value read

_ 13z
errar in [ho erar) j errar aut
field

settings group or type 116

If> 0, this is a settings group Number: {1...numSettingGroups}, which corresponds to
the order in which the settingGroup appears in the Setting popup menu (when using the
instruNet World application), with the first item in the menu is #1. If < O, this is a settings
group Type. See the listing for settingGroup Types (sgt_VinHardware (-3) etc) in
Appendix A for details.

field 116
Field number within the settingGroup. The 1st field is #1, the next #2, etc. See
fgNums_... in Appendix A.

Get Field(SGL) 2.vi
Returns the value as a 32bit floating point (SGL).
settings group ar type ———
addrezz in MLl addrezs out
[ walue read

. Sl
eIrar i [fo erar) erar out
field

12



Get Field(String) 2.vi
Returns the value as a LabVIEW string.
settings group ar type —————
address i el —gddress out

""‘""“"‘" string read

b (- - - - - - [ .
BIrar i [no errar) error aut
field

Get Field(U32) 2.vi
Returns the value as a unsigned 32bit integer (U32).
settings group ar type ————

addreszz in b LU s addrezz out

—— value read
| -1

b (- - - - - - [ .
BIrar i [no errar) ﬁ error aut
field

These Vls set the value of the specified field (the value to write or string to write controls)
using the representation indicated.

Set Field(132) 2.vi
Sets the value using a signed 32bit integer (132).
settings group ar type ————
address i sl e gddress ot

. Fizld
value to write = I —+3z
[ =] ]

&l in [na eror] Erar out
field

Set Field(SGL) 2.vi
Sets the value using a 32bit floating point (SGL).
settings group ar type ————
address i el —gddress out
value toowrite | g—a
ermor i [ho ermor] === Error out

field

Set Field(String) 2.vi
Sets the value using a LabVIEW string.
settings group ar type ————
address i sl e g ddress ot

. . Firld
stnng o wnke =T = —Hitr

&l in [na eror] Erar out
field

13



Set Field(U32) 2.vi
Sets the value as a unsigned 32bit integer (U32).
settings group ar type —————
addrezs i el s gddress out

i Firld
value to write = I—Huz
ma ]

&l in [na eror] Erar out
field

Digital

These VIs are useful for using the digital port.

Config Digital Directions.vi
Configures the direction of each line of an 8-bit digital port.

address in sl address out
direction bits Ea
.
ernar in [ho error) = efror oul
direction bits us

Each bit sets the direction of a line of the specified digital port. Use 0 for an input line
and 1 for an output line. Line 1 of the port is specified by bit 1 (of 8) of directions bits.

Get Digital Line.vi
Returns the value of the specified line (1..8) of an 8-bit digital port. The address in needs
to be a digital channel (e.g. Ch 25).

addreszz in migi:';gl e 5 dress out

|inE —r— -‘—I:nr ............ [ State
ermar in [no ermor) Bl errar out
line us

Specifies which line (1..8) of the port.

state Boolean
The state of the line (true if high).

Get Digital Port.vi
Returns the value of the specifed channel’s ValueEU field as an unsigned byte. Useful
for reading the value of a digital port (e.g. Ch 25).

address i el ) - fammmmm gddress out

. e M value read
::::::::l
BIrar i [no errar) - error aut

Set Digital Line.vi
Sets the value of a single line (1..8) of an 8-bit digital port. The channel needs to be a
digital channel (e.g. Ch 25). The line also needs to be configured as an output line.

| iHexLU
address in sl ) s 2 ddress ol

|i|"|E.' —I — 5|k lins
: _. s 2o oLk

state mj“"
errar in [ho erar)

14



Set Digital Port.vi
Sets the value of the specifed channel's ValueEU field as an unsigned byte. Useful for
writing the value of a digital port (e.g. Ch 25).

address ik el address out
value o write Eery
1
el in [ho eror) == = errar out

Digitizing

These Vls are used to control the process of digitizing data. An example called Digitize
Channel Example.vi demonstrates how to use the instruNetLV Vls to acquire a
waveform from a single channel. Digitize List Example.vi demonstrates how to acquire
waveforms from a list of channels. The DRIVER RAM buffer must be used, since the
USER RAM buffer is currently not supported by instruNetLV.

Access Buffer 2.vi
While digitizing, this VI pulls a segment of data out of the driver RAM buffer.
scan #

# ptz

addrezs in el s address out

gjsanss —I_'— seqment start index

BT i [0 error] oo = segment pulled
| L_==- errar oLt
buffer address

scan # u32
The scan number of the scan that is currently being pulled from the buffer (base 1).

# pts u32
The number of points pulled from the buffer. Equal to the size of the segment pulled
array.

segment start index u32
The index of the first point returned in segment pulled relative to the start of the buffer
(base 1 index).

segment pulled [SGL]
The most recent segment of data pulled from the buffer in engineering units.

buffer address u32
The location in memory of the first point in the buffer.

Channel On-Off 2.vi
Enables or disables digitizing for the specified channel by setting the DISPLAY field in
the DISPLAY settingGroup.

address in el b sddress out

............ Ehdnn:l

enable digitizing? - e
. P fraf ault
errar i [no errar) f

enable digitizing? Boolean

15



Set to true to enable digitizing of the specified channel, false to disable digitizing.

Channels Off 2.vi

Disables digitizing for all channels in the specified network. Makes sure that the
DISPLAY field is off in the DISPLAY settingGroup and that the DIGITIZE field is off in the
FILE, USERBUFFER, and DRIVERBUFFER settingGroups.

tretwork ik AL metwark, out
errar in [ho erar) ========',======== error out
network in us
network out us

NETWORK number {0...numNetworks}, 0 = Driver, 1 = 1st controller installed in the
computer.

Service All Buffers 2.vi

This VI must be called continuously while digitizing to allow the processor to service all

of the digitization buffers and to let LabVIEW monitor the status of the digitization.
rebwark in el rietwrk, out

) m-
Errar in (o enmor) seee——=l B 2 network status

error aut
network status Cluster
Contains the status information for the digitization.
Controller Is Finished Boolean

Returns true if the controller has completed the digitization as specified by the timing
values.

Last Scan # Pulled In Full u32
The scan number of the last scan that was pulled in full from the buffer (base 1).

Last Scan # Pushed In Full u32
The scan number of the last scan that was pushed in full to the buffer (base 1).

Next Access Ends Digitization Boolean
True if the next segment of data pulled from the buffer will complete digitization.

Next Access Pulls to End of Scan Boolean
Returns true if the next segment of data pulled from the buffer will complete the current
scan.

Save Option 2.vi
Specifies how the data acquired by digitization should be saved; either off, to RAM, to
disk, or user controlled.

Save Data Moy
) I e N = T
BI7ar i o ernor) seeeeeesy 30
Save Data 132

(1) Off, data is not saved.
(2) RAM, data is saved to a RAM buffer.

16



(3) Disk, data is streamed to a file on disk. The file must be specified in the appropriate
fields.

(4) User, data is controlled in a user defined location. This is currently NOT supported
by instruNetLV.

Load Buffer 2.vi
This VI loads the input SGL array into the buffer of the specified channel. The channel
must be an output channel (e.g. Vout 3). Additionally, the size of the input array must
match the size of the buffer. If not, Load Buffer will finish without loading the buffer and
set sizes don’t match to true. Load Buffer returns the size of the buffer, so a second
attempt may be made after resizing the input array. The first attempt does no harm, so a
channel’s buffer size can be determined by calling Load Buffer with an empty array. The
buffer size will usually be the same as the value for Points Per Scan.

addrezs i memmm=miHeL address out

data to load = o e _|_ sizes don't match

errar in [no ermor f buffer size in points
error auk

data to load SGL Array
The waveform data (in the channel’s engineering units) to load into the buffer.

sizes don’t match Boolean
Returns true if the data array is not the same size as the buffer.

buffer size in points u32
The buffer size in number of points, the actual size in bytes will be four times larger.

Enable List.vi
Enables digitization for the channels specified in address list in. Digitization for all other
channels in the networks is disabled.

addrezz lizt i Exxrrr i ol s addrez= |IS|Z aut
EI10r 1[N0 ernor) seeeeees S e . network fist out
o @rraf Lk
address list in [Cluster]
address list out [Cluster]

An array of address clusters (network, device, module and channel).

network list out [U8]
An array containing all the networks within address list in.

Service List.vi

Services the buffers for each network in address list in.

................................. EIEIEI[EEE IISt l:Ith
" network, list

= == statuz of networks
Feoem 2qrof oLt

addrezs list in
errar i [no errar)

network list [U8]
An array containing all the networks within address list in.

17



status of networks [Cluster]

An array of the network status cluster (see Service All Buffers 2.vi). The data for each
element of the array is from the network specified in the corresponding element of the
network list array.

Access List.vi

addrezz list out
8 jivfia Fram buffers

&rrar in [ho erar] B epriar ot

info from buffers [Cluster]

An array of clusters. Each cluster bundles the information for one buffer (see Access
Buffer 2.vi). Each element of the array contains the buffer information for the
corresponding element of the address list in.

Get Channel Direction 2.vi
Returns the direction of the specified channel; true if an input, false if an output.

. iHexL 1
addrezs i mwmm—m—s Eét e 5 dress out

- shannet [ = |nput Channel?
eIrar i [fo erar) dirns B it Gt
Input Channel? Boolean
Get Digitizing State 2.vi
Returns true if the controller is digitizing.
network in ——"sey | s Digiteing?
[ e '
eIrar i [fo erar) B v ot
Controller Digitizing? Boolean
Timing

These Vls return timing values used by the controller.

Get Ch % Sample Rate 2.vi
Returns % of the sample rate that will be used to digitize the specified channel.

