User's Guide

Shop online at
omega.c@oﬂ

omega.com
e-mail: info@omega.com
For latest product manuals:
omegamanual.info

IS09001 (ISQ9002

RTIFIED RTIFIED
CORPORATE QUALITY CORPORATE QUALITY
STAMFORD, CT MANCHESTER, UK

OMB-Programmer’s Manual

For Using DagX API Commands with:

+ OMB-DAQBOOK-100, -200 Series + OMB-DBK CARDS & MODULES
+ OMB-DAQBOARD-100, -200, -500 Series + OMB-WAVEBOOK SERIES

+ OMB-DAQBOARD-2000, -3000 Series + OMB-DAQ-3000 SERIES

+ OMB-DAQSCAN-2000 Series + OMB-WBK OPTIONS

+ OMB-DAQTEMP Series + OMB-TEMPBOOK

OMB-1008-0901 rev 10.3

omega.com-
LEOMEGA’

OMEGAnet® Online Service Internet e-mail
omega.com info@omega.com

Servicing North America:

U.S.A.: One Omega Drive, P.O. Box 4047

ISO 9001 Certified Stamford, CT 06907-0047
TEL: (203) 359-1660 FAX: (203) 359-7700
e-mail: info@omega.com

Canada: 976 Bergar
Laval (Quebec) H7L 5A1, Canada
TEL: (514) 856-6928 FAX: (514) 856-6886
e-mail: info@omega.ca

For immediate technical or application assistance:

U.S.A. and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA®
Customer Service: 1-800-622-2378 / 1-800-622-BEST®
Engineering Service: 1-800-872-9436 / 1-800-USA-WHEN®

Mexico: En Espanol: (001) 203-359-7803 e-mail: espanol@omega.com
FAX: (001) 203-359-7807 info@omega.com.mx
Servicing Europe:
Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands
TEL: +31 (0)20 3472121 FAX: +31 (0)20 6434643

Toll Free in Benelux: 0800 0993344
e-mail: sales@omegaeng.nl

Czech Republic: Frystatska 184, 733 01 Karvind, Czech Republic

TEL: +420 (0)59 6311899 FAX: +420 (0)59 6311114

Toll Free: 0800-1-66342 e-mail: info@omegashop.cz
France: 11, rue Jacques Cartier, 78280 Guyancourt, France

TEL: +33 (0)1 61 37 2900 FAX: +33 (0)1 30 57 5427

Toll Free in France: 0800 466 342
e-mail: sales@omega.fr

Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
TEL: +49 (0)7056 9398-0 FAX: +49 (0)7056 9398-29
Toll Free in Germany: 0800 639 7678
e-mail: info@omega.de

United Kingdom: One Omega Drive, River Bend Technology Centre
ISO 9002 Certified Northbank, Irlam, Manchester
M44 5BD United Kingdom
TEL: +44 (0)161 777 6611 FAX: +44 (0)161 777 6622
Toll Free in United Kingdom: 0800-488-488
e-mail: sales@omega.co.uk

It is the policy of OMEGA Engineering, Inc. to comply with all worldwide safety and EMC/EMI
regulations that apply. OMEGA is constantly pursuing certification of its products to the European New
Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct, but OMEGA accepts no liability for any
errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, human applications.

Documents Related to Daq Products

Note:

During software installation, Adobe® PDF versions of user’s manuals will
automatically install onto your hard drive as a part of product support. The
default location is in the Programs group, which can be accessed from the
Windows Desktop. Initial navigation is as follows:

Start [Desktop “Start” pull-down menu]

= Programs

= Omega DagX Software

You can also access the PDF documents directly from the data acquisition CD
by using the <View PDFs> button located on the opening screen.

Refer to the PDF documentation for details regarding hardware and software
pertinent to your data acquisition system.

A copy of the Adobe Acrobat Reader® is included on your CD. The Reader
provides a means of reading and printing the PDF documents. Note that
hardcopy versions of the manuals can be ordered from the factory.

How to use this Manual

This manual is for individuals who write their own programs. If you prefer to use existing out-of-the box
software such as DaqView, ViewXL, DASYLab, SnapMaster, you do not need to read this manual.

This manual explains how to program data acquisition systems using various APIs. The programming
languages used in the examples are C/C++ and Visual Basic. In addition to the information in this manual,
you need to refer to your hardware user’s manual. It may be helpful to read the DaqView user’s manual to
appreciate how a user-friendly data acquisition system looks from the user’s point of view. You may also
need to consult documentation pertaining to your specific computer system and programming environment.

In regard to this manual, you should read chapter 1, and then refer to additional chapters that are relevant to
your programming environment.

The manual is organized as follows:

1. Introduction - The manual begins with an overview of issues related to data acquisition
programming and takes a look at the options available for making the task as easy as possible.

2. API Programming — General Models — discusses aspects of the data acquisition environment,
provides several APl models and a summary of selected API functions. The chapter includes a
section entitled, Seven Easy Steps to Data Acquisition.

3. Using Multiple Devices
4. Dag APl Command Reference
Appendix A — Appendix Removed. Outdated material.

Appendix B, Using Borland C++

Appendix C, Custom OEM Installation, explains the procedures required for custom reseller hardware
and driver installation and distribution.

Appendix D, dag9513... Commands, this appendix only applies to DagBook/100 Series, DagBook/200
Series, DagBoard/100 Series and DagBoard/200 Series devices. The appendix includes an
API programming model for 9513 counter-timer chip devices and includes API reference
material for the dagq9513... command prototypes.

Note: During software installation, Adobe® PDF versions of user manuals will automatically
install onto your hard drive as a part of product support. The default location is in the
Programs directory, which can be accessed from the Windows Desktop. Refer to the
PDF documentation for details regarding both hardware and software.

A copy of the Adobe Acrobat Reader® is included on your CD. The Reader provides
a means of reading and printing the PDF documents. Note that hardcopy versions of
the manuals can be ordered from the factory.

Reference Note: The readme.file on your install CD-ROM identifies the location of
program examples that are included on the CD.

Programmer’s Manual 908494 vii

Table of Contents

1- Introduction

API Features...... 1-1
Language Support......1-2
Driver Installation...... 1-2

A Note Regarding APl Command
Applicability 1-3

2- APl Programming - General Models

4 - API Command Reference

Data Acquisition Environment...... 2-1
Application Programming Interface (API) 2-1
Hardware Capabilities and Constraints...... 2-1
Signal Environment...... 2-2
Seven Easy Steps to Data Acquisition 2-2

Models

Initialization and Error Handling...... 2-9

One-Step Command Acquisitions 2-11

Counted Acquisitions Using Linear Buffers...2-12

Indefinite Acquisition, Direct-To-Disk Using
Circular Buffers...... 2-14

Analog Output...... 2-16

Generating DAC FIFO Waveforms ...2-18

Digital /O on P2...... 2-19

Using DBK Card Calibration Files...... 2-20

Zero Compensation...... 2-23

Linear Conversion...... 2-25

3- Using Multiple Devices

Overview 41-1
Command Information Layout......4.1-2
Predefined Parameter Definitions...... 4.1-4

Mask and Flag Definitions......4.1-6
Setting/Constructing Mask & Flag Values....4.1-6
Reading/Interpreting Mask & Flag Values....4.1-7

APl Commands

Alphabetic Listing......4.1-8

Grouped by Function......4.1-9

The APl Commands, In Detail...... 4.1-13
API Error Codes......4.7-1

Appendix A — Removed, Outdated Material

Appendix B —Using Borland C++

Appendix C — Custom OEM Installation

Appendix D —daq9513... Commands

Overview...... 3-1
Asynchronous Operation 3-1
Synchronous Operation 3-1
Asynchronous Operation of Multiple
Devices 3-1

Synchronous Operation of Multiple
Devices 3-3
Internal Clock Method...... 34
Master Clock Method...... 3-5
External Clock Method...... 3-7

Reference Note:

Glossary

The readme.file on your install CD provides the location of program examples that are included on the CD.

Programmer’s Manual

This page is intentionally blank.

X 908494 Programmer’s Manual

Introduction 1

API Features...... 1-1

Language Support...... 1-2

Driver Installation...... 1-2

A Note Regarding Devices and APl Command Applicability 1-3

Reference Note:

Your companion user’'s manual discusses hardware installation and setup, theory of
operation, troubleshooting, and ready-to-run software. If you plan to use DaqView software
[shipped with Daq device products], or you plan to use other ready-to-run software such as
DASYLab or SnapMaster, you will not need to use this manual.

Programmers can use the Applications Program Interface (API) to customize software. To
create effective programs, programmers must be familiar with the hardware and operation as
described in the previous chapters of this document.

Note: The readme files on the install CD-ROM will keep you up-to-date as APIs continue to
evolve.

Note: Daq PCMCIA is not supported under Windows95/NT drivers.
This manual serves both novice and experienced programmers.

e As a tutorial - The Programming Models chapter explains how to combine commands to
do useful work in a typical data acquisition environment. Program excerpts illustrate
concepts and can be modified as needed to use in your programs.

e As areference — A great portion of the manual pertains to APl commands. API
definitions and parameter values are important to ensure proper syntax, and that
software functions perform as intended.

Reference Note:

This manual contains no computer programming tutorials.
You may need to consult additional documentation.

API Features

The install CD-ROM includes several “drivers” to accommodate various programming
environments.

The API has several features:
e Multi-device - can concurrently handle up to 4 devices of the Daqg device family
Larger buffer - can handle up to 2 billion samples at a time
Enhanced acquisition and trigger modes
Direct-to-disk capabilities
Wait-on-event features
Uses multi-tasking advantages of Windows 95/98/Me/NT/2000/XP

Programmer’s Manual 908494 Introduction 1-1

Language Support

The following three languages are supported:

C/C++ Visual Basic

The Programming Language Support folder is located in your installation directory.

You can access program-related files from Windows Explorer.

If you used the install default directory setting, the support folder will be located under a program
folder name (such as DagX) under the Program Files folder on the C: drive. The figure below
illustrates the default install location for your C/C++ and Visual Basic (VB) programming language

support.

In the illustration, the 32-Bit Enhanced API folder (for C/C++ support) has been expanded to reveal

its contents.

=2 My Computer

[=l-&3 Home base [C:)
=-{_1 Program Files
B DagX
-1 Applications
[Programming Language Support
B3 daq
=2 c
=-{_1 32-bit Enhanced API
Mote 1
[Dynamic Loading
[Include
(] Lb
=] delphi
(] 32-bit Enhanced AP
(] 32-bit Standard &P
=42 vb
(] 32-bit Enhanced API

[

Default Install Locations for Programming Language Support

Note 1: In addition to folders labeled “Dynamic Loading,” “Include,” and “Lib,”
the 32-bit Enhanced API folder includes program examples for primary

data acquisition units (main units) and for DBKSs.

1-2 Introduction 908494

Programmer’s Manual

Driver Installation

Driver installation uses a 32-bit setup on a Windows 95/98/Me or Windows NT/2000/XP
system. When run, the setup routine will automatically detect the correct operating system
and will install the appropriate driver.

A Note Regarding Devices and API Command Applicability

APl commands cannot be used universally with all products. For example, a command that
pertains only to analog output is of no use to a device that does not support analog 1/0, or to
a device that supports analog input, but not analog output. Thus it is important that you
understand the features and capabilities of your hardware before using API Commands. Prior
awareness can save a great deal of programming time and avoid possible frustration.

One category of functionality that sometimes causes confusion is that of waveform/pattern
output. The following table indicates which of the 4 types of waveform output apply to various
product groups. Waveform output definitions follow the table.

Waveform/Pattern Output Device Capabilities
Product * Static Dynamic Waveform Streamed Digital
Waveform Waveform Output from Pattern Output
Disk

DagBoard/500 Series Yes No No No
DagBoard/1000 Series Yes Yes Yes No
DagBoard/2000 Series Yes Yes Yes Yes
DagBook/2000 Series Yes No No No
DaglLab/2000 Series Yes No No No
DaqgScan/2000 Series Yes No No No
/3000 Series Devices Yes Yes Yes Yes

* Not all devices in a series have static waveform output capability. The feature is only
present for devices that have built-in DAC channel output circuitry, or if the device has
a DBK46 option installed. Consult your specific hardware documentation for detailed
information.

Static Waveform: Data is downloaded to the internal memory on the device and then played
out from the device’s internal memory. Once the waveform output is downloaded and
initiated additional output updates from the PC cannot be performed. However the waveform
can be played out indefinitely from the internal memory on the device.

Dynamic Waveform: Data is downloaded to the device and can be continuously updated by
the PC while the waveform output is active. Updates to the output can come from PC memory
or from a file.

Programmer’s Manual 908494 Introduction 1-3

Waveform Output from Disk: Uses dynamic waveform output to continuously update
outputs from a file. The file is on a PC, which contains waveform output values, as defined by
the user.

Streamed Digital Pattern Output: This output can be via P3 pins, BNC connectors, or SCSI
111, depending on the device. The feature allows streaming continuous digital data to the
device’s 16-bit P3 digital port [or to designated BNC connectors, if applicable]. Data can be
streamed from either PC memory or from a file. The rate at which streamed output is updated
is dictated by the current DAC waveform output clock source. Digital data streaming can be
performed by itself or in concert with analog waveform output generation.

Become familiar with your system components prior to writing a
program. Know the capabilities of each device.

TIP: Prior to writing a program, review the product specifications [found
in your device hardware manual]. The specifications often make it
obvious as to which AP1 Commands could not possibly apply. In
addition, the programmer needs to be aware of specification limits when
entering values.

1-4

Introduction

908494 Programmer’s Manual

APl Programming - General Models 2

Data Acquisition Environment...... 2-1
Application Programming Interface (API) 2-1
Hardware Capabilities and Constraints......2-1
Signal Environment......2-2
Seven Easy Steps to Data Acquisition 2-2

Models
Initialization and Error Handling......2-9
One-Step Command Acquisitions 2-11
Counted Acquisitions Using Linear Buffers...2-12
Indefinite Acquisition, Direct-To-Disk Using Circular Buffers......2-14
Analog Output......2-16
Generating DAC FIFO Waveforms 2-18
Digital 1/0 on P2......2-19
Using DBK Card Calibration Files......2-20
Zero Compensation......2-23
Linear Conversion......2-25

Reference Note:
Specific Daq Device and DBK program examples are included on the install CD.
The install CD readme.file states the location of the examples.

This chapter shows how to combine API functions to perform typical tasks. Depending on your
level of programming expertise, once you understand how the APl works in conjunction with
the hardware you can begin creating custom data acquisition programs.

This chapter is divided into two primary sections, as follows:

. Data Acquisition Environment outlines related concepts and defines Daq device
capabilities the programmer must work with (the API, hardware features, and signal
management).

. The Models section explains the sequence and type of operations necessary for data

acquisition. Some models are provided in Visual Basic, while others appear in C/C++
code. These models provide the software building blocks to develop more complex
and specialized programs.

Data Acquisition Environment
To write effective data acquisition software, programmers must understand:

e Software tools (the APl documented in this manual and the programming language—you
may need to consult documentation for your chosen language)

e Hardware capabilities and constraints
e General concepts of data acquisition and signal management

Application Programming Interface (API)

The API includes all the software functions needed for building a data acquisition system with
the hardware described in this manual. The API Command Reference section of this manual
includes details regarding how each function is used (parameters, hardware applicability, etc).
In addition, you may need to consult your language and computer documentation.

Hardware Capabilities and Constraints

To program the system effectively, you must understand your Daq device and DBK hardware
capabilities. Obviously you cannot program the hardware to perform beyond its design and
specifications, but you also want to take full advantage of the system’s power and features.
In the User’s Manual, you may need to refer to sections that describe your hardware’s
capability. In addition, you may need to consult your computer documentation. In some
cases, you may need to verify the hardware setup, use of channels, and signal conditioning
options (some hardware devices have jumpers and DIP switches that must match the
programming, especially as the system evolves).

Programmer’s Manual 988594 APl Programming, General Models 2-1

Signal Environment

Important data acquisition concepts for programmers are listed below and are discussed in
your device user’s manual.

e Channel ldentification

e Scan Rates and Sequencing. With multiple scans, the time between scans becomes a
parameter. This time can be a constant or can be dependent upon a trigger.

e Counter/Timer Operation

e Triggering Options. Triggering starts the A/D conversion. The trigger can be an
external analog or TTL trigger, or a program controlled software trigger.

Parameters in the various A/D routines include: number of channels, number of scans, start of
conversion triggering, timing between scans, and mode of data transfer. Up to 512 A/D
channels can be sampled in a single scan. These channels can be consecutive or non-
consecutive with the same or different gains. The scan sequence makes no distinction
between local and expansion channels.

Seven Easy Steps to Data Acquisition

1.

The sections that follow this one demonstrate various methods for designing and developing a
data acquisition application. Though these models vary widely in their purpose and
individually can seem quite complex most all employ a basic framework that is repeated
elsewhere in other models. This section will discuss the basic framework required to develop a
simple data acquisition application. The basic framework outlined here will be a re-occuring
theme through most, if not all, the subsequent programming models.

Each data acquisition task can be broken down into the following basic elements:

Configuring Channels — What Type of Channels? How Many?

Configuring Acquisition Events — How Should the Acquisition Start and Stop?
Setting the Acquisition Rate — How Fast Should the Channels be Scanned?
Setting up the Buffer Model — How Should the Data be Stored?

Arming the Acquisition and Starting the Transfer

Triggering the Acquisition

NOoOohONEE

Monitoring the Acquisition and Receiving Data

While this basic framework is not comprehensive, it does provide a basic model and a theory
of operation from which to start developing your data acquisition application. Provided with
each step is a description of the task and its general function, as well as representative code
snippets from which an application can be developed and a table of related API functions
which may be used to implement the step.

Configure Channels — What Type of Channels? How Many?

Every data acquisition has one or more channels from which data is to be acquired. The
channels to be scanned comprise the channel scan configuration. Channels are added to the
channel scan sequence in the order that they are programmed. Even if some channels are
repeated in the channel scan sequence they are added to the channel scan sequence in the
programmed location.

NOTE: Hereafter, the term Channel Scan (or Scan) refers to the entirety of the channel scan
sequence configuration. In other words, a Channel Scan (Scan) is comprised of all the
channels programmed into the channel scan sequence.

2-2 API Programming, General Models 988594 Programmer’s Manual

Here we are only configuring channels on the main unit. If configuring DBK expansion options
each DBK channel needs to be programmed into the channel scan sequence. You may also
need to set more specific channel configuration options. For this, refer to the sections
regarding your specific DBK expansion card.

The following shows how to program the channel scan sequence.

DagAdcGain gains[CHANCOUNT] = {DgainXl, DgainX2, DgainX8, DgainX4};

DWORD channels[CHANCOUNT] = {0,1,2,3};

DWORD Tlags[CHANCOUNT] = <{DafAnalog|DafBipolar,DafAnalog|DafUnipolar,
DafAnalog|DafBipolar, DafAnalog|DafUnipolar};

err = dagAdcSetScan(handle, channels, gains, flags,CHANCOUNT);

Related API’s* Description

DagAdcSetScan Performs basic channel scan sequence configuration, sets up
channel scan information

DagAdcSetMux Same as dagAdcSetScan but sets all channels to the same
configuration parameters

DagAdcSetOption Used to configure more complex configuration options for
individual channels

DagAdcExpSetBank Used to setup channel banks/blocks for use with DBK
expansion

*See the APl Command Reference chapter for detailed information.

2. Configure Acquisition Events — How Should the Acquisition Start and Stop?

In this section we describe how to configure the Starting and Stopping Events for your
acquisition. Each acquisition needs to have well defined Start and Stop Events. A Start Event
can be as simple as start the acquisition immediately upon arming. An acquisition Stop Event
can be as simple as Stop upon disarming the acquisition. The number and type of start and
stop events is dependent upon the capabilities of the data acquisition device and vary from
product to product. Acquisitions may also be defined with pre-trigger data. The amount of
pre-trigger data can vary.

err = dagAdcSetAcq(handle, DaamNShot, 0,SCANS);
err = dagSetTriggerEvent(handle,DatsSoftware, NULL,NULL,NULL,NULL,NULL,
DagStartEvent);
err = dagSetTriggerEvent(handle,DatsScanCount,NULL,NULL,
NULL,NULL ,NULL,NULL, DagStopEvent);
Related API’'s™ Description
dagAdcSetAcq Configures acquisition modes as well as pre and post trigger
scan counts
dagSetTriggerEvent Configures Start/Stop Trigger Events.
dagAdcSetTrig Used to configure Start Trigger Event
dagAdcCalcTrig Used to calculate Analog level in A/D counts for use in
dagAdcSetTrig

*See the API Command Reference chapter for detailed information.

Programmer’s Manual 988594 APl Programming, General Models 2-3

3. Set the Acquisition Rate — How Fast Should Channels be Scanned?

In this section we describe how to configure the rate at which data is acquired for your
acquisition. Here the acquisition rate refers to the rate at which channel scans are acquired.
Depending upon which API is used the acquisition scan rate can be selected by either
frequency or period/interval. Note that the rate being programmed is the rate at which the
entire channel scan is paced. For all Daqg devices the scan pacing can be derived from either
an internal clock or an external clock driven by an input controlled by an external source. The
between-channel sampling interval is normally a fixed interval depending upon the type of
device used. Dag devices are normally fixed at 10us sampling interval. The between-channel
sampling interval for /2000 Series devices is software selectable for either 5us or 10us.

Scan0

ch0 ch1 ch2 ch3

Scan Interval

Scan1 Slcanz Scan3

ch0 ch1 ch2 ch3 ch0 ch1 ch2 ch3 ch0 ch1 ch2 ch3
e | L 1
Sampling Interval Idle

err = dagAdcSetFreq(handle, 1000.0);

Related API’s*

Description

dagAdcSetFreq Sets the acquisition rate for both pre-trigger and post-trigger
acquisitions in Hz based off of the internal pacer clock of the device

dagAdcGetFreq Returns the current acquisition rate setting.

DagAdcSetClockSource | Sets the acquisition base clock source to either the internal pacer or
to an external clock source.

dagAdcSetRate Allows setting pre and post-trigger scan rates in either period or

frequency format (pre-trigger rate cannot be set for most Daq
device products, for Daq device products pre-trigger rate will follow
post-trigger rate). This command may also be used to return
current pre-trigger and post-trigger rate settings.

*See the API Command Reference chapter for detailed information.

4. Setting up the Data Buffer Model — How Should the Data be Stored?

In this section we describe how to configure the buffer model to be used for the acquisition.
There are two basic buffer models from which to choose; the User Buffer Model and the Driver

Buffer Model.

The User Buffer Model allows the user or application to allocate a buffer and pass the
information describing the location and disposition of the buffer down to the driver so that the
driver can place collected data into the buffer. However, the User Buffer Model requires that
the maintenance of the buffer and buffer pointers be performed by the user or application.
When using the User Buffer Model the application can query the driver as to the total amount
of data that has been transferred into the buffer but the user/application is responsible for
maintaining and updating the current read and write pointers into the buffer. The User Buffer
Model can employ either linear or circular buffers depending on the needs of the application.

The Driver Buffer Model the user/application to hand off responsibility of buffer management

to the driver.

WORD buffer[[SCANS * CHANCOUNT];
err = dagAdcTransferSetBuffer(handle, buffer,SCANS, DatmDriverBuffer);

2-4 API Programming, General Models

988594 Programmer’s Manual

User Buffer Model Operation
The User Buffer Model allows the user to specify either a linear buffer or circular buffer mode.

When the linear buffer mode is selected the driver will start filling the buffer from the
beginning of the buffer with the newest available scans. Once the entire buffer has been filled
to the number of scans specified the driver will stop writing scan data to the buffer even
though the acquisition may continue.

Device FIFO —® Scan0 Scan1 Scan2 | Scan ... ScanN

Scans Written T

In the User Buffer Linear mode the driver will stop writing data to the user buffer once the
total number of scans requested has been satisfied. If the acquisition continues to run after
this point scan data will accumulate in the device FIFO until another buffer (or the same
buffer) transfer has been started or the device FIFO overruns. The implication of this is that
when using linear buffers it is important to make sure that a buffer transfer remains active
during the course of the acquisition or data loss may result. In other words, if the acquisition
continues past the end of the specified buffer another transfer (into the same or a different
buffer) must immediately be initiated. While it is possible to ping pong linear buffers in this
manner it is not the recommended. Linear buffers should normally be used only when a
predetermined number of scans are to be collected for the acquisition. In this case the buffer
scan length should be set to to be the same size as the aggregate scan size [of the total
acquisition]. For more information about starting transfers see Step 5.

The User Buffer Model also has a Circular Buffer Mode. In the circular buffer mode the driver
will continue to write scan data into the User Buffer until the acquisition terminates on its own
or is aborted by the user/application. Unlike the Linear Buffer model when the end of the user
buffer is reached the driver will continue to write scan data starting at the beginning of the

buffer.
Device FIFO [— Scan0 | Scan1 Scan2 | Scan ... ScanN
Je Scans Written ———
-t -t

When using the Circular Buffer mode the application does not need to make sure that there is
always a buffer ready to take the scan data because the driver simply continues to fill the
specified buffer and, when necessary, will begin writing data at the beginning of the buffer.
This model ensures that a device FIFO overrun never occurs because the driver always has
place to store the data (as long as the interface is capable of the required throughput). The
application is required to monitor the transfer and remove and/or process data as it becomes
available (See Step 7 on monitoring and receiving scan data). However a User Buffer overrun
may occur if the controlling application cannot keep up in processing or removing the data
from the buffer. Therefore the application should allocate a large enough buffer to alleviate
any processing or other latencies that may be present in the system or the application. If
making the buffer larger does not alleviate user buffer overrun problems then it may be
necessary to upgrade the PC to a higher performance unit. The type of upgrade required will
be highly dependent upon the nature of the application as well as operating environment in
general. For instance, if taking data to disk then a faster HD and controller may be required.
If mathematical manipulation of the data is taking place then a faster CPU may be in order. If
graphics or video are used intensively then the solution may be a higher performance video
card. Itis important to remember that the application and other tasks within the system can
have an impact on the overall performance of the data acquisition process.

Programmer’s Manual 988594 APl Programming, General Models 2-5

Driver Buffer Model Operation

The Driver Buffer Model allows the flexibility of the User Buffer Model in Circular mode without
the complication of having to manage the circular buffer at the application level. In fact, the
Buffer Model is simply a special case of the circular buffer mode in that the driver handles the
details of managing the circular buffer and “hands off” scan data to the application only when
the application requests it. The scan data is handed off to the application in easy to use and
manipulate linear buffers.

Device Internal Data Retrieval
FIFO > Driver Buffer > Buffer

For more information on retrieving scan data from the Driver Buffer refer to Step 7, Monitor
the Acquisition and Receive the Data.

Storing Data to Disk

Either buffer model allows the data to be streamed to a disk file in parallel to the transfer into
the User or Driver Buffer. To enable this the dagAdcSetDiskFile function needs to be invoked
before the acquisition is armed. When using this feature the scan data can be; appended to a
current file, overwrite a current file or create a new file.

. User Buffer
Device »

or
FIFO Driver Buffer

= User
Application

Y

Disk File

With either the User Buffer Model or the Driver Buffer Model the driver performs the transfer
automatically. The format of the data in the disk file being written will be the same at it
appears in the buffer. This will normally be raw scan data. No header or channel configuration
information is stored in the raw data file.

Related API’'s* Description

dagAdcTransferSetBuffer Sets up the scan data buffer for the transfer. The buffer can be
configured for either User Buffer or Driver Buffer modes. When
User Buffer mode is selected the buffer can be set up to be
either linear or circular in nature. The size of the scan data
buffer (in scans) is also set here.

dagAdcSetDiskFile Sets ups and enables taking the transfer scan data to a disk file.

*See the APl Command Reference chapter for detailed information.

5. Arming the Acquisition and Starting the Transfer

Once the acquisition has been completely configured the acquisition can be armed. Arming
the acquisition means that device will be configured according to the previous steps already
outlined and the acquisition will taken from an “idle” to an “active” state. Once in the “active”
state the acquisition may begin looking for the Trigger Event or begin collecting pre-trigger
data (if pre-trigger has been configured). It is important to examine error return codes from
the dagAdcArm command. The dagAdcArm command examines the entire configuration for
any potential acquisition parameter conflicts.

dagAdcTransferStart(handle);
dagAdcArm(handle);

err
err

2-6

API Programming, General Models 988594 Programmer’s Manual

It is good practice to enable the transfer of data into the buffer first by calling dagAdcTransferStart
command. This will ensure that a transfer is active and that the data buffer is ready to receive data so
that when the acquisition is triggered the scan data can be immediately placed into the data buffer. Once
the dagAdcArm command has been successfully invoked a trigger may occur at any time (obviously, once
the trigger condition has been satisfied).

Related API’'s* Description

dagAdcTransferStart | Enables scan data transfer into the buffer specified by the

dagAdcTransferSetBuffer command.

dagAdcArm Arms the acquisition. This command is a pivotal command around

which the entire acquisition is configured. Once invoked this
command not only arms the acquisition it configures the
acquisition according to the acquisition configuration parameters
set by prior commands. It is here where any potential
configuration conflicts are flagged. Therefore it is important to
check return codes from this command.

*See the APl Command Reference chapter for detailed information.

6. Triggering the Acquisition

Once the acquisition has been armed it may be triggered at any time unless a pre-trigger data
has been requested. If pre-trigger data has been requested the trigger event detection will be
deferred until at least the specified amount of pre-trigger data has been collected. Any trigger
event that occurs before the specified pre-trigger amount has been collected will be ignored.
This deferring of the detection of the trigger event until the specified amount of pre-trigger
data has been collected ensures that the acquisition will produce, at minimum, the requested
pre-trigger amount.

The trigger event can be one of any valid trigger events for which the device is capable. For
more information on which trigger events your device is capable of detecting please refer to
the dagSetTriggerEvent command in the API definition.

Every device can be triggered via software:
err = dagAdcSoftTrig(handle);

Related API’'s™ Description

dagAdcSoftTrig Triggers the acquisition if software triggering is enabled.

*See the API Command Reference chapter for detailed information.

Monitoring the Acquisition and Receiving Data

During the acquisition it may be necessary to monitor the progress of the acquisition and to
collect the data and process it. The dagAdcTransferGetStat function returns a total transfer
scan count as will as acquisition and transfer state information. Interpretation of the
information returned greatly depends on the the buffer model selected as well as whether or
not the buffer was set to linear or circular mode operation.

DWORD active,retCount;

DagAdcTransferGetStat(handle,&active,&retCount);

The active parameter returns state information. The individual bits returned in this parameter
indicate the current state of both the acquisition and the transfer. The retCount parameter
returns a total running count of the amount of data transferred thus far. The following
sections show how to interpret this data:

Programmer’s Manual 988594 APl Programming, General Models 2-7

Monitoring User Buffer Model Transfers

The User Buffer Model allows the user to specify either a linear buffer or circular buffer mode.

When the linear buffer mode is selected the driver will start filling the buffer from the
beginning of the buffer of size n (scans) with the newest available scans. Once the entire
buffer has been filled to the number of scans specified by n the driver will stop writing scan
data to the buffer even though the acquisition may continue.

Device FIFO —® Scan0 Scan1 Scan2 | Scan ... ScanN

Scans Written T

For monitoring progress into a linear User Buffer, the retCount parameter will return the
current location (in scans) of the write pointer. This location indicates the next scan to be
written as well as representing the total number of scans acquired thus far. For instance, if
retCount = m then scanO through scanm-1 can be processed.

retCount = m Buf Size = n

Device FIFO [— Scan0 | Scan1 | Scan...| Scanm|Scanm+1| Scan ... | Scann

Scans Written 4"7 Unwritten Scans ——

The User Buffer Model also has a Circular Buffer Mode. In the circular buffer mode the driver
will continue to write scan data into the User Buffer until the acquisition terminates on its own
or is aborted by the user/application. Unlike the Linear Buffer model when the end of the user
buffer is reached the driver will continue to write scan data starting at the beginning of the
buffer.

Device FIFO |[—= Secan0 | Scan1 Scan2 | Scan ... ScanN

I Scans Written ———»

. -

When using the Circular Buffer mode the application does not need to make sure that there is
always a buffer ready to take the scan data because the driver simply continues to fill the
specified buffer and, when necessary, will begin writing data at the beginning of the buffer.
This model ensures that a device FIFO overrun never occurs because the driver always has
place to store the data (as long as the interface is capable of the required throughput).

The application is required to monitor the transfer and remove and/or process data as it
becomes available (See Step 7 on monitoring and receiving scan data). However a User
Buffer overrun may occur if the controlling application cannot keep up in processing or
removing the data from the buffer. Therefore the application should allocate a large enough
buffer to alleviate any processing or other latencies that may be present in the system or the
application.

If making the buffer larger does not alleviate user buffer overrun problems then it may be
necessary to upgrade the PC to a higher performance unit. The type of upgrade required will
be highly dependent upon the nature of the application as well as operating environment in
general. For instance, if taking data to disk then a faster HD and controller may be required.

If mathematical manipulation of the data is taking place then a faster CPU may be in order. If
graphics or video are used intensively then the solution may be a higher performance video
card. Itis important to remember that the application and other tasks within the system can
have an impact on the overall performance of the data acquisition process.

2-8

API Programming, General Models 988594 Programmer’s Manual

Monitoring and Receiving Driver Buffer Model Data

The Driver Buffer Model allows the flexibility of the User Buffer Model in Circular mode without
the complication of having to manage the circular buffer at the application level. In fact, the
Buffer Model is simply a special case of the circular buffer mode in that the driver handles the
details of managing the circular buffer and “hands off” scan data to the application only when
the application requests it. The scan data is handed off to the application in easy to use and
manipulate linear buffers. Once handed off the data is removed from the Driver Buffer
permanently. In other words requesting data from the Driver Buffer is a destructive read
operation.

Device FIFO [~ Internal Driver Buffer 2| User Request Buffer

Upon request the Driver Buffer Model allows the application to request data from the internal
Driver Buffer as follows:

. Return Scan Data Available Returns any unread scan data that is available in the
Driver Buffer up to the requested amount. The application must ensure that it has
enough space in the User Request Buffer to store any amount of unread scan data that
may be present in the Driver Buffer up to the amount requested.

° Wait Until the Requested Amount is Available Waits until the requested amount
is available in the Driver Buffer. When the amount of scan data available is greater
than or equal to the amount requested the Driver Buffer will return the amount
requested.

. Do Not Wait Until the Requested Amount is Available Upon receipt of the request
if the amount of scan data available in the Driver Buffer is not greater than or equal to
the amount requested then the Driver Buffer will return no scan data. If the amount
requested is available at the time of the request the driver buffer will return the
amount requested.

Models
Initialization and Error Handling
This section demonstrates how to initialize the Dag daqopen Openadata
device and use various methods of error handling. Most acquisition session.
of the example programs use similar coding as detailed in ‘)
the following VB example. Functions used include: [dagsetErrorHandler| Eﬁ;ﬂ:{)@ handling
e VbdagOpen&(dagName$) \
e VbdagSetErrorHandler&(errHandlerg&) | User Code
e VbdaqCloseé&(handle&)
Y
All Visual Basic programs should include the DagX.bas | dagClose Close the session.

file into their project. The DagX.bas file provides the
necessary definitions and function prototyping for the
DAQX driver DLL.

handle& = VBdaqOpen&(““DaqgBook0’”)
ret& = VBdaqClose&(handle&)

The Daq device is opened and initialized with the dagOpen function. daqOpen takes one parameter—
the name of the device to be opened. The device name can be accessed and changed via the Dag*
Configuration utility located in the operating system’s Control Panel (see following figure).

Programmer’s Manual 988594 APl Programming, General Models 2-9

Control Panel
Accessibility Optionz #4 Daq Configuration
%Add Mew Hardware .

Adda’H emove Progras Device [nventony

H Corel VWersions
@! D'ag® Configuration

@ [ate/Time

E%‘ Desktop Themes

@ Display

4 Find Fast

D agBoard/2000 Properties | Test Hardware

Device Setting:

Froperties | Audd Devicel

Device Mame

Device Type I DagBoard/2000 'I

Accessing and Changing a Device Name Using the Control Panel

To change a device name by going through the Control Panel you:

(1) Go to the Control Panel and select “Dag* Configuration.
(2) Double-Click on the applicable device.
(3) Highlight the existing name and type in the new one. Then click the “OK” button, not shown.

The dagOpen call, if successful, will return a handle to the opened device. This handle may then be used
by other functions to configure or perform other operations on the device. When operations with the
device are complete, the device may then be closed using the daqClose function. If the device could not
be found or opened, dagOpen will return -1.

The DAQX library has a default error handler defined upon loading. However; if it is desirable to change
the error handler or to disable error handling, then the dagSetErrorHandler function may be used to
setup an error handler for the driver. In the following example the error handler is set to 0 (no handler
defined), which disables error handling.

ret& = VBdagSetErrorHandleré&(0&)

If there is a Daq device error, the program will continue. The function’s return value (an error number or O
if no error) can help you debug a program.

1T (VBdagOpen&(““DagBook0””) < 0) Then
“Cannot open DagBookO”

Daq device functions return dagErrno&.

Print “daqErrno& : ”’; HEX$(dagErrno&)
End If

The next statement defines an error handling routine that frees us from checking the return value of every
Daq device function call. Although not necessary, this sample program transfers program control to a user-
defined routine when an error is detected. Without a Daq device error handler, Visual Basic will receive
and handle the error, post it on the screen and terminate the program. Visual Basic provides an integer
variable (ERR) that contains the most recent error code. This variable can be used to detect the error
source and take the appropriate action.

The function dagSetErrorHandler tells Visual Basic to assign ERR to a specific value when a Daq
device error is encountered. The following line tells Visual Basic to set ERR to 100 when a Daq device
error is encountered. (Other languages work similarly; refer to specific language documentation as
needed.)

handle& = VBdaqOpen&(““DaqBook0’”)

ret& = VBdagSetErrorHandler&(handle&, 100)
On Error GoTo ErrorHandler

The On Error GoTo command (in Visual Basic) allows a user-defined error handler to be provided,
rather than the standard error handler that Visual Basic uses automatically. The program uses On Error
GoTo to transfer program control to the label ErrorHandler if an error is encountered.

2-10 APl Programming, General Models 988594 Programmer’s Manual

Daq device errors will send the program into the error handling routine. This is the error handler. Program
control is sent here on error.

ErrorHandler:
errorString$ = "ERROR in ADC1"
errorString$ = errorString$ & Chr(10) & "BASIC Error :" + Str$(Err)

If Err = 100 Then errorString$ = errorString$ & Chr(10) & ""DagBook Error
: " + Hex$(dagErrno&)
MsgBox errorString$, , "Error!"
End Sub

One-Step Command Acquisitions

This section shows the use of several one-step analog

input routines. These commands are easier to use than dagAdcRd ?i‘::r:ni?mp'e from

low-level commands but are less flexible in regard to o o

scan configuration. These commands provide a single EE 3}* "k‘]'sflfi’omt' ”‘_g d(;"tba o
. . . - ser Code € burier proviae y the

function call to configure and acquire analog input data. user in binary format,

This example demonstrates the use of the 4 Daq device’s !

one-step ADC functions. Functions used include: Read multiple samples from
P @chdN 1 channel.

e VBdagAdcRd&(handleé&,chan&, sample%, o o
gain&) At this point, the data is in

« VBdagAdcRdN&(handle&,chang, Buf%(), Ijuser Cj"de theeffnﬁg{ngr;"f'gfnfa'iy the
count&, trigger%, level%, freq!, '
gain&,flags&) X Read 1 sample from multiple

e VBdagAdcRdScané&(handleé&,startChan&, [§E§§§§Rdscan channels

endChand, Buf%Q, gainé&, Tlagsé) :\Atthis point, the data is in

A
e VBdagAdcRdScanN&(handle&,startChan& User God the buffer provided by the
, endChan&, Buf%(), count&, [User Code| user in biany ft:urmat.y
triggerSourceé&, level%, freq!, v
gain&, flags&) Read multiple samples from
@R@ multiple channels.
This program will initialize the Daq device hardware, ‘:\At this point, the data is in
then take readings from the analog input channels in the User Code the buffer provided by the

i

base unit (not the expansion cards). For transporting data user in binary format.

in and out of the Daq device driver, arrays are
dimensioned.

Dim sample%(1l), buf%(80), handle&,
ret&, flags&, gain&

The following code assumes that the Dag device has been successfully opened and the handle& value is a
valid handle to the device. All the following one-step functions define the channel scan groups to be
analog unipolar input channels. Specifying this configuration uses the DafAnalog and the Dafunipolar
values in the flags parameter. The flags parameter is a bit-mask field in which each bit specifies the
characteristics of the channel(s) specified. In this case, the DafAnalog and the Dafunipolar values are
added together to form the appropriate bit mask for the specified flags parameter.

The next line requests 1 reading from 1 channel with a gain of x1. The variable DgainX1& is actually a
defined constant from DagX.bas, included at the beginning of this program.

Note: DafSigned does not work in conjunction with DagBook/100.

ret& = VBdagAdcRd&(handle& 0, sample%(0), DgainX1lé&,
DafAnalog&+DafUnipolar&+DafSigned&)
Print Format$“& ####”; “Result of AdcRd:”; sample%(0)

The next line requests 10 readings from channel 0 at a gain of x1, using immediate triggering at 1 kHz.

ret& = VBdagAdcRdN&(handleé&,0, buf®%(), 10, Datslmmediate&, 0, 1000!,
DgainX1&, DafAnalog&+DafUnipolar&)
Print “Results of AdcRdN: ”’;
For x& = 0 To 9
Print Format$ “#### ; bufh(x&);
Next x&

Programmer’s Manual 988594 APl Programming, General Models 2-11

The program will then collect one sample of channels 0 through 7 using the VBdagAdcRdScan function.

ret& = VBdagAdcRdScan&(handle&,0, 7, buf®(), DgainXl&,

DafAnalog&+DafUnipolaré&)
Print “Results of AdcRdscan:”
For x& = 0 To 7

Print Format$“& # & ####7; “Channel:”; buf%(x);

Next x&: Print

Counted Acquisitions Using Linear Buffers

This section sets up an acquisition that
collects post-trigger A/D scans. This
particular example demonstrates the setting
up and collection of a fixed-length A/D
acquisition in a linear buffer.

First, the acquisition is configured by
setting up the channel scan group
configuration, the acquisition frequency,
the acquisition trigger and the acquisition
mode. When configured, the acquisition is
then armed by calling the dagAdcArm
function.

At this point, the Daq device trigger is
armed and A/D acquisition will begin upon
trigger detection. If the trigger source has
been configured to be DatsImmediateg,
AJD data collection will begin
immediately.

This example will retrieve 10 samples from
channels 0 through 7, triggered
immediately with a 1000 Hz sampling
frequency and unity gain. Functions used
include:

daghdcSetMux

y

serrig]

A
daghde
daghde
X
I dagAdcSetTrig

h J
|dandcTransferSetBufferl

v
[dagadcTransferstart|

dan:cArm
h

r
|danaitForEvent|

A 4

| User Code |

Data:”; buf%(x)

Define a channel
scan group.

Set the sampling
frequency.

Configure a counted
acquisition for 10
post-trigger scans

Set the trigger event
to be immediate.

Configure an ADC transfer
data buffer to be 10 scans
long and terminate once the
end of the buffer is reached.

Initiate a transfer into the
configured buffer.

Arm the acquisition. Since
trigger source is immediate,
the acquisition begins now.

Wait for the acquisition to
complete.

Process the data.

e VBdagAdcSetMux&(handle&, startChan&, endChan&, gain&, flags&)
e VBdagAdcSetFreg&(handle&,freq!)

e VBdagAdcSetTrig&(handle&, triggerSource&, rising&,

hysteresis%,channel&)

level%,

e VBdagAdcSetAcq&(handle&,mode&,preTrigCount&,postTrigCounts&)

e VBdagAdcTransferSetBuffer&(handle&,buf%(), scanCount&, transferMask&)
e VBdagAdcTransferStart&(handle&)

e VBdagAdcWaitForEvent&(handleé&,dagEvent&)

This program will initialize the Daq device hardware, then take readings from the analog input channels in
the base unit (not the expansion cards). The functions used in this program are of a lower level than those
used in the previous section and provide more flexibility.

Dim buf%(80), handle&, ret&, flags&

The following function defines the channel scan group. The function specifies a channel scan group from
channel 0 through 7 with all channels being analog unipolar input channels with a gain of x1. Specifying
this configuration uses DgainX1 in the gain parameter and the DafAnalog and the DafUnipolar values
in the Flags parameter. The flags parameter is a bit-mask field in which each bit specifies the
characteristics of the specified channel(s). In this case, the DafAnalog and the DafUnipolar values are
added together to form the appropriate bit mask for the specified flags parameter.

ret& = VBdagAdcSetMux&(handle&,0, 7, DgainX1&, DafAnalog&+DafUnipolarg)

APl Programming, General Models

988594

Programmer’s Manual

Next, set the internal sample rate to 1 kHz.
ret& = VBdagAdcSetFreq&(handle&,1000!)

The acquisition mode needs to be configured to be fixed length acquisition with no pre-trigger scan data
and 10 scans of post-trigger scan data. The mode is set to DaamNShot&, which will configure the
acquisition as a fixed-length acquisition that will terminate automatically upon the satisfaction of the post-
trigger count of 10.

ret& = VBdagAdcSetAcq&(handle&,DaamNShot&, 0, 10)

The acquisition begins upon detection of the trigger event. The trigger event is configured with
dagAdcSetTrig. The next line defines the trigger event (to be the immediate trigger source) that will
start the acquisition immediately. The variable DatsImmediate& is a constant defined in DagX.bas.
Since the trigger source is configured as immediate, the other trigger parameters are not needed.

ret& = VBdagAdcSetTrig&(handle&,Datslmmediate&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. Since this is to be a fixed length transfer
to a linear buffer, the buffer cycle mode should be turned off with DatmCycleOff&. For efficiency, block
update mode is specified with DatmUpdateBlocké&. The buffer size is set to 10 scans.

Note: the user-defined buffer must have been allocated with sufficient storage to hold the entire transfer
prior to invoking the following line.

ret& = VBdagAdcTransferSetBuffer&(handleé&,bufu(), 10,
DatmUpDateBlocké&+DatmCycleOff&)

With all acquisition parameters being configured, the acquisition can now be armed. Once armed, the
acquisition will begin immediately upon detection of the trigger event. As in the case of the immediate
trigger, the acquisition will begin immediately upon execution of the dagAdcArm function.

ret& = VBdagAdcArm&(handle&)

After setting up and arming the acquisition, the data is immediately ready to be collected. Had the trigger
source been anything other than immediate, the data would only be ready after the trigger had been
satisfied. The following line initiates an A/D transfer from the Daq device to the defined user buffer.

ret& = VBdagAdcTransferStart&(handle&)

Wait for the transfer to complete in its entirety, then proceed with normal application processing.

This can be accomplished with the dagwai tForEvent command. The dagwaitForEvent allows the
application processing to become blocked until the specified event has occurred. DteAdcDone, indicates
that the event to wait for is the completion of the transfer.

ret& = VBdagWaitForEvent(handle&,DteAdcDone&)

At this point, the transfer is complete; all data from the acquisition is available for further processing.

Print “Results of Transfer”
For 1& = 0 To 10
Print "Scan "; Format$(Str$(i& + 1), "00"); " -->";
For k& = k& To k& + 7
Print Format$(IntToUint&(buf%(k&)), *"00000');
Next k&
Print
Next i&

Programmer’s Manual 988594 APl Programming, General Models 2-13

Indefinite Acquisition, Direct-To-Disk Using Circular Buffers

This program demonstrates the use of Confiaure a scan
circular buffers in cycle mode to collect daghdcSetscan gmupgofchannels_
analog input data directly to disk. In cycle
mode, this data transfer can continue Y Set the sampling
. .. d. decSetF
indefinitely. When the transfer reaches the A El frequency.
end of the physical data array, it will reset + o
its array pointer back to the beginning of daqAdcSetAcq Configure the acquisistion
. .. . to be indefinite post-trigger.

the array and continue writing data to it.
Thus, the allocated buffer can be used v ;

! . - Configure the trigger event
repeatedly like a FIFO buffer. dagAdcsetTrig| to be software trigger.
The API has built-in direct-to-disk v Configure a circular acquisition
functionality. Therefore, very little needs [daghdeTransfersetBuffer| oo 10,000 scans in length.

to be done by the application to configure

direct-to-disk operations. Y

| dagAdcSetDiskFile

Open the disk file and make it
ready to receive A/D data.

First, the acquisition is configured by
setting up the channel scan group .

. . L d cA Arm th tion.
configuration, the acquisition frequency, Eﬂ = rm fhe acqtistion
the acquisition trigger and the acquisition

; h 4 Initiate data transfer to disk
mode. Once configured, the transfer to [dagadcTransferstart| (no data will transfer until
disk is set up and the acquisition is then trigger event occurs).
armed by calling the dagAdcArm function. r

[dagadesoftrrig | Trigger the acquisition.
At this point, the Daq device trigger is | dancha::tForEvent | Wait for data to
armed and A/D acquisition to disk will become available.
begin immediately upon trigger detection. v

[dandcTransferGetStatl Check status of transfer.

This example will retrieve an indefinite
amount of scans for channels 0 through 7,
triggered via software with a 3000 Hz
sampling frequency and unity gain.
Functions used include:

User
Terminator

User code to determine
if transfer should stop.

Transfer is complete;
disarm the acquisition.

e VBdagAdcSetScan&(handle&, startChan&, endChan&, gain&, flags&)
e VBdagAdcSetFreg&(handle&,freql!)

e VBdagAdcSetTrig&(handle&, triggerSource&, rising&, level%,
hysteresis%,channel&)

e VBdagAdcSetAcq&(handle&,mode&,preTrigCount&,postTrigCountd&)

e VBdagAdcTransferSetBuffer&(handle&,buf®(), scanCount&, transferMaské&)
e VBdagAdcTransferStart&(handle&)

e VBdagAdcTransferGetStat&(handle&,statusé&, retCountd&)

e VBdagAdcWaitForEvent&(handleé&,dagEvent&)

e VBdagAdcSetDiskFile&(handle&, filename$,openMode&,preWrited)

This program will initialize the Daq device hardware, then take readings from the analog input channels in
the base unit (not the expansion cards) and store them to disk automatically. The following lines
demonstrate channel scan group configuration using the dagAdcSetScan command.

Note: flags may be channel-specific.

2-14 APl Programming, General Models 988594 Programmer’s Manual

Dim handle&, ret&, channels&(8), gains&(8) flags&(8)
Dim buf%(80000), active&, count&
Dim bufsize& = 10000 “ In scans
* Define arrays of channels and gains - 0-7 , unity gain
For x& = 0 To 7
channels&(x&) = x&
gains&(x&) = DgainX1l&
Tflags&(x&) = DafAnalog& + DafSingleEnded& + DafUnipolar&
Next x&
" Load scan sequence FIFO
ret& = VBdagAdcSetScan&(handle&,channels&(), gains&(), flags&(), 8)

Next, set the internal sample rate to 3 kHz.
ret& = VBdagAdcSetFreq&(handle&,3000!)

The acquisition mode needs to be configured to be fixed-length acquisition with no pre-trigger scan data
and 10 scans of post-trigger scan data. The mode is set to DaamInfinitePost&, which will configure the
acquisition as having indefinite length and, as such, will be terminated by the application. In this mode, the
pre- and post-trigger count values are ignored.

ret& = VBdagAdcSetAcg&(handle&,DaamInfinitePost&, 0, 0)

The acquisition begins upon detection of the trigger event. The trigger event is configured with
dagAdcSetTrig. The next line defines the trigger event to be the immediate trigger source which will
start the acquisition immediately. The variable DatsSoftware& is a constant defined in DagX.bas. Since
the trigger source is configured as immediate, the other trigger parameters are not needed.

ret& = VBdagAdcSetTrig&(handleé&,DatsSoftware&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. This buffer is necessary to hold incoming
AJD data while it is being prepared for disk 1/0O. Since this is to be an indefinite-length transfer to a
circular buffer, the buffer cycle mode should be turned on with DatmCycleOn&. For efficiency, block
update mode is specified with DatmUpdateBlocké&. The buffer size is set to 10,000 scans. The buffer
size indicates only the size of the circular buffer, not the total number of scans to be taken.

ret& = VBdagAdcTransferSetBuffer&(handle&,bufs(), bufsize&,
DatmUpDateBlocké&+DatmCycleOn&)

Now the destination disk file is configured and opened. For this example, the disk file is a new file to be
created by the driver. After the following line has been executed, the specified file will be opened and
ready to accept data.

ret& = VBdagAdcSetDiskFile&(handle&,”’c:dasqdata.bin”, DaomCreateFile&, 0)

With all acquisition parameters being configured and the acquisition transfer to disk configured, the
acquisition can now be armed. Once armed, the acquisition will begin immediately upon detection of the
trigger event. As in the case of the immediate trigger, the acquisition will begin immediately upon
execution of the dagAdcArm function.

ret& = VBdagAdcArm&(handle&)

After setting up and arming the acquisition, data collection will begin upon satisfaction of the trigger event.
Since the trigger source is software, the trigger event will not take place until the application issues the
software trigger event. To prepare for the trigger event, the following line initiates an A/D transfer from
the Dag device to the defined user buffer and, subsequently, to the specified disk file. No data is
transferred at this point, however.

ret& = VBdagAdcTransferStart&(handle&)

The transfer has been initiated, but no data will be transferred until the trigger event occurs. The following
line will signal the software trigger event to the driver; then A/D input data will be transferred to the
specified disk file as it is being collected.

ret& = VBdagAdcSoftTrig&(handle&)

Programmer’s Manual 988594 APl Programming, General Models 2-15

Both the acquisition and the transfer are now currently active. The transfer to disk will continue
indefinitely until terminated by the application. The application can monitor the transfer process with the

following lines of code:

acqTermination& = 0
Do

“ Wait here for new data to arrive
ret& = VBdagWaitForEvent(handleé&,DteAdcData&)

“ New data has been transferred - Check status
ret& = VBdagAdcTransferGetStat&(handle&,active&,retCountd)

acqTermination flag.

Loop While acqTermination& = 0

Code may be placed here which will process the buffered data or
perform other application activities

At some point the application needs to determine the event on which
the direct-to-disk acquisition is to be halted and set the

At this point the application is ready to terminate the acquisition to disk. The following line will terminate

the acquisition to disk and will close the disk file.

ret& = VBdagAdcDisarm&(handle&)

The acquisition as well as the data transfer has been stopped. We should check status one more time to get

the total number of scans actually transferred to disk.
ret& = VBdagAdcTransferGetStat(handle&,active&, retCountd)

The specified disk file is now available. The retCount& parameter will indicate the total number of scans

transferred to disk.

Analog Output

The program DACEX1.BAS shows how to
output analog voltages on analog output
channels 0 and 1. These commands only
have to be issued one time unless a related
parameter is explicity changed. The output
voltages will be sustained. This example
demonstrates the use of the two digital-to-
analog converters (values used assume
bipolar mode). Functions used include:

e VBdagDacSetOutputMode&(ha
ndle&, DddtLocal&, O,
DdomVoltage&)

e VBdagDacWt&(handle&,
deviceTypeé&, chané&,
dataval%)

e VBdagDacWtManyé&(handle,
deviceTypes&() ,chans&(),
datavals&())

|dan acSetOutpu tModel

A

| User Code

Y
|da.qDacSe toutpu tModel

dagDacWt |
y
Code |

| d.ana.c“;JtNany I

A
I User Code

Set output mode
to voltage.

Output voltage on
specific channel.

Set on both
D/A channels.

Output voltage on
both D/A channels.

2-16 APl Programming, General Models 988594

Programmer’s Manual

Assuming the voltage reference is connected to the internal default of 5 V, the next function will set

channel 0 to an output voltage of 5 V. The values are set for a digital-to-analog converter with 16 bit

resolution; 65535 represents full-scale. Channel 1 is equal to 0.

ret& = VBdagDacSetOutputMode&(handle&, DddtLocal&, O, DdomVoltage&)
ret& = VBdagDacWt&(handle&, DddtLocal, 0, 65535)

The dagDacWtMany writes to both analog outputs simultaneously. The following lines sets channel 0 to 5

V and channel 1 to 2.5 V. At full-scale, a digital value of 65535 corresponds to 5 V; a digital value of

49152 corresponds to ¥z of 5 V.

Dim deviceTypes&(l)

Dim chans&(1)

Dim datavals%(l)

The VBdagSetOutputMode puts the channel in a voltage mode.

ret& = VBdaqgSetOutputMode&(handle&, DddtLocalé&, 0, DdomVoltage&)
ret& = VBdaqSetOutputMode&(handle&, DddtLocal&, 1, DdomVoltageé&)
deviceTypes&(0) = DddtLocal&

deviceTypes&(1) DddtLocal&

chans&(0) = 0

chans&(1l) =1

datavVals&(0) = 65535

datavals&(l) = 49152

ret& = VBdagDacWtMany&(handle&, deviceTypes&(), chans&(), datavals&(),2)

The following sets the outputs to 0 V.

Dim deviceTypes&(l)
Dim chans&(1)
Dim datavals%(l)
deviceTypes&(0)
deviceTypes&(1l)
chans&(0) = 0
chans&(1) =1
datavals&(0) = 32768
datavals&(1l) = 32768

DddtLocal&
DddtLocal&

ret& = VBdagDacSetOutputMode&(handle&, DddtLocal&, 0, DdomVoltage&)
ret& = VBdagDacSetOutputMode&(handle&, DddtLocal&, 1, DdomVoltage&)
ret& = VBdagDacWtMany&(handle&, deviceTypes&(), chans&(), datavals&(),2)

Programmer’s Manual

988594 APl Programming, General Models

2-17

Generating DAC FIFO Waveforms
This program demonstrates the use of the

¥

Configure DACs;
use defined constant

DAC FIFO to generate waveforms. The dagDacSetOutputMod !

. . DdomStaticwWave for
DAC is configured for output on both both channels 0 and 1
channels, and the user waveform is
constructed. Output begins after the Set trigger frequency,
waveform is assigned to a channel. At this etc, for both channels
point, the program continues while the Specify predefined wave-

A A .
waveforms are generated. |d.anacSetPredefWave| form for channel 1:
. use defined constant
The following example shows how to Pdwtsine for sine wave.
generate a pre-defined waveform using A 4
dagDacWaveArm Start waveforms.

these functions:

e VBdagDacWaveSetTrig&(handle&, deviceType&, chan&, triggerSource&,

rising%)

e VBdagDacWaveSetClockSource&(handle&, deviceType&, chan&, clockSourceé&)
e VBdagDacWaveSetFreqg&(handle&, deviceType&, chan&, freq!)

e VBdagDacWaveSetMode&(handle&, deviceType&, chan&, mode&, updateCounté&)
e VBdagDacWaveSetBuffer&(handle&, deviceType&, chan&, buf%(), scanCounté&,

transferMask&)

e VBdagDacWaveSetPredefWave&(handle&, deviceType&, chan&, waveType&,

amplitude&, offset&, dutyCycle&, phaseShift&)
¢ VBdagDacWaveArm&(ByVal handle&, ByVal deviceType&)

When using the pre-defined waveform generation, program the waveform parameters common to both
channels. The double star (**) indicates the value must be the same on both channels of a DagBoard.

For chan = 0 To 1 Step 1
" set the output mode to static waveform
ret& = VBdagDacSetOutputMode&(handle&, DddtLocalé&, chan&, DdomStaticWave&)

" The trigger source must be set to immediate for static waveform.**
err& = VBdagDacWaveSetTrig&(handle&, DddtLocalé&, chané&, Ddtslmmediate&, 1)

" set the internal dac clock

ret& = VBdagDacWaveSetClockSource&(handleé&, DddtLocal&, chan&,
DdcsDacClock&)

" the frequency of the internal clock. **

ret& = VBdagDacWaveSetFreg&(handle&, DddtLocalé&, chan&, 101)

" must be infinite for static mode

ret& = VBdagDacWaveSetMode&(handle&, DddtLocal&, chan&, DdwmInfinite&, 0)

Next chan

" buffer cylce on, retransmit mode. **

" update count is the buffer length. **

ret& = VBdagDacWaveSetBuffer&(handle&, DddtLocal&, chan&, bufo%(),
updateCount&, DdtmCycleOn&)

" set the buffer for channel 1

ret& = VBdagDacWaveSetBuffer&(handle&, DddtLocal&, chan&, bufl%(),
updateCount&, DdtmCycleOn&)

" program the waveform parameters specific to dac channel 0

ret& = VBdagDacWaveSetPredefWave&(handle&, DddtLocal&, O, DdwtTriangleé&,
32768, 32768, 90, 0)

" program the waveform parameters specific to dac channel 1

ret& = VBdagDacWaveSetPredefWave&(handle&, DddtLocal&, 1, DdwtSquare&,
32768, 32768, 40, 0)

" buffer must be configured before the arm command is called. All channels
" will be armed.
ret& = VBdagDacWaveArm(handle&, DddtLocal&)

APl Programming, General Models 988594 Programmer’s Manual

Digital 1/0 on P2
This program demonstrates the functions

Configure mode of ports

controlling digital 1/0 on the P2 connector of the |[daqroGets255Cont| ;g %o 8255 chip.,
device. First, the 3 digital ports on the 8255 are
configured as input, output, or both in the case of @rim Set confiauration
port C; then, appropriate 1/0O commands are i 9 '
issued. Functions used include: { Write to port A
e VBdaglOReadBit&(handle&, | dagIOWrite I (use defined constant
devType&, devPorts, DdpLocala).
whichDevice&, whichExpPort&, Read from port B
bitNum&, bitvValue&) P |danORead| (use defined constant
e VBdaqglORead&(handleg&, DdpLocalk).
devType&, devPorts, L Write to high nibble of
whichDevice&, whichExpPorté&, [daqTowriteBit ponc(uggdeﬂned
value&) constant DdpLocalCHigh)
e VBdaqlOWriteBit&(handle&, (repeat for each bit).
devType&, devPorté&,
WI:] iChDeViC(_%&, wh iChEprort&, Read from low nibble of
e VBdaglOWrite&(handle&, [Eé:i:ggj constant DapLocalCLow)
devType&, devPortg, (repeat for each bit).
whichDevice&, whichExpPorté&,
value&)

e VBdaqlOGet8255Conf&(handle&,
portA&, portB&, portCHighé&,
portCLow&, config&)

Dim config&, byteval&, bitval&, x%

Dim buf(10) As Byte, active&, retCount&

handle& = VBdagOpen&(*‘DagBook0’”)

ret& = VBdagSetErrorHandleré&(handle&, 100)

On Error GoTo ErrorHandlerDIG1

ret& = VBdaqlOGet8255Conf&(handle&, 0, 1, 0, 1, config&)

The function daqlOGet8255Conf returns the appropriate configuration value to use in daqlOWrite. As
shown above, the handle of the opened Daq device is the first parameter passed. The second, third, fourth,
and fifth parameters respectively indicate: the 8255 port A value, the port B value, the high-nibble value of
port C, and the low-nibble value of port C. The values for the parameters passed in the call shown above
will return the configuration value (port A = OUTPUT, port B = INPUT, port C / high nibble = output, port
C / low nibble = INPUT) in the config& parameter, which matches the current configuration of the 8255.
The daqlOWrite function writes the obtained configuration value to the selected port.

ret& = VBdaqlOWrite&(handle&, DiodtLocal8255&, Diodp8255IR&, 0, 0, config&)

Write hex 55 to port A on the Daq device’s base unit.
ret& = VBdaqlOWrite&(handle&, DiodtLocal8255&, Diodp8255A&, 0, O0O,_ &H55)

Read port B and put the value into the variable byteVal%.

ret& = VBdaqlORead&(handle&, DiodtLocal8255&, Diodp8255B&, 0, 0, bytevalg&)
Print "The value on digital port B : &H"; Hex$(byteval&): Print

The following lines write to the high nibble of port C.

ret& = VBdaglOWriteBit&(handle&,DiodtLocal8255&,Diodp8255CHigh&,0,_ 0,0,1)
ret& = VBdagqlOWriteBit&(handleé&,DiodtLocal8255&,Diodp8255CHigh&,0,_ 0,1, 0)
ret& = VBdaglOWriteBit&(handle&,DiodtLocal8255&,Diodp8255CHigh&,0,_ 0, 2, 1)
ret& = VBdaglOWriteBit&(handleé&,DiodtLocal8255&,Diodp8255CHigh&,0, 0, 3, 0)
Print "The high nibble of digital port C set to : 0101 (&H5)": Print

The next lines read the low nibble of port C on the base unit.

Programmer’s Manual 988594 APl Programming, General Models 2-19

For x% = 0 To 3

ret& = VBdaqlOReadBit&(handle&, DiodtLocal8255&,

0, 0, x%, bitvalg&)
Print "The value on bit
Next x%

.Y M

Using DBK Card Calibration Files

Software calibration functions are designed
to adjust Daq device readings to
compensate for gain and offset errors.
Calibration constants are calculated at the
factory by measuring the gain and offset
errors of a card at each programmable gain
setting. These constants are stored in a
calibration text file that can be read by a
program at runtime. This allows new
boards to be configured for calibration by
updating this calibration file rather than

A

A

of digital port C :

dagAdcSetScan

| dandc‘SetFreq
SetTrig]

dagAdc

r

r

SetTrig

r

danchoftTriél

r

&H";

Diodp8255CLowé&,

Hex$(bitvalg&)

Configure scans.

Set frequency.

Define and arm trigger
(use defined constant
DtsSoftware for
software trigger).

Software trigger.

recompiling the program. Calibration

| dagAdcTransferSetBuffer |

constants and instructions are shipped with
the related DBK boards. Programs like

A

r

DaqView support this calibration and use

|dandcTransferStartl

the same constants.

h

r

The calibration operation removes static

| dagWaitForEvent |

gain and offset errors that are inherent in
the hardware. The calibration constants

r

are measured at the factory and do not

| dagAdcTransferGetStat ‘

change during the execution of a program.

These constants are different for each card 3
and programmable-gain setting; they may [daqCa1setupconvert |
even be different for each channel,
. . . Y
depending on the design of the expansion [QaqCalsetupconvert |

card.

Wait for the transfer
to be complete.

Perform calibration
on readings at x1 gain.

Perform calibration
on readings at x2 gain.

Note: DBK19 is shipped with calibration constants. Other cards use on-board potentiometers to perform hardware

calibration.

The calibration process has 3 steps:

e Initialization consists of reading the calibration file.

e Setup describes the characteristics of the data to be calibrated.

e Conversion does the actual calibration of the data.
g\g%%]&?ﬁg Function prototypes, return error codes, and parameter definitions are located in the
32801.32750 DAQX.H header file for C (or similar files for other languages).
gg;‘l‘gggg; Cards that support the calibration functions are shipped with a diskette containing a

' calibration constants file. The name of the file will be the serial number of the card

[EXP3] shipped with it. This file holds the calibration constants for each programmable-
32780,32779 gain setting of that card. These constants should be copied to a calibration text file
gg?gg'gggg (DAQBOOK.CAL) located in the same directory as the program performing the
32750132742 calibration.
[EXP5]
32752,32764
32783,32757
32749,32767
32777,32730

To set up the calibration file, perform the following steps:

2-20 APl Programming, General Models 988594 Programmer’s Manual

1. Locate the diskette containing the calibration constants file.

2. Configure the card according to instructions found in the DBK documentation (included on your CD,
or in hardcopy).

3. Edit the calibration file, DAQBOOK.CAL, using a text editor.
4. Add the card number information within brackets, as listed in the calibration file.

5. Add the calibration constants immediately after the card number. (These should be entered in the
order given in the calibration file.)

6. Repeat steps 4 and 5 for each card.
7. Verify that no two cards are configured with the same card/channel number.

The table shows an example of a calibration file for configuring the main Daq device unit and two DBK19
cards connected to Daq device expansion channels 3 and 5.

The initialization function for reading in the calibration constants from the calibration text file is
dagReadCalFile. The C language version of daqReadCalFile is similar to other languages and works as
follows:

The filename with optional path information of the calibration file. If calfile is NULL or empty (“”), the
default calibration file DAQBOOK.CAL will be read. This function is usually called once at the beginning
of a program and will read all the calibration constants from the specified file. If calibration constants for a
specific channel number and gain setting are not contained in the file, ideal calibration constants will be
used (essentially not calibrating that channel). If an error occurs while trying to open the calibration file,
ideal calibration constants will be used for all channels and a non-zero error code will be returned by the
dagReadCalFi le function.

Once the calibration constants have been read from the cal file, they can be used by the dagCalSetup and
dagCalConvert functions. The dagCalSetup function will configure the order and type of data to be
calibrated. This function requires data to be from consecutive channels configured for the same gain,
polarity, and channel type. The calibration can be configured to use only the gain calibration constant and
not the offset constant. This allows the offset to be removed at runtime using the zero compensation
functions described later in this section.

In this example, several Daq device channels will be read and calibrated. This example assumes the
calibration file has been created according to the initializing calibration constants section of this chapter.
Expansion cards can perform the same type of calibration if the calibration constants are available for the
card and a specified channel number. First list the configuration:

Channel Channel Type
0 Voltagel @ X1 gain
1 Voltage2 @ X2 gain
2 Voltage3 @ X2 gain
3 Voltage4 @ X2 gain

Now specify the scan (the sequence of channel numbers and gains that are to be gathered as one burst of
readings). In this example, all the channels at each gain will be read together (in consecutive order) to
make the calibration easier.

Scan Channel Type Channel Gain
Position Code
0 Voltagel @ X1 gain 0 DgainX1
1 Voltage2 @ X2 gain 1 DgainX2
2 Voltage3 @ X2 gain 2 DgainX2
3 Voltage4 @ X2 gain 3 DgainX2

Programmer’s Manual 988594 APl Programming, General Models 2-21

Now configure the Daq device with this information, and read 5 scans of data:

Dim chans&(4), gains&(4), buf%(20)
handle& = VBdaqOpen&(“‘DaqBook0’”)

" Set array of channels and gains

chans&(0) = 0
gains&(0) = DgainX1&
chans&(1) = 1
gains&(1l) = DgainXx2&
chans&(2) = 2
gains&(2) = DgainXx2&
chans&(3) = 3
gains&(3) = DgainX2&

" Load scan sequence FIFO :
ret& = VBdagAdcSetScan&(handle&, chans&(), gains&(), 4)

" Set Clock
ret& = VBdagAdcFreg&(handle&, 10)

" Define and arm trigger :
ret& = VBdagAdcSetTrig&(handle&, DtsSoftware&, 0, 0, 0, 0)

" Trigger
ret& = VBdagAdcSoftTrig&(handle&)

" Read the data

“ 5 indicates the number of scans

“ single mode for scans less than 500

ret& = VBdagAdcTransferSetBuffer&(handle&, buf%(), 5, DatmCycleOff& +
DatmSingleMode&)

ret& = VBdagAdcTransferStart&(handle&)

“specifies to wait for the transfer to be complete
ret& = VBdagWaitForEvent&(handle&, DteAdcDone&)

ret& = VBdagAdcTransferGetStat&(handle&, active&, retCount&)

" Print the first scan of unconverted data
PRINT "Before Calibration:"

PRINT "Channel 0 at x1 gain: "; buf%(0)
PRINT "Channel 1 at x2 gain: "; buf%(l)
PRINT "Channel 2 at x2 gain: "; buf%(2)
PRINT "Channel 3 at x2 gain: "; buf%(3)

"Perform zero compensation on readings sampled at x1 gain
ret& = VBdagCalSetupConvert&(handle&, 4, 0, 1, 0, DgainXl&, 0, 1, 0, bufuQ),
5)

"Perform zero compensation on readings sampled at x2 gain
ret& = VBdagCalSetupConvert&(handle&, 4, 1, 3, 0, DgainX2&, 1, 1, 0, bufu(Q),
5)

" Print the first scan of converted data
PRINT "After Calibration:"

PRINT "Channel 0 at x1 gain: "; buf%(0)
PRINT "Channel 1 at x2 gain: "; buf%(l)
PRINT "Channel 2 at x2 gain: "; buf%(2)
PRINT "Channel 3 at x2 gain: "; buf%(3)

2-22 APl Programming, General Models 988594 Programmer’s Manual

Zero Compensation

Zero compensation removes offset errors
while a program is running. This is useful
in systems where the offset of a channel
may change due to temperature changes,
long-term drift, or hardware calibration
changes. Reading a shorted channel on the
same card at the same gain as the desired
channel removes the offset at run-time.