. iHexL 1
address ip memmm—y L g dress out

-:hr.r.-:l ?5 | H t
- ample Hate
EITar i1 [0 @rrar) s 12— - P

errar out

% Sample Rate SGL

Get Min SecsPerTfr 2.vi
Returns the minimum seconds per transfer to and from the specified network.

netwaork in T rr;lde'tWSDrk E:.-L#f
' m-mn [ Min Secs/Th
EIOF iR [0 error) s B2
[ ] i error out
Min Secs/Tfr SGL

18



Get Network BPS 2.vi
Returns the network data transfer rate in bits per second.

netwark, in i HEtWD”:q I:éuFt'S
EITOF i [0 error) e B stwor
- error auk
Network BPS 132
Get Number of Scans 2.vi
Returns the number of scans that will be digitized.
retwork in i Hetwgrk Dfu%
&fmor in [no eror) == B4, umper of .2 cans
- error auk

Number of Scans u32

Get Points Per Scan 2.vi
Returns the number of points that will be digitized per scan.

retwork in i get_lﬁ.;:cnrlé u:uuSt
errar ||"| [n|:| E”Dr] ooy ";sp;':::_l aintE Fer aCcans

errar aut
Points Per Scan u32

Get Sample Rate 2.vi
Returns the digitization sample rate in samples per second.

H iMexLIl
netwiork in Tiing getwcirk F?utt .y
' ample Rate [Hz
ernmar in [no ermor) sy S0 P [Hz]

errar aut
Sample Rate (Hz) SGL

Get Scan Mode 2.vi
Returns the digitization scan mode; Strip Chart, Oscilloscope Queued, or Oscilloscope.
niebwork, in el rietwork, out

. I
ermar in [no ermor) seeeeey B0 Scan Mode

Scan Mode 132

(1) Strip Chart, continuous mode.

(2) Oscilloscope, non-continuous mode with data pulled in a first in, last out manner.

(3) Oscilloscope Queued, non-continuous mode with data pulled in a first in, first out
manner.

errar aut

Get Switching Mode 2.vi
Returns the channel switching mode used during digitization; Accurate or Fast.
nietwork, in g rietwork, out

—_ H
erar in [no ermor) s ST Ch Switch Mode
— error out

Ch Switch Mode 132
(1) Accurate, yet slower.
(2) Fast, yet less accurate.

19



These Vls set timing values used by the controller.

Set Ch % Sample Rate 2.vi

Sets the % of the sample rate used to digitize the specified channel.

address in s

% Sample Rate — 5

iHexLU
<anTig

oo 3} ress Ut

errar i [no errar)

Set Min SecsPerTfr 2.vi

ratdg
I‘m error ot

Sets the minimum seconds per transfer to and from the specified network.

riebwark, in
Min Secz/Th =

iHexLU
Timing,
I

niebwark, out
oo arrof Lt

=] “&1r

eIrar i [fo erar)

Set Network BPS 2.vi

Sets the network data transfer rate in bits per second.

niebwark, in
Metwork, BPS ——

iHexLU
Timing
o]+ not

niebwark, out

oo arror Lt

[ =1 Ep?

errar in [no eror) ==f

Set Number of Scans 2.vi
Sets the number of scans to digitize.

niebwark, in

iHexLU
Timing

niebwark, out

Mumber of Scans =]

o] 3

[=] #<and

oo arrof Lt

errar in [no eror) ==l

Set Points Per Scan 2.vi

Sets the number of points to digitize per scan.

niebwark, in
FPaoints Per Scans =]

iMexLU
Timing
[T —+pts
[_=]/%can

nietwark, aut
peoeeeeen arrof

errar in [no eror) ==

Set Sample Rate 2.vi

Sets the digitization sample rate in samples per second.

nietwork, in
Sample Rate [Hz] —

iHexLU
Timing
[a]|—+am

nietwark, aut

oo arrof Lt

[ =] rake

eIrar i [fo erar)

Set Scan Mode 2.vi

Sets the digitization scan mode; Strip Chart, Oscilloscope Queued, or Oscilloscope.

niebwark, in

iHexLU
Timing

nietwark, aut

Scan Mode —

|| —+Far
[_=] mide

eeereern grrof Lt

errar in [no eror) ==

20



Set Switching Mode 2.vi
Sets the channel switching mode used during digitization; Accurate or Fast.
network in i nebwark, out

Ch Switch Mode — ity SESS———————
. =] m<dac
BIrar i [no errar) o

Set Timing Values 2.vi
Sets the timing values used by the controller during digitization.
scah Mode

Save Data —
niebwark in iHexLl

el riebwark out
sampling = g L actual sample rate [Hz)
Ch Switch Mode —l_“'“‘“h error out
BTN i1 [0 error) s :
SI"IEIW D"."EETHEIW .":".lE-'rt ..................... i
sampling Cluster
Input cluster that bundles controls for Sample Rate (Hz), Points Per Scans and Number

of Scans.

Show Overflow Alert Boolean
Set to true if you want instruNetLV to generate an alert dialog upon an overflow.

actual sample rate (Hz)
Returns the actual sample rate the network will use during digitization. May not be the
same as the requested sample rate.

Trigger
These Vls configure the triggering used during digitization.

Set Trigger Mode 2.vi
Sets the trigger mode for digitization; Off, Automatic, or Normal.

1 iHsxLU
netwark. in i metwork, out

Trigger Mode |5 mea-
: e N TR
errar in [no emor) et =]

Trigger Mode 132
(1) Off, (2) Auto, (3) Normal.

Set Trigger Slope 2.vi
Sets the trigger slope for digitization; Rising or Falling.

niebwark in iHexLl
Trigarsr

riebwark, out
Trigger Slope =g #uee
. e P 20 QAL
enar in [ho emor) el =

Trigger Slope 132
(1) Rising, (2) Falling.

21



Set Trigger Source 2.vi
Sets the network address (network, device, module and channel) of the trigger source
for digitization.

niebwark, in iHetLl
Trigqarr

Ti c riebwork, out
Ngger 5ource === G
eIror in [no eror] —' Bfror out

Trigger Source Cluster

Input cluster that bundles controls for specifying the network, device, module and
channel of the trigger source.

Set Trigger Threshold 2.vi
Sets the trigger threshold in engineering units.

niebwark, in iHexLl
Trigqarr

_ riehwark, out
Trager Threshold =5 ke

: e [ {700 QLI
enar in [ho emor) el =

Trigger Threshold SGL

Set Trigger Values 2.vi
Sets the trigger values used during digitization.
Trigger Threshald ———

riebwork, in iHeeL ]
Trigger Mode - T an
: peccen 2107 QL
Trigger Source mrmﬂ’“ = el

errar i [no errar)
Trigger Slope ————

niebwark, out

Configuration
These Vs configure different portions of the instruNet World.

Config Timing.vi
Configures the Timing Settings used by the network. This VI is an alternative to Set
Timing Values 2.vi and uses a single cluster for the major timing values.

Save Data —

retwark, in HesLl netwark, out
Timing Settings = g™ actual sample rate [Hz)
eIrar i [fo erar) """ errar ot
Shl:llu"'.' I:I"."EETHDW 'lnl-,'lert
Timing Settings Cluster
A cluster containing the major timing values (see the Timing VIs)
pts/scan u32

Same as Points Per Scan.

# of scans u32
Same as Number of Scans.

Scan Mode 132

22



Sample Rate SGL
Same as Sample Rate (Hz).

Switching 132
Same as Ch Switch Mode.

Config Trigger.vi
Configures the Trigger Settings used by the network. This VI is an alternative to the Set
Trigger Values 2.vi and uses a single cluster for the trigger values.
network. in Tt hebwark, aut
Trigger Settings ==
eIrar i o errar)

Trigger Settings Cluster
A cluster containing the trigger settings (see the Trigger VIs).
Trigger 132

Same as Trigger Mode.

Threshold SGL
Same as Trigger Threshold.

Slope 132
Same as Trigger Slope.

Source Cluster
Same as Trigger Source.

Config Timer.vi
Configures one of the digital timers located on the controller card.

niebwark, in iHexLl
_ T niebwark, out
Tlmer _I_ ‘C‘Q‘I‘l*;r':!r

= e oy ot

Tirner Settings f_ ------ f

errar i [no errar)

Timer us
Specifies which timer to configure (from 1 to 10).

Timer Settings Cluster
A cluster containing the timer settings.
Function u32

Species which timer function to use.
(1) Digital In, (2) Digital Out, (3) Clock Output, (4) Period Measurement

Clock Period SGL
Specifies the period (if the timer function is Clock Output).

Clock Out Hi SGL
Specifies the duty cycle (if the timer function is Clock Output).

23



Measure u32
Specifies the measurement mode (if the function is Period Measurement).
(1) Cycle Time, (2) High Time

Measure Resolution u32
Specifies the measurement resolution (if the function is Period Measurement).
(1) 0.25 microseconds, (2) 4 milliseconds

Measure Cycles SGL
Specifies the number of cycles measured (if the function is Period Measurement).

Config Vin Channel.vi
Configures the hardware settings for the specified input channel.
address in phoy address out

<anTig

Hardware Settings = — 1 - v
% Sample Fate f—' e[S 170N U
errar i [no errar)
Hardware Settings Cluster
Sensor u16
Specifies the sensor that is connected to the channel (e.g. (1) Voltage). See the front

panel, instruNet Manual or Appendix A for values.

Wiring Uu16
Specifies the wiring used to connect the sensor (e.g. (1) Vin-Gnd). See the front panel,
instruNet Manual or Appendix A for values.

Low Pass u16
Specifies the low pass filter to use during digitization.
(1) Off, (2) 40Hz, (3) 4000Hz

Integrate SGL
Specifies the integration time used during digitization.

Range u16
Specifies the range for the channel.
(1) +-5V, (2) +- 0.6V, (3) 80 mV, (4) 10mV

instruNet World

These Vs operate on the instruNet World window.

Open instruNet 2.vi
Opens the instruNet World window to the specified page. Program control is owned by
the driver (i.e. NOT LabVIEW) until the user quits or closes instruNet World.

iHexLU

Page to O
ag= to-pen Open error out
errar in (o ermor) = Met
Page to Open 132

24



(1) Record page
(2) Network page
(3) Test page

Press Button 2.vi
Presses the specified button within the instruNet World window. The window does NOT

need to be open in order for the action to take place.
E tt t F| iHexLIl
WHOon L0 Fress | X Se—— Brror Dut

EIror in [ error | sy Button
Button to Press 132
Please see the listing of Button Press Commands in Appendix A for the values that
correspond to each button.

Get Network Settings(XXX).vi
Returns an array containing the all the settings in the instruNet World. This array can be
saved to disk to be recalled and reconfigure the instruNet World.
el zettingz array
— bwtes of data
errar out

errar in [no ermor) sl "

settings array [116]
An array containing the settings within the instruNet World.

bytes of data u32
The number of bytes of the settings array that contain actual data.