Note: Zero compensation is not available
for all expansion cards. The DBK19 has
channel 1 permanently shorted for zero
compensation; other cards require a
channel to be shorted manually.

The zero-compensation functions require a
shorted channel and a number of other
channels to be sampled from the same card
at the same gain as the shorted channel.
These functions will work with cards
(such as the DBK12, DBK13, and DBK19)
that have one analog path from the input to
the A/D converter. Other cards do not
support the zero compensation functions
because they have offset errors unique to
each channel. The DBK19 is designed
with channel 1 already shorted for
performing zero compensation.

dagAdcSetScan

|

A
dagAdcSetTrig

:

daghdcSetAcqg

r
[dagadcsetclocksource|

A

r
daghdcSetFreq |

v
| daghdcTransferSetBuffer |

A 4
|[gagadeTransferstart|

| danc;cArm

| dagWai tI:'orEvent |

h A
|aagzerosetupconvert|

h 4
|dagzerosetupconvert|

Configure scans.

Set trigger type (use
defined constant
DtsImmediate to
trigger when armed).

Set acquisition mode.

Configure the ADC
clock source.

Set the scan frequency.

Configure user-allocated
buffer to receive raw data.

Begin the data transfer.

Arm the acquisition triggers
(immediately if using
DtsImmediate trigger).

Wait for transfer event
DteaAdcDone
(acquisition complete).

Perform zero compensation
on readings at x1 gain.

Perform zero compensation
on readings at x2 gain.

The dagzZeroSetup function configures the location of the shorted channel and the channels to be zeroed
within a scan, the size of the scan, and the number of readings to zero compensate. (This function does not
do the conversion.) A non-zero return value indicates an invalid parameter error.

In this example, several Daq device channels will be read using various gains and zero-compensated to
remove any offset errors. This example assumes that channel 0 of the Daq device has been manually
shorted. Expansion cards could perform the same type of zero compensation as this example by shorting a
channel on the expansion card and specifying card channel numbers. First list the configuration:

Channel Channel Type
0 Shorted Channel
1 Voltagel @ X1 gain
2 Voltage2 @ X2 gain
3 Voltage3 @ X2 gain
4 Voltage4 @ X2 gain

Now specify the scan, the sequence of channel numbers, and gains that are to be gathered as one burst of
readings. In this example, we will first read the shorted channel at each gain that we plan on using, in this
case x1 and x2. All the channels at each gain will be read together to make the actual zero compensation

easier.

Scan Channel Type Channel Gain
Position Code

0 Shorted Channel @ X1 0 DgainX1

1 Shorted Channel @ X2 0 DgainX2

2 Voltagel @ X1 gain 1 DgainX1

3 Voltage2 @ X2 gain 2 DgainX2

4 Voltage3 @ X2 gain 3 DgainX2

5 Voltage4 @ X2 gain 4 DgainX2

Programmer’s Manual 988594

APl Programming, General Models

2-23

Public Sub ZeroComp()
* Performs zero compensation on ADCs readings

Const ScanLength& = 6
Const ScanCount& = 5

"Total channels per scan
“Number of scans to acquire

Dim chan&(ScanLength), gain&(ScanLength)
Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim ret&, dagHandle&

dagHandle& = VBdagOpen&(*'dagbook0™)

" Channel zero must be shorted to ground
" Use DafClearLSNibble flag to clear 4 least significant

" bits when using 12-bit

A/D converters

+

+

chan&(0) = 0: gain&(0) = DgainX1&: flag&(0) = DafBipolar&
DafClearLSNibble&

chan&(1) = 0: gain&(l) = DgainX2&: flag&(l) = DafBipolar&
DafClearLSNibble&

chan&(2) = 1: gain&(2) = DgainX1&: flag&(2) = DafBipolar&
DafClearLSNibble&

chan&(3) = 2: gain&(3) = DgainX2&: flag&(3) = DafBipolar&
DafClearLSNibble&

chan&(4) = 3: gain&(4) = DgainX2&: flag&(4) = DafBipolar&
DafClearLSNibble&

chan&(5) = 4: gain&(5) = DgainX2&: flag&(5) = DafBipolar&
DafClearLSNibble&

ret& = VBdagAdcSetScan&(dagHandle&, chan&(), gain&(), flag&(), ScanLength)

ret& = VBdagAdcSetTrig&(dagHandle&, Datslmmediate&, 1, 0, 0, 0)

ret& = VBdagAdcSetAcq&(dagHandle&, DaamNShot&, 0, ScanCount)

ret& = VBdagAdcSetClockSource&(dagHandle&, DacsAdcClock&)

ret& = VBdagAdcSetFreq&(dagHandle&, 1001)ret& =

VBdagAdcTransferSetBuffer&(dagHandle&, buf%(), ScanCount, DatmCycleOff& +
DatmUpdateSingle&)
ret& = VBdagAdcTransferStart&(dagHandle&)

ret&
ret&

VBdagAdcArmé&(daqHandle&)
VBdagWaitForEvent&(dagHandle&, DteAdcDoneé&)

" Print the first scan of unconverted data
Print "Channel zero shorted to ground”

Print "Channel 0 at X1 gain:
Print "Channel 0 at X2 gain: "

Print

Print "Before zero compensation”
1 at X1 gain:
2 at X2 gain: "
3 at X2 gain:
4 at X2 gain: "

Print "'Channel
Print ""Channel
Print "'Channel
Print ""Channel
Print

" Perform zero
" 1 reading at

compensation

IntToUint(buf%(0))
IntToUint(buf®(l))

IntToUint(buf®%(2))
IntToUint(buf®%(3))
IntToUint(buf®(4))
IntToUint(buf®%(5))

position 2. Zero reading at position O.
ret& = VBdagZeroSetupConvert&(ScanLength, 0, 2, 1, buf®%(), ScanCount)

on readings sampled at x1 gain.

" Perform zero compensation on readings sampled at x2 gain.
" 3 readings at position 3. Zero reading at position 1.
ret& = VBdagZeroSetupConvert&(ScanLength, 1, 3, 3, buf®%(), ScanCount)

" Print the first scan of converted data
Print "After zero compensation"

Print ""Channel
Print "'Channel
Print ""Channel
Print "'Channel
Print

1 at X1 gain: "
2 at X2 gain:
3 at X2 gain:
4 at X2 gain:

" Close the device
ret& = VBdagClose&(dagHandle&)

End Sub

IntToUint(buf®(2))
IntToUint(buf®%(3))
IntToUint(buf®(4))
IntToUint(buf®%(5))

Function IntToUint(intval As Integer) As Long
" Converts 16-bit signed integer to unsigned long integer

If 0 <= iIntval

Then

2-24

APl Programming, General Models

988594

Programmer’s Manual

IntToUint = intval
Else
IntToUint
End If
End Function

65535 + CLng(intval) + 1

Linear Conversion

Several DBKSs use conversions from A/D i)

readings to corresponding values that are a [daghdcExpsetBank | Configure specified bank for
linear (straight-line) relationship. (Non- >
linear relationships for RTDs and
thermocouples require special conversion
functions—refer to the Thermocouple and
RTD Linearization section later in this
chapter.) The linear conversion functions
are built into the API.

Configure specified DBK7

|danchxpSetchan0ption| channel with various options.
(dagAdcExpSetBank should be

called before
daghdcExpSetChanOption)

equired options
set for each
channel?

All channels configured?

Six parameters are used to specify a linear
relationship: the A/D input range

User-variable

o . definitions

(minimum and maximum values), and the Define fafra_:f 0fschfnne|5 and

H H array of gains. set scan sequence
transducer input s_lgnql level and output @E and gaine using defined arraye.
voltage at two points In the range. Set sampling frequency. Define

i i 5 and arm trigger. Read data.
Three fqnctlons are us_ed to perform linear ‘E‘M‘E Read data for DBK13 channel.
conversions: daqCvtLinearSetup,
dagCvtLinearConvert, and
daqCvtLinearSetupConvert. These | dagCvtLinearsetupConvert | Convert channels to Hz.
functions are defined in the following

- ey r

pages. After their definitions, parameter [GaqovtLinearsetupConvert | Convert channels to PSI.
examples and a program example show
how they work.

[Output data to screen|

DBKY7, programmed for 50 to 60 Hz:

Measurement Signal Voltage
1 50 Hz -5V
2 60 Hz +5V

The DBK?7 output range is from -5 V to +5 V, and the Daq device must be configured for bipolar operation
at a gain of x1 for the DBK7 channels. Thus, the input range -5 V to +5 V corresponds to the ADmin and
ADmax settings. When a DBK7 programmed for a 50 to 60 Hz range measures a 50 Hz input signal, it
outputs -5 V. With a 60 Hz input signal, it outputs +5 V. Thus, signall is 50, voltagel is -5, signal?2 is 60,
and voltage2 is 5.

Pressure-transducer:

Measurement Signal Voltage
1 Opsi | 1mV
2 1000 psi | 4 mV

Assume that a pressure transducer outputs 1 to 4 mV to represent 0 to 1000 psi, and that a DBK13 with a
gain of x1000 is used with a Daq device in bipolar mode to measure the signal. In bipolar mode, at a gain
of 1000, the analog signal input range is -5 to 5 mV and the output range from the DBK13 is -5 to 5 Volts.
Thus, ADmin is -5.000, and ADmax is 5.000. A pressure of O psi generates an output of 1 mV, and 1000
psi generates 4 mV. Thus signall is 0, voltagel is 1.000, signal2 is 1000 and voltage2 is 4.000.

This program uses the linear conversion functions to convert voltage readings from a DBK7 frequency-to-
voltage card and a DBK13 voltage input card with a pressure transducer to actual frequencies (Hz) and
pressures (psi).

Programmer’s Manual 988594 APl Programming, General Models 2-25

End Sub

Public Sub LinearConvert()

Dim bufferl%(80), buffer2%(80), flags&(3), hz!(20), psi!(10)
Dim ret&, handle&, chané&, x%

" Initialize DagBook

handle& = VBdagOpen&(*'DaqBook0™)

"Set Channel 16 to be a DBK7. This will configure and auto-
"calibrate all channels on the DBK7 which includes channels
"16,17,18, and 19. This step not required for a DBK13

ret& = VBdagAdcExpSetBank(handle&, 16, DbankDbk7&)

"Set channel option common to all DBK7 channels.
"This step not required by a DBK13.
For chan& = 16 To 19
ret& = VBdagAdcExpSetChanOption(handle&, chan&, DcotDbk7Slope&, 1)
ret& = VBdagAdcExpSetChanOption(handle&, chané&, DcotDbk7DebounceTime&,
DcovDbk7DebounceNone&)
ret& = VBdagAdcExpSetChanOption(handle&, chané&, DcotDbk7MinFreg&, 501)
ret& = VBdagAdcExpSetChanOption(handle&, chan&, DcotDbk7MaxFregé&, 601)
Next chané&

"Channel configuration:

"DaqBook Channels 16, 17: DBK7 channels 0,1

"DagBook Channel 32: DBK13 channel O

"Configure the pacer clock, arm the trigger, and acquire 10

"scans. The gain setting of Dbk7X1 (X1 gain) will be applied

"to all channels. The acquisition frequency is set to 100 Hz.

"All channels are unsigned - bipolar.

ret& = VBdagAdcRdScanN&(handle&, 16, 17, bufferl%(), 10, DatsAdcClocké&, O,
0, 100!, Dbk7X1&, DafUnsigned& + DafBipolaré&)

"Now do the same for the DBK13 channel, using gain Dbk13X1000
ret& = VBdagAdcRdN(handle, 32, buffer2%(), 10, DatsAdcClock&, 0, 0, 100!,
Dbk13X1000&, DafUnsigned& + DafUnipolarg&)

"Convert channels 16 and 17 to Hertz where -5 volts corresponds

"to 50 Hz and 5 volts corresponds to 60 Hz.

ret& = VBdaqCvtLinearSetupConvert(2, 0, 2, 50!, -5!, 60!, 51, 1, bufferl%(),
10, hz! (), 20)

"Convert channel 32 to PSI where 1mV corresponds to 0 PSI and

"4 mV corresponds to 1000 PS1. DBK13 channel 0 has 1000x gain,

"so 1mV at Dbk1l3 input gives 1V output at DagBook input.

ret& = VBdaqCvtLinearSetupConvert(l, 0, 1, 0!, 11, 1000!, 41, 1, buffer2%(),
10, psi'(), 10)

"Print results
Print "Results:"
For x = 0 To 9
Print Format(hz!(x * 2), "#0.00 Hz '); Format(hz!(x * 2 + 1), "#0.00 Hz
™); Format(psi(x), "0000.0 psi')
Next X

ret& = VBdaqClose(handle&)

2-26

APl Programming, General Models 988594 Programmer’s Manual

Using Multiple Devices 3

Overview...... 3-1

Asynchronous Operation 3-1

Synchronous Operation 3-1
Asynchronous Operation of Multiple Devices 3-1
Synchronous Operation of Multiple Devices 3-3

Internal Clock Method...... 3-4
Master Clock Method...... 3-5
External Clock Method...... 3-7

Overview

This chapter applies to all devices that can be used with the DagX API. The purpose of this
chapter is to show how devices can be used concurrently in either a synchronous or
asynchronous fashion. Devices that have the ability to trigger from an external source or be
clocked by an external source have the ability to be used in a synchronized system.

Asynchronous Operation

Asynchronous operation of devices is defined as the inability to synchronize the input of data
between separate main unit devices. Data acquired with the devices is independent and the
time-skew between devices is non-deterministic.

In the following sections, both synchronous and asynchronous operation will be covered.
However, since synchronous operation requires more care in configuration most of the
remaining material in the chapter will cover synchronous operation of multiple devices.

For either synchronous or asynchronous operation modes device configuration and data
handling is very similar to the single device scenario. The DagX API is a handle based API.
This means that each device session has a handle assigned to it when it is opened. This
device handle is then used to configure and acquire data from a device by referencing the
device handle when calling the appropriate DagX API functions.

Synchronous Operation

Synchronous operation of devices is defined as having the ability to synchronize the input of
data between separate main unit devices. Data between devices is not time-skewed or the
time-skew between devices is deterministic.

Asynchronous Operation of Multiple Devices

All DagX compatible devices may be run concurrently in an asynchronous manner. When
using the devices concurrently in an asynchronous manner the programming and data
collection techniques are very similar to the single device Here, the triggering events, stop
events and clocking of the input can be different between the devices.

As mentioned above, the DagX APl is a handle-based API. A handle-based API is an APl which
assigns a unique handle to each device in use. As in the single device scenario, each device
needs to be opened using the daqOpen function. Each device should be opened using the
alias name given to the device in the Daq Configuration Utility located in the Control Panel of
WindowsNT/2000/XP operating system. As each device is opened a new, unique handle for
each device is generated and returned by the daqOpen function. The handle is a unique
identifier for each device and should be used when referencing DagX functions for the device.

Using this model, each device needs to be uniquely configured using the appropriate handle
for the device. The acquisition of the data for each device also is managed independently for
each device. The diagram below shows how the application should operate with two devices
(designated as DeviceO and Devicel).

Programmer’s Manual 908494 Using Multiple Devices 3-1

Application Code

/O Data Device |/O I Device0 |
/O Data < Device 1;0:>| Devicel |

Using this model, each device needs to be opened and a device handle assigned. Here the
Controlling Process would open each device session according to the device inventory list (this
can be interrogated by inspecting the device inventory in the Daq Configuration utility located
in the Control Panel of the operating system). The Control Process would then pass each
device handle to the appropriate Device Process so that each device process can configure
the device and acquire data from the device.

Device0
Process
handleQ

Controlling
Process

Device1
Process
handle1

Note: While the above diagram does indicate the division of responsibilities within the
application, the application may be organized in any fashion desirable. The individual
processes need not be separate tasks or threads in order for the multi-device model to
work well.

For discussion purposes, the responsibilities of the Controlling Process are as follows:
1. For each device, open the device session and retrieve the device handle (see daqOpen).

2. Pass each device handle to the appropriate Device Process so that the Device Process can
configure the acquisition for its device.

3. Process any data returned from each Device Process and update any outputs required.
4. Optionally, write the input data for each device to disk.
Each device process is responsible for performing the following steps in order:

1. Configure the channel scan group for the device including expansion channels (see
daqgAdcSetScan for channel scan group configuration details).

2. Configure the acquisition clocking or rate to be used (see dagAdcSetRate and
daqgAdcSetClockSource for details on scan rate clocking configurations).

3. Configure the acquisition mode to set pre-trigger, post-trigger and update mode (see
daqgAdcSetAcq for details on configuring acquisition mode parameters).

4. Configure the means by which the acquisition should start and terminate by configuring
the Trigger and Stop Events. (see daqgSetTriggerEvent for more details on configuring
the Trigger and Stop Events).

5. Configure the buffer model to be used for the device. (see dagAdcTransferSetBuffer for
more details on configuration of the buffer model.

6. |Initiate a transfer from the device (see dagAdcTransferStart) and arm the device to
detect the trigger event (see dagAdcArm).

7. Monitor the status of the input data transfer and the acquisition (see
dagAdcTransferGetStat) and optionally pass data back to the Controlling Process.

Since this section deals with asynchronous operation, each device may be independently
programmed with respect to steps 1-7. When the devices are independently programmed
each device may take on separate acquisition settings such as Trigger/Stop Events, Pre/Post-
Trigger modes and buffer model settings. Independent device operation also implies that the
data acquired from the different devices cannot be temporally correlated. As such, data from
each device should be handled separately in either separate data buffers in memory or
separate disk files. Sections to follow illustrate using multiple devices in a synchronized
manner.

3-2 Using Multiple Devices 908494 Programmer’s Manual

Synchronous Operation of Multiple Devices

The following sections describe methods for synchronizing input data with multiple DagX compatible

devices.

o Internal Clock Method
o Master Clock Method
o External Clock Method

Three synchronization methods will be discussed:

The synchronization method available depends upon the device, i.e., its ability to be externally triggered
or externally clocked. The following table shows the capabilities of each device as well as the physical
location of the external trigger and pacer input/output clocks.

Device External TTL Trigger External Acquisition Min. External Acquisition Pacer
Pacer Clock Clock Interval Clock Output
WaveBook/512 Yes (pin 13 on DB25F) No NA No
WaveBook/516 Yes (pin 13 on DB25F) Yes (pin 20 on DB25F) 1lus (1MHz) No
DaqgBooks Yes (P1; pin 25) No NA No
Daq PC-Card Yes (P1; pin 25) No NA No
DaqgBoard(1SA) Yes (P1; pin 25) No NA No
TempBook Yes No NA No

DaqBoard/500 Series

Yes (pin 6 on SCSI ;
TTLTRG on TB-100)

Yes (pin 2 on SCSI ;
XAPCR on TB-100)

5us (200kHz)

Yes (pin 2 on SCSI ;
XAPCR on TB-100)

DaqgBoard/1000 Series

Yes (pin 6 on SCSI ;
TTLTRG on TB-100)

Yes (pin 2 on SCSI ;
XAPCR on TB-100)

5us (200kHz)

Yes (pin 2 on SCSI ;
XAPCR on TB-100)

DagBoard/2000 Series1

Yes (P1; pin 25) Note 2

Yes (P1; pin 20) Note 2

5us (200kHz)

Yes (P1;pin 20) Note 2

DaqgBoard/2000c Seriest

Yes (P1; pin 25) Note 2

Yes (P1; pin 20) Note 2

Sus (200kHz)

Yes (P1; pin 20) Note 2

DaqBook/2000 Series

Yes (P1; pin 25) Note 3

Yes (P1; pin 20) Note 3

5us (200kHz)

Yes (P1; pin 20) Note 3

DaqScan/2000 Series

Yes (P1; pin 25)

Yes (P1; pin 20)

5us (200kHz)

Yes (P1; pin 20)

DagLab/2000 Series

Yes (P1; pin 25)

Yes (P1; pin 20)

5us (200kHz)

Yes (P1; pin 20)

DagBoard/3000 Series

Yes (pin 6 on SCSI;
TTLTRG on TB-100)

Yes (pin 2 on SCSI ;
XAPCR on TB-100)

1us (1MHz)

Yes (pin 2 on SCSI ;
XAPCR on TB-100)

Synchronization Methods Available

Device Internal Clock Master Clock External Clock
Method Method Method
WaveBook/512 Yes No No
WaveBook/516 Yes Slave only Yes
DaqBooks Yes No No
Daq PC Card Yes No No
DaqgBoard(1SA) Yes No No
TempBook Yes No No
DaqgBoard/500 Series Yes No Yes
DaqBoard/1000 Series Yes Master or Slave Yes
DaqBoard/2000 Series Note 1 Yes Master or Slave Yes
cPCI DagBoard/2000c Series Note 1 Yes Master or Slave Yes
DaqBook/2000 Series Yes Master or Slave Yes
DaqScan/2000 Series Yes Master or Slave Yes
DaqgLab/2000 Series Yes Master or Slave Yes
DaqBoard/3000 Series Yes Master or Slave Yes

Notes:

1 Excludes DagBoard/2003 and cPCl DagBoard/2003c.

2 The P1 connector for DagBoard/2000 Series and DagBoard/2000c Series boards is obtained by connecting a
DBK200 Series option to the board’s P4 connector.

3 DaqBook/2020 has a BNC connector for External TTL Trigger and a BNC connector for the external pacer clock.
These BNC connectors are in addition to P1 connector pins 25 and 20.

Programmer’s Manual

908494

Using Multiple Devices

3-3

4 Due to processing latencies, no software trigger sources should be used when attempting to do synchronous
device acquisitions. When doing synchronous acquisitions the valid trigger modes are limited to External TLL,
Analog Hardware, and Immediate trigger sources.

Internal Clock Method

This method synchronizes the devices by sharing the same external trigger event. The external trigger
event can be either External TTL or Analog Hardware. In this method, each device still runs
independently on its own internal acquisition pacer clock but the acquisition on each device is initiated
through the same external trigger event. Using this method it is important that all the devices internal pacer
clocks are to the same rate (or at least evenly divisible by the highest rate) in order to ensure that the input
data can be temporally correlated.

As mentioned above, the DagX API is a handle-based API. A handle-based API is an APl which assigns a
unique handle to each device in use. As in the single device scenario, each device needs to be opened
using the daqOpen function. Each device should be opened using the alias name given to the device in
the Dag Configuration Utility located in the Control Panel of WindowsNT/2000/XP operating system. As
each device is opened a new, unique handle for each device is generated and returned by the daqOpen
function. The handle is a unique identifier for each device and should be used when referencing DagX
functions for the device.

Using this model, each device needs to be configured using the appropriate handl e for the device. Some
configuration parameters may differ but some parameters need to be configured specifically for this
method. Using this model, each device needs to be uniquely configured using the appropriate handle for
the device. The acquisition of the data for each device also is managed independently for each device.

The diagram below shows how the application should operate with two devices.
Application Code
Device0 Device0 [
I/O Data Process Device /O internal |
handle0 1 [Pacer Clock | |
Device1 : i Devicel ol
/O Data Process Device /O gat?:rer:'aé Iock
handle1] LRl s

Controlling
Process

External TTL / Analog Triggeri

Using this model, each device needs to be opened and a device handle assigned. Here the Controlling
Process would open each device session according to the device inventory list (this can be interrogated by
inspecting the device inventory in the Daq Configuration utility located in the Control Panel of the
operating system). The Control Process would then pass each device handl e to the appropriate Device
Process.

Note: While the above diagram does indicate the division of responsibilities within the application, the
application may be organized in any fashion desirable. The individual processes need not be
separate tasks or threads in order for the multi-device model to work well.

For discussion purposes, the responsibilities of the Controlling Process are as follows:
1. For each device, open the device session and retrieve the device handl e (see daqOpen).

2. Pass each device handl e to the appropriate Device Process so that the Device Process can configure
the acquisition for its device.

3. Interleave the data from each Device Process and update any outputs as required.

4. Optionally, write the input data from the devices and write the input data for each device to disk.

3-4

Using Multiple Devices 908494 Programmer’s Manual

Each device process is responsible for performing the following steps (in order):

1. Configure the channel scan group for the device including expansion channels (see dagAdcSetScan
for channel scan group configuration details).

2. Configure the acquisition for internal pacing and set the rate to be the same for all devices. (see
dagAdcSetRate and dagAdcSetClockSource for details on scan rate clocking
configurations).

3. Configure the acquisition mode to be a counted acquisition (DaamNShot) and set no pre-trigger and
set the post-trigger count to be the same for all devices (see dagAdcSetAcq for details on
configuring acquisition mode parameters).

4. Configure the trigger event to be External TTL (DatsExternal TTL) or Hardware Analog
(DatsHardwareAnalog) and the set the sensitivity to be (rising, falling...) the same for all devices.
Set the Stop Event to be counted (DatsScanCount). See daqSetTriggerEvent for more
details on configuring the Trigger and Stop Events.

5. Configure the buffer model to be used for the device. (see dagAdcTransferSetBuffer for more
details on configuration of the buffer model.

6. Initiate a transfer from the device (see dagAdcTransferStart) and arm the device to detect the
trigger event (see dagAdcArm).

7. Monitor the status of the input data transfer and the acquisition (see dagAdcTransferGetStat)
and optionally pass data back to the Controlling Process.

Since this section deals with synchronous operation, each device may be independently programmed with
respect to steps 1, 5, 6 and 7. However, steps 2 through 4 need to be set as specified.

Note: In order for this method to work properly the actual acquisition scan rate settings need to be the
same for all devices. Be sure to check that the actual scan rates set are equal for all devices (see
dagAdcSetRate and dagAdcGetFreq for more information on retrieving the actual scan rate
programmed for each device.

Master Clock Method

This method synchronizes the devices by setting all devices to run off a clock generated by a pre-selected
Master device. Here the Master device is configured for internal clocking of the acquisition pacer clock.
This pacer clock is then output by the Master device to the Slave devices that use the clock for acquisition
pacing. In this method, each Slave device is configured for external acquisition pacing and set for
immediate trigger. The Master device may be set for Analog Hardware, External TTL Level or immediate
triggering. Once armed, the Master device will not drive the pacer clock output until the trigger event
occurs. Likewise, the Slave units will not begin acquiring data until the external pacer clock pulses are
generated (even though they were set to trigger immediately. When using this method it is important to
ensure that the Master clock output is no faster than the largest minimum clock source for any of the Slave
devices.

As mentioned above, the DagX API is a handle-based API. A handle-based API is an API that assigns a
unique handle to each device in use. As in the single device scenario, each device needs to be opened
using the daqOpen function. Each device should be opened using the alias name given to the device in
the Dag Configuration Utility located in the Control Panel of WindowsNT/2000/XP operating system. As
each device is opened a new, unique handle for each device is generated and returned by the daqOpen
function. The handle is a unique identifier for each device and should be used when referencing DagX
functions for the device.

Using this model, each device needs to be configured using the appropriate handl e for the device. Some
configuration parameters may differ but some parameters need to be configured specifically for this
method.

Using this model, each device needs to be uniquely configured using the appropriate hand I e for the
device. The acquisition of the data for each device also is managed independently for each device.

Programmer’s Manual 908494 Using Multiple Devices 3-5

The diagram below shows how the application should operate.

Application Code

Device0 : Device0 [
/O Data Process Device 1/O gmﬁiﬁ"'_i
hanaleg : {Pacer Clock |

Device1 E i Device1
Process Device I/O Slave Device
handle1 :

Controlling
Process

1/O Data

|

External TTL / Analog Trigger—=—

Using this model, each device needs to be opened and a device handle assigned. Here the Controlling
Process would open each device session according to the device inventory list (this can be interrogated by
inspecting the device inventory in the Daq Configuration utility located in the Control Panel of the
operating system). The Control Process would then pass each device handl e to the appropriate Device
Process.

Note: While the above diagram does indicate the division of responsibilities within the application, the
application may be organized in any fashion desirable. The individual processes need not be
separate tasks or threads in order for the multi-device model to work well.

Note: To ensure proper synchronization always configure the Slave devices before configuring the Master
device.

For discussion purposes, the responsibilities of the Controlling Process are as follows:
1. For each device, open the device session and retrieve the device handl e (see daqOpen).

2. Pass each device handl e to the appropriate Device Process so that the Device Process can configure
the acquisition for its device.

3. Interleave the data from each Device Process and update any outputs as required.
4. Optionally, write the input data from the devices and write the input data for each device to disk.

Each Slave Device Process should configure the Slave device(s) by performing the following steps in the
order show:

1. Configure the channel scan group for the device including expansion channels (see dagAdcSetScan
for channel scan group configuration details).

2. Configure the acquisition for external pacing (see dagAdcSetClockSource for details on scan
rate clocking configurations).

3. Configure the acquisition mode to be a counted acquisition (DaamNShot) and set no pre-trigger and
set the post-trigger count to be the same for all Slave devices (see dagAdcSetAcq for details on
configuring acquisition mode parameters).

4. Configure the trigger event to be immediate (DatsImmediate). Set the Stop Event to be counted
(DatsScanCount) (see dagSetTriggerEvent for more details on configuring the Trigger and
Stop Events).

5. Configure the buffer model to be used for the device. (see dagAdcTransferSetBuffer for more
details on configuration of the buffer model.

6. [Initiate a transfer from the device (see dagAdcTransferStart) and arm the device to detect the
trigger event (see dagAdcArm).

7. Monitor the status of the input data transfer and the acquisition (see dagAdcTransferGetStat)
and optionally pass data back to the Controlling Process.

Since this method is a synchronous operation, each device may be independently programmed with respect
to steps 1, 5, 6 and 7. However, steps 2 through 4 need to be set as specified.

3-6 Using Multiple Devices 908494 Programmer’s Manual

The Master Device Process should configure the Master Device by performing the following steps
(in order):

1. Configure the channel scan group for the device including expansion channels (see dagAdcSetScan
for channel scan group configuration details).

2. Configure the acquisition for internal pacing. This setting will be the pacer clock setting for all
devices in the system. (see dagAdcSetRate and dagAdcSetClockSource for details on scan
rate clocking configurations).

3. Configure the acquisition mode to be a counted acquisition (DaamNShot) and set no pre-trigger and
set the post-trigger count to be the same for all devices (see dagAdcSetAcq for details on
configuring acquisition mode parameters).

4. Configure the trigger event to be Analog Hardware (DatsHardwareAnalog) or External TTL
(DatsExternal TTL) if the acquisition is to begin on the detection of an external event. Ifit is
desirable, however, to trigger the acquisition immediately then use an immediate trigger
(DatsImmediate). Set the Stop Event to be counted (DatsScanCount). See
daqgSetTriggerEvent for more details on configuring the Trigger and Stop Events.

5. Configure the buffer model to be used for the device. (see dagAdcTransferSetBuffer for more
details on configuration of the buffer model.

6. Initiate a transfer from the device (see dagAdcTransferStart) and arm the device to detect the
trigger event (see dagAdcArm).

7. Monitor the status of the input data transfer and the acquisition (see dagAdcTransferGetStat)
and optionally pass data back to the Controlling Process.

Since this method is a synchronous operation, each device may be independently programmed with respect
to steps 1, 5, 6 and 7. However, steps 2 through 4 need to be set as specified.

External Clock Method

This method synchronizes the devices by sharing the same external clock source. In this method, each
device will pace its acquisition on the same external TTL clock source. Here, the external clock source
provided can be no faster than the largest of the minimum external clock interval on the system (see
previous table).

As mentioned above, the DagX API is a handle-based API. A handle-based API is an API which assigns a
unique handle to each device in use. As in the single device scenario, each device needs to be opened
using the daqOpen function. Each device should be opened using the alias name given to the device in
the Dag Configuration Utility located in the Control Panel of WindowsNT/2000/XP operating system. As
each device is opened a new, unique handle for each device is generated and returned by the daqOpen
function. The handle is a unique identifier for each device and should be used when referencing DagX
functions for the device.

Using this model, each device needs to be configured using the appropriate handl e for the device. Some
configuration parameters may differ but some parameters need to be configured specifically for this
method.

Using this model, each device needs to be uniquely configured using the appropriate hand I e for the
device. The acquisition of the data for each device also is managed independently for each device.

The following diagram shows how the application should operate for two devices.

Programmer’s Manual 908494 Using Multiple Devices 3-7

Application Code

Device0 . "
/O Data Process Device /O Device0
handle0 v
Device1 E) "
Process Device I/O Devicel [
handle1

Controlling
Process

/O Data

r

|

External TTL / Analog Trigger1
External Clock —=2——

Using this model, each device needs to be opened and a device handle assigned. Here the Controlling
Process would open each device session according to the device inventory list (this can be interrogated by
inspecting the device inventory in the Daq Configuration utility located in the Control Panel of the
operating system). The Control Process would then pass each device handl e to the appropriate Device
Process.

Note: While the above diagram does indicate the division of responsibilities within the application, the
application may be organized in any fashion desirable. The individual processes need not be
separate tasks or threads in order for the multi-device model to work well.

For discussion purposes, the responsibilities of the Controlling Process are as follows:
1. For each device, open the device session and retrieve the device handl e (see daqOpen).

2. Pass each device handl e to the appropriate Device Process so that the Device Process can configure
the acquisition for its device.

3. Interleave the data from each Device Process and update any outputs as required .

4. Optionally, write the input data from the devices and write the input data for each device to disk.

Each Device Process should configure its device by performing the following steps (in order):

1. Configure the channel scan group for the device including expansion channels (see dagAdcSetScan
for channel scan group configuration details).

2. Configure the acquisition for external pacing. (see dagAdcSetClockSource for details on scan
rate clocking from an external source).

3. Configure the acquisition mode to be a counted acquisition (DaamNShot) and set no pre-trigger and
set the post-trigger count to be the same for all devices (see dagAdcSetAcq for details on
configuring acquisition mode parameters).

4. Configure the trigger event to be Analog Hardware (DatsHardwareAnalog) or External
TTL(DatsExternal TTL) if the acquisition is to begin on the detection of an external event. If it is
desirable, however, to trigger the acquisition immediately then use an immediate trigger
(DatsImmediate). Set the Stop Event to be counted (DatsScanCoun). See
daqgSetTriggerEvent for more details on configuring the Trigger and Stop Events.

5. Configure the buffer model to be used for the device. (see dagAdcTransferSetBuffer for more
details on configuration of the buffer model.

6. Initiate a transfer from the device (see dagAdcTransferStart) and arm the device to detect the
trigger event (see dagAdcArm).

7. Monitor the status of the input data transfer and the acquisition (see dagAdcTransferGetStat)
and optionally pass data back to the Controlling Process.

Since this method is a synchronous operation, each device may be independently programmed with respect
to steps 1, 5, 6 and 7. However, in steps 2 through 4, configurations must be as specified.

3-8 Using Multiple Devices 908494 Programmer’s Manual

Dag API Command Reference 4

Overview 4.1-1
Command Information Layout...... 4.1-2
Predefined Parameter Definitions...... 4.1-4
Mask and Flag Definitions...... 4.1-6
Setting/Constructing Mask and Flag Values...... 4.1-6
Reading/Interpreting Mask and Flag Values...... 4.1-7
APl Commands
Alphabetic Listing...... 4.1-8
Grouped by Function...... 4.1-9
The API Commands, In Detail...... 4.2-1
API Error Codes...... 4.7-1

Overview

This chapter details the particular commands used to program Daq device applications. The first section of this
chapter describes briefly the layout of the API Command entries, and is followed by two useful reference
sections—first, a table describing the naming conventions of the predefined parameter values, and second, a
section breifly describing the use of mask and flag values. After this, two tables of contents are offered: an
alphabetical listing of the APl commands, and a listing of APl commands grouped into catagories of similar
function. The APl command entries begin after the table of contents, and are themselves arranged in
alphabetical order. Following the commands, the API Error Code table is included, detailing the meaning of
possible error return messages.

Note: The term “DagBoard/2000 Series” refers to both the PCI and compact PCI (cPCI) versions of the boards, unless
otherwise stated. For example: The use of “DagBoard/2001” refers to both the DagBoard/2001 and to the
cPCI DagBoard/2001c.

Programmer’s Manual 938395 Dag APlI Command Reference 4.1-1

Command Information Layout Note: The “dagAPICommand” name, used below, is for illustrative purposes only.

d an PICommand {the API Command name, often referred to as a “Function”}
{related commands, if applicable} Also See: dagAPICommand2, dagAPICommand3

Format

dagAPICommand(parameterl, parameter2, parameter3)
Purpose

dagAP1Command does {this is a brief description of the command’s purpose}.

Parameter Summary

Parameter Type Description
parameterl DataTypeA | Briefly states the function of parameterl.
parameter?2 DataTypeB | Briefly states the function of parameter?2.
parameter3 DataTypeC | Briefly states the function of parameter3.

Parameter Values

parameterl: valid value range for parameterl
parameter2: valid value range for parameter2
parameter3: valid value range for parameter3

Parameter Type Definitions

Data Type Definitions -DataTypeA
Description Description
ParamvValuel Describes result of setting DataTypeA to parameter value 1
ParamvValue2 Describes result of setting DataTypeA to parameter value 2
ParamvValue3 Describes result of setting DataTypeA to parameter value 3
Returns

ReturnMessagel Return Message definition

“Returns” lists possible return messages that could result from the use of the command. An error
message is a return; and all Error information can be found in the Daq Error Table. Not that some
commands have no returns.

Function Usage

The function usgage section provides additional information about the various parameters and their
possible values. The information usually expands upon that which is presented in the Parameter
Summary and Parameter Values tables. For clarity, this section may include sub-sections which discuss
groups of parameters; such as parameters that deal with input and output, or parameters which must be
used together to accomplish a result (such as a parameter which arms a counter, and another that
configures the counter’s starting value). The Function Usage subsections may also discuss broader Dag
programming concepts.

4.1-2 Dag APl Command Reference 938395 Programmer’s Manual

Prototypes
The prototypes section contains examples in C/C++ or VisualBasic. Examples follow.

C/C++
dagAPlcommand(DataTypeA parameterl, DataTypeB parameter2, DataTypeC
parameter3, TypeD parameter4, Type5 parameter5);

Visual BASIC
VBdagAPICommand&(DataTypeA parameterl&, DataTypeB parameter2&,

DataTypeC parameter3é&,)

Program References
This section gives a list of programs which use the function. Programs are separated by a comma and

space.

C/C++ programs end in “.CPP”; for example: DAQADCEXO01 .CPP

VisualBasic programs end in “.FRM” and are followed by “(VB)” for easy recognition;
for example: DAQEX.FRM (VB)

Note that program references are not included with every function.

Programmer’s Manual 938395 Daq APl Command Reference 4.1-3

Predefined Parameter Definitions

Many of the predefined parameter values available in the DagX header files (.h, .bas, .pas) follow a naming
convention based upon the type of function or operation they are affecting. These conventions usually take the
form of a prefix on the parameter value’s name.

Prefix Data Type Meaning

Derr.. DagError Error return code defintions

Dte.. DagTransferEvent Acqusition transfer data transfer event definitions

Dwm... DagWai tMode Wait mode definitions for acquisition transfer
events

Dhi.. DagHardwarelnfo Hardware information parameter definitions

Ddi.. Daglnfo General Dag and expansion device information
definitions

Dds... DagDetectSensor Sensor detection definitions

Dhef.. DagHardwareExtFeatures | Extended hardware features not available in base
type such as 1/0 and memory module support

DagProtocol | DagProtocol Protocol definition for the hardware interface
available for the device

Daet.. DagAdcExpType Analog expansion unit bank type definitions for
smart DBK cards (DBK4, DBK7, DBK5,DBK2,
DBKH50 etc)

Doct.. DagAdcExpType Analog option unit type definitions for WBK option
cards (WBK11,WBK12,WBK13 etc)

Dmct.. DagAdcExpType Analog module unit type definitions for WBK
modules (WBK10,WBK14,WBK15,WBK16 etc)

Dcot.. DaqOptionType Channel option type definitions for WBK card
options

Ddcot.. DaqOptionType Option type defnitions for DBK card options

Dmot.. DaqOptionType Option type definitions for WBK expansion
modules

Dbot... DaqOptionType Option type definitions for base (main) unit
WaveBooks

Dcof.. DaqChanOptionFlagType Flag to indicate whether to apply the option to the
channel specified or the entire module defined by
the channel

Dcov.. DagChanOptionValue Option value definitions for DBK and WBK option
types

Dgain.. DagAdcGain Base (main) unit analog gain codes for
DagBook/DagBoard products

Pgain.. DagAdcGain Base (main) unit analog gain codes for PersonalDaq
products

Tgain.. DagAdcGain Base (main) unit analog gain codes for TempBook
products

Wgc... DagAdcGain Analog gain codes for WaveBook products

Dbk... DagAdcGain Analog gain codes for DagBook/DagBoard DBK
expansion modules

Thk... DagAdcGain Analog gain codes for TempBook Thermocouple
channels

Daf.. DagAdcFlag Channel definition flags use to configure basic
channel types

Dar.. DagAdcRange AJD range definitions

DagType.. DagChannel Type DBK channel type definitions

Dats.. DagAdcTriggerSource Acquition trigger event (start/stop) source
definitions

Dets.. DagEnhTrigSensT Defines trigger sensitivities according to the trigger

source definition (rising/falling, above/below etc)

4.1-4 Dag APl Command Reference

938395

Programmer’s Manual

Prefix Data Type Meaning

Dacs.. DagAdcClockSource Acquisition clock (pacing) source definitions

Darm... DagAdcRateMode Rate mode selection (Period, Frequency, External
etc)

Daas.. DagAdcAcgState Acquisition state for which the function or
operation is to apply (Pre-trigger, Post-trigger, etc)

Daam... DagAdcAcgMode Defines the valid acquisition modes for the device
(counted, infinite, pre and post trigger, re-arm)

Daom... DagAdcOpenMode Defines acquisition to file open modes (append,
create, write)

Datm.. DagAdcTransferMask Defines acqusition and transfer events

Daaf.. DagAdcActiveFlag Defines acquisition transfer and acquistion states
and events

Dabtm... DagAdcBufferXferMask Defines acqusition data buffer allocation and usage

Dardf.. DagAdcRawDataFormatT Defines raw format types

Daca.. DagAdcCvtAction Defines conversion actions

Dddt.. DagDacDeviceType Defines D/A converter device types

Ddom... DagDacOutputMode Defines D/A converter output modes such as direct
(DC) and static/dynamic waveform modes

Ddts.. DagDacTriggerSource Defines trigger event definitions

Ddcs.. DagDacClockSource Defines clock source types for waveform output to
a D/A channel

Ddwm... DagDacWaveformMode Defines waveform output modes (static, dynamic,
from file)

Ddwt... DagDacWaveType Defines predefined waveform types

Ddtm... DagDacTransferMask Defines waveform output events

Ddwdf... DagDacWaveFileDataForm | Defines the data file format types for waveform

at output from file

Ddaf.. DagDacActiveFlag Defines waveform transfer and waverform states
and events

Dcal.. DcalType Defines calibration operation for the specified
channel on the device

Dci.. DaqCal InputT Defines calibration input channel source

Dctt.. DaqCalTableTypeT Defines calibration table selections (Factory/User)

Dco.. DaqCalOperationT Defines calibration operations available for a
calabrating a device

Dcopt... DaqCalOptionT Defines the calibration options

Diodt.. DaqlODeviceType Defines 1/0 device types

Diodp.. DaqlODevicePort Defines Local 1/0 ports

Dioep.. DaqlOExpansionPort Defines Expansion /O ports

DcOc.. DagCntrOConfig Configuration parameters for Counter 0

Diooc.. DaqlOOperationCode Defines 1/0 operation codes

Dtod.. Daq9513TimeOfDay Defines time of day parameters for programming
time-of-day on 9513

Dgc.. Dag9513GatingControl Defines Gating Control parameters for 9513
counters

Dcs.. Daq9513CountSource Defines counter source for 9513 counter channel

Doc.. Daq95130utputControl Defines timer output control definitions for 9513

Dmcc... Daq9513MultCtrCommand Defines multi-counter commands for 9513

Dtst.. DaqTestCommand Defines test types for device testing

Programmer’s Manual

938395

Daq APl Command Reference

4.1-5

Mask and Flag Definitions

There are a number of parameter types which represent bit-masked values. These bit-masks are used to
represent complex settings or states which may not be easily represented by a single value. These parameter
data types can be identified by the postfix ...Flag or ...Mask in the data type name. Special care should be
execercised when using these types since one parameter value can represent a number of different states or
conditions. These parameter types have a set of pre-defined bit-mask enumerations which represent indvidual
states or conditions. These pre-defined enumerations can be found with the ...Flag and ...Mask type
definitions found in the DagX header files (DagX.c, DagX.bas, DagX.pas)

Setting/Constructing Mask and Flag Values

Mask and Flag parameter values can be constructed by “adding” the desired flags together: The following
illustrates how to do this in C/C++ and Visual Basic:

C/C++
Value =Flagl + Flag2 + Flag3 + ... Flagn; /I C language format
channelFlags = DafAnalog + DafBipolar + DafUnsigned:; /I C language
example

Visual Basic
Value = Flagl + Flag2 + Flag3 + ... Flagn ‘ Visual Basic
format
channel Flags& = DafAnalog& + DafBipolar& + DafUnsigned& * Visual Basic
example

An equivalent method is to logically “or” the flags together. See language documentation to use the “or”ing
method.

4.1-6 Dag APl Command Reference 938395 Programmer’s Manual

Reading/Interpreting Mask and Flag Values

Reading and interpretting mask and flag parameters returned by the DagX driver can be a bit trickier. What is
needed here is to logically “and” the flags that are of interest with the flags returned from the DagX API.
Those flag bits which are set (bit value =1)

C/C++
Flags = Flagl + Flag2 + Flag3 + ... Flagn; /I C language format
If (Flags & returnedFlags) == Flags) ; /I C language format
/I Code for flagsSet condition
}else {
/I Code for flags NOT set condition
}
/I C Language Example
acqFlags = DaafTriggered + DaafAcgActive; /I C language
example
if ((acqFlags & acqReturned) == acqFlags) {
{
printf(“Acquisition has been triggered and post-trigger data is being acquired\n”);
}else {
if (acqReturned & DaafAcgActive) {
printf(* Acquistion is active but has not been triggered\n”);
}else {
printf(“Acquisition is not active\n”);
}
}
Visual Basic
Value =Flagl + Flag2 + Flag3 + ... Flagn ‘ Visual Basic format
channel Flags& = DafAnalog& + DafBipolar& + DafUnsigned& * Visual Basic
example

Programmer’s Manual 938395 Dag APlI Command Reference 4.1-7

APl Commands, Alphabetic Listing

dagAdcArm
dagAdcBufferRotate
dagAdcCalcTrig
dagAdcDisarm
dagAdcExpSetBank
dagAdcGetFreq
dagAdcGetScan
dagAdcRd

dagAdcRdN
dagAdcRdScan
dagAdcRdScanN
dagAdcSetAcq
dagAdcSetClockSource
dagAdcSetDataFormat
dagAdcSetDiskFile
dagAdcSetFreq
dagAdcSetMux
dagAdcSetRate
dagAdcSetScan
dagAdcSetSetpoints
dagAdcSetTrig
dagAdcSetTrigEnhanced
dagAdcSoftTrig
dagAdcTransferBufData
dagAdcTransferGetStat
dagAdcTransferSetBuffer
dagAdcTransferStart
dagAdcTransferStop
dagAutoZeroCompensate
dagCalClearCalTable
dagCalConvert
dagCalGetCalEquation
dagCalGetConstants
dagCalPerformSelfCal
dagCalSaveCalTable
dagCalSaveConstants
dagCalSelectCalTable
dagCalSelectlnputSignal
dagCalSetCalEquation
dagCalSetCalPoints
dagCalSetConstants
daqgCalSetup
dagCalSetupConvert
dagClose
dagCreateDevice
dagCvtChannelType
dagCvtHardwareType
dagCvtLinearConvert
dagCvtLinearSetup
dagCvtLinearSetupConvert
dagCvtRawDataFormat
dagCvtRtdConvert
dagCvtRtdSetup

dagCvtRtdSetupConvert
dagCvtSetAdcRange
dagCvtTCConvert
dagCvtTCConvertF
daqCvtTCSetup
dagqCvtTCSetupConvert
dagqCvtTCSetupConvertF
dagDacSetOutputMode
dagDacTransferGetStat
dagDacTransferStart
dagDacTransferStop
dagDacWaveArm
dagDacWaveDisarm
dagDacWaveGetFreq
dagDacWaveSetBuffer
dagDacWaveSetClockSource
dagDacWaveSetDiskFile
dagDacWaveSetFreq
dagDacWaveSetMode
dagDacWaveSetPredefWave
dagDacWaveSetTrig
dagDacWaveSetUserWave
dagDacWaveSoftTrig
dagDacWt

dagDacWtMany
dagDefaultErrorHandler
dagDeleteDevice
dagFormatError
dagGetChannelType
dagGetDeviceCount
dagGetDevicelnfo
dagGetDevicelnventory
dagGetDevicelList
dagGetDeviceProperties
dagGetDriverVersion
dagGetHardwarelnfo
dagGetHardwareType
daqgGetinfo
dagGetLastError
daql0Get8255Conf
daqglORead
daglOReadBit
daglOWrite
daglOWriteBit
dagOnline

dagOpen
dagProcessError
dagReadCalFile
dagSetDefaultErrorHandler
dagSetErrorHandler
dagSetOption
dagSetTimeout
dagSetTriggerEvent

Note: for 9513 chip-based devices refer to Appendix D.

dagqTest
dagwaitForEvent
dagwWaitForEvents
dagZeroConvert
dagZeroSetup
dagZeroSetupConvert

4.1-8 Dag APl Command Reference

938395

Programmer’s Manual

API Commands, Grouped by Function

Many APl commands cannot be used universally across all products. For example, a command
that pertains only to analog output is of no use to a device that does not support analog 1/0.
Thus it is important to understand the features and capabilities of your hardware before using
APl Commands. Prior awareness can save a great deal of programming time and sidestep

possible frustration.

General Commands

Calibration, Intialization, Handling, Getting Information ...

Functional Category

Calibration
(Software Calibration)

Error Handling

Event Handling

Get Information, Utility Function
(also see “Initialization, Device Initialization”)

Command

dagCalClearCalTable
daqgCalConvert
dagCalGetCalEquation

dagCalGetConstants
daqgCalPerformSelfCal
dagCalSaveCalTable

daqgCalSaveConstants
dagCalSelectCalTable

daqgCalSelectlnputSignal
daqgCalSetCalEquation
dagCalSetCalPoints

dagCalSetConstants
dagCalSetup
daqgCalSetupConvert

dagReadCalFile

dagDefaul tErrorHandler
dagFormatError
dagGetLastError
dagProcessError
dagSetDefaultErrorHandler
dagSetErrorHandler

dagSetTimeout
dagwaitForEvent
dagwaitForEvents

dagGetChannelType
dagGetDriverVersion
dagGetHardwarelnfo
dagGetHardwareType
dagGetinfo

Table Continued . . .

Programmer’s Manual

938395

Daq APl Command Reference 4.1-9

General Commands, continued

Initialization (Device Initialization)

Read/Write, General 1/0

Test

daqgClose
daqgCreateDevice
dagDeleteDevice
dagGetDeviceCount
dagGetDevicelnfo
dagGetDevicelnventory
dagGetDevicelist
dagGetDeviceProperties
dagOnline

daqgOpen

daql0Get8255ConT
daqglORead
daglOReadBit
daglOWrite
daglOWriteBit

dagqTest

Conversion Commands

Conversions and Zero Offset

Functional Category

Calibration

Data Format

Linear Conversion

RTD Conversion

Thermocouple Conversion

Zero Offset

Convert Type and Sub Type to String

Command

See “General Commands”

dagCvtChannelType
daqCvtHardwareType

dagAdcSetDataFormat
dagCvtRawDataFormat
daqgCvtSetAdcRange

dagCvtLinearConvert
dagCvtLinearSetup
daqgCvtLinearSetupConvert

dagCvtRtdConvert
daqCvtRtdSetup
daqCvtRtdSetupConvert

daqCvtTCConvert
daqCvtTCConvertF
daqCvtTCSetup
daqCvtTCSetupConvert
daqCvtTCSetupConvertF

dagAutoZeroCompensate
dagZeroConvert
dagZeroSetup
dagZeroSetupConvert

4.1-10 Daq APl Command Reference

938395

Programmer’s Manual

ADC Commands

Scan Settings, Expansion, Data Transfer, Triggering ...

Functional Category

Arm and Disarm

Buffer Manipulation

Data Transfer
without Buffer Allocation

Direct-to-Disk

Expansion Configuration, ADC

Scan

Count, Rate, Source

Scanning, One-Step

Setpoints (Configuring Setpoints)
Applies to /3000 Series Devices Only

Trigger

Command

dagAdcArm
dagAdcDisarm

dagAdcBufferRotate

dagAdcTransferBufData
dagAdcTransferGetStat
dagAdcTransferSetBuffer
dagAdcTransferStart
dagAdcTransferStop

dagAdcSetDiskFile

dagAdcExpSetBank

dagSetOption

dagAdcGetFreq
dagAdcGetScan
dagAdcSetAcq

dagAdcSetClockSource

dagAdcSetFreq
dagAdcSetMux

dagAdcSetRate
dagAdcSetScan

dagAdcRd
dagAdcRdN
dagAdcRdScan
dagAdcRdScanN

dagAdcSetSetpoints

dagAdcCalcTrig
dagAdcSetTrig

dagAdcSetTrigEnhanced

dagAdcSoftTrig

dagSetTriggerEvent

Programmer’s Manual

938395

Daq APl Command Reference

4.1-11

DAC Waveform Commands

Settings, Data Transfer, Waveform Control ...

Functional Category

Arm and Disarm

Buffer Management

Data Transfer [of Dynamic Waveform]

Output Mode

Trigger

Update Rate
and Count

Command

dagDacWaveArm
dagDacWaveDisarm

dagDacWaveSetBuffer
dagDacWaveSetDiskFile
dagDacWaveSetPredefWave
dagDacWaveSetUserWave

dagDacTransferGetStat
dagDacTransferStart
dagDacTransferStop

dagDacSetOutputMode
dagDacWt
dagDacWtMany

Global Configuration
Voltage Output Mode
Voltage Output Mode

dagDacWaveSetTrig
dagDacWaveSoftTrig

dagDacWaveGetFreq
dagDacWaveSetClockSource
dagDacWaveSetFreq
dagDacWaveSetMode

4.1-12 Daq APl Command Reference

938395

Programmer’s Manual

dagAdcArm

Also See: dagAdcDisarm
Format

dagAdcArm(DagHandleT handle);
Purpose

dagAdcArm arms an ADC acquisition by enabling the currently defined ADC configuration for an
acquisition.

Parameter Summary

Parameter Type Description
handle DagHandleT | Handle to the device for which the configured ADC acquisition is to be
armed

Parameter Values

handle: obtained from the dagOpen function
Returns

DagError See Dag Error Table

6 For more details on error messages, please refer to the Daq Error Table.

Function Usage

ADC acquisition will occur when the trigger event (as specified by dagAdcSetTrig) is satisfied. The ADC
acquisition configuration must be specified prior to the dagAdcArm function. For a previously configured
acquisition, the dagAdcArm function will use the specified parameters. If no previous configuration was
given, or it is desirable to change any or all acquisition parameters, then those functions (relating to the desired
ADC acquisition configuration) must be issued prior to calling dagAdcArm. As a general rule the following
needs to be done before arming the acquisition:

Configure the channels to be scanned (dagAdcSetScan, dagAdcSetMux, dagSetOption)
Configure the acquisition rate or frequency (dagAdcSetFreq, dagAdcSetRate)
Configure the acquisition mode (dagAdcSetAcq)

Configure the acquisition buffer (dagAdcTransferSetBuffer)

Enable the data transfer (dagAdcTransferStart)

Any errors in these pre-requisites are deferred to the dagAdcArm call.

The dagAdcArm function can not be used in conjunction with dagAdcRd... functions .
These functions are single step functions and automatically arm the device.

The device acquisition configuration is programmed into the device upon execution of the
dagAdcArm function. Consequently, some errors in programming the acquisition
configuration will be reported upon return of this function.

6 For more information on acquisition setup, see Seven Easy Steps to Data Acquisition in
Chapter 2.

Programmer’s Manual 987693 Daqg APl Command Reference 4.2-1

Prototypes

C/C++
dagAdcArm(DagHandleT handle);

Visual BASIC
VBdagAdcArm&(ByVal handle&)

Program References

DAQADCEX1.CPP, DAQADCEXO02.CPP, DAQADCEXO03.CPP, DAQADCEXO04.CPP,
DAQADCEXO5.CPP, DAQADCEX06.CPP, DAQADCEXO7.CPP, DBKO4EX.CPP, DBKO7EX.CPP,
DBKO8BEX.CPP, DBKO9EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP,
DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP,
DBK44EX.CPP, DBK45EX.CPP, DBKS5O0OEX.CPP, DBKS51EX.CPP, DBK52EX.CPP,
DBK54EX.CPP, DAQADCEXO7.CPP, DAQEX.FRM (VB)

4.2-2 Dag APl Command Reference 987693 Programmer’s Manual

dagAdcBufferRotate

Format

Also See: dagAdcTransferGetStat,
dagAdcTransferSetBuffer

dagAdcBufferRotate(handle, buf, scanCount, chanCount, retCount)

Purpose

dagAdcBufferRotate linearizes a circular buffer acquired via a transfer in cycle mode.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device whose ADC transfer buffer will be rotated
buf PWORD Pointer to the buffer being rotated
scanCount DWORD Total number of scans in the buffer
chanCount DWORD Number of channels in each scan
retCount DWORD Last value returned in the retCount parameter of the
dagAdcTransferGetStat function

Parameter Values

handle: obtained from the dagOpen function
buf: must be a valid pointer to memory whose size is at least equal to
(scanCount * chanCount * 2)
scanCount: valid length of buffer from 1 to 4,294,967,295 scans; however, memory limitations apply
chanCount: defined by channel configuration; see dagAdcSetScan for details
retCount: valid range of 1 to 4,294,967,295

Returns

DerrNoError No error

Function Usage

This function will organize the circular buffer chronologically. In other words, it will order the data from
oldest-first to newest-last in the buffer. dagAdcBufferRotate is used primarily with pre-trigger scans

When scans are configured using dagAdcTransferSetBuffer with a DatmCycleOn value for the
transferMask parameter, the buffer is set up as a circular buffer--once it is full, it is re-used, starting at the
beginning of the buffer. Thus, when the acquisition is complete, the buffer may have been written over many
times and the location of the last acquired scan may be at any point within the buffer.

For example, suppose a buffer is set to hold 60 scans, and an acquisition of 1000 scans is triggered. The buffer
is first filled with scans 1 through 60. Once the end of the buffer is reached, new scans are written at the
beginning of the buffer: scan 61 overwrites scan 1, scan 62 overwrites scan 2, and so on, until scan 120
overwrites scan 60. At this point, the end of the buffer has been reached again--so, scan 121 is stored at the
beginning of the buffer, overwriting scan 61. This process of writing and overwriting the buffer continues until
all 1000 scans have been acquired. At this point, the buffer has the following contents:

Buffer Position | 1 2 3 . |39 [40 41 |42 [.. [59 |59 |60
Scan 961 | 962 | 963 | .. | 999 | 1000 | 941 | 942 | .. | 958 | 959 | 960

Since the total number of scans is not an even multiple of the buffer size, the oldest scan is not at the beginning
of the buffer, and the last scan is not at the end of the buffer. The dagAdcBufferRotate function can
rearrange the scans into a more natural order, writing the final scan into the final buffer position. This results in
the follwoing arrangement:

Programmer’s Manual

987693 Daqg APl Command Reference 4.2-3

Buffer Position | 1 2 3 39 40 41 42 59 59 60
Scan 941 942 943 979 980 981 982 998 999 1000

If the total number of acquired scans is less than the buffer size, then the scans will not overwrite earlier scans
and the buffer is already in a natural chronological order. In this case, dagAdcBufferRotate does not
modify the buffer.

In WaveBook/512 applications, dagAdcBufferRotate will only work on unpacked
samples.

Prototypes
C/C++

dagAdcBufferRotate(DagHandleT handle, PWORD buf, DWORD scanCount, DWORD
chanCount, DWORD retCount);

Visual BASIC

VBdagAdcBufferRotate&(ByVal handle&, buf%, ByVal scanCounté&, ByVval
chanCount&, ByVal retCount&)

Program References
None

4.2-4 Dag APl Command Reference 987693 Programmer’s Manual

dagAdcCalcTrig

Also See: daqgSetTriggerEvent, dagAdcSetTrig
Format
dagAdcSetTrig(handle, bipolar, gainVal, voltagelLevel, triggerLevel)

Purpose
dagAdcSetTrig configures the device for enhanced triggering.

Parameter Summary

Parameter Type Description

handle DagHandleT | Handle to the device for which the trigger level will be
calculated

bipolar BOOL Boolean that, when true, sets trigger to bipolar, and when
false, sets trigger to unipolar

gainval FLOAT Gain value of the trigger channel

voltagelevel FLOAT Voltage level to trigger at

triggerlLevel PWORD A pointer to the returned count which is used to program the
trigger with the dagAdcSetTrig function

Parameter Values

handle: obtianed from the dagOpen function

bipolar: valid values are either true (= 0) or false (=0)
gainVal : valid values range from 1, 2, 4, 8, 16, 32, 64
voltagelLevel : valid values range from —10 to +10 Volts
triggerLevel : pointer to a value from 0 to 65,535

Returns
DagError See Dag Error Table

6 For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function has been obsoleted by the daqSetTriggerEvent function, and is
presented here only as a reference. See dagSetTriggerEvent for more details.

The dagAdcCalcTrig function calculates the trigger level and source for an analog trigger. The result of
dagAdcCalcTrig is stored in the triggerLevel parameter. The value of this parameter can then be
passed to the dagAdcSetTrig function to configure the analog trigger. All of this can be accomplished
using the dagqSetTriggerEvent function.

Programmer’s Manual 987693 Daqg APl Command Reference 4.2-5

Prototypes

C/C++

dagAdcCalcTrig(DagHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT
voltagelLevel, PWORD triggerlLevel);

Visual BASIC

VBdagAdcCalcTrig&(ByVval handle&, ByVvVal bipolar&, Byval gainval!, ByVval
voltagelevel!l, triggerLevel&)

Program References
None

4.2-6 Dag APl Command Reference 987693 Programmer’s Manual

dagAdcDisarm

Also See: dagAdcArm, dagAdcTransferStop
Format
dagAdcDisarm(handle)
Purpose

dagAdcDisarm disarms an ADC acquisition, if one is currently active.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which to disable ADC acquisitions

Parameter Values

handle: obtained from the dagOpen function

Returns

DerrNoError No error

Funtion Usage

If the specified trigger event has not yet occurred when the dagAdcDisarm function is called, the trigger
event will be disabled and no ADC acquisition will be performed. If the trigger event has occurred when the
dagAdcDisarm function is called, the acquisition will be halted and the data transfer stopped and no more
ADC data will be collected.

Protypes

C/C++
dagAdcDisarm(DagHandleT handle);

Visual BASIC
VBdagAdcDisarm&(ByVval handle&)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP,
DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEXO07.CPP, DBKO4EX.CPP, DBKO7EX.CPP,
DBKO8BEX.CPP, DBKO9EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP,
DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP,
DBK44EX.CPP, DBK45EX.CPP, DBKS50EX.CPP, DBK51EX.CPP, DBKS52EX.CPP,
DBK53EX.CPP, DBKO4EX.CPP, DBKO7EX.CPP, DBKO8EX.CPP, DBKO9EX.CPP,
DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP,
DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP,
DBK50EX.CPP, DBKS51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP

Programmer’s Manual 987693 Daqg APl Command Reference 4.2-7

dagAdcExpSetBank

Also See: dagSetOption
Format
dagAdcExpSetBank(handle, chan, bankType)
Purpose

dagAdcExpSetBank internally programs intelligent DBK card channels so the device’s gains may be set
just before the acquisition.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which to set the expansion bank
chan DWORD First channel number on the DBK card (channel numbers are
grouped as 16 channels per bank)
bankType DagAdcExpType Type of channel bank

Parameter Values

handle: obtained from the dagOpen function

chan: valid values from 0 to 271 and are defined by channel configuration; see dagAdcSetScan
for details

bankType: see table below

Parameter Type Definitions

bankType-(DagAdcExpType)

Definition Description
DaetNotDefined Bank is unknown or undefined the bank
DaetDbk50 Dbk50 or Dbk51 option
DaetDbk5 Dbk5 option
DaetDbk2 Dbk?2 option
DaetDbk4 Dbk4 option
DaetDbk7 Dbk7 option
DaetDbk55 Dbk55 option
DaetDbk90 Dbk90 option

Returns
DerrlnvChan Invalid channel number

6 For more details on error messages, please refer to the Daq Error Table.

Funtion Usage

A bank consists of 16 main unit channels, allocated to a number of connect DBK cards. DBK cards in a single
bank must be all of the same type. The dagAdcExpSetBank function must be called once for each card in
the bank. For example, if four 4-channel cards (such as a DBK7) are used in the first expansion bank, you
must call dagAdcExpSetBank 4 times with channels 16, 20, 24, and 28.

4.2-8 Dag APl Command Reference 987693 Programmer’s Manual

Prototypes
C/C++
dagAdcExpSetBank(DagHandleT handle, DWORD chan, DagAdcExpType bankType);
Visual BASIC
VBdagAdcExpSetBank&(ByVal handle&, ByVal chan&, ByVal bankType&)

Program References
DBKO4EX.CPP, DBKO7EX.CPP, DBKS0EX.CPP

Programmer’s Manual 987693 Daqg APl Command Reference 4.2-9

dagAdcGetFreq

Also See: dagAdcSetFreq, dagAdcSetClockSource,

dagAdcSetRate
Format
dagAdcGetFreq(handle, freq)
Purpose
dagAdcGetFreq reads the sampling frequency of the pacer clock.
Parameter Summary
Parameter Type Description
handle DagHandleT | Handle to the device from which to get the current frequency setting
freq PFLOAT A variable to hold the currently defined sampling frequency in Hz

Parameter Values

handle: obtained from the dagOpen function
freq: must be a valid pointer to a variable defined as a single precision (4-byte) floating point value

Returns
DagError See Dag Error Table

Function Usage

This function can be used after calling the dagAdcSetScan and dagAdcSetRate functions to retrieve the
pacer clock’s sampling frequency. Valid values for the freq parameter can range from 0.2 mHz to 1.0 MHz,
but they are dependent on the device being used--see the discussion of actual scan rates in the entry for
dagAdcSetRate. If using a DagBook or DagBoard(ISA) device, dagAdcGetFreq assumes that the

1 MHz/10 MHz jumper is set to the default position of 1 MHz.

f3)
; =

Prototypes
C/C++
dagAdcGetFreq(DagHandleT handle, PFLOAT freq);
Visual BASIC
VBdagAdcGetFreqg&(ByVvVal handleé&, freql)

This function is here for reference only, since it closely resembles the dagAdcSetRate
function with its mode parameter set to DarmFrequency. Itis recommended that the
dagAdcSetRate function be used to retrieve the current acquisition frequency setting.

Program References
None

4.2-10 Daqg APl Command Reference 987693 Programmer’s Manual

dagAdcGetScan

Also See: dagAdcSetScan, dagAdcSetMux

Format
dagAdcGetScan(handle, channels, gains, flags, chanCount)

Purpose

dagAdcGetScan reads the current scan group, which consists of all configured channels.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device from which the current scan configuration will be
retrieved

channels PDWORD A pointer to an array which holds up to 512 channel numbers, or 0 if the
channel information is not desired

gains DagAdcGain A pointer to an array which holds up to 512 gain values, or 0 if the
channel gain information is not desired

flags PDWORD A pointer to channel configuration flags in the form of a bit mask

chanCount PDWORD A pointer to a variable which will hold the number of values returned in
the channels and gains arrays

Parameter Values

handle: obtained from the dagOpen parameter

channels: must be a valid pointer to an array which can hold up to chanCount channel numbers
(4 bytes/channel); valid values for channel numbers range from 0 to 512

gains: must be a valid pointer to an array which can hold up to chanCount gain definitions
(4 bytes/gain); see ADC Gain Definition table for gains valules

Fflags: must be a valid pointer to an array which can hold up to chanCount flag configurations
(4 bytes/flag); see ADC Flag Definition table for Flags values

chanCount: defined by channel configuration; see dagAdcSetScan for details

Returns
DerrNoError No error

Function Usage

The returned parameter settings directly correspond to those set using the dagAdcSetScan function. For
further description of these parameters, refer to dagAdcSetScan.

Flags may have the DaFSSHHold bit set.

Programmer’s Manual 987693 Daq APl Command Reference 4.2-11

Prototypes

C/C++

dagAdcGetScan(DagHandleT handle, PDWORD channels, DagAdcGain *gains,
PDWORD flags, PDWORD chanCount);

Visual BASIC

VBdagAdcGetScan&(ByVal handle&, channels&(), gains&(), Fflags&(),
chanCountg&)

Program References
None

4.2-12 Daq APl Command Reference 987693 Programmer’s Manual

dagAdcRd

Format

Also See: dagAdcSetMux, dagAdcSetTrig,
dagAdcSoftTrig

dagAdcRd(handle, chan, sample, gain, flags)

Purpose

dagAdcRd takes a single reading from the given local A/D channel using a software trigger.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which the ADC reading will be acquired
chan DWORD A single channel number for which the sample will be taken
sample PWORD A pointer to a value where an acquisition sample is stored
gain DagAdcGain The channel’s gain setting
flags DWORD Channel configuration flags in the form of a bit mask

Parameter Values

handle: obtained from the dagOpen function

chan: must be a valid channel number for the device

sample: must be a valid pointer to a short integer variable (2 bytes)
gain: see ADC Gain Definition table for gain parameter values
flags: see ADC Flag Definition table for flags parameter values

Returns
DerrinvGain Invalid gain
DerrinvChan Invalid channel
DerrNoError No error

6 For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function will use a software trigger to immediately trigger and acquire one sample from the specified
acquisition channel.