Set Network Settings(XXX).vi

Configures the instruNet World using the settings from the settings array. The only way

to get a valid settings array is from a previous call to Get Network Settings(XXX).vi.
gettings aray el

btesz of data _'_-i-n-:t
errar i [no errar) —_—

pr=rrm =g oLk

Show Probe

These VlIs show the probe dialog. The initial address accessed is specified by address
in. On return, the address out cluster contains the currently accessed network address.

Show Probe(channel) 2.vi
Shows the probe dialog with the channel address only ([net/dev/imod/chan] popups).

. iHexL I
address out
address i s Probe |.......

_ !
errar in [no enmor) =e———=—{E Cancelled:

Cancelled? Boolean
True if the user pressed Cancel to exit the dialog.

25



Show Probe(field) 2.vi
Shows the probe dialog with the field address only ([net/dev/mod/chan/set/field]
popups).

— settingGroup out

addresz In mﬂ‘;ﬂ:e o g drezs out
settingGroup in - e ~ Cancelled?
fieldMum in ] el errar out
BT i1 [0 erpor] e fieldM urn ot

settingGroup in 116

The initial settingGroup displayed by the dialog.

fieldNum in 116

The initial field displayed by the dialog.

settingGroup out 116

fieldNum out 116

The settingGroup and field displayed when the user exits the dialog.

Show Probe(full) 2.vi
Shows the full probe dialog.

— settingGroup out

address in i Lol addresz out
settingGroup in - o full

&rrar in [no efror) e Smdpesss=== arrar out
Alerts
These Vs are used to control how the instruNet driver displays alerts.
Get Show Alert 2.vi
Returns whether the instruNet driver is configured to show an alert dialog upon an error.

:HE*LU ................
errar i [no errar) ?ﬂu show lert |s
alers e g0l QL

Show Alert Is Boolean

Returns true if instruNetLV will display an alert dialog upon an error.

Set Show Alert 2.vi
Configures the instruNet driver to either show or not show an alert dialog upon an error.
Returns the setting that was in place BEFORE the VI was called.

St Show St e i”é‘é'-t” ................ Show flert W az
enar in [no ermor) s 3 e gy out
Set Show Alert Boolean

Set to true if you want instruNetLV to show an alert dialog upon an error.

Show Alert Was Boolean
Returns true if the alert dialog was set to be displayed prior to calling the VI

26



Set Overflow Alert 2.vi
Configures the instruNet driver to either show or not show an alert dialog upon a buffer
overflow during digitization.

iHexLU
Show Owerflow Alert - ry

suerfls

BI107 10 (N0 ernor) seeeeeesy * 0

Show Overflow Alert Boolean
Set to true if you want instruNetLV to generate an alert dialog upon an overflow.

e 2o oLk

Network Info
A set of Vls that return useful information about the instruNet World.

Get Field Info.vi
Returns information about the specified field within the instruNet World.

fieldMurn
settingGroupMurnOr Ty pe I
netMurn :r~||§1:?Lt Errar
-:Ie*;i-:]e:um _I——' firld Field Infa
chanfMun iuumpnpup Iterns
——— ¥ Poplp ltems
fieldNum 116

Field number within the settingGroup. The 1st field is #1, the next #2, etc. See
fgNums_... in Appendix A.

settingGroupNumOrType 116

If> 0, this is a settings group Number: {1...numSettingGroups}, which corresponds to
the order in which the settingGroup appears in the Setting popup menu (when using the
instruNet World application), with the first item in the menu is #1. If < 0, this is a settings
group Type. See the listing for settingGroup Types (sgt_VinHardware (-3) etc) in
Appendix A for details.

netNum us
NETWORK number {0...numNetworks}, 0 = Driver, 1 = 1st controller installed in the
computer.

deviceNum us
DEVICE number {0...numDevices}, 0 = Controller, 1 = 1st device on network

moduleNum us
MODULE number within a hardware DEVICE {1...32}.

chanNum us

Hardware CHANNEL number {1...32}. Each device contains a number of channels,
each of which has it's own channel number.

27



Error

116

Returns the error code generated by the call to the instruNet driver. See the instruNet
manual or the listing in Appendix A for details.

Field Info

Cluster

Output cluster containing the following indicators providing information about the

specified field.
type

132

The type of user interface appropriate for the field.

category

132

The category of user interface for the field.

representation

132

The native representation of the value in the field. See Data Types in Appendix A for a

listing.

read/write

Boolean

Returns true if the field is read/write, false if the field is read only.

Names

[String]

Contains the names of the network, device, module, channel, settingGroup and field.

PopUp Items

[String]

Contains a list of the items in the PopUp menu associated with the field’s settingGroup.

# PopUp Items

132

The number of items in the associated settingGroup’s PopUp menu.

Get Seconds Since Reset.vi
Returns the number of seconds since the network has been reset.

Seconds

netMurn

iHexLll
Get

Fnaends

SGL

Error

Seconds

These VIs return true if the item exists within the specified portion of the instruNet World.
All of the <X> Exists? terminals are Boolean indicators.

Does Channel Exist.vi

Does Device Exist.vi

netMun
dewiceMurn

iHctLU
shannsl

[ PHL T

rnoduleMumn f

chanMunn

netMum
deviceMurn -

iHetLl)

druice
L xS

28

Error

Channel Exizst=?

Error

Device Exists?



Does Field Exist.vi
settingGroupMurnOr Ty pe

netMum iHexLl
. Error
deviceMurn - Tixld, ) )
madulaMum _|_ LEEL A I, Field Exists?
chanMurm —I_
fieldMum
Does Module Exist.vi
netMunm iHexLl
Error
deviceMurn — e dult _
madulaMum _|_ LEEL S FMadule Exists?
Does Network Exist.vi
T
LETEL I A, Metwork Exists 7
Does Setting Exist.vi
settingGroupMurnOr Ty pe
netMur iHexLN
Error
deviceMurn Friting ) ]
_I_ LT I I SE‘tt“’lg E}ﬂStE?

rnoduleMum
chanMurm —I_

These VIs return how many of the items exist within the specified portion of the instruNet
World. All of the # of <X> terminals are 132 indicators.

Number of Channels.vi
netMur iHexLN

Error
deviceMurn — et
rmaduleMurn <hannels # of Channels

Number of Devices.vi
netMum iHexLU Errot
# T
druiced #¥ of Devices
Number of Fields.vi
settingGroupMNurmOr Ty pe
netMurn iHexLl)

Error
deviceMurn — ot )
rnoduleMurn — —1_ 70 * of Fields

chanMurm —I_
Number of Modules.vi
netMur iMexLL Errar

dewiceMurn #aor

mexdules

¥ of Modules

Number of Networks.vi
iHexLU)

#aT
neks

Error

#¥ of Metworks

29



Number of Settings.vi

netMum iHexLll
devizeMurn - #or

rnoduleMurn f frng
chanMurm

Error
¥ of Settings

Advanced

These ViIs call the instruNet driver to read or write any field in the instruNet World using
a value in the indicated representation. The value of intention determines the action
taken. For almost all purposes the previous Vs will provide easier access to the
instruNet hardware.

iNetLV_I32.vi
Uses a signed 32bit integer (132).
fieldNum
settingGroupMurnOr Type ———
netMurn iHesl Error
deviceMurn | I;'E [ Bm Pararneters
rriaduleMuri f b L 22 read
chanMurn ‘
intention ————
122 to write
intention 116

Tells the instruNet driver what to do when accessing the field. Please see the listing of
Field Access Intentions in Appendix A for details.

Parameters Cluster

A cluster of values used mainly for internal purposes. Some of the elements in the
cluster (A, B etc.) are used by certain calls to instruNet to return additional information
and will be mentioned in the documentation.

132 to write 132
The value to write to the specified field within the instruNet World.
132 read 132
The value read from the specified field within the instruNet World.
iNetLV_SGL.vi
Uses a 32bit floating point (SGL).
fieldMum
settingGroupMurnOr Ty pe ————
netMurn ;H?gl'g |Iir'r'n:-r' .
deviceMurn = | _F% B P ararneters
rrcduleMurn f =¥ SGL read
chanMurn
intention £|J
SGL to write
SGL to write SGL

The value to write to the specified field within the instruNet World.

30



SGL read SGL
The value read from the specified field within the instruNet World.

iNetLV_String.vi

Uses a LabVIEW string.
fieldMurn

settingGroupMurnOrType ———
netMurn il Error

deviceMurn — Sﬁ Ba P arameters
=
S | [ String read

rnoduleMum -
chanMurm —I_
intention
String to write

String to write String
The value to write to the specified field within the instruNet World.

String read String
The value read from the specified field within the instruNet World.

iNetLV_U32.vi

Uses an unsigned 32bit integer (U32).
fieldMurn

settingGroupMurmOrType —————
rietMurn iHrtl Errar

deviceMurn — Uﬂ Bm P arameters

rnoduleMurn f oy = UZZ read
chanMurn
intention £|J
U332 to write

U32 to write u32
The value to write to the specified field within the instruNet World.

U32 read u32
The value read from the specified field within the instruNet World.

Core MacOS only
The CIN based Vs used by the MacOS version of instruNetLV. Each VI is platform
specific and allows LV to directly access the fields within the instruNet World.

iNetLV(68K).vi

The CIN based VI for 680x0 based Macs.
fieldMurn

settingGroupMurnOr Type ———
netMurm iHetL
deviceMurn Lo i B P arameters

fsak [ L ptrTorgout

rnoduleMurn
chanMurn
intention
argTypeln
typeCastargln

31



argTypeln us
Specifies the representation of the value being read or written. See the listing of Data
Types in Appendix A for details.

typeCastArgin String
Contains the value that is to be written to the instruNet field. MUST be TypeCast to a
string using the TypeCast Function since the VI is not polymorphic.

ptrToArgOut u32

Returns the location in memory that contains the value returned by the call to the
instruNet driver. How the location needs to be accessed is determined by the value of
argTypeln.

iNetLV(PPC).vi

The CIN based VI for PPC based Macs.
fieldMurn

settingGroupMurnOr Ty pe ————
netMunm iHetL
deviceMurn =i B Parameters

fPP === [ ptr-TodrgOut

rnoduleMurn
chanMurn
intention
argTypeln
typeCastargln

~subVls

Some utility VIs used by other Vls in the instruNetLV collection. Most of these involve
memory access and manipulation and should NOT be used for other purposes.

addresses2networks.vi
Converts an array of address clusters to an array containing all the networks specified
by the addresses.