Prototypes

C/C++

dagAdcRd(DagHandleT handle, DWORD chan, PWORD sample, DagAdcGain gain,
DWORD flags);

Visual BASIC

VBdagAdcRd&(Byval handle&, ByVal chan&, sample%, Byval gain&, ByVal
flags&)

Program References
None

Programmer’s Manual 987693 Daq APl Command Reference 4.2-13

dagAdcRdN

Also See: dagAdcSetFreq, dagAdcSetMux,
dagAdcSetClockSource, dagAdcSetTrig,
dagSetTimeout

Format

dagAdcRdN(handle, chan, buf, scanCount, triggerSource, rising,
freq, gain, flags)

level,

Purpose

dagAdcRdN takes multiple scans from a single acquisition channel.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device from which the ADC channel
samples will be acquired

chan DWORD A single channel number

buf PWORD Array to which the acquisition scans will be returned

scanCount DWORD Number of scans to be taken

triggerSource | DagAdcTriggerSource | The trigger source

rising BOOL Boolean flag to indicate whether the edge for the
trigger source is rising or falling

level WORD The trigger level, if an analog trigger is specified

freq FLOAT The sampling frequency in Hz

gain DagAdcGain The channel’s gain setting

flags DWORD Channel configuration flags in the form of a bit mask

Parameter Values

handle: obtained form the dagOpen function

chan: must be a valid channel number for the device

buf: must be a valid pointer to memory whose size is at least equal to [scanCount * (the sample size,
normally 2 bytes)]

scanCount: valid values range from 1 to 4,294,967,295 scans; however, memory limitations apply.

triggerSource: see table below

rising: valid values are either true (= 0) or false (=0)

level - valid values range from 0 to 65,535, representing the trigger level in raw, unsigned A/D counts

freq: see the dagAdcSetRate function for details.

gain: see ADC Gain Definition table for gain definitions

Fflags: see ADC Flag Definition table for flag configurations

Parameter Type Definitions

triggerSource-(DagAdcTriggerSource)
Definition Description

DatsImmediate Begins taking post trigger scans immediately upon dagAdcArm function

DatsAdcClock Begins taking post trigger scans upon detection of next pacer clock pulse

DatsGatedAdcClock Begins taking post trigger scans upon detection of next gated pacer clock pulse

DatsExternal TTL Begins taking post trigger scans on the selectable edge of an external TTL signal on pin
250fP1

DatsHardwareAnalog Begins taking post trigger scans upon a selectable criteria of the input signal (above
level, below level, rising edge, etc.)

Programmer’s Manual

4.2-14 Daq APl Command Reference 987693

Returns

DerrFIFOFull Buffer overrun
DerrinvGain Invalid gain
DerriIncChan Invalid channel
DerrinvTrigSource Invalid trigger
DerrinvLevel Invalid level

6 For more details on error messages, please refer to the Daq Error Table.

Function Usage
This function will:
Configure the pacer clock
Configure the channel with the specified gain parameter
Configure the channel options with the channel flags specified
Arm the trigger

Acquire count scans from the specified A/D channel

The Freq parameter can have a range of values between 0.2 mHz and 1.0 MHz, but they are dependant on the
device being used--see the discussion of actual scan rates in the entry for dagAdcSetRate.

Prototypes
C/C++

dagAdcRdN(DagHandleT handle, DWORD chan, PWORD buf, DWORD scanCount,
DagAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq,
DagAdcGain gain, DWORD flags);

Visual BASIC

VBdagAdcRdN&(ByVal handle&, ByvVal chan&, buf%, ByVal scanCount&, ByVval
triggerSource&, ByVal rising&, Byval level%, ByVval freq!, ByVval gaing&,
Byval flags&)

Program References
None

Programmer’s Manual 987693 Daq APl Command Reference 4.2-15

dagAdcRdScan

Also See: dagAdcSetMux, dagAdcSetClockSource,
dagAdcSetTrig, dagAdcRdN

Format
dagAdcRdScan(handle, startChan, endChan, buf, gain, flags)

Purpose

dagAdcRdScan immediately activates a software trigger to acquire one scan consisting of each channel. The
scan begins with startChan and ends with endChan.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which the ADC scan will be acquired
startChan DWORD The starting channel of the scan group
endChan DWORD The ending channel of the scan group
buf PWORD An array into which the acquisition scans will be placed
gain DagAdcGain The channel’s gain setting
flags DWORD Channel configuration flags in the form of a bit mask

Parameter Values

handle: obtained from the dagOpen function
startChan: must be a valid channel number for the device
endChan: must be a valid channel number for the device and greater than startChan
buf: must be a valid pointer to memory whose size is at least equal to:
[(endChan - startChan)>* (the sample size, normally 2 bytes)]
gain: see ADC Gain Definition table for gain parameter values
Tflags: see ADC Flag Definition table for Flags parameter values

Returns
DerrinvGain Invalid gain
DerriIncChan Invalid channel
DerrNoError No error

6 For more details on error messages, please refer to the Daqg Error Table.

Function Usage

This function will use a software trigger to immediately trigger and acquire one scan. This scan will sample
each channel selected, starting with startChan and ending with endChan. The gain setting will be
applied to all channels.

G@ Channels must all be of the same channel type.

4.2-16 Daq APl Command Reference 987693 Programmer’s Manual

Prototypes

C/C++

dagAdcRdScan(DagHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,
DagAdcGain gain, DWORD flags);

Visual BASIC

VBdagAdcRdScanN&(ByVal handle&, ByvVal startChan&, ByVal endChané&, buf%,
ByvVal scanCount&, ByVal gain&, Byval flags&)

Program References
None

Programmer’s Manual 987693 Daq APl Command Reference 4.2-17

dagAdcRdScanN

Also See: dagAdcSetMux, dagAdcSetClockSource, dagAdcSetTrig, dagAdcRdN

Format

dagAdcRdScanN(handle, startChan, endChan, buf, scanCount, triggerSource,
rising, level, freq, gain, flags)

Purpose
dagAdcRdScanN reads multiple scans from a set of consecutive acquisition channels.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device from which acquisition scans
will be acquired

startChan DWORD The starting channel of the scan group

endChan DWORD The ending channel of the scan group

buf PWORD An array into which the acquisition scans will be
placed

scanCount DWORD The number of scans to be read

triggerSource | DagAdcTriggerSource | The trigger source

rising BOOL Boolean flag to indicate the rising or falling edge for
the trigger source

level WORD The trigger level if an analog trigger is specified

freq FLOAT The sampling frequency in Hz

gain DagAdcGain The channel’s gain setting

flags DWORD Channel configuration flags in the form of a bit mask.

Parameter Values

handle: obtained from the dagOpen function

startChan: must be a valid channel number for the device

endChan: must be a valid channel number for the device and greater than startChan
buf: must be a valid pointer to memory whose size is at least equal to:

[(endChan — startChan) * scanCount * (the sample size, normally 2 bytes)]
scanCount: valid values range from 1 to 4,294,967,295 scans; however, memory limitations apply.
triggerSource: see table below
rising: valid values are either true (= 0) or false (=0)
level : valid values range from 0 to 65,535, representing the trigger level in unsigned A/D counts
freq: seethe dagAdcSetRate function for details
gain: see ADC Gain Definition table for gain parameter values
Fflags: see ADC Flag Definition table for Flags parameter values

Parameter Type Definitions

triggerSource-DagAdcTriggerSource
Definition Description

DatsImmediate Begins taking post trigger scans immediately upon dagAdcArm function

DatsAdcClock Begins taking post trigger scans upon detection of next pacer clock pulse

DatsGatedAdcClock Begins taking post trigger scans upon detection of next gated pacer clock pulse

DatsExternal TTL Begins taking post trigger scans on the selectable edge of an external TTL signal on pin
25 0f P1

DatsHardwareAnalog Begins taking post trigger scans upon a selectable criteria of the input signal (above
level, below level, rising edge, etc.)

4.2-18 Daqg APl Command Reference 987693 Programmer’s Manual

Returns

DerrlInvGain Invalid gain
DerrlInvChan Invalid channel
DerrinvTrigSource Invalid trigger
DerrlinvLevel Invalid level
DerrFIFOFull Buffer overrun
DerrNoError No error

6 For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function will configure the pacer clock, arm the trigger and acquire count scans consisting of each
channel, starting with startChan and ending with endChan. The gain and flags settings will be applied
to all channels.

The Freq parameter is used to set the acquisition frequency. Its valid values can range from 0.2 mHz to 1.0
MHz, but they are dependent on the device being used--see the discussion of actual scan rates in the entry for
dagAdcSetRate.

Prototypes

C/C++

dagAdcRdScanN(DagHandleT handle, DWORD startChan, DWORD endChan, PWORD
buf, DWORD scanCount, DagAdcTriggerSource triggerSource, BOOL rising, WORD
level, FLOAT freq, DagAdcGain gain, DWORD flags);

Visual BASIC

VBdagAdcRdScanN&(ByVal handleé&, ByVal startChan&, ByVal endChané&, buf%,
ByVal scanCount&, ByVal triggerSource&, ByVal rising&, Byval level%, ByVval
freq!, Byval gain&, Byval flags&)

Program References
None

Programmer’s Manual 987693 Daq APl Command Reference 4.2-19

dagAdcSetAcq

Also See: dagAdcArm, dagAdcDisarm, dagAdcSetTrig
Format
dagAdcSetAcq(handle, mode, preTrigCount, postTrigCount)

Purpose
dagAdcSetAcq configures the acquisition mode and the pre- and post-trigger scan durations.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the ADC acquisition is to
be configured
mode DagAdcAcgMode Selects the mode of the acquisition
preTrigCount DWORD Number of pre-trigger acquisition scans to be collected
postTrigCount DWORD Number of post-trigger acquisition scans to be collected

Parameter Values

handle: obtained from the dagOpen function.

mode: see table below

preTrigCount: valid value range from 1 to 100,000

postTrigCount: valid values range from 1 to 4,294,967,295; however, memory limitations may apply

Parameter Type Definitions

mode-(DagAdcAcgMode)
Definition Description

DaamNShot Triggers and continues acquisition until specified number of post-trigger scans is
reached, then disarms acquisition

DaamNShotRearm Triggers and continues acquisition until specified number of post-trigger scans is
reached, then re-arms acquisition with original parameters (WaveBook only)

DaamInfinitePost Once triggered, collects scans until disarmed by the dagAdcDisarm function

DaamPrePost Collects specified number pre-trigger scans, triggers acquisition, collects specified
number of post-trigger scans, and disarms

Returns
DerrNoError No error

Function Usage
Configuring the Acquisition Mode

The mode parameter defines certain characteristics of the data acquisiton. Depending on its parameter values,
mode can be used to detemine if pre- or post-trigger data will be recorded, how many pre- or post-trigger scans
will be collected, and when the acquisition will terminate. The acquistion mode may also specify that the
acquisition should be automatically re-armed (using the same acquisition parameters) once the initial
acquisition has completed. Each block of aquired trigger scans is placed into the buffer sequentially. The
preTrigCount and postTrigCount parameters specify the respective durations of the pre-trigger and
post-trigger acquisition states.

Parameter values for mode can be defined as follows:

DaamNShot -- Once triggered, this mode continues acquisition until the specified post-trigger count has been
satisfied. Once the post-trigger count has been satisfied, the acquisition will automatically disarm. This mode
specifies no pre-trigger and will stop acquiring once the post-trigger scan count has been satisfied. If the
acquisition is stopped by means other than reaching the scan count, the stop trigger detection will occur after
count scans are acquired.

4.2-20 Daqg APl Command Reference 987693 Programmer’s Manual

DaamNShotRearm -- Once triggered, this mode continues the acquisition for the specified post-trigger count,
then re-arms the acquisition with the same acquisition configuration parameters as before. The automatic re-
arming of the acquisition may be disabled at any time by issuing the dagAdcDisarm function. Other than the
re-arming feature, this mode works like DaamNShot. Upon re-arming, data collection will only be reinitiated
when the trigger event re-occurs after the previous acquisition post-trigger count has been satisfied.

The DaamNShotRearm command can only be used with WaveBooks.

DaamInfinitePost -- Once triggered, this mode begins continuous acquisition until explicitly terminated
by the dagAdcDisarm function.

DaamPrePost -- This mode begins collecting the specified number of pre-trigger scans immediately upon
issuance of the dagAdcArm function. The trigger will not be enabled until the specified number of pre-trigger
scans has been collected. Once triggered, the acquisition will continue collecting post-trigger data until the
post-trigger count has been satisfied. Once the post-trigger count has been satisfied, the acquisition will
automatically disarm itself and terminate.

Daq 2000 Series devices, DagBoard/1000 Series devices, and WaveBooks
[with WBK 30’s] in cycle mode both return the exact pre-trigger amount of
data specifies. Other devices record data from before the pre-trigger event
(i.e., all scans from arming to disarming). See daqAdcBufferRotate for more
details.

Relationship to Trigger Start/Stop Events

The dagAdcSetAcq function sets the style or mode of the acquisition. However, it does not specify trigger
start events, nor does it specify trigger stop events--although it does specify stop conditions (if those stop
conditions are scan counts or infinite). Specific trigger start and stop events are defined by other functions:

Trigger start events (EventA) can be defined using dagAdcSetTrigEnhanced and
dagSetTriggerEvent.

Trigger stop events (EventB) - can be defined using the daqSetTriggerEvent.

The following table shows the relationship between trigger event definition and acquisition mode parameter
settings for possible acquisition configurations:

Desired Acquisition mode preTrigCount postTrigCount
Without Pre-Trigger Scans
Trigger acq on EventA and stop on scan n DaamNShot Ignored n
after trigger
Trigger acq on EventA and continue DaamlinfinitePost Ignored Ignored

indefinitely until disarmed by application
(dagAdcDisarm)

Trigger acq on EventA, stop on scan n DaamNShotRearm Ignored Ignored
after trigger, then re-arm to trigger on
EventA (repeat until disarmed) (Note 1)

Trigger acq on EventA and stop on DaamlinfinitePost Ignored Ignored
EventB”

With Pre-Trigger Scans mode preTrigCount postTrigCount
Take m pretrigger scans, start acq on DaamPrePost m n
EventA, and stop on scan n after trigger
Take m pretrigger scans, start acq on DaamPrePost m Ignored

EventA, and stop on EventB (Note 2)

Note 1: WaveBook products only.

Note 2: Applies to DagBook/2000 Series, DagLab/2000 Series, DaqScan/2000 Series, DagBoard/2000 Series,
DagBoard/1000 Series, and DagBoard/500.

Programmer’s Manual 987693 Daq APl Command Reference 4.2-21

Prototypes

C/C++

dagAdcSetAcq(DagHandleT handle, DagAdcAcgMode mode, DWORD preTrigCount,
DWORD postTrigCount);

Visual BASIC

VBdagAdcSetAcq&(ByVal handle&, ByVal mode&, ByVal preTrigCount&, ByVval
postTrigCount&)

Program References

DDAQADCEXO1.CPP, DAQADCEXO02.CPP, DAQADCEX03.CPP, DAQADCEXO04.CPP,
DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEXO7.CPP, DBKO4EX.CPP, DBKO7EX.CPP,
DBKO8BEX.CPP, DBKO9EX.CPP, DBK12_13.CPP, DBK15EX.CPP, DBK16EX.CPP,
DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP,
DBK44EX.CPP, DBK45EX.CPP, DBKS50EX.CPP, DBK51EX.CPP, DBKS52EX.CPP,
DBK53_54EX.CPP, DAQEX.FRM (VB)

4.2-22 Daq APl Command Reference 987693 Programmer’s Manual

dagAdcSetClockSource

Also See: dagAdcSetFreq, dagAdcGetFreq, dagAdcSetRate
Format

dagAdcSetClockSource(handle, clockSource)
Purpose
dagAdcSetClockSource sets up the clock source to be used to drive the acquisition frequency.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which to set the ADC clock source
clockSource | DagAdcClockSource | Specifies the clock source for acquisitions

Parameter Values

handle: obtained from the dagOpen function
clockSource: see table below

Parameter Type Definitions

clockSource—(DagAdcClockSource)

Definition Devices Description

DacsAdcClock All Use the internal pacer clock on the device

(see dagAdcSetRate)
DacsGatedAdcClock DagBook, DagBoard (ISA), TempBook The internal clock is gated through a external input
DacsTriggerSource DagBook, DagBoard (ISA), TempBook Takes one scan per trigger and stays armed
DacsExternal TTL Daq Devices [per note 1] , WaveBook/516 Use an external clock input for acquisition clock
DacsAdcClockDiv2 Dag Devices [per note 1] Uses internal clock divided by 2; used in 100kHz

Does not apply to DagBoard/500 Series mode (Does not apply to DagBoard/500 Series)

DacsRisingEdge Daq Devices [per note 1] External Clock Detection Flag

DacsRisingEdge = 0
DacsFallingEdge Daq Devices [per note 1] External Clock Detection Flag

DacsFallingEdge = 0x100
DacsOutputDisable Daq Devices [per note 1] Internal Clock Output Control Flag

Disables the Adc internal clock output (see note 2).
DacsOutputEnable Dagq Devices [per note 1] Internal Clock Output Control Flag; Enables the Adc

internal clock output (see note 2). See Note 3.

Note 1: | The description “Daq Devices [per note 1]” indicates the following devices:

2000 Series DagBooks, DagBoards, and DagLabs; DagBoard/1000 Series; DaqBoard/500 Series, DagScan/2000 Series.
Certain devices within a series may not apply in all cases. Refer to user’s manual for your specific product in regard to
device capabilities.

Note 2: | Tg enable the pacer output capabilities of the device you must include the clock source with a parameter that enables the
output clock; in other words, you have to write your dagAdcSetClockSource command as follows:

C/C++ Style:
dagAdcSetClockSource(handle, DacsAdcClock | DacsOutputEnable);

Visual Basic Style:
VbdagAdcSetClockSource(handle, DacsAdcClock + DacsOutputEnable)

The DacsOutputEnable parameter is defined in the header file in the Dagx - bas module (VB):

Output Control Flags
Global Const DacsOutputDisable = 0 Disables the Adc internal clock output.
Global Const DacsOutputEnable = &H1000 Enables the Adc internal clock output.

Note 3: | For DagBoard/500 Series: In regard to DacsOutputEnable the resulting frequency from the Adc internal clock output will
equal the Scan Frequency multiplied by the number of channels in the scan list.

Programmer’s Manual 987693 Daq APl Command Reference 4.2-23

Returns

DerrNoError No error

Prototypes
C/IC++
dagAdcSetClockSource(DagHandleT handle, DagAdcClockSource clockSource);

Visual BASIC
VBdagAdcSetClockSource&(ByvVal handle&, ByVal clockSource&)

Program References
DAQADCEX05.CPP, DBK12_13EX.CPP

4.2-24 Daq APl Command Reference 987693 Programmer’s Manual

dagAdcSetDataFormat

Also See: dagAdcSetMux, dagAdcSetClockSource, daqAdcSetTrig, dagAdcRdN

Format
dagAdcSetDataFormat(handle, rawFormat, postProcFormat)
Purpose

dagAdcSetDataFormat sets the format for both the raw and post-acquisition data returned by the
acquisition transfer functions.

Parameter Summary

Parameter Type Description
handle DagHandleT The handle to the device for which to set
the data format
rawFormat DagAdcRawDataFormatT Specifies the raw data format
postProcFormat DagAdcPostProcDataFormatT | Parameter value specifying the data
formats available

Parameter Values

handle: obtained from the dagOpen function
rawFormat: see table below
postProcFormat: see table below

Parameter Type Definitions

rawFormat-(DagAdcRawDataFormatT)

Definition Description
DardfNative Data format follows the native-data format of the device it originated from.
DardfPacked Raw acquisition values are compressed, using empty bits in native format (WaveBook/512 only)

postProcFormat-(DagAdcPostProcFormatT)

Definition Description
DappdfRaw Post-acquisition data follows the rawFormat parameter --this is the default setting.
DappdfTenthsDegC Data format is in tenths of a degree Celsius
Returns
DerrNoError No error

Function Usage
Raw Data Formats

The rawFormat parameter indicates how the raw data format will be presented. Normally, the raw-data
format represents the data from the A/D converter. The default value for this parameter is DardfNative
where the raw-data format follows the native-data format of the A/D for the particular device. The parameter
can also be set to DardfPacked, which compresses raw A/D values in order to make full use of all unused
bits in any native format that leaves unused bits in the byte-aligned count value. For instance, a 12-bit raw
AJD value (which would normally be represented in a 16-bit word, 2-byte count value) will be compressed so
that 4 12-bit A/D raw counts can be represented in 3 16-bit word count values. Currently, only the
WaveBook/512 supports this packed format (used with the generic functions of the form
dagAdcTransfer...).

Programmer’s Manual 987693 Daq APl Command Reference 4.2-25

Post-Acquisition Data Formats

The postProcFormat parameter specifies the format for which post-acquisition data will be presented. It is
only valid for TempBook devices reading thermocouples with one-step functions. The postProcFormat
format is used by the one-step functions of the form dagAdcRd.... The default value is DappdfRaw, where
the post-acquisition data format will follow the rawFormat parameter. The DappdfTenthsDegC
parameter specifies the data format to be in tenths of a degree on a Celsius scale.

Certain devices may be limited to the types of raw and post-acquisition
data formats which can be presented.

Prototypes
C/C++

dagAdcSetDataFormat(DagHandleT handle, DagAdcRawDataFormatT rawFormat,
DagAdcPostProcDataFormatT postProcFormat);

Visual BASIC

VBdagAdcSetDataFormat&(ByVval handle&, ByVal rawFormaté&, ByVval
postProcFormat&)

Program References
None

4.2-26 Daq APl Command Reference 987693 Programmer’s Manual

dagAdcSetDiskFile

Also See: dagAdcTransferGetStat,
dagAdcTransferSetBuffer,
dagAdcTransferStart, dagAdcTransferStop

Format
dagAdcSetDiskFile(handle, filename, openMode, preWrite)
Purpose

dagAdcSetDiskFi le sets a destination file for ADC data transfers. ADC direct-to-disk data transfers will
be directed to the specified disk file.

File writing only takes place on a dagAdcTransferGetStat call.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device which will perform direct-to-disk ADC
acquisition
filename LPSTR String representing the path and name of the file where the raw
ADC acquisition data will be placed
openMode DagAdcOpenMode | Specifies how to open the file for writing
preWrite DWORD Specifies the amount to pre-write (in bytes) the file

Parameter Values

handle: obtained from the dagOpen command

Filename: string of characters representing a file name—no effective range of values applies
openMode: see table below

preWrite: valid values range from 0 to 4,294,967,295; however, disk memory limitations may apply

Parameter Type Definitions

openMode-(DagAdcOpenMode)
Definition Description
DaomCreateFile Creates a new file for incoming ADC transfer data.
DaomWriteFile Writes incoming ADC transfer data over an existing file.
DaomAppendFile Appends incoming ADC transfer data to an existing file.
Returns
DerrNoError No error

Programmer’s Manual 987693 Daq APl Command Reference 4.2-27

Function Usage

The dagAdcSetDiskFi le function sends acquisition scan data to a disk file specified by the user. Data
written to the disk file is the same raw scan data that is read into the buffer. After the data is written to the disk,
it is passed on to whatever application makes use of the buffer. The following diagram illustrates the transfer of

data:
Device _ ug!fo?l.rﬂ!'l -
R | Driver Buffer | Application
C__DiskFile)
——
)

dagAdcSetDiskFi le only establishes where and how the data will be sent.
The writing of data takes place only after calling either the
dagAdcTransferGetStat or dagWaitForEvents functions.

The Fi lename parameter is a string representing the path and name of the file to be opened.

The openMode parameter indicates how the file is to be opened for writing data. Valid file open modes are
defined as follows:

DaomCreateFi le- Create a new file for subsequent ADC transfers. This mode does not require that the file
exist beforehand.

DaomWriteFile - Rewrite or write over an existing file. This operation will destroy the original contents of
the file.

DaomAppendFi le - Open an existing file to append subsequent ADC transfers. This mode should only be
used when the existing file has a similar ADC channel group configuration as the subsequent transfers.

The preWrite parameter may be used to specify the extent that the file will be pre-written before the actual
data collection begins. This may increase the data-to-disk performance of the acquisition, if the amount of data
to be collected is known beforehand. If pre-writing is not desired, then the preWr ite parameter should be
setto 0.

Prototypes

C/C++

dagAdcSetDiskFile(DagHandleT handle, LPSTR filename, DagAdcOpenMode
openMode, DWORD preWrite);

Visual BASIC

VBdagAdcSetDiskFile&(ByVval handle&, Byval filename$, ByVal openMode&,
ByVal preWrite&)

Program References
DAQADCEX04_.CPP, DAQEX.FRM (VB)

4.2-28 Daqg APl Command Reference 987693 Programmer’s Manual

dagAdcSetFreq

Also See: dagAdcGetFreq, dagAdcSetClockSource,
dagAdcSetRate

Format
dagAdcSetFreq(handle, freq)
Purpose

dagAdcSetFreq calculates and sets the frequency of the internal scan pacer clock of the device using the
frequency specified in Hz.

Parameter Summary

Parameter Type Description
handle DagHandleT | Handle to the device whose acquisition frequency is being set
freq FLOAT The sampling frequency in Hz

Parameter Values

handle: obtained from the dagOpen frequency
freq: valid values range from 0.2 mHz to 1.0 MHz, depending on the device

Returns
DerrNoError No error
Function Usage

This function follows closely that of the dagAdcSetRate function with the mode parameter set to
DarmFrequency. Valid values for the freq parameter range from 0.2 mHz to 1.0 MHz, but are dependent
on the device being used--see the discussion of actual scan rates in the entry for dagAdcSetRate.

\(@) This function is here for reference only. It is recommended that the dagAdcSetRate
7~ function be used instead.

Prototypes
C/C++
dagAdcSetFreq(DagHandleT handle, FLOAT freq);

Visual BASIC
VBdagAdcSetFreg&(ByVvVal handle&, Byval freq!)

Program References

DAQADCEXO01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP,
DAQADCEX05.CPP, DAQADCEX06.CPP, DAQADCEXO07.CPP, DBKO4EX.CPP, DBKO7EX.CPP,
DBKO8BEX.CPP, DBKO9EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP,
DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP,
DBK44EX.CPP, DBKA45EX.CPP, DBKSOEX.CPP, DBKS51EX.CPP, DBKS52EX.CPP,
DBK53_54.CPP, DAQEX.FRM (VB)

Programmer’s Manual 987693 Daq APl Command Reference 4.2-29

dagAdcSetMux

Also See: dagAdcSetScan, dagAdcGetScan
Format
dagAdcSetMux(handle, startChan, endChan, gain, flags)

Purpose

dagAdcSetMux sets a simple scan sequence of local A/D channels from startChan to endChan with the
specified gain value.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device whose ADC channel scan group is
being configured
startChan DWORD The starting channel of the scan group
endChan DWORD The ending channel of the scan group
gain DagAdcGain The gain value for all channels
flags DWORD Channel configuration flags in the form of a bit mask

Parameter Values:

handle: obtained from the dagOpen function

startChan: must be a valid channel number for the device

endChan: must be a valid channel number for the device and greater than startChan
gain: see ADC Gain Definition table for gain parameter values

Fflags: see ADC Flag Definition table for flags parameter values

Returns
DerrinvGain Invalid gain
DerrinvChan Invalid channel
DerrNoError No error

Reference Note:
For more details on error messages, please refer to the Daq Error Table.

Function Usage

This function provides a simple alternative to dagAdcSetScan if only consecutive channels need to be
acquired. The Flags parameter is used to set channel-dependent options. The gain and flags parameters
will apply to all channels in the specified range.

4.2-30 Daq APl Command Reference 987693 Programmer’s Manual

Prototypes

C/C++

dagAdcSetMux(DagHandleT handle, DWORD startChan, DWORD endChan, DagAdcGain
gain, DWORD flags);

Visual BASIC

VBdagAdcSetMux&(ByVal handle&, ByVal startChan&, ByVal endChan&, ByVval
gain&, Byval flags&)

Program References
DAQEX.FRM (VB)

Programmer’s Manual 987693 Daq APl Command Reference 4.2-31

dagAdcSetRate

Also See: dagAdcSetAcq, dagAdcSetTrig, dagAdcArm, dagqAdcSetFreq, dagAdcGetFreq

Format
dagAdcSetRate(handle, mode, state, reqValue, actualValue)
Purpose

dagAdcSetRate configures the acquisition scan rate using the selected device’s built-in acquisition pacer
clock.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to device for which to set the scan rate
mode DagAdcRateMode Sets the acquisition mode in terms of period or frequency
state DagAdcAcgState Indicates the acquisition state which scan rate applies to
(either pre-trigger or post-trigger)
reqValue FLOAT Variable which indicates the requested acquisition scan rate
actualValue PFLOAT Variable which indicates the actual acquisition scan rate

Parameter Values

handle: obtained from the dagOpen function.

mode: see table below

state: see table below

reqValue: valid values for freq range from 0.0 to 1,000,000.0

actualValue: apointer to a floating point number, ranging from 0.0 to 1,000,000.0

Parameter Type Definitions
mode-(DagAdcRateMode)

Definition Description
DarmPeriod Sets requested scan rate in terms of period (nanoseconds)
DarmFrequency Sets requested scan rate in terms of frequency (hertz, or channel scans per second)
DarmExtClockPacer Sets external pacer clock divisor (WaveBook 516 only)

state-(DagAdcAcqgState)

Definition Description
DaasPreTrig Scan rate configuration is applied to pre-trigger acquisition state
DaasPostTrig Scan rate configuration is applied to post-trigger acquisition state
Returns
DerrNoError No error

Function Usage

The dagAdcSetRate function should be used if internally pacing an acquisition with a device’s built-in
pacer clock. This function configures the internal pacer clock to the appropriate scanning frequency or period.
When the internal pacing clock fires, a new channel scan will be initiated, starting with the first channel in the
channel scan group (see the dagAdcSetScan function for channel configuration). The specific period or
frequency during which these scans will be taken is determined by the acquisition scan rate setting.

nde)

For correct results, the dagAdcSetRate function must be called after
dagAdcSetClockSource, dagAdcSetScan (or dagAdcSetMux), and
dagAdcSetTrig.

4.2-32 Daq APl Command Reference 987693 Programmer’s Manual

Setting the Scan Rate

The dagAdcSetRate function sets the scan rate interval for a channel scan group. The scan rate is set by
the regValue parameter. Whether the value is given in terms of frequency or period, the requested scan rate
is programmed into the built-in pacer clock as a scan interval timer. Once set, this scan interval timer will fire
at the requested rate to initiate the scanning of the channel scan group.

I<:' Scan Period ! >‘< I Scan Period '::>‘

Scan 1 Scan 2 Scan 3

When the scan interval timer fires, the first channel in the channel scan group is sampled. The subsequent
channels in the scan group are then sampled at the specified sampling interval for the device. The sampling of
the individual channels continues until the last channel in the channel scan group has been sampled. The
period between the sampling of the last channel in the channel scan group and the next firing of the scan
interval timer is “dead time”, where no channel sampling is performed.

Scanl — 1 Scan Period | ——— Scan 2
¢— Sampling Interval —>|<— Sampling Interval —>|<— Dead Time —¥
Cho Chl Ch2

This function does not set the sampling interval between individual channels within the
scan group. Channel sampling interval (if programmable) can be set globally by the
dagSetOption function, or individually by the flags parameter of the scan-setting
APl commands (see dagAdcSetScan) .

Scan Rate Mode

The mode parameter allows the setting of the scan rate in either period or frequency. The possible values for
this parameter are as follows:

DarmPeriod — This value defines the requested scan rate to be in nanoseconds. In this case, the reqvValue
parameter will be interpreted as the interval between channel scans in nanoseconds.

DarmFrequency - This value defines the requested scan rate to be in frequency. In this case, the
reqValue parameter will be interpreted as the frequency of the scan rate in hertz (or channel scans per
second).

DarmeExtClockPacer -- Sets external pacer clock divisor. Here reqValue defines the pacer clock divisor
value (1 to 255) when the clock source is defined as external (by setting DacsExternal TTL in the
dagAdcSetClockSource function). When used as external clock divisor, one scan will be initiated every
reqValue pulses on the external clock input.

\(@ The DarmExtClockPacer parameter value can only be used with the WaveBook/516.

Programmer’s Manual 987693 Daq APl Command Reference 4.2-33

Scan Rate State

The state parameter indicates the acquisition state for which the channel scan rate applies. The possible
values for this parameter are as follows:

DaasPreTrig - This value causes the scan rate configuration to be applied to the pre-trigger acquisition
state. All scanning before the trigger event will be scanned at the rate configured.

DaasPostTrig - This value cause the scan rate configuration to be applied to the post-trigger acquisition
state. All scanning after the trigger event will be scanned at the rate configured.

Only the WaveBook products support different pre- and post-trigger scan rates.
If using a product other than the WaveBook products with pre-trigger configured, the pre-
trigger scan rate will follow that of the configured post-trigger scan rate.

Actual Scan Rate

The reqValue parameter represents the desired scan rate. However, the requested scan rate may not be
attainable. This is due to the fact that the requested rate may not be evenly divisible by the scan rate setting
resolution (see the following table concerning scan rate settings) If this is the case, the actual rate will be set to
the next highest scan rate value which is evenly divisible by the scan rate setting resolution.

Another potential reason for having an actual rate different than the requested rate is that the total requested
scan rate of the channel scan group exceeds the maximum scan rate for which the device is capable. Each
channel in the channel scan group takes a fraction of the total scan rate. That fraction of time is equal to the
sampling interval for the channel. For instance, if 2 channels are configured on a WaveBook (1 Mhz max),
then each channel will require 1pus sampling interval time--the channel scan group will require 2 ps to sample
the entire scan. So, the maximum settable scan rate for this 2 channel scan group would be 2 ps (or 500 Khz).

The actualValue parameter returns the actual scan rate, after any adjustments. The format of this
parameter will follow that of the reqValue parameter, describing the scan rate in either frequency (Hertz) or
period (nanoseconds). The format for both reqValue and actualValue parameters is set using the mode

parameter.
Product Maximum Scan Rate Settings Sampling
Aggregate Rate (Pacer Clock Resolution) | Interval/Channel
DagBook/100 Series 100 kHz (10ps) 10 ps (with JP5 set to 100 kHz) 10 us
DaqgBook/200 Series 1 ps (with JP5 set to 1 MHz)*
0.1 ps (with JP5 set to 10 MHz)
DagBoards(ISA) 100 kHz (10 ps) lps 10 ps
TempBooks 100 kHz (10 ps) 1 ps (with JP5 set to 1 MHz) 10 ps
Daq PC Cards 100 kHz (10 ps) 1us 10 ps
WaveBooks 1 MHz (1 ps) 1us 1us
DaqgBoard/500 Series <200 kHz (5 ps) 1us >5us
depending on gain depending on gain

DagBoard/2000 Series 200 kHz (5 ps) or lps 5psor10ps
cPCI DagBoard/2000c Series 100 kHz (10ps) (programmable)
DagBoard/1000 Series programmable
DaqBook/2000 Series 200 kHz (5 ps), 1us 5 ps, 10 ps, or
DaqLab/2000 Series 100 kHz (10ps) or 1000us
DagScan/2000 Series 1kHz(1000us) (programmable)

programmable

For DagBook/100 Series, DaqBook/200 Series, and TempBooks, this function assumes

that the device’s JP5 jumper is set to the default setting of 1 MHz. The other settings can
be used but they will impact the actual rate that the unit is programmed.