CStr15[] Address To String([].vi
Reads the information at the memory address specified and converts it from a CStr15][]
to a LabVIEW String][].

CStr255 Address To String.vi
Reads the information at the memory address specified and converts it from a CStr255
to a LabVIEW String.

iNetLV_Error.vi Win95 only
Returns the error reported by the last call to the instruNet Driver.

iNetLV_Params.vi Win95 only

Returns the Parameter structure associated with the last call to the instruNet Driver.
Most of the values are for internal use only.

32



iNet_Peek_int16.vi Win95 only
Returns the value at the specified memory address as a 116.

iNet_Peek_int32.vi Win95 only
Returns the value at the specified memory address as an 132.

iNet_Peek_flt32.vi Win95 only
Returns the value at the specified memory address as a SGL.

iNet_Poke_flt32.vi Win95 only
Sets the value at the specified memory address using a SGL.

The following Vls are used for memory manipulation by the Mac version of the
instruNetLV Vis. They must NOT be used for other purposes. Each VI has a version for
68K and for PPC Macs. They are all CIN based and have corresponding .Isb files that
should stay in the same folder as the VI.

Array to Handle(XXX).vi MacOS only
Handle to Array(XXX).vi MacOS only
Dispose of Handle(XXX).vi MacOS only

33



Appendix A: Useful Numbers

The following lists provide useful values for the various controls and indicators of the

instruNetLV Vls. The information is adapted from the header files that come as part of
the source code provided by GWI with the instruNet hardware. Several chapters at the
back of the instruNet Manual also have listings of many of these numbers.

SettingGroup types (i.e. values for settingGroupNumOrType)
settingGroup (i.e. "Settings") types (settingGroupType's must be negative)

sgt noneFound = -1
sgt_UnRecognizedType = -2

sgt_VinHardware = -3

sgt VinConstants = -4
sgt Mod100DinDout = -5
sgt_General = -6

sgt Display = -7

sgt LowPass = -8
sgt HighPass = -9
sgt BandPass = -10
sgt BandStop = -11
sgt_Timing = -12

sgt Trigger =-13

sgt Timer =-14

sgt DriverRamBuffer = -15
sgt_UserRamBuffer =-16

sgt_File =-17

sgt RecordOptions = -18
sgt_MasterDirectory =-19

BAD

nothing found

unrecognized (user probably needs a newer driver that works with
this hardware ??)

MODEL 100 LIKE HARDWARE DEVICE

Vin "Hardware" settingGroupType {sensorType, a/d range,
analog Ip, function}

Vin "Constants" settingGroupType
{Ro,Rshunt,Vexcit,GF,alpha,delta}

8bit Mod 100 Digital I/O settingGroup = {din, dout, direction}

GENERAL settingGroupType struct {valueEU, chanName,
unitsLabel, userName...}

DISPLAY settingGroup = {dispOnOff, dispMaxEU,
dispMinEU}

FILTER

LOW PASS filter settingGroup type
HIGH PASS filter settingGroup type
BAND PASS filter settingGroup type
BAND STOP filter settingGroup type

DIGITIZER channel in CONTROLLER device.
{DigitizeOnOff, PtsPerScan, NoOfScans, ScanMode,
SampleRate}

{TriggerMode, ThresholdEu, Slope, PreTrigSec, SrcNet,
SrcModule, SrcDevice, SrcChannel}

CONTROLLER timer channel
TIMER settingGroup = {functionPop, clkTotalSecs, clkHiSecs,
measHiOrCyclePop, measResolution, measNumPeriods}

BUFFERS

Driver Ram Buffer = {DigitizeOnOff, ScanNumlIn, PtNumlIn..}
User Ram Buffer = {DigitizeOnOff, userBufferAddr, ptrSize,
ScanNumlIn, PtNumlIn..}

File = {FileName, Command, ScanNumlIn, PtNumlIn,
ScanNumln ..}

DRIVER

RECORD OPTIONS settingGroup = {}

MASTER DIRECTORY settingGroup = {pathname, command,
save/load settings}

34



Field Access Intentions (i.e. values for intention)

thing that you want to do when you call iNet
intention_getValue = 1

intention_setValue =2
intention_getNameStr = 3

intention getMaxValue = 4
intention_getMinValue = 5
intention_getUserInterfaceType = 6
intention_getDefaultValue = 7
intention_nativeStorageType = 8

intention_getValueAndPullData = 9

intention_doNothing = 4000

intention_DisableAllChannelDigitizing = 4005

intention ShowAlertOnError = 8000
intention NoShowAlertOnError = 8001

intention_GetShowAlertOnErrorStatus = 8002

intention_ThisExists Network = 8003
intention_ThisExists Device = 8004
intention_ThisExists Module = 8005
intention_ThisExists Channel = 8006
intention_ThisExists_Setting = 8007

intention_ThisExists_Field = 8008

intention_GetNumNetworks = 8009
intention_GetNumDevices = 8010
intention_GetNumModules = 8011

get the value of the field

set the value of the field

get name of field (i.e. string)

get maximum value of the field

get minimum value of the field

get user interface type {e.g. }

get the defaultValue of the field

get the native storageType of the field {e.g. iNetDT FLT32,
iNetDT INT16, iNetDT P_Str15}

get the value of the field (USER RAM BUFFER userBufferAddr
field or DRIVER RAM BUFFER bufferPtr field) and also pull
data out of the buffer and place 'pointToPullindex' into A,
'numPointsToPull' into B, and 'scanNumlIn' into C. gsw
11/25/95

ADMINISTRATIVE

do nothing (just process iNet Request struct) (all we do is check
the network address and and then calc the Global struct ptrs)
Disable channel digitizing for all channels in this network. This
will make sure that the "Display"” field in the DISPLAY
SettingGroups is OFF, and that the "Digitize" field is OFF in
the FILE, USERBUFFER, and DRIVERBUFFER
SettingGroups.

SHOW ALERT UPON ERROR CONTROL

tells driver to show an alert upon error (this is the default) returns
1 if driver WAS set up to show an alert upon error; 0 otherwise
tells driver to NOT show an alert upon error returns 1 if driver
WAS set up to show an alert upon error; 0 otherwise

returns 1 if driver WAS set up to show an alert upon error; 0
otherwise

DETERMINE IF NETWORK ELEMENT EXISTS

Returns 1 if NETWORK = {netNum} exists; FALSE (0)
otherwise.

Returns 1 if DEVICE = {netNum, deviceNum} exists; FALSE
(0) otherwise.

Returns 1 if MODULE = {netNum, deviceNum, moduleNum}
exists; FALSE (0) otherwise.

Returns 1 if CHANNEL = {netNum, deviceNum, moduleNum,
channelNum} exists; FALSE (0) otherwise.

Returns 1 if SETTING = {netNum, deviceNum, moduleNum,
channelNum, settingNum} exists; FALSE (0) otherwise.
Returns 1 if FIELD = {netNum, deviceNum, moduleNum,
channelNum, settingNum, fieldNum} exists; FALSE (0)
otherwise.

INTERROGATE NETWORK

Returns the # of instruNet Networks.

Returns the # of Devices in the specified Network.

Returns the # of Modules in the specified {Network, Device}.

35



intention GetNumChannels = 8012
intention_GetNumSettings = 8013

intention GetNumPFields = 8014

intention_Get Ul Catagory = 8017

intention Get NumPopupltems = 8018

intention_Get PopupStringArray = 8019

intention_Get AddrNamesStringArray = 8020

intention_GetChannelDirection = 8021

intention_getHandleToNetworkState = 8022

intention_setNetworkStateWithHandle = 8023

intention_disposeOfNetworkState = 8024

intention_serviceAllDigitizeBuffers = 8028

intention_showProbeDialog Full = 8031

Returns the # of Channels in the specified {Network, Device,
Module}.

Returns the # of Settings in the specified {Network, Device,
Module, Channel}.

Returns the # of Fields in the specified {Network, Device,
Module, Channel, SettingGroup}.

USER INTERFACE

Returns the user interface catagory (i.e. itemType iNet enum in
header file; e.g. ion_StaticText (3), ion_EditText (4),
ion_Userltem (popup) (5)).

Returns the number of items in a popup, if the field user
interface is a popup. (e.g. returns 2 if the popup shows {"ON",
"Off"}).

Returns the pointer to an array of C Str15 strings that contain the
items in the popup (i.e. iNetStr15 popupltems[]).

Returns the pointer to an array of C Str15 strings that contain the
names of the Network, Device, Module, Channel, Settings, Field
(i.e. iNetStr15 array[0] = Network Name, array[1] = Device
Name, array[2] = Module Name, array[3] = Channel Name,
array[4] = Settings Name, array[5] = Field Name).

Returns the direction of the channel: 0 is input (e.g. a/d), and 1
is output (e.g. d/a). 5/1/96

GET/SET NETWORK STATE

Returns a Handle to the Network State (in uint32). The Caller
must dispose of it after using it (e.g. DisposHandle() on
Macintosh, GlobalFree() on Windows). To get the Handle size,
call GetHandleSize() on Macintosh, sssssss on Windows) gsw
11/25/95

Sets the network state with the passed Handle. The Caller must
dispose after calling this routine. The handle must have
originated froma GET HANDLE TO NETWORK STATE()
call that was done previously. gsw 11/25/95

Dispose of all instruNet network state. This will cause the the
next call to the instruNet driver to implement the POWER ON
boot process. Call CloseDriverAndReleaseDriverRam() to release
ram held by the driver itself. gsw 9/8/96

SERVICE THE DIGITIZATON PROCESS

Services buffers during the digitization process if they are
holding new data (otherwise this does nothing). This must be
done continuously while digitizing. Returns TRUE (1) if the
next data pulled out out of the buffers is that last pull; FALSE
(0) otherwise. A_ PARAM() is set to TRUE (1) if we pulled to
the end of a Scan; FALSE (0) otherwise. B PARAM() is set to
the last scan # (base 1) that was pulled in full. C PARAM() is
set to the last scan # (base 1) that was pushed in full.