For 100 kHz, the actual rate will be 10 times slower than the reqValue programmed.
For 10 MHz, the actual rate will be 10 faster than the reqValue programmed. Also, the
returned actualValue value will be in error in a similar fashion.

4.2-34 Daq APl Command Reference

987693

Programmer’s Manual

Prototypes

C/C++

dagAdcSetRate(DagHandleT handle, DagAdcRateMode mode, DagAdcAcgState
state, FLOAT reqgqValue, PFLOAT actualValue);

Visual BASIC

VBdagAdcSetRate(ByVal handle&, ByVal mode&, ByVal state&, ByVal regvalue!,
actualValuel);

Program References
None

Programmer’s Manual 987693 Daq APl Command Reference 4.2-35

dagAdcSetScan

Also See: dagAdcGetScan, dagAdcSetMux
Format

dagAdcSetScan(handle, channels, gains, flags, chanCount)
Purpose

dagAdcSetScan configures an acquisition scan group consisting of multiple channels.

Parameter Summary

Parameter Type Description
handle DagHandleT | Handle to the device for which acquisition scan group will be
configured
channels PDWORD An array of channel numbers
gains DagAdcGain | Pointer to an array of gain values
flags PDWORD Pointer to an array of channel configuration flags in bit mask form.
chanCount | DWORD The number of elements in the channels, gains and flags arrays

Parameter Values

handle: obtained from the dagOpen function

channels: mustbe avalid pointer to an array of valid channel numbers for the device; valid values for
channel numbers vary per device. See the parameter type definitions table below. Consult
your hardware manual if needed.

gains: see table below

flags: see table below

chanCount: valid values vary in range, according to product type.

Parameter Type Definitions

flags

Definition | Description | Valid Channel Values
Analog/High Speed Digital Flag
DafAnalog Channel is Analog on P1 Analog P1 Channels (0-271)
DafHighSpeedDigital Channel is HS Digital 1/0 on P3 Digital P3 HS Chan (0)

Data Representation Flags (DagBook/2000 Series; 1000, 2000, 3000 Series DaqBoards; DaqLab/2000 Series,
DagScan/2000 Series and cPCI DagBoard/2000c Series)

Channel ADC data is represented as a 16-bit unsigned
integer.

DafSigned Channel ADC data is represented as a 16-bit signed integer. | Any channel
Unipolar/Bipolar Flag (DagBook/2000 Series; 1000, 2000, 3000 Series DagBoards; DaqlLab/2000 Series,
DagScan/2000 Series and cPCI DagBoard/2000c Series)

Channel voltage range is from 0 to +2x(Device
Max/Gain)V

Channel voltage range is -(Device Max/Gain)V to
+(Device Max/Gain)V

Single Ended/Differential Flag

DafSingleEnded Channel is single ended inputs Analog P1 (0-271)
DafDifferential Channel is differential inputs Analog P1 (0-7) (Main unit only)
P2 Digital Channel Flags (DagBook/2000 Series; 1000, 2000, 3000 Series DagBoards; DaqlLab/2000 Series,
DagScan/2000 Series and cPCI DagBoard/2000c Series)
DafP2Local8 Channel is Digital on the Local P2 Local Digital P2 Channels (0-4)
DafP2Exp8 Channel is Digital on an Expansion P2 N/A

P3 Digital Channel Flags (DagBook/2000 Series, DagBoard/2000 Series, DagLab/2000 Series, DagScan/2000 Series
and cPCl DagBoard/2000c Series)

DafP3Local16 | Channel is HS Digital /0 P3 | Digital 16-bit P3 Channel (0)
Counter Type Flags (DaqBook/2000 Series; 1000, 2000, 3000 Series DagBoards; DaqlLab/2000 Series,
DagScan/2000 Series and cPCI DagBoard/2000c Series)

DafUnsigned Any channel

DafUnipolar Analog P1 Channels (0-271)

DafBipolar Analog P1 Channels (0-271)

DafCtrPulse P3 Counter Channel will Tally Pulses Counter Channels (0-3)
DafCtrTotalize P3 Counter Channel will Return Frequency Counter Channels (0-3)
Counter Edge Flags

DafCtrRisingEdge P3 Counter Channel will Count on Rising Edge Counter Channels (0-3)
DafCtrFallingEdge P3 Counter Channel will Count on Falling Edge Counter Channels (0-3)

4.2-36 Daqg APl Command Reference 987693 Programmer’s Manual

Counter Channel Flags (DagBook/2000 Series; 1000, 2000, 3000 Series DagBoards; DaqLab/2000 Series,
DagScan/2000 Series and cPCl DagBoard/2000c Series,WaveBook/516; WBK17)

DafCtrl6 Channel is the 16-bit Counter Counter Channels (0-3) Note 1
DafCtr32Low Channel is the Lower 16 bits of the 32-bit Counter 32-bit Counter Low Word (0,2) Note 1
DafCtr32High Channel is the Higher 16 bits of the 32-bit Counter 32-bit Counter High Word (1,3) Note 1

cPCI DagBo

ard/2000c Series products only.

Note 1: The channel numbers provided for “Counter Channel Flags,” apply to the DagBook/2000 Series,
DagLab/2000 Series, DagScan/2000 Series; “1000, 2000, 3000 Series DaqBoards;” and

WBK17 Digital Output Port Flags

DafDigital8

Digital Output Port (Byte)

Reading of Digital Output

DafDigitall6

Digital Output Port and Detector (Byte) << 8

Reading of Digital Output

SSH Hold/Sample Flag -

For Internal Use Only

DafSSHSample

Internal use only

N/A

DafSSHHold

Internal use only

N/A

Sampling Interval Control

(Applies to the following Series Devices: /3000, /2000, and DagBoard/1000)

DafSettlelus

Allow 1 ps sampling interval (3000 Series Only)

DafSettlelus must be used!

DafSettlelus applies only to valid Analog
Channels on 3000 Series devices.

In order to obtain the maximum sampling rate for 3000 Series devices,

DafSettle5us Allow 5 pus sampling interval Any valid Analog, Digital, or Counter Channel
DafSettlelOus Allow 10 ps sampling interval Any valid Analog, Digital or Counter Channel
DafSettlelms Allow 1000us (1ms) sampling interval For use with DBK90 Channels

Clear or shift the least si

gnificant nibble (DagBook/1xx,DagBoard/1xx)

DaflgnorelLSNibble Ignore the least significant nibble Any valid Analog, Digital, or Counter Channel
DafClearLSNibble Clear the least significant nibble Any valid Analog, Digital, or Counter Channel
DafShiftLSNibble Shift the least significant nibble Any valid Analog, Digital, or Counter Channel

Thermocouple Type Con

nected to Input

DafTcTypeNone No Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcTypeJd J Type Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcTypeK K Type Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcTypeT T Type Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcTypeE E Type Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcTypeN28 N28 Type Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcTypeN14 N14 Type Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcTypeS S Type Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcTypeR R Type Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcTypeB B Type Thermocouple Any DBK19, DBK52,DBK81-84,DBK90
DafTcCJC CJC Channel Any DBK19, DBK52,DBK81-84,DBK90

64 Channel Cards (DBK90 only)

Daf64ChannelExp | Specifies 64-channel local addressing | DBK90 only

Setpo int Fl ags Setpoint Flags are used with /3000 Series devices only
Definition Description

DafSetPointEnable Enable Setpoint detection. = 0x08000000
DafSetPointStatus Enable the control status read in the scan list. =0x8001

Note: Also see dagADCSetSetpoints

(for /3000 Series Devices Only)

Programmer’s Manual

987693

Daq APl Command Reference 4.2-37

gains—(DagAdcGain)

Base Unit
Definition Description Applies to ...
DgainX1 Main Unit-signal gain x 1 Daq products.
DgainX2 Main Unit-signal gain x 2 Dag products.
Dgainx4 Main Unit-signal gain x 4 Dag products.
DgainXx8 Main Unit-signal gain x 8 Daq products.
DaqBook/2000 Series, DagLab/2000 Series, DagScan/2000 Series ,
DgainX16 Main Unit-signal gain x 16 DagBoard/2000 Series, DagBoard/1000 Series and cPCI
DagBoard/2000c Series products.
DaqBook/2000 Series, DagLab/2000 Series, DagScan/2000 Series ,
DgainX32 Main Unit-signal gain x 32 DagBoard/2000 Series, DaqBoard/1000 Series and cPCl
DagBoard/2000c Series products.
DaqBook/2000 Series, DagLab/2000 Series, DagScan/2000 Series ,
DgainX64 Main Unit-signal gain x 64 DaqBoard/2000 Series, DagBoard/1000 Series and cPCI
DagBoard/2000c Series products.
WgcX1 Main Unit-signal gain x 1 \WaveBook products.
WgcX2 Main Unit-signal gain x 2 \WaveBook products.
WgcX5 Main Unit-signal gain x 5 \WaveBook products.
WgcX10 Main Unit-signal gain x 10 \WaveBook products.
WgcX20 WBK Module - signal gain x 20 WBK11, WBK12, WBK13, and WBK14 .
WgcX50 WBK Module - signal gain x 50 WBK11, WBK12, WBK13, and WBK14 .
WgcX100 WBK Module - signal gain x 100 WBK11, WBK12, WBK13, and WBK14 .
WgcX200 WBK Module - signal gain x 200 WBK10A with WBK11, WBK12, or WBK13 installed; and WBK14.
DBKA4-Filter
Definition Description

Dbk4FilterXl

DBK4-DBK4-LPF is on, signal gain x 1

Dbk4FilterX10

DBK4-LPF is on, signal gain x 10

Dbk4Filterx100

DBK4-LPF is on, signal gain x 100

Dbk4Fil1terx1000

DBK4-LPF is on, signal gain x 1000

Dbk4FilterXx2

DBK4-LPF is on, signal gain x 2

Dbk4Filterx20

DBK4-LPF is on, signal gain x 20

Dbk4Fi 1terxX200

DBK4-LPF is on, signal gain x 200

Dbk4Fi lterx2000

DBK4-LPF is on, signal gain x 2000

Dbk4Filterx4

DBK4-LPF is on, signal gain x 4

Dbk4Fi IterX40

DBK4-LPF is on, signal gain x 40

Dbk4Fi 1terx400

DBK4-LPF is on, signal gain x 400

Dbk4F i 1terx4000

DBK4-LPF is on, signal gain x 4000

Dbk4FilterXxs8

DBK4-LPF is on, signal gain x 8

Dbk4Filterx80

DBK4-LPF is on, signal gain x 80

Dbk4Fi1terx800

DBK4-LPF is on, signal gain x 800

Dbk4Fi 1terx8000

DBK4-LPF is on, signal gain x 8000

DBK4-Bypass®

Definition

Description

Dbk4BypassX1_583

DBK4-LPF is off, signal gain x 1

Dbk4BypassX15_83

DBK4-LPF is off, signal gain x 10

Dbk4BypassX158 3

DBK4-LPF is off, signal gain x 100

Dbk4BypassX1583

DBK4-LPF is off, signal gain x 1000

Dbk4BypassX3_166

DBK4-LPF is off, signal gain x 2

Dbk4BypassX31_66

DBK4-LPF is off, signal gain x 20

Dbk4BypassX316_6

DBK4-LPF is off, signal gain x 200

Dbk4BypassX3166

DBK4-LPF is off, signal gain x 2000

Dbk4BypassX6_332

DBK4-LPF is off, signal gain x 4

Dbk4BypassX63_32

DBK4-LPF is off, signal gain x 40

Dbk4BypassX633_2

DBK4-LPF is off, signal gain x 400

Dbk4BypassX6332

DBKA4-LPF is off, signal gain x 4000

Dbk4BypassX12_664

DBK4-LPF is off, signal gain x 8

Dbk4BypassX126_64

DBK4-LPF is off, signal gain x 80

Dbk4BypassX1266_4

DBK4-LPF is off, signal gain x 800

Dbk4BypassX12664 DBK4-LPF is off, signal gain x 8000

DBK7

Dbk7X1 | DBK7- signal gain x 1 (Use with DBKS55 also)
DBK8

Dbk8X1 | DBKS- signal gain x 1

! Bypassing the filter adds a hardware gain of x 1.583

4.2-38 Daq APl Command Reference

987693

Programmer’s Manual

DBK9
Dbk9VoltageA DBK9-RTD reading A
Dbk9VoltageB DBK9-RTD reading B
Dbk9VoltageC DBK9-RTD reading C
Dbk9VoltageD DBK9-RTD reading D
DBK12
Dbk12X1 DBK12-signal gain x 1
Dbk12X2 DBK12-signal gain x 2
Dbk12X4 DBK12-signal gain x 4
Dbk12X8 DBK12-signal gain x 8
Dbk12X16 DBK12-signal gain x 16
Dbk12X32 DBK12-signal gain x 32
Dbk12X64 DBK12-signal gain x 64
DBK13
Definition Description
Dbk13X1 DBK13-signal gain x 1
Dbk13X10 DBK13-signal gain x 10
Dbk13X100 DBK13-signal gain x 100
Dbk13X1000 DBK13-signal gain x 1000
Dbk13X2 DBK13-signal gain x 2
Dbk13X20 DBK13-signal gain x 20
Dbk13X200 DBK13-signal gain x 200
Dbk13X2000 DBK13-signal gain x 2000
Dbk13X4 DBK13-signal gain x 4
Dbk13X40 DBK13-signal gain x 40
Dbk13X400 DBK13-signal gain x 400
Dbk13X4000 DBK13-signal gain x 4000
Dbk13X8 DBK13-signal gain x 8
Dbk13X80 DBK13-signal gain x 80
Dbk13X800 DBK13-signal gain x 800
Dbk13X8000 DBK13-signal gain x 8000
DBK14 Bipolar
Definition Description
Dbk14BiCJC DBK14-Bipolar CJC
Dbk14BiTypeJ DBK14-Bipolar Type J TC
Dbk14BiTypeK DBK14-Bipolar Type K TC
Dbk14BiTypeT DBK14-Bipolar Type T TC
Dbk14BiTypeE DBK14-Bipolar Type E TC
Dbk14BiTypeN28 DBK14-Bipolar Type N28 TC
Dbk14BiTypeN14 DBK14-Bipolar Type N14 TC
Dbk14BiTypeS DBK14-Bipolar Type S TC
Dbk14BiTypeR DBK14-Bipolar Type R TC
Dbk14BiTypeB DBK14-Bipolar Type B TC
DBK14 Unipolar
Definition Description
Dbk14UniCJC DBK14-Unipolar CJC
Dbk14UniTypeJ DBK14-Unipolar Type J TC
Dbk14UniTypeK DBK14-Unipolar Type KTC
Dbk14UniTypeT DBK14-Unipolar Type T TC
Dbk14UniTypeE DBK14-Unipolar Type E TC
Dbk14UniTypeN28 DBK14-Unipolar Type N28 TC
Dbk14UniTypeN14 DBK14-Unipolar Type N14 TC
Dbk14UniTypeS DBK14-Unipolar Type STC
Dbk14UniTypeR DBK14-Unipolar Type RTC
Dbk14UniTypeB DBK14-Unipolar Type B TC
DBK15 Bipolar
Definition Description
Dbk15BiX1 DBK15-Bipolar, signal gain x 1
Dbk15BiX2 DBK15-Bipoalr, signal gain x 1
DBK15 Unipolar
Dbk15UniX1 DBK15-Unipolar, signal gain x 1
Dbk15UniX2 DBK15-Unipolar, signal gain x 1
DBK16
Definition Description
Dbk16ReadBridge DBK16-Read String Gage
Dbk16SetOffset DBK16-Read Offset Trimpot
Dbk16SetScal ingGain DBK16-Read Scaling Trimpot
Dbk16SetlInputGain DBK16-Read Input Trimpot

Programmer’s Manual

987693 Daq APl Command Reference

4.2-39

DBK18

Definition Description

Dbk18X1 DBK18-signal gain x 1
DBK19 Bipolar®
Definition Description

Dbk19BiCJC DBK19-Bipolar CJC
Dbk19BiTypeJ DBK19-Bipolar Type J TC
Dbk19BiTypeK DBK19-Bipolar Type KTC
Dbk19BiTypeT DBK19-Bipolar Type T TC
Dbk19BiTypeE DBK19-Bipolar Type E TC
Dbk19BiTypeN28 DBK19-Bipolar Type N28 TC
Dbk19BiTypeN14 DBK19-Bipolar Type N19 TC
Dbk19BiTypeS DBK19-Bipolar Type S TC
Dbk19BiTypeR DBK19-Bipolar Type R TC
Dbk19BiTypeB DBK19-Bipolar Type B TC
DBK19 Unipolar

Definition Description
Dbk19UniCJC DBK19-Unipolar CJC
Dbk19UniTypeJ DBK19-Unipolar Type J TC
Dbk19UniTypeK DBK19-Unipolar Type K TC
Dbk19UniTypeT DBK19-Unipolar Type T TC
Dbk19UniTypeE DBK19-Unipolar Type E TC
Dbk19UniTypeN28 DBK19-Unipolar Type N28 TC
Dbk19UniTypeN14 DBK19-Unipolar Type N19 TC
Dbk19UniTypeS DBK19-Unipolar Type S TC
Dbk19UniTypeR DBK19-Unipolar Type R TC
Dbk19UniTypeB DBK19-Unipolar Type B TC
DBK42

Definition Description

Dbk42X1 DBK42-signal gain x 1
DBK43/43A

Definition Description
Dbk43ReadBridge DBK43-Read String Gage
Dbk43SetOffset DBK43-Read Offset Trimpot

Dbk43SetScal ingGain

DBK43-Read Scaling Trimpot

DBK44

Definition Description

Dbk44X1 DBK44-signal gain x 1
DBK50

Definition Description
Dbk50Range0 DBK50-signal gain x 1
Dbk50Rangel0 DBKG50-signal gain x 0.5
Dbk50Range100 DKB50-siganl gain x 0.05
Dbk50Range300 DBK50-signal gain x 0.06
DBK51

Definition Description
Dbk51RangeO DBKS51-signal gain x 1
Dbk51Range100mV DBK51-signal gain x 50
Dbk51Rangel DBK51-signal gain x 5
Dbk51Rangel0 DBKS51-signal gain x 0.5
DBK52 Bipolar®

Definition Description
Dbk52BiCJC DBK52-Bipolar CJC
Dbk52BiTypeJ DBK52-Bipolar Type J TC
Dbk52BiTypeK DBK52-Bipolar Type K TC
Dbk52BiTypeT DBKS52-Bipolar Type T TC
Dbk52BiTypeE DBKS52-Bipolar Type E TC
Dbk52BiTypeN28 DBK52-Bipolar Type N28 TC
Dbk52BiTypeN14 DBK52-Bipolar Type N52 TC
Dbk52BiTypeS DBK52-Bipolar Type S TC
Dbk52BiTypeR DBK52-Bipolar Type R TC
Dbk52BiTypeB DBK52-Bipolar Type B TC

DBKS52 Unipolar follows.

! When using the DBK19 and DBKS52 with 10 V devices such as DaqBook/2000 Series, DagqBoard/2000 Series, DaqBoard/1000 Series,
DagScan/2000 Series, DaglL.ab/2000 Series, cPCI DagBoard/2000c Series and Daq PC Cards, add four to the gain code.

4.2-40 Daq APl Command Reference

987693

Programmer’s Manual

DBK52 Unipolar

Definition Description
Dbk52UniCJC DBK52-Unipolar CJC
Dbk52UniTypeT DBK52-Unipolar Type T TC
Dbk52UniTypeE DBKS52-Unipolar Type E TC
Dbk52UniTypeN28 DBK52-Unipolar Type N28 TC
Dbk52UniTypeN14 DBK52-Unipolar Type N19 TC
Dbk52UniTypeS DBKS52-Unipolar Type STC
Dbk52UniTypeR DBKS52-Unipolar Type R TC
Dbk52UniTypeB DBK52-Unipolar Type B TC
DBK55
Definition Description
Dbk55X1 DBKG55- signal gain x1
DBK65
Definition Description
Dbk65X1 DBKG65 Bipolar X1 Gain
Dbk65X2 DBKG65 Bipolar X2 Gain
Dbk65X4 DBKG65 Bipolar X4 Gain
Dbk65X8 DBKG65 Bipolar X8 Gain
Dbk65X16 DBKG65 Bipolar X16 Gain
Dbk65X32 DBK®65 Bipolar X32 Gain
Dbk65X64 DBKG65 Bipolar X64 Gain
DBK80
Definition Description
Dbk80X1 DBKA80 Bipolar X1 Gain
Dbk80X2 DBK80 Bipolar X2 Gain
Dbk80X4 DBKA80 Bipolar X4 Gain
Dbk80X8 DBKB80 Bipolar X8 Gain
Dbk80X16 DBKB80 Bipolar X16 Gain
Dbk80X32 DBKA80 Bipolar X32 Gain
Dbk80X64 DBK80 Bipolar X64 Gain
DBK85
Definition Description
Dbk85X1 DBKS85 Bipolar X1 Gain
Dbk85X2 DBKB85 Bipolar X2 Gain
Dbk85X4 DBKS85 Bipolar X4 Gain
Dbk85X8 DBKS85 Bipolar X8 Gain
Dbk85X16 DBKS85 Bipolar X16 Gain
Dbk85X32 DBKS85 Bipolar X32 Gain

DBK81-DBK84 Bipolar Only

Definition Description
Dbk81CJC DBK®81-84 Bipolar CJC
Dbk81TypeJ DBK81-84 Bipolar Type J TC
Dbk81TypeK DBK81-84 Bipolar Type K TC
Dbk81TypeT DBK81-84 Bipolar Type T TC
Dbk81TypeE DBK81-84 Bipolar Type E TC
Dbk81TypeN28 DBK81-84 Bipolar Type N28 TC
Dbk81TypeN14 DBK81-84 Bipolar Type N52 TC
Dbk81TypeS DBK81-84 Bipolar Type STC
Dbk81TypeR DBK81-84 Bipolar Type R TC
Dbk81TypeB DBK81-84 Bipolar Type B TC

DBK90 Bipolar Only

Definition Description
Dbk90CJC DBKO90 Bipolar CJC
Dbk90TypeJ DBK90 Bipolar Type J TC
Dbk90TypeK DBK90 Bipolar Type K TC
Dbk90TypeT DBKO90 Bipolar Type T TC
Dbk90TypeE DBK90 Bipolar Type ETC
Dbk90TypeN28 DBK90 Bipolar Type N28 TC
Dbk90TypeN14 DBKO90 Bipolar Type N52 TC
Dbk90TypeS DBK90 Bipolar Type S TC
Dbk90TypeR DBKO0 Bipolar Type R TC
Dbk90TypeB DBK90 Bipolar Type B TC

* When using the DBK19 and DBKS52 with 10 V devices such as DagBook/2000 Series, DagBoard/2000 Series, DaqBoard/1000 Series,
DagScan/2000 Series, DaqlLab/2000 Series, cPCI DagBoard/2000c Series and Dag PC Cards, add four to the gain code.

Programmer’s Manual

987693

Daq APl Command Reference

4.2-41

Returns

DerrNotCapable No digital or counter
DerrinvGain Invalid gain
DerrinvChan Invalid channel
DerrNoError No error

6 For more details on error messages, please refer to the Daq Error Table.

;"‘a._./

Function Usage

Scan Sequence Configuration

This function may not return an error immediately.
dagAdcArm or dagAdcSetRate may return an error from the scan list.

The dagAdcSetScan function is the method by which the scan sequence is programmed. The channel scan
is comprised of all channels configured for scanning. When a user application sets each of the values in the
channels, gains and flags arrays and passes these array pointers to dagAdcSetScan, the driver interprets
each array element as a configuration variable for the corresponding scan element. The following table
demonstrates this relationship:

Array Scan Channels gains flags
Location Location Array Elements Array Elements Array Elements
0 0 Channels(0) gains(0) flags(0)

1 1 Channels(1) gains(1) flags(1)

2 2 Channels(2) gains(2) flags(2)

3 3 Channels(3) gains(3) flags(3)

4 4 Channels(4) gains(4) flags(4)
chanCount+1 chanCount+1 channels(chanCount+1) gains(chanCount+1) flags(chanCount+1)

As many as 512 channel entries can be made in the acquisition scan group configuration. Any analog input
channel can be included in the scan group configuration at any valid gain setting. Scan group configuration
may be composed of local or expansion channels (and, for the DagBook/DagBoard, the high-speed digital 1/0
port). Each of the parameters that define the scan group are described in more detail below:

The channel's parameter is a pointer to an array of up to 512 channel values. Each entry represents a
channel number in the scan group configuration. Channels can be entered multiple times at the same or
different gain and flags settings.

The gains parameter is a pointer to an array of up to 512 gain settings. Each entry in the gain array
represents the gain to be used with the corresponding channel entry. Gain entry can be any valid gain setting
for the corresponding channel.

The Flags parameter is a pointer to an array of up to 512 channel flag settings. Each entry in the flag array
represents a 4-byte-wide bit map of channel configuration settings for the corresponding channel entry. The
flags can be used to set channel-specific configuration settings such as polarity [and channel type for
DaqgBook/2000 Series, DagqLab/2000 Series, DaqScan/2000 Series, DagBoard/2000 Series, DaqBoard/1000
Series and cPCI DagBoard/2000c Series boards]. The channel may require further configuration. If this is the
case, then see the daqSetOption function for further channel configuration instructions.

4.2-42 Daq APl Command Reference 987693

Programmer’s Manual

The chanCount parameter is not a configuration parameter in the same sense as the channels, gains and
Tflags parameters—it simply represents the total number of channels in the scan group configuration. This
number also represents the number of entries in each of the channels, gains and flags arrays.

To illustrate how the scan group might be configured, suppose that we would like to configure a scan sequence
in the following order:
Scan Location 0 --- an analog, bipolar, and single-ended channel with gain x 1, using channel 3
Scan Location 1 --- a 16-bit HS digital channel on P3
Scan Location 2 --- the lower 16-bits on counter 0 used (with scan location 3) as a cascaded 32-bit
counter for totalizing
Scan Location 3 --- the upper 16-bits on counter 2 used (with scan location 2) as a cascaded 32-bit
counter for totalizing

The following table shows how an array with the above specifications might be defined. Note that, in this
example, there are 4 channel scan locations (chanCount=4) rather than 3 since the 32-bit cascaded counter
occupies two scan locations.

Array Scan channels gains flags

Location | Location | Array Elements Array Elements Array Elements

0 0 channels(0) = 3 gains(0) = DgainXl | flags(0) =
DafAnalog + DafBipolar +
DafSingleEnded

1 1 channels(1) = 0 gains(1l) = N/A flags(1) = DafP3Locall6

2 2 channels(2) = 0 gains(2) = N/A flags(2) =
DafCtr32Low + DafCtrTotalize

3 3 channels(3) = 2 gains(3) = N/A flags(3) =

DafCtr32High +
DafCtrTotalize

Programmer’s Manual

987693

Daq APl Command Reference 4.2-43

Typical flags Settings
Although the flags parameter may be constructed using any of the defined Flags values, the following
table illustrates how specific channel configurations are typically defined:

Desired
Channel Flagl Flag2 Flag3 Notes
Configuration
Analog, Bipolar, SE DafAnalog DafBipolar DafSingleEnded Configures P1 local and
(Default) (Default) expansion analog input channel
as hipolar, single ended
Analog, Bipolar, DafAnalog DafBipolar DafDifferential Configures P1 local and
DE (Default) expansion analog input channel
as bipolar, differential
Analog, Unipolar, DafAnalog DafUnipolar DafSingleEnded Configures P1 local and
SE (Default) (Default) (Default) expansion analog input channel
as unipolar, single ended
Analog, Unipolar, DafAnalog DafUnipolar DafDifferential Configures P1 local and
DE (Default) (Default) expansion analog input channel
as unipolar, differential
Digital (8 bit), DafP2Local8 N/A N/A Configures P2 local (8255)
Local P2 digital input channel bank (8-bit)
Digital (8-bit), DafP2Exp8 N/A N/A Configures P2 expansion (8255)
Expansion P2 digital input channel bank (8-bit)
Digital (16-bit), DafP3Locall6 N/A N/A Configures P3 local (HS Digital)
Local P3 digital input channel bank (16-
bit)
Counter (16-bit), DafCtri6 DafCtrPulse DafCtrRisingEdge Configures 16-bit P3 counter
Local P3 (Default) channel for pulse counting on
rising edge of signal
Counter (16-bit), DafCtril6 DafCtrTotalize DafCtrRisingEdge Configures 16-bit P3 counter
Local P3 (Default) channel for totalize counting on
rising edge of signal
Counter (16-bit), DafCtril6 DafCtrPulse DafCtrFallingEdge | Configures 16-bit P3 counter
Local P3 channel for pulse counting on
falling edge of signal
Counter (16-bit), DafCtril6 DafCtrTotalize DafCtrFallingEdge | Configures 16-bit P3 counter
Local P3 channel for totalize counting on
falling edge of signal
Counter (32-bit- DafCtr32Low DafCtrTotalize DafCtrRisingEdge Configures low word of 32-bit
Low) Local P3 (Default) counter on P3 for totalizing on
rising edge of signal. Must be
paired with a 32-bit counter high
word
Counter (32-bit- DafCtr32High DafCtrTotalize DafCtrRisingEdge Configures high word of 32-bit
High) Local P3 (Default) counter on P3 for totalizing on

rising edge of signal. Must be
paired with a 32-bit counter low
word

4.2-44 Daq APl Command Reference

987693

Programmer’s Manual

Desired
Channel Flagl Flag2 Flag3 Notes
Configuration

Counter (32-bit- DafCtr32Low DafCtrPulse DafCtrRisingEdge Configures low word of 32-bit

Low) Local P3 (Default) counter on P3 for pulse counting
on rising edge of signal. Must be
paired with a 32-bit counter high
word

Counter (32-bit- DafCtr32High DafCtrPulse DafCtrRisingEdge Configures high word of 32-bit

High) Local P3 (Default) counter on P3 for pulse counting
on rising edge of signal. Must be
paired with a 32-bit counter high
word

Counter (32-bit- DafCtr32Low | DafCtrTotalize DafCtrFallingEdge | Configures low word of 32-bit

Low) Local P3 counter on P3 for totalizing on
falling edge of signal. Must be
paired with a 32-bit counter high
word

Counter (32-bit- DafCtr32High | DafCtrTotalize DafCtrFallingEdge Configures high word of 32-bit

High) Local P3 counter on P3 for totalizing on
falling edge of signal. Must be
paired with a 32-bit counter high
word

Counter (32-bit- DafCtr32Low DafCtrPulse DafCtrFallingEdge Configures low word of 32-bit

Low) Local P3 counter on P3 for pulse counting
on falling edge of signal. Must
be paired with a 32-bit counter
high word

Counter (32-bit- DafCtr32High DafCtrPulse DafCtrFallingEdge Configures high word of 32-bit

High) Local P3 counter on P3 for pulse counting
on falling edge of signal. Must be
paired with a 32-bit high

For digital and counter channel Flags definitions, the corresponding element in the gains array will be
ignored. Those flag settings who are marked as defau l 't will take on the default value if not explicitly set.

Other flags Settings

There are additional flags that can be added to any Flags construct for more specific channel configurations:

Desired
Channel Flag Notes
Configuration
Unsigned Data DafUnsigned Data returned for channel ranges from 0 to 65,535
Representation (Default)
Signed Data DafSigned Data returned for channel ranges from -32,768 to +32,767
Representation
5 ps Sampling DafSettle5us Sets the sampling interval for the channel to 5 ps
Interval * (Default)
10 us Sampling DafSettlelOus Sets the sampling interval for the channel to 10 us
Interval *
1000 ps Dafsettlelms Sets the sampling interval for the channel to 1000 ps, (1 ms)
(1 ms) Sampling
Interval *
Ignore least DaflgnoreLSNibble The least significant 4-bits represents a channel tag on a 12 bit device and
significant 4-bits (Default) should be ignored (DagBook/DagBoard/1xx series products only)
Clear least DafClearLSNibble The least significant 4-bits will be set to 0
significant 4-bits
Shift least DafshiftLSNibble The least significant 4-bits will be shifted left by 4 places (making a 12-bit
significant 4-bits number into a 16-bit number) (DagBook/DagBoard/1xx series products
only)

* Channel configurations for 5 us, 10 us and 1000 ps do not apply to DagBoard/500 Series devices.

Programmer’s Manual

987693

Daq APl Command Reference 4.2-45

Prototypes

C/C++

dagAdcSetScan(DagHandleT handle, PDWORD channels, DagAdcGain *gains,
PDWORD flags, DWORD chanCount);

Visual BASIC

VBdagAdcSetScan&(ByVal handle&, channels&, gains&, flags&, Byval
chanCountg&)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP,
DAQADCEXO5.CPP, DAQADCEX06.CPP, DAQADCEXO7.CPP, DBKO4EX.CPP, DBKO7EX.CPP,
DBKO8BEX.CPP, DBKO9EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP,
DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP,
DBK44EX.CPP, DBKA45EX.CPP, DBKSOEX.CPP, DBKS51EX.CPP, DBKS52EX.CPP,
DBK53_54EX.CPP, DAQEX.FRM (VB)

4.2-46 Daq APl Command Reference 987693 Programmer’s Manual

dagAdcSetSetpoints

Also See: dagAdcSetScan
Format

dagAdcSetSetpoints(handle, LimitA, LimitB, reserved, setpointFlags,
setpointOutput, outputl, output?2, outputMaskl, outputMask?2,
setpointCount)

Purpose
dagAdcSetSetpoints allows the setting of up to 16 setpoints for a device.

Parameter Summary

Parameter Type Description
handle DagHandleT The handle to the device for which to set the option
= = Limit A specifies a value against which to determine if setpoint criteria are met;
limitA PFLOAT In Volts for Analog Channels; In Counts for Digital Channels
= = Limit B specifies a value against which to determine if setpoint criteria are met;
limitB PLFOAT In Volts for Analog Channels; In Counts for Digital Channels
reserved PFLOAT Reserved — reserved for future use
setpointFlags DWORD The value of the option to set
setpointOutput | DWORD Output source or action: None, P2 Port C, Timer0-1, DAC0-3
The value to output when the setpoint criteria are met; In Volts for DACs;
outputl PFLOAT Digital value used for P2C; Divisor used for Timer
The value to output when the setpoint criteria are NOT met;
output2 PFLOAT Digital value used for P2C; Divisor used for Timer
outputMaskl PFLOAT Output mask for outputl — for P2 Port C only
outputMask?2 PFLOAT Output mask for output2 — for P2 Port C only
setpointCount DWORD Number of setpoints to configure (16 max)

Parameter Values
handle: obtained from the dagOpen function
LimitA: any valid value for the input channel used for the setpoint
LimitB: any valid value for the input channel used for the setpoint
reserved: not specified
setpointFlags: see following table
setpointOutput: see following table
outputl: any valid value for the output channel used for the setpoint
output2: any valid value for the output channel used for the setpoint
setpointCount: fromO0to 16

Parameter Type Definitions

setpointflags - DagSetpointFlags

Definition Description
DsfEqualLimitA Setpoint criteria: Input Channel = limit A
DsflLessThanLimitA Setpoint criteria: Input Channel < limit A
DsfGreaterThanLimitB Setpoint criteria: Input Channel > limit B
DsfOutsideLimits Setpoint criteria: Input Channel > limit A OR Input Channel < limit B
DsfiInsideLimits Setpoint criteria: Input Channel < limit A AND Input Channel > limit B
DsfHysteresis Setpoint criteria: Input Channel > limit A then outputl Input Channel < limit B then

output2

DsfUpdateOnTrueOnly If criteria met then outputl
DsfUpdateOnTrueAndFalse If criteria met then outputl else output2

For outside or inside window limits (DsfOutsideLimits, DsflnsideLimits) and for
hysteresis (DsfHysteresis) Limit A must be greater than Limit B. If this criteria is not
met DerrSetpointLimits error (error code 164) will be returned.

Programmer’s Manual 987693 Daq APl Command Reference 4.2-47

setpointOutput - DagSetpointOutputT

Definition Description
DsoNone Perform no outputs
DsoP2PortC Output to P2 Port C when criteria met
DsoDACO Output to DACO when criteria met (must have device with DACO)
DsoDAC1 Output to DAC1 when criteria met (must have device with DAC1)
DsoDAC2 Output to DAC2 when criteria met (must have device with DAC2)
DsoDAC3 Output to DAC3 when criteria met (must have device with DAC3)
DsoTMRO Output to Timer0 when criteria met
DsoTMR1 Output to Timerl when criteria met

Function Usage

The dagAdcSetSetpoints function may be used to setpoints for those devices which support setpoint
controlled outputs such as the DagBoard/3000 and PersonalDag/3000 Series devices. Up to 16 separate
setpoints are supported and an input channel can have more than one setpoint associated with it. Any input
channel can be configured to use a setpoint including analog, digital or counter channels. However, if the input
channel is a TC channel, there will be no compensation or linearization of the channel applied when evaluating
the setpoint and the setpoint input channel must be specified in voltage. The dagAdcSetSetpoints
function only configures the setpoints. See dagAdcSetScan function for information regarding how to
associate an input channel to a setpoint.

Each setpoint requires an input channel, a detection criteria and an output or action to be performed when the
detection critera are met. As mentioned before, the input channel can be an analog voltage, digital or counter
channel. If a counter channel is used and the counter channel is a 32-bit counter the setpoint can only be
evaluated against either the high or low order word (or 16-bits) of the counter. See the See dagAdcSetScan
function for information regarding how to configure the high and low order words in the scan list.

While data is being collected by the device the input signal is compared to the detection criteria mentioned
above. When given criteria are met the result is a condition which is driven High(True) or Low(False)
depending upon current state of the signal. The rate at which the condition is updated depends upon the overall
scan rate selected for the acquisition. See See dagAdcSetRate function for more details on setting up the
scan rate. So the detection of change of input state against the criteria can be no faster than the overall
acquisition scan rate.

The output target or channel can be the P2 Port C, Timer0, Timerl or any of the onboard DAC. In addition, the
user may select no outputs to be peformed. When the condition is driven High(True) or Low(False) the
UpdateOnTrueOnly and the UpdateOnTrueAndFalse flags determine which output value will be used
to update the output channel.

If TimerO or Timerl (TMRO or TMR1) is the output channel , then the value you enter is that of the 1 MHz
clock divisor. When applicable to your acquisition device, the associated user’s manual will provide details.

If using UpdateOnTrueOnly,then outputl will be updated to the output channel each time the criteria
ismet. If using UpdateOnTrueAndFalse, then outputl will be updated to the output channel each
time the criteria is met. In addition output2 will be updated to the output channel each time the criteria is
NOT met.

See your device hardware manual for a more complete description and theory of operations for the setpoint
feature.

4.2-48 Daq APl Command Reference 987693 Programmer’s Manual

Returns

For outside or inside window limits (DsfOutsideLimits, DsflnsideLimits)and for
hysteresis (DsfHysteresis) Limit A must be greater than Limit B. If this criteria is not
met DerrSetpointLimits error (error code 164) will be returned.

DerrSetpointLimits Setpoint comparison, limit B is greater than Limit A.
DerrNoError No error

Prototypes
C/C++

dagAdcSetSetpoints(DagHandleT handle, PFLOAT LimitA, PFLOAT LimitB,
PFLOAT reserved,PDWORD setpointFlags,DaqSetpointOutputT *setpointOutput,

PFLOAT outputl,PFLOAT output2,PFLOAT outputMaskl,PFLOAT outputMask2, DWORD
setpointCount);

Visual BASIC

VBdagAdcSetSetpoints&(ByVal handle&, ByRef LimitAl, ByRef LimitB!, ByRef
Reserved!, ByRef SetpointFlagsé&, ByRef SetpointOutputé&, ByRef Outputl!,

ByRef Output2!, ByRef OutputMaskl!, ByRef OutputMask2!, ByVal
SetpointCount&)

Program References

Dag3KEnhancedCounters.cpp
Daq3KEncoderExample.cpp
Dag3KMultiChannelSetpointTrig.cpp
Dag3KSetpointExample.cpp

Programmer’s Manual 987693 Daq APl Command Reference 4.2-49

daqgAdcSetTrig

Also See: dagAdcSetAcq, dagAdcSetTrigEnhanced,
dagAdcSetScan, daqSetTriggerEvent,
dagAdcSoftTrig

Format
dagAdcSetTrig(handle, triggerSource, rising, level, hysteresis, channel)

Purpose
dagAdcSetTrig configures the device for enhanced triggering.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device for which the ADC
acquisition trigger will be configured

triggerSource DagAdcTriggerSource | Sets the trigger source

rising BOOL Boolean flag to indicate the rising or falling edge
of the trigger source

level WORD The trigger level (in A/D counts) for an analog
level trigger

hysteresis WORD Hysteresis value for an analog level trigger (if
selected)

channel DWORD Channel for which the analog level trigger will be
detected (if selected)

Parameter Values
handle: obtianed from the dagOpen function
triggerSource: see table below
rising: valid values are either true (= 0) or false (= 0)
level : valid values range from 0 to 65,535
hysteresis: valid values range from 0 to 65,535
channel : valid values range from 0 to 271

Parameter Type Definitions

trigSource-(DagAdcTriggerSource)

Definition Devices Description
Post-trigger data acquisition begins immediately upon invocation of the
DatsImmediate All dagAdcArm command (no pre-trigger data acquisition is possible with this trigger
source)

Post-trigger data acquisition begins upon a software command issued by the
calling application (see dagAdcSoftTrig)
Post-trigger data acquisition begins immediately upon invocation detection of the
Adc Clock pulse being driven.

DagBooks Post-trigger data acquisition begins immediately upon invocation detection of the
DagBoard(ISA) Adc Clock pulse being driven.
Post-trigger data acquisition begins on the selectable edge of an external TTL
DatsExternal TTL All signal. Refer to the applicable user’s manual for pinouts showing the location of
the external TTL signal connection.
Post-trigger data acquisition begins upon a selectable criteria of the input signal

DatsSoftware All

DatsAdcClock All

DatsGatedAdcClock

DatsHardwareAnalog Al (above level, below level, rising edge, etc.)
DatsSoftwareAnalog All Post-trigger data acquisitior_1 pegins upon a selectable criteria of the input signal
(above level, below level, rising edge, etc.)
Returns
DagError See Dag Error Table.

4.2-50 Daq APl Command Reference 987693 Programmer’s Manual

Function Usage
fe)

The dagAdcSetTrig function sets and arms the trigger of the A/D converter. Several trigger sources and
several mode flags can be used for a variety of acquisitions. dagAdcSetTrig will stop current acquisitions,
empty acquired data, and arm the device using the specified trigger. All of this can be accomplished using the
dagSetTriggerEvent function.

This function has been obsoleted by the dagSetTriggerEvent function, and his presented
here only as a reference. See daqSetTriggerEvent for more details.

Prototypes

C/C++

dagAdcSetTrig(DagHandleT handle, DagAdcTriggerSource triggerSource, BOOL
rising, WORD level, WORD hysteresis, DWORD channel);

Visual BASIC

VBdagAdcSetTrig&(ByVal handle&, ByRef triggerSource&, ByVal rising&, ByVval
level%, ByVal hysteresis%, ByVal channel&)

Program References
None

Programmer’s Manual 987693 Daq APl Command Reference 4.2-51

dagAdcSetTrigeEnhanced

Also See: dagAdcSetAcq, dagAdcSetScan,dagAdcSetTrigEnhanced,dagSetTriggerEvent,
dagAdcSoftTrig

Format

dagAdcSetTrigEnhanced(handle, trigSources, gains, adcRanges,
trigSensitivity, level, hysteresis, channels, chanCount, opStr)

Purpose

dagAdcSetTrigEnhanced configures the device for enhanced triggering.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device for which the ADC
acquisition trigger will be configured

trigSources DagAdcTriggerSource | A pointer to an array of trigger sources for each
defined trigger channel

gains DagAdcGain A pointer to an array of gains for each defined
trigger channel

adcRanges DagAdcRangeT A pointer to an array of polarity flag definitions
for each defined channel

trigSensitivity | DagEnhTrigSenseT A pointer to an array of trigger sensitivity flags for
each defined channel trigger source

level PFLOAT A pointer to an array of analog trigger levels for
each defined trigger channel

hysteresis PFLOAT A pointer to an array of hysteresis values for each
defined trigger channel

channels PDWORD A pointer to an array of trigger channels
representing the actual trigger channels to trigger
on

chanCount DWORD Number of trigger channels

opStr char A pointer to an array of characters which
determines the interaction of the trigger channels

Parameter Values

handle: obtianed from the dagOpen function
trigSources: see table below

gains: seethe ADC Gains Table
adcRanges: see table below
trigSensitivity: seetable below

level : apointer to an array of values ranging from —10.0 to +10.0 Volts
hysteresis: apointer to an array of values ranging from —10.0 to +10.0 Volts
channels: apointer to an array of values ranging from 0 to 71

chanCount: valid values range from 1 to 512

opStr: apointer to an array characters which can be “+” or

4.2-52 Daq APl Command Reference 987693 Programmer’s Manual

Parameter Type Definitions

trigSource-(DagAdcTriggerSource)

Definition Devices Description
Post-trigger data acquisition begins immediately upon invocation of
DatsImmediate All the dagAdcArm command (no pre-trigger data acquisition is possible

with this trigger source)
Post-trigger data acquisition begins upon a software command issued
by the calling application (see dagAdcSoftTrig)

Post-trigger data acquisition begins on the selectable edge of an
DatsExternal TTL All external TTL signal. Refer to the applicable user’s manual for pinouts
showing the location of the external TTL signal connection.
Post-trigger data acquisition begins upon a selectable criteria of the

DatsSoftware All

DatsHardwareAnalo . . .
9 Al input signal (above level, below level, rising edge, etc.)
- Post-trigger data acquisition begins upon the detection of the multiple
DatsEnhancedTrig WaveBooks channel trigger event defined by dagAdcSetTrigEnhanced
DatsSoftwareAnalog All Post-trigger data acquisition begins upon a selectable criteria of the

input signal (above level, below level, rising edge, etc.)

Supported within most
product series. Refer to your Post-trigger data acquisition beings upon receiving a specified byte

DatsDigPattern product-specific user manual length digital pattern on a P2 digital port.
regarding applicability.
DatsPulse WaveBook/516 Post-trigger data acquisition begins upon detection of a detection of a

pulse of specified duration and magnitude on an analog input channel.

adcRanges-(DagAdcRangeT)

Definition Description
DarUniOtoloV Sets acquisition range as unipolar from 0 to +10 Volt range
DarBiMinus5to5V Sets acquisition range as bipolar from -5 to +5 Volt range
DarUniPolarDE Sets acquisition range as unipolar differential
DarBiPolarDE Sets acquisition range as bipolar differential
DarUniPolarSE Sets acquisition range as unipolar single-ended
DarBiPolarSE Sets acquisition range as bipolar single-ended

trigSensitivity-(DagEnhTrigSenseT)

Definition Description
DatdRisingEdge Trigger the channel on the rising edge of the signal at the specified level
DatdFallingEdge Trigger the channel on the falling edge of the signal at the specified level
DatdAbovelLevel Trigger the channel when the signal is above the specified level
DatdBelowLowel Trigger the channel when the signal is below the specified level

Trigger the channel on the rising edge of the signal at the specified level and latch the channel
trigger event

Trigger the channel on the falling edge of the signal at the specified level and latch the channel
trigger event

Trigger the channel when the signal is above at the specified level and latch the channel trigger
event

Trigger the channel when the signal is below at the specified level and latch the channel trigger
event

DatdRisingEdgelLatched

DatdFallingEdgeLatched

DatdAbovelLevellLatched

DatdBelowLevellLatched

The Latched values are trigger sensitivities which indicate that the device will maintain the
trigger event for the given channel, regardless of subsequent states of the input signal. After
the channel has triggered, it will remain in a triggered state while the current acquisition is
active. The non-latched trigger sensitivities will only indicate a channel trigger event while
the input signal for the given channel is in the triggered state.

Returns
DagError See Dag Error Table.

Programmer’s Manual 987693 Daq APl Command Reference 4.2-53

Function Usage

Enhanced trigger configuration available through the dagAdcSetTrigEnhanced command allows the
device to detect a trigger start event formed with multiple acquisition channels. The enhanced trigger start
event may be defined as a combination of multiple acquisition channel event conditions that are connected
logically by AND or OR.

To use multi-channel analog triggering, the trigSource parameter needs to be set to
DatsEnhTrigger. Other trigger sources may used with the WaveBook as well --however,
they can only act upon the first channel defined in the trigger channels array.

The dagAdcSetTrigEnhanced command sets the trigger start event only. The start event defines the
method by which the acquisition is to begin collecting data. When the trigger event is satisfied, the device will
begin to collect post-trigger data. The acquisition will terminate based on the acquisition mode parameter set
in the dagAdcSetAcg command.

The trigger event is based on the channel trigger event for each channel in the trigger sequence. The total
number of trigger channels is defined by the chanCount parameter. Each channel trigger configuration
parameter is a pointer to an array of chanCount length and is defined as follows:

channels - a pointer to an array of actual scan channel numbers; these channels will be assigned
corresponding trigger events.

trigSources - a pointer to an array of trigger sources for which the corresponding A/D trigger events will
be configured on the corresponding channel as defined in the channels array.

gains - apointer to an array of gains corresponding to the actual A/D channels with the corresponding A/D
channel number as defined in the channels array. This setting applies only for analog trigger channels.

adcRanges — a pointer to an array of A/D ranges for the A/D channels as defined in the corresponding
channels array. This setting applies only for analog trigger channels.

hysteresis — a pointer to an array of hysteresis values for each corresponding A/D channel as defined in
the channels array.

level - a pointer to an array of level values for which, when satisfied, will set the trigger event for the
corresponding channel as defined in the channels array.

opStr- astring that establishes the logical relationship between the individual channel trigger events and the
global acquisition trigger condition. Currently, the string can be defined as “*” to perform an AND operation,
or “+” to perform an OR operation on the individual channel trigger events. These two logical connections can
be used to formulate global A/D trigger conditions. If the AND operation is selected, then all trigger channels
must be in the triggered condition for the trigger event to occur. If the OR operation is selected, then any of
the trigger channels can be in the triggered condition for the trigger event to occur.

trigSensitivity —an array of trigger sensitivity definitions for a specified trigger event on the
corresponding channel as defined in the channels array.

Prototypes

C/C++

dagAdcSetTrigEnhanced(DagHandleT handle, DagAdcTriggerSource *trigSources,
DagAdcGain *gains, DagAdcRangeT *adcRanges, DagEnhTrigSensT
*trigSensitivity, PFLOAT level, PFLOAT hysteresis, PDWORD channels, DWORD
chanCount, char *opStr);

Visual BASIC

VBdagAdcSetTrigEnhanced&(ByVal handleé&, ByRef trigSources&, ByRef gainsé&,
ByRef adcRanges&, ByRef trigSens&, ByRef levels!, ByRef hysteresis!, ByRef
chan&, ByVal CHANCOUNT&, ByRef opStr&)

Program References
None

4.2-54 Daq APl Command Reference 987693 Programmer’s Manual

dagAdcSoftTrig

Also See: dagAdcSetTrig dagAdcSetAcq
Format

dagAdcSoftTrig(handle)
Purpose

dagAdcSoftTrig is used to send a software trigger command to the device.

Parameter Summary

Parameter Type Description
handle DagHandleT | Handle to the device to which the ADC software trigger is to be applied

Parameter Values:

handle: obtained from the dagqOpen function

Returns

DerrNoError No error

Function Usage

The dagAdcSoftTrig function is a software trigger that can be used to initiate either a scan or an
acquisition from a program after configuring the software trigger as the trigger source. This function may only
be used if the trigger source for the acquisition has been set to DatsSoftware with the dagAdcSetTrig
function.

dagAdcSoftTrig will override the DatsSoftwareAnalog, DatsDigPattern, and
DatsCounter triggers as set by the daqSetTriggerEvent function on some devices.
See dagSetTriggerEvent for more details.

Prototypes
C/C++
dagAdcSoftTrig(DagHandleT handle);
Visual BASIC
VBdagAdcSoftTrig&(ByVal handle&)

Program References
DQADCEX02.CPP, DQADCEXOQ7.CPP

Programmer’s Manual 987693 Daq APl Command Reference 4.2-55

dagAdcTransferBufData

Format

Also See: dagAdcTransferSetBuffer,
dagAdcTransferGetStat, daqSetTimeout

dagAdcTransferBufData(handle, buf, scanCount, bufMask, retCount)

Purpose

dagAdcTransferBufData requests a transfer of scanCount scans from the driver allocated acquisition
buffer (driver buffer) to the specified linear data retrieval buffer (buf). The driver buffer is configured with
the dagAdcTransferSetBuffer function.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device from which the ADC buffer
should be retrieved

buf PWORD Pointer to an application-supplied buffer in which to
place the buffered data

scanCount | DWORD Number of scans to retrieve from the acquisition buffer

bufMask DagAdcBufferXferMask A mask-defining operation depending on the current
state of the acquisition buffer

retCount PDWORD A pointer to the total number of scans returned, if any

Parameter Values

handle: obtained from the dagOpen function

buf: must be a valid pointer to memory whose size is at least equal to:

[(scanCount) * (the channel count) * (the sample size, normally 2 bytes)]

scanCount: valid values are 1 to length of the driver buffer (see dagAdcTransferSetBuffer

function)

bufMask: see table below
retCount: avalid pointer to a long integer variable (4 bytes) in which the total number of scans returned
(from 0 to scanCount) will be stored upon return of this function

Parameter Type Definitions:

bufMask-(DagAdcBufferXferMask)

Definition Description
DabtmOldest Retrieve oldest unread scans from driver buffer
DabtmNewest Retrieve newest unread scans from driver buffer
DabtmWait Wait for requested amount of data to become available

DabtmRetAvail

Return immediately with whatever data is available

DabtmNoWait

Return immediately, only retrieve if requested data is available

DabtmRetNotDone

Return immediately if still active

4.2-56 Daq APl Command Reference

987693

Programmer’s Manual

Function Usage
Data Retrieval Buffer

Upon completion of this function, the data retrieval buffer (buf) contains the requested data from the driver
buffer (if the data was retrieved — see the “Data Retrieval Modes” section below). The buffer must be
allocated by the application prior to calling this function. The diagram below illustrates the path of data
transfer:

Device Internal Data Retrieval
FIFO | Driver Buffer [Buffer

The scanCount parameter defines the number of scans to be retrieved (or the length of the data retrieval
buffer in scans). The size of a scan is determined by the total number of channels in the scan group
configuration (see the dagAdcSetScan function for further information on scan group configuration).
Therefore the size of the data retrieval buffer to be allocated (in bytes) should be no smaller than:

scanCount * scan size (number of channels) * sample size (hormally 2 bytes)

G@ If using packed mode with a WaveBook/512, the above calculation should be multiplied by % to
4~ determine actual buffer allocation size required.

Data Retrieval Modes

The following values for the bufMask parameter set how recent the transferred data is and whether or not it
remains in the buffer after transfer:

DabtmOldest - This value specifies that the specified number of the earliest scans be retrieved from the
driver buffer. After they have been transferred, they will be removed from the buffer.

DabtmNewest - This value specifies that the specified number of the most recent scans be retrieved from
the driver buffer. These scans will remain in the buffer after transfer.

The following values can be set concurrently with the values above. They specify the timing of the retrieval
and the amount of data to transfer from the driver buffer:

DabtmWait - Instructs the function to wait until the requested number of scans (scanCount) are available
in the driver-allocated acquisition buffer. When the requested number of scans are available, the function will
return with retCount set to scanCount (the number of scans requested). Retrieved data will be returned
in the memory referred to by the buf parameter. Returns if the daqSetTimeout value is exceeded.

DabtmNoWai t — Instructs the function to return immediately if the specified number of scans (scanCount)
are not available when the function is called. If the entire amount requested is not available, the function will
return with no data and retCount will be set to 0. If the requested number of scans are available in driver
buffer, the function will return with retCount set to scanCount (the number of scans requested).
Retrieved data will be returned in the memory referred to by the buf parameter.

DabtmRetAvai I - Instructs the function to return immediately, with any scans that are available in the
driver-allocated acquisition buffer. The retCount parameter will return the total number of scans retrieved.
retCount can return anything from 0 to scanCount (the number of scans requested). The retrieved data
will be returned in the memory referred to by the buf parameter.

DabtmRetNotDone - Instructs the function to return immediately if the acquisition is still active without
retrieving any data. If the acquisition is still active, the retCount parameter will return 0. If the acquisition
is complete, then retCount can return anything from 0 to scanCount (the number of scans requested).
The retrieved data will be returned in the memory referred to by the buf parameter.

Programmer’s Manual 987693 Daq APl Command Reference 4.2-57

Returns

DerrNoError No error

Prototypes

C/C++

dagAdcTransferBufData(DagHandleT handle, PWORD buf, DWORD scanCount,
DagAdcBufferXferMask bufMask, PDWORD retCount);

Visual BASIC

VBdagAdcTransferBufData(ByVvVal handle, buf%, ByVal scanCount&, ByVval
bufMask&, retCount&);

Program References
None

4.2-58 Daqg APl Command Reference 987693 Programmer’s Manual

dagAdcTransferGetStat

Also See: dagAdcTransferSetBuffer,
dagAdcTransferStart,
dagAdcTransferStop, dagAdcSetDiskFile

Format
dagAdcTransferGetStat(handle, active, retCount)
Purpose

dagAdcTransferGetStat retrieves the current state of an acquisition transfer, and can be used to initiate
transfers to the disk.

Parameter Summary

Parameter Type Description
handle DagHandleT | Handle to the device from which ADC transfer status is to be retrieved
active PDWORD A pointer to the transfer-state flags in the form of a bit mask
retCount PDWORD A pointer to the total number of ADC scans acquired (or available) in
the current transfer

Parameter Values

handle: obtained from the dagOpen function
active: avalid pointer to a double word variable (4 bytes) in which the acqusition and transfer status flags
will be stored upon return of this function; see table below for flag values
retCount: avalid pointer to a long integer variable (4 bytes) in which the total number of scans transferred
will be stored (0 to scanCount) upon return of this function

Parameter Type Definitions

active
Definition Description

DaafAcgActive An acquisition is active; the trigger may or may not yet have occurred but the acquisition
has at least been armed

DaafAcqTriggered The acquisition has been triggered, and post-trigger data is now being collected

DaafTransferActive A buffer transfer is active; an acquisition may or may not be active but a buffer transfer
has been enabled

Returns
DerrNoError No error

Function Usage
Data Transfer Progress

The value that the retCount parameter returns depends upon the buffer management mode selected
(see dagAdcTransferSetBuffer function for more information on buffer allocation modes):

User Buffer Mode (DatmUserBuT) — The retCount parameter will return the total amount of data
written (in scans) to the user allocated buffer(s) during the duration of the acquisition. The following
diagram illustrates how retCount is determined:

retCount = m Buf Size = n

Device FIFO [— Scan0 | Scan1 | Scan...| Scanm|Scanm+1| Scan ... | Scann

Scans Written 4’}7 Unwritten Scans ——

Programmer’s Manual 987693 Daq APl Command Reference 4.2-59

After the device’s FIFO has written m scans to a linear user allocated buffer, retCount equals m. The
current data write position (in scans) within the buffer is:

retCount mod scanCount

where the operation mod is defined as the integer remainder of performing an integer divide of
retCount by scanCount. The scanCount parameter is set by the dagAdcTransferSetBuffer
function.

If pre-trigger scan data has been configured (see dagAdcSetAcq), retCount will not
return available pre-trigger scans until the acquisition has been triggered.

Driver Buffer Mode (DatmDriverBuf) — The retCount parameter will return the total number of
unread scans in the driver allocated circular buffer. In this case, the retCount parameter represents the
amount of data that is currently available to be retrieved from the driver buffer. See
dagAdcTransferBufData for more info on retrieving data from the driver buffer.

Example Acquisition States

The following table shows a number of different acquisition state combinations. These scenarios are
representative of some typical acquisition states but do not necessarily represent all of the possible states. The
table assumes a user-buffer mode with total scan count of 100000 scans.

States (active) Progress Description

(retCount)
DaafAcgActive + 10,112 The acquisition is active and has been triggered and is currently collecting
DaafAcqTriggered + post-trigger data. A transfer to buffer is also active and a total of 10112
DaafTransferActive scans have been collected so far.
DaafAcgActive + 0 An acquisition has been armed but has not yet been triggered. If pre-
DaafTransferActive trigger data collection has been configured (see dagAdcSetAcq), then

pre-trigger data may be being collected (retCount will not return
available pre-trigger scan counts until the trigger has occurred).
DaafTransferActive 0 A transfer has been configured and started (with the functions
dagAdcTransferSetBuffer and dagAdcTransferStart), but
the acquisition has not yet been armed. The acquisition needs to be armed
using dagAdcArm.

DaafAcgActive + 10,112 The acquisition is active and has been triggered, but no transfer is currently
DaafAcqTriggered ’ active. A total of 10112 scans have been collected so far. This condition
will normally only occur if transfers are performed with linear buffers
while an acquisition is ongoing. This state represents a possible loss of
data if a transfer is not activated before the device overruns its internal

buffering.

DaafAcqTriggered + 98,000 An acquisition has been triggered, but is no longer active. A transfer is

DaafTransferActive currently active. This sometimes will occur at the end of an acquisition if
the acquisition is complete but data is still being transferred from the
device.

DaafAcgArmed 0 The acquisition has been armed, but no transfer is currently active. This

situation may result in loss of data unless the application initiates a transfer
before the trigger occurs and the device overruns its internal buffering.
DaafAcqTriggered 100,000 The acquisition has triggered and has completed. The transfer is not active
and 10000 scans have been collected. So, both the acquisition and the
transfer are complete.

4.2-60 Daqg APl Command Reference 987693 Programmer’s Manual

Prototypes

C/C++
dagAdcTransferGetStat(DagHandleT handle, PDWORD active, PDWORD retCount);

Visual BASIC
VBdagAdcTransferGetStat&(ByVal handle&, active&, retCount&)

Program References

DAQADCEXO01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP,
DAQADCEXO05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBKO4EX.CPP, DBKO7EX.CPP,
DBKOSEX.CPP, DBKO9EX.CPP, DBK12 13EX.CPP, DBK15EX.CPP, DBK16EX.CPP,
DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP,
DBK44EX.CPP, DBK45EX.CPP, DBKSOEX.CPP, DBK51EX.CPP, DBK52EX.CPP,
DBK53_54EX.CPP, DAQEX.FRM (VB)

Programmer’s Manual 987693 Daq APl Command Reference 4.2-61

dagAdcTransferSetBuffer

Also See: dagAdcTransferStart, dagAdcTransferStop,
dagAdcTransferGetStat, dagAdcSetAcq,
dagAdcTransferBufData

Format
dagAdcTransferSetBuffer(handle, buf, scanCount, transferMask)
Purpose

dagAdcTransferSetBuffer configures transfer buffers for acquired data, and can also be used to
configure the specified user- or driver-allocated buffers for subsequent acquisition transfers.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which an ADC transfer is to be
performed
buf PDWORD Pointer to the buffer for which the acquired data is to be
placed
scanCount DWORD The total length of the buffer (in scans)
transferMask | DWORD Configures the buffer transfer mode

Parameter Values

handle: obtained from the dagOpen function
buf: must be a valid pointer to memory whose size is at least:
(scanCount) * scansize > 2 (the sample size, normally 2 bytes)
scanCount: valid values for buffer length are 1 to 4,294,967,295 scans, however, memory limitaions apply
transferMask: see table below

Parameter Type Definitions

transferMask
Definition Description
DatmCycleOn Defines the buffer as a circular buffer
DatmCycleOff Defines the buffer as a linear buffer
DatmUpdateSingle Defines the update mode as single sample
DatmUpdateBlock Defines the update mode as block update
DatmDriverBuf Causes the driver to allocate the acquisition transfer buffer as a circular buffer
DatmUserBuf Specifies a user-allocated and managed acquisition transfer buffer
DatmlgnoreOverruns Ignores buffer overruns. Upon a buffer wrap, no error will be returned.
Returns
DerrNoError No error

4.2-62 Daq APl Command Reference 987693 Programmer’s Manual

Function Usage
Transfer Buffer Location

The buf parameter is the address of the acquisition transfer buffer allocated by the application. If the
application is supplying the buffer then this value must be an address to an adequately allocated buffer.

Transfer Buffer Length

The scanCount parameter is the total length of the transfer buffer in scans. The size of a scan is determined
by the total number of channels in the scan group configuration (see dagAdcSetScan and dagAdcSetMux
for further information on scan group configuration). Therefore, the buffer size to be allocated (in bytes):

scanCount * scan size (number of channels) * sample size (normally 2 bytes)

If using packed mode with a WaveBook/512, the above calculation should be multiplied by
% to determine actual buffer allocation size required.

Transfer Buffer Settings

The character of the transfer buffer can be configured via the transferMask parameter. This parameter is a
bit mask parameter--it can take on a number of settings, each dependant on how the values are joined logically
with either OR or AND (see the “Mask and Flag Definitions” section). Among other things, the
transferMask parameter specifies the update, layout/usage, and allocation modes of the buffer. The
parameter’s possible values are defined as follows:

DatmCycleOn - This parameter value defines the buffer as a circular buffer in buffer-cycle mode. This
allows the transfer to continue when the end of the transfer buffer is reached by wrapping the transfer of
acquisition data back to the beginning of the buffer, as shown in the diagram below.

Device FIFO —>®= Scan0 Scan1i Scan2 | Scan ... ScanN

(= Scans Written hj
— —

In the circular buffer mode, the acquisition transfer buffer will continue to be wrapped until the post-trigger
count has been reached (specified by dagAdcSetAcq) or the transfer/acquisition is halted by the application
(with the functions dagAdcTransferStop and dagAdcDisarm).

DatmCycleOff(default) — This parameter value defines the buffer as a linear buffer. This causes the
transfer to continue to the end of the transfer buffer, at which point it will terminate.

Device FIFO [—> Scan0 Scan1 Scan2 | Scan ... ScanN

Scans Written -

In the linear buffer mode, no more data will be transferred once the end of the buffer has been reached,
regardless of whether an acquisition is still active. If using this mode, the application needs to ensure that
another buffer is allocated if the acquisition is going to continue beyond the end of the transfer buffer.

Programmer’s Manual 987693 Daq APl Command Reference 4.2-63

DatmUpdateSingle - This value specifies the update mode as a single sample. This setting allows the
acquisition transfer buffer to be updated for each sample collected during the acquisition. Compared to the
block mode, this setting provides a higher degree of real-time transfer buffer updating at the expense of slower
aggregate data throughput rates.

DatmUpdateBlock(default) — This value specifies the update mode as block. This mode allows the
acquisition transfer buffer to be updated in blocks of acquired data. The size of the data block depends upon
the product in use (see the table below). The block update setting allows faster transfer rates than
DatmUpdateSingle mode and therefore should be used when aggregate throughput performance is
paramount.

Product Block Size

DagBooks 2048 Samples (older versions of these products had a block size of 256)
TempBooks 2048 Samples (older versions of these products had a block size of 256)
DagBoard (ISA) 2048 Samples (older versions of these products had a block size of 256)
Daqg PC Cards 256 Samples

WaveBooks 2048 Samples

DagBoard/500 Series

DaqgBoard/1000 Series Variable

DagBook/2000 Series

DaqglLab/2000 Series

DagScan/2000 Series

DagBoard/2000 Series

cPCIl DagBoard/2000c Series

DatmDriverBuf — This parameter value specifies that the driver allocate and manage the acquisition
transfer buffer as a circular buffer whose length is determined by the scanCount parameter (in the current
scan group configuration). In this case, the driver will allocate the buffer as a circular buffer so that the
application need not set the DatmCycleOfF option. Also, since the driver is allocating the buffer, the buf
parameter will be ignored with this setting. This option allows the driver to allocate and manage the circular
acquisition transfer buffer rather than placing the burden of buffer management on the application. This mode
requires the use of the dagAdcTransferBufData function to access and retrieve the acquired data from
the driver-allocated acquisition transfer buffer. The scanCount parameter should set to a large enough value
to prevent the driver-allocated transfer buffer from over-running. The appropriate setting for scanCount
parameter is highly dependent upon the nature of the application and the frequency at which the data will be
retrieved (using dagAdcTransferBufData) from the driver allocated transfer buffer. If the interval
between data retrievals is large, the scanCount parameter may need to be increased accordingly. If a buffer
overrun condition occurs, the error will be posted and returned by the next invocation of the
dagAdcTransferBufData function.

DatmUserBuf(default) - The DatmUserBuf option specifies a user-allocated and managed
acquisition transfer buffer. Here, the driver will write acquired data to the user-allocated buffer, but the
management of the buffer must be performed by the application. If using this mode, there are a few things to
keep in mind:

The specified buf parameter must point to memory which has been allocated by the application prior to
calling this function.

The allocated buffer must be large enough to hold the number of acquisition scans as determined by the current
scan group configuration (as described earlier).

The total amount of data (in scans) written to the user-allocated transfer buffer during the acquisition is
determined by the retCount parameter (which is returned by the dagAdcTransferGetStat function).
The current data write position within the buffer is:

retCount mod scanCount

4.2-64 Daq APl Command Reference 987693 Programmer’s Manual

where mod is defined as the integer remainder of performing an integer divide of retCount by scanCount.
Detection of a buffer overrun condition is the responsibility of the application.

If using a linear buffer (DatmCycleOf¥) and the acquisition is expected to continue past the end of the
allocated buffer size, a new buffer must be allocated and configured using this function in a timely manner to
avoid loss of data (as would be the case in an alternating or “ping-pong” buffer approach).

Typical Transfer Buffer Settings

The following table shows a set of are typical transfer buffer settings; it assumes scan group size of 4 channels
and sample size of 2 bytes.