SHOW PROBE DIALOG

Shows the full probe dialog. On return,
netNum_PARAM(gRequestP),
deviceNum_PARAM(gRequestP), etc contain the accessed
address.

intention_showProbeDialog ChannelAddrOnly = 8032

36



intention_showProbeDialog FieldAddrOnly = 8033

Shows the probe dialog with the channel address only
([net/dev/mod/chan] popups). On return,
netNum_PARAM(gRequestP),
deviceNum_PARAM(gRequestP), etc contain the accessed
address. A PARAM(gRequestP) is set to 1 if the user pressed
CANCEL, 0 if the user pressed OK to exit the dialog.

Shows the probe dialog with the field address only
([net/dev/mod/chan/set/Field] popups). On return,
netNum_PARAM(gRequestP),
deviceNum_PARAM(gRequestP), etc contain the accessed
address. A PARAM(gRequestP) is set to 1 if the user pressed
CANCEL, 0 if the user pressed OK to exit the dialog.

MANAGEMENT

intention_Set gClickOnThisWindowToQuitiNet = 8040

Data Types (i.e. values for argTvpeln)

Setting a WindowPtr  such that if this window is clicked on
while the instruNet World Window is opened, then the instruNet
World Window will QUIT (e.g. the host application window).
gsw 3/3/96

types of data stored in the instruNet fields (this must fit into an UINTS = {0...255})

iNetDT INT16=0
iNetDT INT16bus =1
iNetDT UINT16 =2

iNetDT INT32=3
iNetDT UINT32 =4
iNetDT FLT32 =35
iNetDT Double = 6

iNetDT INT16comp =7
iNetDT P Strl15 =38
iNetDT P Str255=9
iNetDT C Str15 =10
iNetDT C Str255 =11

iNetDT READ ONLY_BIT = 128

1INetError error codes (i.e. values for Error)

iNet error codes

iNetErr None =0

iNetErr_General = 1
iNetErr_ControllerNotlnitialized=2
iNetErr_InitializationFailed = 3
iNetErr DeviceNumOutOfRange = 4
iNetErr_ChannelNumOutOfRange = 5
iNetErr_FieldNumOutOfRange = 6
iNetErr_ControllerNotFound = 7

16bit integer, signed

16bit integer, signed; yet data is on a card and

16bit integer, unsigned must be transferred to with 16bit
transfers.

32bit integer, signed

32bit integer, unsigned

32bit float (ieee Macintosh format)

'double’, as determined by the compiler (e.g. flt64, f1t80, {1t96,
f1t128)

16bit integer, signed; yet compressed in the standard iNet
'iNetDT INT16comp" manner.

PASCAL Strl5 string (15 chars, Oth char is length)
PASCAL Str255 string (255 chars, Oth char is length)

C Strl5 string (15 chars, 0x00 terminate)

C Str255 string (255 chars, 0x00 terminate)

this is ADDED to the iNetDataType value if the field is read
only.

no error
general error

InitializeDriverAndControllers_iNet() has not been called
InitializeDriverAndControllers_iNet was called, yet failed
Device number is out of range (is it connected & powered on?)
Channel number is out of range

Field number is out of range

iNet Controller not found

37



iNetErr FieldDoesNotExist = 8

iNetErr BadfieldNativeDataType =9
iNetErr_BadFieldReadType = 10
iNetErr TimeoutAtReadBegin = 11
iNetErr_TimeoutAtWaitForReadDone = 12
iNetErr_ControllerIsinWeeds = 13
iNetErr _illegalDataType = 14
iNetErr_FailedCopyDataTest = 15
iNetErr_CompressorHitError = 16
iNetErr FailedRamTest = 17
iNetErr RanOutOfMemory = 18
iNetErr_AlertFailed = 19

iNetErr CtrlrRomNotBooting = 20

iNetErr_CtrlrRamNotBooting = 21
iNetErr DriverDownloadFailed = 22

iNetErr CtrlrRWTestFailed =23
iNetErr_InterfaceBlockTestFailed = 24
iNetErr_IncCounterTestFailed =25
iNetErr EchoCmdToStatusTestFailed = 26
iNetErr_ControllerBootTestFailed = 27
iNetErr_ControlleFailedToBoot = 28
iNetErr_ControllerCmdFailed = 29

iNetErr GUI =30

iNetErr QSPI Busy = 31
iNetErr QSPI Halted = 32

iNetErr QSPI_ArgOutOfRange = 33
iNetErr QSPI_TimeOutErr = 34
iNetErr_FlakyNetwork = 35

iNetErr_CouldNotLocateDriverFile = 36
iNetErr_netNumOutOfRange = 37
iNetErr_SettingGroupNumOutOfRange = 38
iNetErr UnitTypeOutOfRange = 39

iNetErr DriverDidNotSetErrCode =40

iNetErr_SettingGroupTypeOutOfRange = 41

iNetErr ModuleNumOutOfRange = 42
iNetErr IntentionNumOutOfRange =43
iNetErr ReadOnlyField = 44

iNetErr WriteOnlyField = 45

iNetErr FieldValueOutOfRange = 46

(deviceNum, chanNum, fieldNum) refer to field that does not
exist

bad iNetFieldDataType value

bad iNetFieldReadType value

time out at read begin

timeout at wait for read done

controller is in the weeds

illegal data type

failed the CopyWaveData() test

compressor hit error

failed board ram test

ran out of memory

the routine that shows an alert failed

iNet Controller's ROM does not seem to boot up (poss
problem: controller, bus, rom)

iNet Controller's driver in RAM does not seem to boot up (poss
problem: controller, bus, ram, rom, download from ucontroller,
bad driver downloaded from host)

the download of the uController driver into controller ram failed
(driver may be bad, or hardware is bad) (the keys and copyright
did not match up).

failed during controller r/w test in Test DualPort Ram()
Interface block between uController and host computer is invalid
Controller failed CounterInc test

Controller failed EchoCmdToStatus test

Controller failed Test A Booted Controller test

Controller failed to Boot.

Controller failed to execute command

GUI Errors.
error related to graphical user interface

iNet Bus error codes

iNet Bus is busy running

iNet Bus hit HALT error

iNet Bus argument out of range

iNet Bus hit time out error

iNet Bus is acting flaky (need terminator?)

Driver Errors

could not find the DRIVER code resource file.

netNum is out of range

settingGroupNum is out of range

deviceType is out of range

Driver did not get a chance to set the error code; therefore
Driver is in trouble.

settingGroupType is out of range

Etc Codes

Module number is out of range gsw 5/2/95

Intention number is out of range gsw 5/2/95

Cannot write to this field, read only gsw 5/2/95

Cannot read from this field, write only gsw 5/2/95

Tried to set a field with a value that is too high or low gsw
5/2/95

38



iNetErr_ ArgTypeOutOfRange = 47
iNetErr BadKeyInFieldHierarchy =48
iNetErr Max LT MinInFieldHierarchy =49

iNetErr HierarchyFieldDatalnTrouble = 50
iNetErr_ChannelNamelnvalid = 51
iNetErr_tempUnits outOfRange = 52
iNetErr_sensorType outOfRange =53

iNetErr_CircBufErr = 54
iNetErr_CtlrDataBufferOverflow = 55
iNetErr PulledTooMuchOnLastPull=56

ERequired fbx DCIIR =57

EFreqTooLarge fx DCIIR =58
EFreqsNotAscending DCIIR = 59
ERequired fx DCIIR = 60
ERequired_adelx DCIIR =61
ElnvalidArg DCIIR = 62
EOrderTooHigh DCIIR = 63

EEven ndeg DCIIR = 64
EOrderTooLow DCIIR = 65

EActualOrder DCIIR = 66

iNetErr _InterfaceCompiledBadly =67
iNetErr BadInterfaceKey = 68
iNetErr BadAddrPassedToDriver = 69
iNetErr BadStaticVarInDriver = 70
iNetErr BadIntegerMathInDriver =71
iNetErr_BadChannelType = 72
iNetErr CppCompilerDidBad = 73
iNetErr MemMngr Failed = 74
iNetErr Toolbox Failed = 75
iNetErr_CrtRect Failed = 76
iNetErr DlogCode Failed =77
iNetErr DrvrNeedsFpu Failed = 78
iNetErr _iirCode Failed = 79
iNetErr_sprintf Failed = 80
iNetErr_Digitizelnit = 81
iNetErr SPE off =82

iNetErr Halt on =83
iNetErr CPTQP _failed to clr =84
iNetErr_gspiBusyBeforeDigitize=85
iNetErr weAbortedEarly=86
iNetErr_CtlrIlsBusyDoingSomething=87

iNetErr CtlrDidNotFinishCmd=88

ArgType parameter is out of range gsw 5/2/95

A BAD key was found in the field hierarchy data

A maximum value is less than a minium value in the field
hierarchy

Hierarchial field data is in trouble

The channel name is in trouble

temperature scale {C,K,F} out of range gsw 8/8/95

sensor type out of range gsw 8/8/95

Digitize Errors.

circular data buffer error

controller circular data buffer overwrote data before it was read
controller circular data buffer error where pulled too much on last
pull, gsw 10/4/95

Filter Error Codes

"At least one cutoff frequency (passband or stopband) is needed
for each transition band of bandpass and bandstop filters"
"Cutoff frequency must be less than half the sampling rate"
"Cutoff frequency negative or frequencies not in ascending order"
"Missing one or more cutoff frequencies"

"Missing passband ripple and/or stopband attenuation"

"Invalid argument"

"Necessary or specified filter order is too high -- maximum order
is %d"

"Filter order must be even for bandpass and bandstop filters --
order being increased by 1"

"Specified filter order is too low -- order being automatically
increased"

"Required filter order = %d (%s biquadratic section%s)"

New Error Codes

a variable type in interface file (e.g. "ionC_INT.c") is bad
the 'key' field passed to driver is bad

bad address passed to driver

bad static variable in driver

bad integer math in driver

bad channel Type

Cpp compiler failed

Memory Manager failed

Toolbox failed

CrtRect failed

Dialog Code failed

Driver file needs FPU

iir code failed

sprintf failed

initialization of digitizer failed 1/22/96 gsw

SPE off while digitize error 1/31/96 gsw

HALT while digitize error 1/31/96 gsw

CPTQP _failed to clr error 1/31/96 gsw

gsp busy before digitize error 1/31/96 gsw
controller was told to abort digitize 2/11/96 gsw
controller is busy doing something and cannot be interrupted
now. 2/11/96 gsw

controller did not finish the command 2/11/96 gsw

39



iNetErr CodeGenSegmentErr=89
iNetErr CPTQP_is Bad=90

iNetErr CompilerErr=91
iNetErr_DrvrOrUserBufferOverflow = 92

iNetErr NonCompatible OS =93

iNetErr_StatusRegBase = 10000

iNetErr StatusRegEnd = 10255

code generation segment error 2/22/96 gsw
CPTQP is bad 6/01/96 gsw
Compiler error 6/18/96 gsw

User or Driver data buffer overwrote data before it was read

8/18/96 gsw

Operating System (version) is not compatible with driver

8/28/96 gsw

STATUS register error codes.

this is an error code from the iNet stats register that is

(10000+status)
last status register location

Open Window Commands (i.e. values for Page to Open)
These are field values for the OpenWindow Channel within the DRIVER.

iNetCM_OpenWindow Record = 1
iNetCM_OpenWindow Network = 2
iNetCM_OpenWindow Test =3

open the RECORD page
open the NETWORK page
open the TEST page

Button Press Commands (i.e. values for Button to Press)

These are field values for commands that press buttons in the instruNet World window.

iNetCM_BtnPress Record Start = 1
iNetCM_BtnPress Record Stop =2
iNetCM_BtnPress Record Open =3
iNetCM_BtnPress Record Save =4
iNetCM_BtnPress Record Options =5
iNetCM_BtnPress Record Timing = 6
iNetCM_BtnPress Record Trigger =7
iNetCM_BtnPress Record Probe =8

iNetCM_BtnPress Network Restore=9
iNetCM_BtnPress Network Store = 10
iNetCM_BtnPress Network Open =11
iNetCM_BtnPress Network Save =12
iNetCM_BtnPress Network Clear = 13
iNetCM_BtnPress Network Reset= 14

iNetCM_BtnPress Test Search = 15
iNetCM_BtnPress Test Test =16
iNetCM_BtnPress Test BigTest= 17
iNetCM_BtnPress Test Open = 18
iNetCM_BtnPress Test SaveAs =19
iNetCM_BtnPress Test Clear = 20

RECORD page

press 'Start' button in RECORD page
press 'Stop' button in RECORD page
press 'Open' button in RECORD page
press 'Save' button in RECORD page
press 'Options' button in RECORD page
press 'Timing' button in RECORD page
press "Trigger' button in RECORD page
press 'Probe' button in RECORD page

PROBE page

NETWORK page

press 'Restore' button in NETWORK page
press 'Store' button in NETWORK page
press 'Open' button in NETWORK page
press 'Start' button in NETWORK page
press 'Clear' button in NETWORK page
press 'Reset' button in NETWORK page

TEST page

press 'Search' button in TEST page
press 'Test' button in TEST page
press 'Big Test' button in TEST page
press 'Open' button in TEST page
press 'Save As' button in TEST page
press 'Clear' button in TEST page

DRIVER Channel Numbers (i.e. values for chanNum)

Channel numbers for the DRIVER

40



driver ChanNum_OpenWindow = 1
driver ChanNum_PushButton = 2
driver ChanNum_RecordOptions = 3

Open Window Command (DRIVER channel type)

Push Button Command (DRIVER channel type)

RECORD OPTIONS = {hScale, hPosition, maxPtsPerPix,
gridOnOft, plotLinesDots}

HARDWARE Settings (i.e. values for fieldNum)
FIELD NUMBERS for HARDWARE settingGroup

fldNum_Vin_sensorType = 1
fldNum_Vin_ wiring =2
fldNum_Vin_AnaLpFltr Hz=3
fldNum_Vin ad IntegrateSecs = 4
fldNum_Vin ad VmaxRange =5

sensorType

wiring options

analog Ip filter hz value (e.g. 0, 40, 16000 for Model 100)

# of seconds that a/d integrates via multiple readings. 1/19/96
voltage range (max voltage) (i.e. a/d gain) {e.g. 5, .626, 0.078,
0.01}

SENSOR TYPES (i.e. values to write to the field)

Sensor Units

Screws Used Wiring Constants Used
ion_SensorType Voltage =1 Voltage Volts

(V+ - V-) Differential (none)

(V - GND) Single-Ended (none)
ion_SensorType Current =2 Current Amps

(V+ - V-) Shunt Resistor Rshunt
ion_SensorType Resistance =3 Resistance Ohms

(V+,V-,Vout,Gnd) Voltage Divider Rshunt, Vexcit
(V+,V-,Vout,Gnd) Bridge Ro, Vexcit, Vinit
StrainGauge Strain(E)

(V+,V-,Vout,Gnd) Voltage Divider Ro,Shunt,Vexcit,Vinit,GF
(V+,V-,Vout,Gnd) Q Bridge Bend Ro,Vexcit,Vinit, GF,Rlead
(V+,V-,Vout,Gnd) H Bridge Bend Ro,Vexcit,Vinit, GF,Rlead
(V+,V-,Vout,Gnd) H Bridge Axial ~ Ro,Vexcit,Vinit,GF,Rlead,v_Poi
(V+,V-,Vout,Gnd) F Bridge Bend I  Vexcit, Vinit, GF
(V+,V-,Vout,Gnd) F Bridge Axial I ~ Vexcit,Vinit,GF,v_Poi
(V+,V-,Vout,Gnd) F Bridge Axial II Vexcit,Vinit,GF,v_Poi
ion_SensorType RTD =5 RTD Celsius

(V+,V-,Vout,Gnd) Voltage Divider alpha,delta,Ro,Shunt,Vexcit
Thermocouple J  Celsius

ion_SensorType StrainGauge = 4

ion_SensorType TC J=6

(V+ - V-) Differential Calc with polynomial
ion_SensorType TC K=7 Thermocouple K Celsius

(V+ - V-) Differential Calc with polynomial
ion_SensorType TC T =28 Thermocouple T Celsius

(V+ - V-) Differential Calc with polynomial
ion_SensorType TC E=9 Thermocouple E  Celsius

(V+ - V-) Differential Calc with polynomial
ion_SensorType TC R =10 Thermocouple R Celsius

(V+ - V-) Differential Calc with polynomial
ion_SensorType TC S=11 Thermocouple S Celsius

(V+ - V-) Differential Calc with polynomial
ion_SensorType Thermister = 12 Thermister Celsius

ion_SensorType Digital =13

(V+,V-,Vout,Gnd) Voltage Divider
Not yet supported (gsw 8/11/95)

(not yet supported)

Digital INT16 Digital word

41



WIRING OPTIONS (i.e. values to write to the field)

ion_Wiring Differential = 1 DIFFERENTIAL
ion_Wiring_SingleEnded = 2 SINGLE-ENDED POS
ion_Wiring_Shunt Resistor = 3 SHUNT RESISTOR
ion_Wiring_Voltage Divider =4 VOLTAGE DIVIDER
ion_Wiring Bridge = 5 BRIDGE

ion Wiring Q Bridge Bend =6 Q Bridge Bend

ion Wiring H Bridge Bend =7 H Bridge Bend

ion Wiring H Bridge Axial =8 H Bridge Axial

ion Wiring F Bridge Bend 1=9 F Bridge Bend I

ion Wiring F Bridge Axial 1=10 F Bridge Axial I

ion Wiring F Bridge Axial II=11 F Bridge Axial 11

Analog Low Pass Filter Options (e.g. Model 100) (i.e. values to write to the field)

ion AD_ AnalpFltr Pop Off=1 off

ion AD_Anal pFltr Pop 40Hz =2 40Hz

ion AD_AnalpFltr Pop 4KHz =3 4KHz

A/D Range Options (e.g. Popup) (i.e. values to write to the field)
ion_ AD RangePop 5V =1 +/- 5.0V

ion_ AD RangePop 0 625V =2 +/- .625V
ion_AD RangePop 0 078V =3 +/- 0.078V

ion_ AD RangePop 0 010V =4 +/- 0.010V

Vin CONSTANTS Settings (i.e. values for fieldNum)
FIELD NUMBERS for Vin CONSTANTS settingGroup

fldNum_VinCon_Ro =1 Ro constant
fldNum_VinCon_Rshunt = 2 Rshunt constant
fldNum_VinCon_Vexcitation = 3 Vexcitation constant
fldNum_VinCon_Vinit= 4 Vinit constant
fldNum_VinCon_alpha =5 alpha constant
fldNum_VinCon_delta =6 delta constant
fldNum_VinCon_GF =7 GF constant
fldNum_VinCon_v_Poisson = § v_Poisson constant

CONTROLLER CHANNEL NUMBERS (i.e. values for chanNum)
Channel numbers for the NETWORK's Controller.

controller ChanNum_Chl_Dio =1 Chl Dio (counter/timer/digital in/digitial out)
controller ChanNum_Ch2 Dio = 2 Ch2 Dio (counter/timer/digital in/digitial out)
controller ChanNum_Ch3 Dio =3 Ch3 Dio (counter/timer/digital in/digitial out)
controller ChanNum_Ch4 Dio = 4 Ch4 Dio (counter/timer/digital in/digitial out)
controller ChanNum_Ch5 Dio =5 Ch5 Dio (counter/timer/digital in/digitial out)
controller ChanNum_Ch6_Dio =6 Ch6 Dio (counter/timer/digital in/digitial out)
controller ChanNum_Ch7_ Dio =7 Ch7 Dio (counter/timer/digital in/digitial out)
controller ChanNum_Ch8 Dio = 8 Ch8 Dio (counter/timer/digital in/digitial out)
controller ChanNum_Ch9 Dio =9 Ch9 Dio (counter/timer/digital in/digitial out)
controller ChanNum_C10 Dio = 10 Ch10 Dio (counter/timer/digital in/digitial out)
controller ChanNum C11 Time =11 Ch11 Time (get time in seconds since reset, accurate to .25us)

42



controller ChanNum_C12 Digitizer = 12 Ch12 Digitizer {control timebase and trigger while digitizing on

network}
GENERAL Settings (i.e. values for fieldNum)
FIELD NUMBERS for GENERAL settingGroup
fldNum_General valueEu =1 inputValue (engineering units)
fldNum_General unitsLabel = 2 units label (editable); e.g. "Volts", "C", "F", "mmHg".
fldNum_General userName = 3 user name (editable)
fldNum_General ad sampleRateMult=4 sampleRateMult (0.001% to 100% of master sample rate)
fldNum_General chanName =5 channel name (non-editable)

DISPLAY Settings (i.e. values for fieldNum)
FIELD NUMBERS for DISPLAY settingGroup (1 for each channel)

fldNum_Display dispOnOff =1 1 = display is turned on (in RECORD window); or off (2)

fldNum_Display dispMaxEU = 2 EU value of top line of display (RECORD window, and PROBE
dialog)

fldNum_Display dispMinEU = 3 EU value of bottom line of display (RECORD window, and

PROBE dialog)

DIGITAL FILTER Settings (i.e. values for fieldNum)
FIELD NUMBERS for DIGITAL FILTER settingGroup (1 for each filter in each channel)

fldNum_ DigitalFilter filterMethod = 1 ATYPE DCIIR = {FILTEROFF DCIIR,
BUTTERWORTH_ DCIIR, CHEBYSHEV P DCIIR,
CHEBYSHEV_S DCIIR, ELLIPTIC DCIIR}
fldNum_DigitalFilter passBand Ripple dB =2 passband ripple (dB)

fldNum_DigitalFilter stopBand Attn dB =3 stopband attenuation (dB)
fldNum_ DigitalFilter filterOrder = 4
fldNum_DigitalFilter passbandl Hz =5 (lower) passband cutoff frequency
fldNum_DigitalFilter stopbandl Hz =6 (lower) stopband cutoff frequency
fldNum_DigitalFilter passband2 Hz =7 upper passband cutoff

(BANDPASS DCIIR/BANDSTOP_DCIIR only)
fldNum_DigitalFilter stopband2 Hz = 8§ upper stopband cutoff

(BANDPASS_DCIIR/BANDSTOP_DCIIR only)

Filter Method (this is a popup menu) (i.e. values to write to the field)
Value for ATYPE DCIIR that specifies the filter method

FILTEROFF DCIIR =1 filter is turned off (i.e. not running)

ELLIPTIC DCIIR =2 ELLIPTIC -- The magnitude response of an elliptic filter is
equiripple in both passband and stopband. For given filter
specifications, the elliptic filter requires the lowest order of the
four available types.

CHEBYSHEV P DCIIR =3 CHEBYSHEV _P -- The magnitude response of a Chebyshev
filter with an equiripple passband exhibits monotonically
increasing stopband attenuation.

CHEBYSHEV_S DCIIR =4 CHEBYSHEV _S -- The magnitude response of a Chebyshev
filter with an equiripple stopband exhibits a monotonically
decreasing passband.

BUTTERWORTH_DCIIR =5 BUTTERWORTH -- The magnitude response of a Butterworth
filter exhibits maximal passband flatness and monotonic
stopband attenuation. For given filter specifications, the

43



Butterworth filter requires the highest order of the four approx.
types.

RECORD OPTIONS Settings (i.e. values for fieldNun)
FIELD NUMBERS for RECORD OPTIONS settingGroup (1 for each driver)

fldNum_RecordOptions_hScale = 1

fldNum_RecordOptions_hPosition = 2
fldNum_RecordOptions_plotLinesDots = 3
fldNum_RecordOptions_gridOnOff = 4
fldNum_RecordOptions_maxPtsPerPix = 5
fldNum_RecordOptions_saveData = 6
fldNum_RecordOptions_overflowAlert = 7

Save Data Options (i.e. values for Save Data)

Off/To Ram Buffer/To Disk Popup
ion_gSaveDataPopup Off =1

ion_gSaveDataPopup ToRamBuffer = 2

ion_gSaveDataPopup_ToDisk =3

ion_gSaveDataPopup_ UserControl = 4

FILE Settings (i.e. values for fieldNum)

horiz scale (e.g. 0.1 Seconds per horiz division) if = 0, we do an
auto-scale and set ~5 digitized points per pixel

horiz position (i.e time of left edge, e.g. 0 Seconds)

plot dots or connect dots with lines

grid is on or off

maximum points per vertical pixel column when plotting

save data {off / To Ram Buffer / To Disk / User Control}

show alert on buffer overflow ON/OFF, gsw 11/25/95

off (the DIGITIZE fields in the FILE and DRIVER RAM
BUFFER settings groups are turned OFF)

to ram buffer (the DIGITIZE field in the DRIVER RAM
BUFFER field group will automatically follow the DIGITIZE
field in the DISPLAY fielgroup).

to disk (the DIGITIZE field in the FILE field group will
automatically follow the DIGITIZE field in the DISPLAY
settinggroup).

user control (the FILE and DRIVER RAM BUFFER
settinggroups are left alone)

FIELD NUMBERS for FILE settingGroup (1 for each filter in each channel)

fldNum_File FileOnOff = 1

fldNum_File DigitizeOnOff =2

fldNum_File FileName =3

fldNum_File fileCmd =4

fldNum_File ScanNum = 5
fldNum_File FirstPointNum = 6
fldNum_File NumPts =7

CONTROL

on/off for FILE turned ON & Linked to a Display (scroll bar will
load from file)

on/off for Moving Digitized Data to FILE at Digitize Time

FILE
Name of File (pathname is stored in MasterDirectory
SettingGroup)

PROGRAMMING

command = {fileCmd FileToRamBuffer (ScanNum),

fileCmd RamBufferToFile (ScanNum),
fileCmd_FileToUserBuffer (ScanNum),
fileCmd_UserBufferToFile (ScanNum), fileCmd_Get File Info
(ScanNum, NumPts per Scan)}. If programmer needs more
control, they should go directly to the file.

File Command Options (e.g. Popup) (i.e. valuesto read/write to the field)

44



fileCmd_FileToRamBuffer = 1 Transfer data from FILE @ 'ScanNum' to DRIVER RAM

BUFFER
fileCmd RamBufferToFile = 3 Transfer data from DRIVER RAM BUFFER to FILE @
'ScanNum'
fileCmd_FileToUserBuffer = 4 Transfer data from FILE @ 'ScanNum' to USER RAM BUFFER
fileCmd_UserBufferToFile =5 Transfer data from USER RAM BUFFER to File @ 'ScanNum'
fileCmd Get File Info=16 Get info on FILE (ScanNum = # of scans; NumPts = pts per
scan)

MASTER DIRECTORY Settings (i.e. values for fieldNum)
FIELD NUMBERS for MASTER DIRECTORY settingGroup (1 for each filter in each channel)

CONTROL

fldNum_Directory PathName = 1 Path Name (for directory that contains a file)

fldNum_Directory NewDirectoryName=2 New Directory Name = { ndn_PromptUser, ndn_AutoGenerate }

fldNum_Directory SaveSettingsOnOff=3 When we create a new directory we can save network settings
into the new directory with file name "iNet.prf" if ON =
{On/Off}

fldNum_Directory LoadSettingsOnOff=4 When we are asked to redirect our directory, then if LOAD

SETTINGS is ON, and a "iNet.prf" exists in the new Directory,
then we will load those settings.

fldNum_Directory FileType =5 FileType = {ft Text, ft iNet Binary}
PROGRAMMING
fldNum_Directory dirCmd = 6 dirCmd = {dirCmd_CreateNewDirectory,

dirCmd_ShowDirectoryDlog}

New Directory Name Options (e.g. Popup) (i.e. values to write to the field)

ndn_PromptUser = 1 Prompt User
ndn_AutoGenerate = 2 Auto Generate

FileType Options (i.e. values to write to the field)

ft iNet Binary =1 iNet Binary

ft Text=2 Text

Directory Command Options (dirCmd popup) (i.e. values to write to the field)
dirCmd_CreateNewDirectory = 1 Create a new directory

dirCmd_ShowDirectoryDlog = 2 Show the Directory dlog & let user redirect directory

USER RAM BUFFER Settings (i.e. values for fieldNum)
FIELD NUMBERS for USER RAM BUFFER settingGroup (1 for each filter in each channel)

CONTROL

fldNum_UserBuffer DigitizeOnOff =1 on/off for Moving Digitized Data to buffer at Digitize Time
USER BUFFER

fldNum_UserBuffer UserBufferAddr =2 user's addr to a buffer in RAM; 0 if not used (off) The Buffer
MUST be able to hold one scan; therefore, it must be >=
ptsPerScan.

fldNum_UserBuffer UserPtrSizeInBytes=3 This is the size of the user's buffer in Bytes. It must be >=

ptsPerScan. Each point consumes 4 bytes.

45



fldNum_UserBuffer ScanNumlIn = 4
fldNum_UserBuffer PtNumIn =5
fldNum_UserBuffer ScanNumOut = 6
fldNum_UserBuffer PtNumOut =7

BUFFER COUNTERS

User sees base 1, gsw 11/25/95

Scan # of last point pushed into buffer = {1...numScans}
Point # of last point pushed into buffer = {1...PtsPerScan}
Scan # of last point pulled out of buffer = {1...umScans}
Point # of last point pulled out of buffer = {1...PtsPerScan}

DRIVER RAM BUFFER Settings (i.e. values for fieldNum)
FIELD NUMBERS for DRIVER RAM BUFFER settingGroup (1 for each filter in each channel)

fldNum_DvrBuffer DigitizeOnOff = 1

fldNum_DvrBuffer BufferAddr =2

fldNum_DvrBuffer BufferAddrSizeInBytes = 3

fldNum_DvrBuffer ScanNumlIn =4
fldNum_DvrBuffer PtNumIn =5
fldNum_DvrBuffer ScanNumOut = 6
fldNum_DvrBuffer PtNumOut = 7

TIMING Settings (i.e. values for fieldNum)

FIELD NUMBERS for TIMING settingGroup

fldNum_Timing_digitizeOnOff = 1
fldNum_Timing_ptsPerScan = 2
fldNum_Timing_noOfScans = 3
fldNum_Timing_scanMode = 4

fldNum_Timing_sampleRate = 5
fldNum_Timing minSecsBetweenTsfrs=6

fldNum_Timing_network bps =7
fldNum_Timing_switching = 8

CONTROL
on/off for Moving Digitized Data to buffer at Digitize Time

USER BUFFER

driver's addr to a buffer in RAM; 0 if not used (off) The Buffer
MUST be able to hold one scan; therefore, it must be >=
ptsPerScan.

This is the size of the drivers's addr in Bytes. It must be >=
ptsPerScan. Each point consumes 4 bytes.

BUFFER COUNTERS

User sees base 1, gsw 11/25/95

Scan # of last point pushed into buffer = {1...numScans}
Point # of last point pushed into buffer = {1...PtsPerScan}
Scan # of last point pulled out of buffer = {1...numScans}
Point # of last point pulled out of buffer = {1...PtsPerScan}

1 = digitizer turned on; 2 = off

points per scan (i.e. pts/trace)

# of scans

space between scans = {ion_gScanModePopup_StripChart,
ion_gScanModePopup OscilloQueued,
ion_gScanModePopup Oscilloscope}

master sample rate (pts/second)

minimum secs between 16bit tsfrs. (It gives the analog
electronics time to adjust from 1 channel to the other. gsw
2/22/96)

network data clock rate (bits per second), gsw 11/25/95
switch channels quickly or with more accuracy and slower =
{ion_gSwitchingPopup_Fast}

ON/OFF Options (e.g. popup) (i.e. values to write to the field)

ion_gOnOffPopup On =1
ion_gOnOffPopup Off =2

on
off

Lines/Dots Options (e.2. popup) (i.e. values to write to the field)

ion_glinesDots Lines = 1
ion_glLinesDots Dots = 2

Lines
Dots

46



ON/OFF/OFF_WITH_SKIP Options (e.g. popup) (i.e. values for Scan Mode)

Determines the mode of digitization

ion_gScanModePopup StripChart = 1 STRIP CHART continuous scans

ion_gScanModePopup Oscilloscope=2 OSCILLOSCOPE non-continuous scans pulled out of
controller's buffer in a filo manner (first in, last out).

ion_gScanModePopup OscilloQueued =3 OSCILLO QUEUED non-continuous scans pulled out of

controller's buffer in a fifo manner (first in first out)

Switching Mode (i.e. values for Ch Switch Mode)

ion_gSwitchingPopup Accurate = 1 switch slower, yet more accurate
ion_gSwitchingPopup Fast =2 switch faster, yet less accurate

TRIGGER Settings (i.e. values for fieldNum)
FIELD NUMBERS for TRIGGER settingGroup

fldNum_Trigger triggerModePop = 1 trigger mode popup {1=off, 2=auto, 3=normal}
fldNum_Trigger thresholdEu = 2 trigger threshold engineering units
fldNum_Trigger slopeRisFalPop =3 slope {1=rising edge, 2=falling edge}
fldNum_Trigger preTrigSec =4 pretrigger (seconds)

fldNum_Trigger srcNet=5 trigger source netNum

fldNum_Trigger srcDevice = 6 trigger source deviceNum

fldNum_Trigger srcModule =7 trigger source moduleNum

fldNum_Trigger srcChannel = 8 trigger source channeNum

MODE options in TRIGGER Settings Group (i.e. values for Trigger Mode)

ion_TriggerMode Off=1 trigger off (i.e. start when START button is pressed)

ion_TriggerMode Auto =2 auto trigger (wait for threshold, and if it does not arrive within
several secs, trigger anyway)

ion_TriggerMode Norm =3 Normal trigger (ONLY trigger when src crosses threshold)

SLOPE options in TRIGGER Settings Group (i.e. values for Trigger Slope)

ion_Rising = 1 trigger on rising edge
ion_Falling = 2 trigger on falling edge

TIMER Settings (i.e. values for fieldNum)
FIELD NUMBERS for TIMER settingGroup

fldNum_Timer functionPop =1 function mode popup {1=digitalln, 2=digitalOut, 3=clkOut,
4=periodMeas}

fldNum_Timer clkTotalSecs = 2 clockOut total time (seconds)

fldNum_Timer clkHiSecs =3 clockOut high time (seconds)

fldNum_Timer measHiOrCyclePop = 4 periodMeasureCyclePop {1=measureCycleTime,
2=measureHighTime}

fldNum_Timer measResolutionPop = 5 periodMeasureResolutionPop {1 = 0.25us, 2 = 4ms}

fldNum_Timer measNumPeriods = 6 periodMeasureNumPeriods {1...255}

Timer function mode popup (i.e. values to write to the field)
uController TPU Channel Timer/Din/Dout Function Options

47



ion_TimerFuncPopup Din = 1 digital input

ion_TimerFuncPopup Dout = 2 digital output
ion_TimerFuncPopup_ClkOut = 3 clock output
ion_TimerFuncPopup PerMeas =4 period measurement

Timer measurement option (i.e. values to write to the field)
uController TPU Channel measure CYCLE time or HIGH time.

ion_measHiOrCyclePop CycleTime = 1 measure cycle time (falling edge to falling edge)
ion_measHiOrCyclePop HighTime = 2 measure high time (rising edge to falling edge)

Timer resolution option (i.e. values to write to the field)
25us/8ms Resolution popup

ion_timeResolutionPop quarterMicroSec = 1 .25us resolution
ion_timeResolutionPop_eightMilliSec = 2 8ms resolution

DIGITAL I/O Settings Field Numbers (i.e. values for fieldNum)
FIELD NUMBERS for 8bit Mod 100 Digital I/O settingGroup

fldNum_Mod100DinDout_dout = 1 digital output, {0..255}
fldNum_Mod100DinDout direction = 2 direction, {0..255}

48



Appendix B: BINARY file format

Waves stored in iNet BINARY file format are stored with 1 wave per file, where wave data
and header are both stored in the data section of the file, where the header (shown
below) is at the beginning of the file's data, and the actual points are a 1 dimensional
array at the end of the header. The 0th byte of the file corresponds to
'headerSizelnBytes', and the 1st waveform point begins at 'data[0]'

Macintosh:
file type:'GWID'
creator type:'ioNe'

This header info is at the beginning of GWI iNet BINARY files that contain waves.

iNetINT32 headerSizeInBytes

iNetINT32 int32key
iNetINT32 file endian
iNetINT16 intl6key
iNetINT16 zero

iNetUINT32 acquisition_secsSincel 904

iNetUINT32 pointsPerScan LSB

iNetUINT32 pointsPerScan MSB

iNetUINT32 numScansStoredBeforeLastScan
iNetUINT32 numPointsInLastPartialScan LSW
iNetUINT32 numPointsInLastPartialScan MSW

iNetFLT32 firstPoint Time_ Secs
iNetFLT32 samplePeriod_Secs

iNetINT32 arrayDataType

HEADER INFORMATION
contains length, in bytes, of this header (this does not include 1
byte of data)

FILE INFORMATION

32bit key that should contain 0x12345678 (this will help you
make sure your byte lanes are ok)

endian mode of stored data on disk = 0 bigEndian_ion, 1
littleEndian_ion

16bit key that should contain 0x1234; (this field should
consume 2 bytes in the struct -- no padding)

set to 0; (this field should consume 2 bytes in the struct -- no
padding)

# of seconds since 1904 that the acquisition started (this is used
to compute the date of acquisition)

# OF POINTS STORED

This file contains a set of scans. Each scan is 1 to 264 points
long. For example, we might have 100 scans, each 1000 points
long. In this case: pointsPerScan LSB = 1000,
pointsPerScan MSB = 0, numScansStoredBeforeLastScan =
100, numPointsInLastPartialScan LSW = 0,
numPointsInLastPartialScan MSW =0

# points per scan =

(pointsPerScan MSB * 2732) + pointsPerScan LSB

# of complete scans stored in file

# points stored in last scan if it is partially complete
=(numPointsInLastPartialScan MSW * 2/32) +
numPointsInLastPartialScan LSW

TIME INFORMATION
time of st point, units are seconds
time between points, units are seconds

TYPE OF DATA STORED

Type of src array data. iNetDataType:

0 iNetDT INT16: 16bit integer, signed

2 iNetDT UINT16: 16bit integer, unsigned
3 iNetDT INT32: 32bit integer, signed

4 iNetDT UINT32: 32bit integer, unsigned

49



iNetINT32 bytesPerDataPoint
iNetStr31 verticalUnitsLabel
iNetStr31 horizontalUnitsLabel
iNetStr31 userName

iNetStr31 chanName

iNetINT32 minCode
iNetINT32 maxCode
iNetFLT32 minEU
iNetFLT32 maxEU

iNetINT32 netNum
iNetINT32 deviceNum
iNetINT32 moduleNum
iNetINT32 chanNum

iNetStr255 notes

iNetINT32 expansionl
iNetINT32 expansion2
iNetINT32 expansion3
iNetINT32 expansion4
iNetINT32 expansion5
iNetINT32 expansion6
iNetINT32 expansion7
iNetINT32 expansion8
iNetINT32 expansion9
iNetINT32 expansion10

iNetINT32 int32key StructTest

iNetFLT32 *data[1]

5 iNetDT FLT32: 32bit float (ieee Macintosh format)

6 iNetDT Double: 'double', as determined by the compiler (e.g.
flto4, f1t80, f1t96, f1t128) see 'bytesPerDataPoint’ field to see
how many bytes

# of bytes for each datapoint (e.g. 4 for 32bit signed integer)
pascal string of vertical units label (e.g. "Volts")

pascal string of horizontal units label (e.g. "Secs")

pascal string of channel named by user (e.g. "Pressure 1")
pascal string of channel name (e.g. "Chl Vin+")

DATA MAPPING

if data is stored in integer format,

this contains the mapping from integer

to engineering units (e.g. +/-2048 A/D

data is mapped to +/- 10V, minCode = -2048, maxCode =
+2047, minEU = -10.000, maxEU = +9.995

iNet NETWORK ADDRESS (this does not need to be filled in,
OL's are ok)

channel network # (this pertains to iNet only; use 0 otherwise)
channel device # (this pertains to iNet only; use 0 otherwise)
channel module # (this pertains to iNet only; use 0 otherwise)
channel channel # (this pertains to iNet only; use 0 otherwise)

END USER NOTES
pascal string that contains notes about the data stored.

EXPANSION FIELDS

expansion fields that are preset to 0 and
then ignored

KEY TO TEST STRUCT PACKING
32bit key that should contain 0x12345678;

ACTUAL DATA
contains array of data of type

50