Desired Buffer buf scanCount | transferMask
Application allocated linear buffer of 50,000 App pointer to memory 50,000 DatmCycleOff +
scans updated on every sample (size = 50,000 x 4 x 2 DatmUpdateSingle +
= 400,000 bytes) DatmUserBuf
Application allocated linear buffer of 100,000 App pointer to memory 100,000 DatmCycleOff +
scans updated by block (size = 100,000 x 4 x 2 DatmUpdateBlock +
= 800,000 hytes) DatmUserBuf
Application allocated circular buffer of 40,000 App pointer to memory 40,000 DatmCycleOn +
scans updated on every sample (size = 40000 x4 x 2 DatmUpdateSingle +
= 320,000 hytes) DatmUserBuf
Application allocated circular buffer of 200,000 | App pointer to memory 200,000 DatmCycleOn +
scans updated by block (size = 200,000 x 4 x 2 DatmUpdateBlock +
= 1,600,000 bytes) DatmUserBuf
Driver allocated circular buffer of 40,000 scans NULL (Driver allocates 40,000 DatmUpdateSingle +
updated on every sample = 40,000x4x2 DatmDriverBuf
= 320,000 bytes)
Driver allocated circular buffer of 200,000 scans | NULL (Driver allocates 200,000 DatmUpdateBlock +
updated by block = 200,000 x 4 x 2 DatmDriverBuf
= 1,600,000 bytes)

Prototypes
C/C++

dagAdcTransferSetBuffer(DagHandleT handle, PWORD buf, DWORD scanCount,
DWORD transferMask);

Visual BASIC

VBdagAdcTransferSetBuffer&(Byval handle&, buf%, ByVal scanCounté&, ByVval
transferMask&)

Program References

DAQADCEXO1.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEXO05.CPP,
DAQADCEXO7 .CPP, DBKO4EX.CPP, DBKO7EX.CPP, DBKOS8EX.CPP, DBKO9QEX.CPP,
DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP,
DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP,
DBK50EX.CPP, DBK51EX.CPP, DBKS52EX.CPP, DBK53_54EX.CPP, DAQEX.FRM (VB)

Programmer’s Manual 987693 Daq APl Command Reference

dagAdcTransferStart

Also See: dagAdcTransferSetBuffer,
dagAdcTransferGetStat, dagAdcTransferStop

Format
dagAdcTransferStart(handle)

Purpose

dagAdcTransferStart initiates an ADC acquisition transfer.

Parameter Summary

Parameter Type Description

handle DagHandleT | Handle to the device for which to initiate an ADC transfer

Parameter Values

handle: obtained from the dagOpen function

Returns

DerrNoError No error

Function Usage

The transfer will be performed under the current active acquisition. If no acquisition is currently active, the
transfer will not initiate until an acquisition becomes active (via the dagAdcArm function). The transfer will
be characterized by the current settings for the transfer buffer. The transfer buffer is configured via the
dagAdcTransferSetBuffer function.--This buffer configuration must be done before calling the
dagAdcTransferStart function.

Prototypes

C/C++
dagAdcTransferStart(DagHandleT handle);

Visual BASIC
VBdagAdcTransferStart&(ByVal handle&)

Program References

DAQADCEXO01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEX04.CPP,
DAQADCEXO05.CPP, DAQADCEX06.CPP, DAQADCEX07.CPP, DBKO4EX.CPP, DBKO7EX.CPP,
DBKOSEX.CPP, DBKO9EX.CPP, DBK12 13EX.CPP, DBK15EX.CPP, DBK16EX.CPP,
DBK17EX.CPP, DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP,
DBK44EX.CPP, DBK45EX.CPP, DBKSOEX.CPP, DBK51EX.CPP, DBK52EX.CPP,
DBK53_54EX.CPP, DAQEX.FRM (VB)

4.2-66 Daq APl Command Reference 987693 Programmer’s Manual

dagAdcTransferStop

Also See: dagAdcTransferSetBuffer,
dagAdcTransferGetStat, dagAdcTransferStart

Format
dagAdcTransferStop(handle)

Purpose

dagAdcTransferStop stops a current ADC buffer transfer, if one is active.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the ADC transfer will be stopped

Parameter Values

handle: obtained from the dagOpen function
Returns

DerrNoError No error
Function Usage

The current transfer will be halted and no more data will transfer into the transfer buffer. Though the transfer
is stopped, the acquisition will remain active. Transfers can be re-initiated with dagAdcTransferStart
after the stop, as long as the current acquisition remains active. The acquisition can be halted by calling the
dagAdcDisarm function.

Prototypes
C/C++
dagAdcTransferStop(DagHandleT handle);
Visual BASIC
VBdagAdcTransferStop&(ByVal handle&)

Program References
None

Programmer’s Manual 987693 Daq APl Command Reference 4.2-67

dagAutoZeroCompensate

Also See: dagZeroSetup, dagZeroConvert,
dagZeroSetupConvert, daqCvtTCSetup,
dagCvtTCConvert, daqCvtTCSetupConvert

Format
dagAutoZeroCompensate (zero)

Purpose

dagAutoZeroCompensate will configure the thermocouple linearization functions to automatically
perform zero compensation.

Parameter Summary

Parameter Type Description
zero DagAutoZeroCompT | If set to DazcAutoZero, will enable auto zero compensation

in the daqCvtTC... functions

Parameter Values

zero: see table below

Parameter Type Definitions

zero-(DagAutoZeroCompT)

Definition Description
DazcNone Do not include auto-zero compensation in TC conversion.
DazcAutoZero Apply auto-zero compensation in TC conversion.

Returns

DerrZClnvParam Invalid parameter value
DerrNoError No error

Function Usage

Only DagBook/100 Series, DagBook/200 Series, Daq PC Cards, DagBoard (ISA), DagBook/2000
Series, DaqScan/2000 Series,DaglLab/2000 Series, DagBoard/2000 series, DagBoard/1000 Series
and cPCI DagBoard/2000c Series devices connected to a DBK19,DBK52,DBK81-84 or DBK90
expansion card can use the auto-zeroing functions.

Using the dagAutoZeroCompensate function is the easiest way to use zero compensation with the
DBK19 or DBK 52. When enabled, the thermocouple conversion functions will require a CJC zero reading
and a TC zero reading to precede the actual CJC and TC reading. This can easily be done by configuring the
scan group to read:

e channel 17 using the DBK19/DBK52/DBK81-84/DBK90 CJC gain code (CJC zero)
e channel 17 using the gain code of the connected TC (TC zero)
e channel 16 using the DBK19/DBK52/DBK81-84/DBK90 CJC gain code (CJC)

e the thermocouple channels (channels 18 and above) using the gain code of the connected
thermocouples.

The real CJC value should be specified (not the offset of the CJC zero) when calling the
thermocouple linearization setup functions.

pC

4.2-68 Daqg APl Command Reference 987693 Programmer’s Manual

Prototypes

C/C++
dagAutoZeroCompensate(DagAutoZeroCompT zero);

Visual BASIC
VBdagAutoZeroCompensate&(ByVal zero&)

Program References
DBK19EX.CPP, DBK52EX.CPP

Programmer’s Manual 987693 Daq APl Command Reference 4.2-69

This page is intentionally blank.

4.2-70 Daq APl Command Reference 987693 Programmer’s Manual

daqCalClearCalTable

Also See: other dagCal commands
Format

dagCalClearCalTable(handle, tableType, factoryKey)
Purpose
dagCalClearCalTable clears the factory calibration table

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which ADC transfer status
will be retrieved
tableType DagCalTableTypeT Calibration table type used
factoryKey DWORD Key to the factory calibration table; manufacturer use.

Parameter Values

handle: obtained from the dagOpen function
tableType: see tableType table below
factoryKey: reserved by manufacturer

Parameter Type Definitions
tableType - DagCalTableTypeT

Definition Description
DcttFactory Selects the factory calibration table. The factory calibration table reflects factory calibration
constants for the selected device. This is the default setting.
DcttUser Selects the user-calibration table. The user-calibration table reflects calibration constants defined

by the user or the device’s user-calibration application. Refer to the device’s calibration
documentation for specific settings.
DcttSelfCal Self-calibration constants.

Function Usage
Typically reserved for factory use.
Prototypes

C/C++

dagCalClearCalTable(DagHandleT handle, DagCalTableTypeT tableType, DWORD
factoryKey);

Visual BASIC
VBdaqCalClearCalTable&(ByVval handle&, ByVal tableType&, ByVal factoryKey&)

Returns

DerrNoError No error

Programmer’s Manual 908494 Daq APl Command Reference 4.3-1

daqCalConvert

Also See: dagReadCalFile, daqCalSetup,
dagCalSetupConvert

Format
dagCalConvert(handle, counts, scans)
Purpose

dagCalConvert performs the calibration of one or more scans according to the previously called
dagCal Setup function.

Parameter Summary

Parameter Type Description
handle DagHandleT | Handle to the device to be calibrated
counts PWORD Raw data from one or more scans to be calibrated
scans DWORD Number of scans of raw data in the counts array

Parameter Values

handle: obtained from the dagOpen function

counts: avalid pointer to an array of uncalibrated scan data whose size must be at least equal to:
[(scans)* scan size * (the sample size, normally 2 bytes)]

scans: valid values range from 1 to 4,294,967,295; however, memory limitations may apply

Returns
DerrZClnvParam Invalid parameter value
DerrNoError No error

6 For more details on error messages refer to the Daq Error Table.

Function Usage

The dagCalConvert function will modify the array of data passed to it. The counts parameter specifies a

pointer to an array of the raw A/D counts retrieved during an acquisition. Upon return, the counts array will

hold calibrated data. The scans parameter indicates the number of scans (as defined by the current scan group
configuration) in the acquisition.

N @ This function should be preceded by the daqCal Setup function.
Prototypes
C/C++

dagCalConvert(DagHandleT handle, PWORD counts, DWORD scans);

Visual BASIC
VBdaqCalConvert&(ByVal handle&, counts%, ByVal scans&)

Program References
None

4.3-2 Dag APl Command Reference 908494 Programmer’s Manual

daqCalGetCalEquation

Format

Also See: other dagCal commands

dagCalGetCalEquation(handle, chanConfig, tableType, calEquation)

Purpose

dagCalGetCalEquation retrieves the calibration equation from the currently selected calibration table

chosen by the daqCalSelectCalTable function.
Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which ADC transfer status
will be retrieved
chanConfig DagCalChanConfigT Configuration info which includes channel and gain.
tableType DaqCalTableTypeT Calibration table type to use
calEquation DagCalEquationType Defines the equation type to use

Parameter Values

handle: obtained from the dagOpen function
chanConfig: channel configuration information (see chanConfig table, below)
tableType: see tableType table below
calEquation: see DaqCalEquationType below

Parameter Type Definitions

chanConfig - DaqCalChanConfigT

Definition Description
DaqCalType dctAdc = 0; dctDac = 1; dctTrigger = 2; dctVref = 3; dctTime = 4 (for time stamp)
channel Channel number to which the equation will be applied
gain Channel gain
flags Channel flags, as applicable
extendedFlags The Channel’s extended flags, as applicable.

tableType - DaqgCalTableTypeT

Definition Description

DcttFactory Selects the factory calibration table. The factory calibration table reflects factory calibration
constants for the selected device. This is the default setting.

DcttUser Selects the user-calibration table. The user-calibration table reflects calibration constants defined
by the user or the device’s user-calibration application. Refer to the device’s calibration
documentation for specific settings.

DcttSelfCal Self-calibration constants.

calEquation - DagCalEquationType

Definition Description
dcetConstant = 0; used to select constant
dcetLinear =1; used to select linear slope and offset

dcetSplitLinear

= 2; slope positive, slope negative; offset

dcetNonZeroSplitLinear

= 3; slope positive, slope negative, offset positive, offset negative; split

dcetTime

= 4; time stamp: year, month, day, hour, minute, second, milli-second

Function Usage

To retrieve an existing calibration equation.

Programmer’s Manual

908494

Daq APl Command Reference 4.3-3

Prototypes
C/C++
dagCalGetCalEquation(DagHandleT handle,DagCalChanConfigT pChanConfig,
DaqCalTableTypeT tableType, DaqCalEquationT CalEquation);
Visual BASIC

VBdaqCalGetCalEquation& (ByVal handle&, chanConfig As DaqCalChanConfigT,
Byval tableType&, calEquation As DaqCalEquationT)

Returns

DerrNoError No error

4.3-4 Dag APl Command Reference 908494 Programmer’s Manual

daqCalGetConstants

Also See: daqCalSetConstants, daqCalSelectCalTable,
dagCalSelectlnputSignal, dagCalSaveConstants

Format

dagCalGetConstants(handle, channel, gain, range, gainConstant,
offsetConstant)

Purpose

dagCalGetConstants retrieves the calibration constants from the currently selected calibration table
chosen by the daqCalSelectCalTable function.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device from which ADC transfer status will be
retrieved

channel DWORD Channel number to which the calibration settings will be
applied

gain DagAdcGain Gain range over which the calibration settings will be applied

range DagAdcRangeT | A/D input range over which the calibration settings will be
applied

gainConstant PWORD Pointer to the gain value for the current entry

offsetConstant | PSHORT Pointer to the offset value for the current entry

Parameter Values

handle: obtained from the dagOpen function

channel : avalid channel for the device

gain: see ADC Gain Definition table for gain parameter definitions

range: see table below

gainConstant: valid pointer to a word variable (2 bytes) in which the gain constant will be stored upon

return from this function (valid gain constant range is from 0 to 65,535)

offsetConstant: valid pointer to a short integer variable (2 bytes) in which the offset constant will be
stored upon return from this function (valid offset constant range is from —32,768 to
32,767)

Parameter Type Definitions

adcRanges-(DagAdcRangeT)

Definition Description
DarUniOtol0V Sets acquisition range as unipolar from 0 to +10 Volt range
DarBiMinus5to5V Sets acquisition range as bipolar from -5 to +5 Volt range
DarUniPolarDE Sets acquisition range as unipolar differential
DarBiPolarDE Sets acquisition range as bipolar differential
DarUniPolarSE Sets acquisition range as unipolar single-ended
DarBiPolarSE Sets acquisition range as bipolar single-ended

Returns
DerrNoError No error

Programmer’s Manual 908494 Daq APl Command Reference 4.3-5

Function Usage

Selecting the Calibration Constants to Retrieve

Before calling this function, the daqOpen function should be used to open the device from which the
calibration constants will be retrieved, and the dagCalSelectCalTable function should be used to select
the calibration table from which the calibration constants will be retrieved. The internal tables are organized
into gain and calibration entries according to the channel, gain range and A/D range capabilities of the device.
The following need to be selected for each calibration gain and offset constant entries to be retrieved:

e The channel parameter should be set to the desired channel.
e The gain parameter should be set to the desired gain setting for the selected channel.
e The range parameter should be set to the desired range for the gain and channel selection.

Retrieving the Calibration Constants

The gains and offsets constants for the handle, channel, gain and range entries selected are set
for the device and stored in the memory pointed to by the corresponding parameters gainConstant and
offsetConstant parameters respectively. The values returned are stored in a 16-bit data word which
applies to the current settings for the selected table entry. These values need to be calculated and set by the
calibration application according to the methods described below.

Interpreting Calibration Constant Values

These calibration constants are gains and offsets that are applied to the input data. After the data comes in, it is
multiplied by the gain, and then the offset is added to it. The resulting data has been converted from raw A/D
data to calibrated data. Each channel, gain, and bipolar/unipolar range setting has a different pair of gain and
offset values.

As mentioned above, the first three parameters of the dagqCal SetConstants function specify which set of
constants are to be changed. The last two parameters are the actual constants. These constants are in a
particular binary format. The gain constant is 32,768 times the gain. For a gain of x1, the gain constant is
32,768 or 0x8000. The maximum gain is approximately x2 (65,535 / 32,768), and the minimum gain is x 0 (0/
32,768). The offset (a left-justified signed 12-bit number) is added to the final result. A single least-significant
bit has an integer value of 16 or 0x0010. Setting the calibration constants affects subsequent acquisitions until
another dagOpen is performed. After daqOpen, the original calibration constants are re-read from the
NVRAM in the WaveBook and expansion chassis; then, the working copy as set by daqCal SetConstants
is overwritten.

Prototypes
C/C++

dagCalGetConstants(DagHandleT handle, DWORD channel, DagAdcGain gain,
DagAdcRangeT range, PWORD gainConstant, PSHORT offsetConstant);

Visual BASIC

VBdaqCalGetConstants(ByVal handle&, ByVal channel, ByVal gain, ByVal
range, ByRef gainConstant, ByRef offsetConstant);

Program References

None

4.3-6

Daq APl Command Reference 908494 Programmer’s Manual

daqCalPerformSelfCal

Also See: other dagCal commands

Format
dagCalPerformSelfCal (handle,chanConfig,calFlags)

Purpose
dagCalPerformSelfCal selects a channel for self-calibration.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which ADC transfer status
will be retrieved
chanConfig DagCalChanConfigT Configuration info which includes channel and gain
calFlags DagCalSelfCalFlags | Calibrates all available options.

Parameter Values

handle: obtained from the dagOpen function
chanConTig: channel configuration information (see chanConfig table, below)
calFlags: DcsfCalibrateAll =0x01, self-calibration of all available options

Parameter Type Definitions

chanConfig - DaqCalChanConfigT
Definition Description
DagCalType dctAdc = 0; dctDac = 1; dctTrigger = 2; dctVref = 3; dctTime = 4 (for time stamp)
channel Channel number to which the equation will be applied
gain Channel gain
flags Channel flags, as applicable
extendedFlags The Channel’s extended flags, as applicable.

Function Usage

Used to perform a self-calibration of all available options via the DcsfCal ibrateAll flag.

Prototypes

C/C++

dagCalPerformSelfCal (DagHandleT handle, DaqCalChanConfigT chanConfig,
DaqCalSelfCalFlags calFlags)

Visual BASIC

VBdaqCalPerformSelfCal (Byval handle&, ByRef chanConfig As
DaqCalChanConfigT, ByVal calFlags As DaqCalSelfCalFlags)

Returns

DerrNoError No error

Programmer’s Manual 908494 Dag APl Command Reference

4.3-7

daqCalSaveCalTable

Also See: other daqCal commands
Format

dagCalSaveCalTable(handle,tableType, factoryKey)

Purpose

dagCalSaveCalTable saves the calibration table

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which ADC transfer status will
be retrieved
tableType DagCalTableTypeT | Calibration table type
factoryKey DWORD Key to the factory calibration table. Manufacturer’s use.

Parameter Values

handle: obtained from the dagOpen function

tableType: see tableType table below
factoryKey: reserved for manufacturer

Parameter Type Definitions
tableType - DagCalTableTypeT

Definition Description
DcttFactory Selects the factory calibration table. The factory calibration table reflects factory calibration
constants for the selected device. This is the default setting.
DcttUser Selects the user-calibration table. The user-calibration table reflects calibration constants defined

by the user or the device’s user-calibration application. Refer to the device’s calibration
documentation for specific settings.
DcttSelfCal Self-calibration constants.

Function Usage

Used to save the calibration table.

Prototypes

C/C++

dagCalSaveCalTable(DagHandleT handle, DaqCalTableTypeT tableType,
DWORD factoryKey);

Visual BASIC
VBdagCalSaveCalTable&(ByVal handle&, ByVal tableType&, ByVal factoryKey&)

Returns

DerrNoError No error

4.3-8 Dag APl Command Reference 908494 Programmer’s Manual

daqCalSaveConstants

Also See: dagCalGetConstants, dagCalSetConstants,
dagCalSelectlnputSignal, dagCalSelectCalTable

Format
dagCalSaveConstants(handle, channel)
Purpose

dagCalSaveConstants saves the current calibration table selected by the dagCalSelectCalTable
function.

Parameter Summary

Parameter Type Description
handle DagHandleT | Handle to the device for which the calibration constants will be saved
channel DWORD Channel whose current calibration settings will be saved

Parameter Values

handle: obtained from the dagOpen function
channel : avalid channel for the device

Returns

DerrNoError No error
Function Usage

Saving the Current Calibration Table

Current calibration constants can be updated or modified with the daqCal SetConstants function. The
working calibration table should only be saved after all desired calibration constants have been updated for the
device.

dagCalGetConstants retrieves the calibration constants from the currently selected calibration table
chosen by the dagCalSelectCalTable function for the device.

Before calling this function, the daqOpen function should be used to open the device whose calibration
constants are being saved, and the daqCalSelectCalTable function should be used to select the
calibration table from which the calibration constants are being saved. The internal tables are organized into
gain and calibration entries according to the channel, gain range and A/D range capabilities of the device.

Prototypes
C/C++
dagCalSaveConstants(DagHandleT handle, DWORD channel);

Visual BASIC
VBdaqCalSaveConstants(ByVal handle&, ByVal channel)

Program References
None

Programmer’s Manual 908494 Daq APl Command Reference 4.3-9

daqCalSelectCalTable

Also See: dagCalGetConstants, dagCalSetConstants,
dagCalSelectlnputSignal, dagCalSaveConstants

Format
dagCalSelectCalTable(handle, tableType)

Purpose

dagCalSelectCalTable selects the calibration table source for the device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which ADC transfer status is to be
retrieved
tableType | DaqCalTableTypeT | Calibration table type to use

Parameter Values

handle: obtained from the dagOpen function
tableType: see table below

Parameter Type Definitions

tableType - DaqCalTableTypeT
Definition Description

DcttFactory Selects the factory calibration table. The factory calibration table reflects factory calibration constants for the
selected device. This is the default setting.

DcttUser Selects the user-calibration table. The user-calibration table reflects calibration constants defined by the user or
the device’s user-calibration application. Refer to the device’s calibration documentation for specific settings.

DcttSelfCal Self-calibration constants.

Returns
DerrNoError No error

Function Usage
Selecting the Calibration Table

The dagCalSelectCalTable function should be used to set the current calibration table for the device.
Currently, there are two valid calibration table types which can be selected with the tableType parameter--
either the factory calibration table can be selected with the DcttFactory value, or a user-defined
calibration table can be selected with the DcttUser value. The current calibration table at any time will be
set to the calibration table last selected during the current device session.

Prototypes
C/C++
dagCalSelectCalTable(DagHandleT handle, DaqCalTableTypeT tableType);

Visual BASIC
VBdaqCalSelectCalTable(Byval handle&, ByVal tableType)

Program References
None

4.3-10 Daq APl Command Reference 908494 Programmer’s Manual

daqCalSelectinputSignal

Also See: daqgCalGetConstants, daqCalSetConstants
dagCalSelectCalTable, daqgCalSaveConstants

Format
dagCalSelectlInputSignal(handle, input)

Purpose

dagCalSelectInputSignal selects of the input signal source for user calibration.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which the ADC transfer status will be
retrieved
input DaqCal InputT | Signal source to use for calibration input

Parameter Values

handle: obtained from the dagOpen function
input: see table below

Parameter Type Definitions

input—(DagCal InputT)
Definition Description
DciNormal External signal from device input connector(s)
DciCalGround Internal calibration ground signal
DciCal5V Internal 5 V calibration signal
DciCal500mV Internal 500 mV calibration signal
Returns
DerrNoError No error

Function Usage
Selecting the Calibration Input Signal Source

The input signal source is specified by the input parameter. The input signal selection allows the calibration
application to select the signal source from which the channels can be calibrated for a given calibration session.
Prior to calling this function, the daqOpen function should be used to open the device to be calibrated, and the
dagCalSelectCalTable function should specify which calibration table will be used to perform the
calibration .

Prototypes
C/C++
dagCalSelectlInputSignal(DagHandleT handle, DaqCallnputT input);

Visual BASIC
VBdaqCalSelectlnputSignal (ByVal handle&, inputSignal&)

Program References
None

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-11

dagCalSetCalEquation

Format
dagCalSetCalEquation(handle,chanConfig,tableType, calEquation)

Purpose

Also See: other dagCal commands

dagCalSetCalEquation defines and sets the calibration equation

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which ADC transfer status
will be retrieved.
chanConfig DagCalChanConfigT Configuration info which includes channel and gain.
tableType DagCalTableTypeT Calibration table type to use.
pCalEquation DagCalEquationType Defines the equation type to use

Parameter Values

Parameter Type Definitions

handle: obtained from the dagOpen function

chanConTig: channel configuration information (see chanConfig table, below)
tableType: see tableType table below

calEquation: see DaqCalEquationType below

chanConfig - DaqCalChanConfigT

Definition Description
DaqgCalType dctAdc = 0; dctDac = 1; dctTrigger = 2; dctVref = 3; dctTime = 4 (for time stamp)
channel Channel number to which the equation will be applied
gain Channel gain
flags Channel flags, as applicable
extendedFlags The Channel’s extended flags, as applicable.

tableType - DagCalTableTypeT

Definition Description

DcttFactory Selects the factory calibration table. The factory calibration table reflects factory calibration
constants for the selected device. This is the default setting.

DcttUser Selects the user-calibration table. The user-calibration table reflects calibration constants defined
by the user or the device’s user-calibration application. Refer to the device’s calibration
documentation for specific settings.

DcttSelfCal Self-calibration constants.

calEquation - DagCalEquationType

Definition

Description

dcetConstant

= 0; used to select constant

dcetLinear

= 1; used to select linear slope and offset

dcetSplitLinear

= 2; slope positive, slope negative; offset

dcetNonZeroSplitLinear

= 3; slope positive, slope negative, offset positive, offset negative; split

dcetTime

= 4; time stamp: year, month, day, hour, minute, second, milli-second

4.3-12

Daqg APl Command Reference

908494 Programmer’s Manual

Function Usage

Used to set calibration constants.

Prototypes

C/C++

dagCalSetCalEquation(DagHandleT handle,DagCalChanConfigT chanConfig,
DaqCalTableTypeT tableType,DagCalEquationT calEquation);

Visual BASIC

VBdaqCalSetCalEquation& (ByVal handle&, chanConfig As DaqCalChanConfigT,
ByVal tableType&, calEquation As DaqCalEquationT)

Returns

DerrNoError No error

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-13

daqCalSetCalPoints

Format

Also See: other dagCal commands

dagCalSetCalPoints(handle,chanConfig,calData,tableType)

Purpose

dagCalSetCalPoints sets calibration constants automaticllay after compare true (expected) values to

observed values.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which ADC transfer status
will be retrieved.
chanConfig DagCalChanConfigT Configuration info which includes channel and gain.
calData DagCalUserCalDataT Calibration points (0 to 63)
tableType DagCalTableTypeT Calibration table type to use.

Parameter Values

handle: obtained from the dagOpen function
chanConTig: channel configuration information (see chanConfig table, below)
calData: see calDataType table

tableType: see tableType table below

Parameter Type Definitions

chanConfig - DaqCalChanConfigT

Definition Description

DagCalType dctAdc = 0; dctDac = 1; dctTrigger = 2; dctVref = 3; dctTime = 4 (for time stamp)

channel Channel number to which the equation will be applied

gain Channel gain

flags Channel flags, as applicable

extendedFlags The Channel’s extended flags, as applicable.

calDataType

Definition Description

dcdtConstant =0, global constant

dcdtLinear =1, global linear constant

dcdtSplitLinear = 2, global split linear constant

DagCalUserCalDataT

calDataType As Long

numCalPoints As Long

calPoints 0 to 63 as DagCalPointT

tableType - DagCalTableTypeT

Definition Description

DcttFactory Selects the factory calibration table. The factory calibration table reflects factory calibration
constants for the selected device. This is the default setting.

DcttUser Selects the user-calibration table. The user-calibration table reflects calibration constants defined
by the user or the device’s user-calibration application. Refer to the device’s calibration
documentation for specific settings.

DcttSelfCal Self-calibration constants.

Function Usage

Calculates and stores constants to calibraration table after comparing true (expected) vlalues to the
corresponding measured values.

4.3-14 Daq APl Command Reference

908494

Programmer’s Manual

Prototypes

C/C++

dagCalSetCalPoints(DagHandleT handle, DaqCalChanConfigT chanConfig,
DaqgCalUserCalDataT calData, DaqCalTableTypeT tableType);

Visual BASIC

VBdaqCalSetCalPoints&((Byval handle&, chanConfig As DaqCalChanConfigT,
calData As DaqCalUserCalDataT, ByVal tableType&)

Returns

DerrNoError No error

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-15

daqCalSetConstants

Also See: daqCalGetConstants, daqCalSelectCalTable,
dagCalSelectlnputSignal, dagCalSaveConstants

Format

dagCalSetConstants(handle, channel, gain, range, gainConstant,
offsetConstant)

Purpose
dagCalSetConstants sets the user-accessible calibration constants.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device from which ADC transfer status will be
retrieved

channel DWORD Channel number for which to apply the calibration settings
gain DagAdcGain Gain range for which to apply the calibration settings
range DagAdcRangeT | A/D input range for which to apply the calibration settings
gainConstant WORD Gain value to apply
offsetConstant | SHORT Offset value to apply

Parameter Values

handle: obtained from the dagOpen function

channel : avalid channel for the device

gain: see ADC Gain Definition table for gain parameter definitions
range: see table below

gainConstant: valid values range from 0 to 65,535
offsetConstant: valid values range from —32,768 to 32,767

Parameter Type Definitions

range-(DagAdcRangeT)

Definition Description
DarUniOtol0V Sets acquisition range as unipolar from 0 to +10 Volt range
DarBiMinus5to5V Sets acquisition range as bipolar from -5 to +5 Volt range
DarUniPolarDE Sets acquisition range as unipolar differential
DarBiPolarDE Sets acquisition range as bipolar differential
DarUniPolarSE Sets acquisition range as unipolar single-ended
DarBiPolarSE Sets acquisition range as bipolar single-ended

Returns
DerrNoError No error

Function Usage
Selecting the Calibration Constants to Retrieve

Before calling this function, the dagqOpen function should be used to open the device from which the
calibration constants will be retrieved, and the dagqCalSelectCalTable functions should be used to select
the calibration table from which the calibration constants will be retrieved. The internal tables are organized
into gain and calibration entries according to the channel, gain range and A/D range capabilities of the device.
The following need to be selected for each calibration gain and offset constant entries to be retrieved:

e The channel parameter should be set to the desired channel.
e The gain parameter should be set to the desired gain setting for the selected channel.
e The range parameter should be set to the desired range for the gain and channel selection.

4.3-16 Daq APl Command Reference 908494 Programmer’s Manual

Retrieving the Calibration Constants

The gains and offsets constants for the handle, channel, gain and range entries selected are set
for the device and stored in the memory pointed to by the corresponding parameters gainConstant and
offsetConstant parameters respectively. The values returned are stored in a 16-bit data word which
applies to the current settings for the selected table entry. These values need to be calculated and set by the
calibration application according to the methods described below.

Interpreting Calibration Constant Values

These calibration constants are gains and offsets that are applied to the input data. After the data comes in, it is
multiplied by the gain, and then the offset is added to it. The resulting data has been converted from raw A/D
data to calibrated analog data. Each channel, gain, and bipolar/unipolar range setting has a different pair of
gain and offset values.

As mentioned above, the first three parameters of the dagqCal SetConstants function specify which set of
constants are to be changed. The last two parameters are the actual constants. These constants are in a
particular binary format. The gain constant is 32,768 times the gain. For a gain of x1, the gain constant is
32,768 or 0x8000. The maximum gain is approximately x2 (65,535 / 32,768), and the minimum gain is x 0 (0/
32,768). The offset (a left-justified signed 12-bit number) is added to the final result. A single least-significant
bit has an integer value of 16 or 0x0010. Setting the calibration constants affects subsequent acquisitions until
another dagOpen is performed. After daqOpen, the original calibration constants are re-read from the
NVRAM in the WaveBook and expansion chassis; then, the working copy as set by daqCal SetConstants
is overwritten.

Prototypes
C/C++

dagCalSetConstants(DagHandleT handle, DWORD channel, DagAdcGain gain,
DagAdcRangeT range, WORD gainConstant, SHORT offsetConstant);

Visual BASIC

VBdaqCalSetConstants(ByVal handle&, ByVal channel, ByVal gain, ByVal
range, ByVal gainConstant, ByVal offsetConstant);

Program References
None

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-17

daqCalSetup

Also See: dagReadCalFile, daqgCalConvert,
dagCalSetupConvert

Format

dagCalSetup(handle, nscan, readingsPos, nReadings, chanType, chanGain,
startChan, bipolar, noOffset)

Purpose
daqgCal Setup configures the order and type of data to be calibrated.

Parameter Summary

Parameter Type Description

handle DagHandleT | Handle to the device to be calibrated

nscan DWORD Number of channels in a single scan

readingsPos | DWORD Position of the readings to be calibrated within the scan

nReadings DWORD Number of readings to calibrate

chanType DcalType Type of channel/board from which the readings to be calibrated are
read

chanGain DagAdcGain | Gain setting of the channels to be calibrated

startChan DWORD Channel number of the first channel to be converted

bipolar BOOL If true, the DagBook/DaqBoard is configured for bipolar readings;
if false, it is configured for unipolar readings

noOffset BOOL If true, the offset calibration constant will not be used to calibrate
the readings; if False, the offset calibration will be used

Parameter Values

handle: obtained from the dagOpen function

nscan: the number of channels in the scan group configuration (see dagAdcSetScan)

readingsPos: the position of the channels to calibrate within the scan (see dagAdcSetScan)

nReadings: the number of readings to calibrate from 1 to 4,294,967,295; however, memory limitations
may apply

chanType: see table below

chanGain: see ADC Gain Definition table for chanGain parameter definitions

startChan: must be a valid device channel within the scan group definition (see dagAdcSetScan)

bipolar: valid values are either true (= 0) or false (=0)

noOffset: valid values are either true (= 0) or false (=0)

Parameter Type Definitions

chanType-(DcalType)
Definitions Channel Configuration Description
DcalTypeDefault Any voltage channel Defines a calibration of main unit or expansion channel voltage
DcalTypeCJC Cold Junction Compensation Channel Defines a calibration of expansion CJC channel for a
thermocouple module or card
DcalTypeBypass Filter Bypass mode for DBK4 Defines a calibration for DBK4 channel in filter bypass mode
DcalTypeFilter Filter Cutoff mode for DBK4 Defines a calibration for DBK4 channel in filter cutoff mode

The value for the chantype parameter should be set to Dcal TypeCJC (1) when
calibrating a CJC channel of a thermocouple module or card, and Dcal TypeDefault (0
)when reading any other channel.

4.3-18 Daq APl Command Reference 908494 Programmer’s Manual

Returns

DerrZClnvParam Invalid parameter value
DerrNoError No error

For more details on error messages refer to the Daq Error Table.

Function Usage

The dagCalSetup function configures the calibration of acquisition data. It requires that all data to be
calibrated comes from consecutive channels, each configured for the same gain, polarity, and channel type.
The calibration itself can be configured to use only the gain calibration constant and not the offset constant--
this allows the offset to be removed at runtime using the zero compensation functions. The following list
describes how daqCalSetup”s parameters configure a data calibration in more detail:

The nscan parameter indicates the number of channels in the scan. (See dagAdcSetScan function for
complete details on channel scan group configuration settings).

The readingPos parameter indicates the position within the channel scan to begin calibrating--this is
different that the startChan parameter, which indicates the beginning channel within the channel scan
group (see the dagAdcSetScan function for complete details on channel scan group configuration settings).

The nReadings parameter indicates the number of readings to calibrate in the channel scan, starting from
the read ingPos position.

The chanType parameter is a pointer to an array of length nscan; the value of each element in the array is
the channel type for the corresponding channel in the scan configuration.

The chanGain parameter is a pointer to an array of length equal to nscan; the value of each element in the
array is the channel gain for the corresponding channel in the scan configuration.

The startChan parameter indicates the channel number within the channel scan to begin calibrating—this is
different that the read ingPos parameter, which indicates the beginning position within the channel scan
group (see the dagAdcSetScan function for complete details on channel scan group configuration settings).

The bipolar parameter should be true if the device whose data is being calibrated was set to bipolar mode
during the acquisition. If the device was set to unipolar mode when the data being calibrated was acquired, this
value should be False.

The noOFfset parameter should be true if it is desirable to perform a gain constant calibration only. If this
value is true, the offset calibration constant will not be used and the calibration will not attempt to adjust for
offset errors. If this value is False, then the offset constant calibration will be performed and the calibration
process will attempt to adjust the data to reduce offset error.

The daqCalSetup function only configures a data calibration—the actual calibration is performed by the
dagCalConvert function. For convenience, dagCalSetupConvert can perform both setup and
conversion.

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-19

Prototypes

C/C++

dagCalSetup(DagHandleT handle,DWORD nscan, DWORD readingsPos, DWORD
nReadings, DcalType chanType, DagAdcGain chanGain, DWORD startChan, BOOL
bipolar, BOOL noOffset);

Visual BASIC

VbdaqCalSetup&(ByVvVal handleé&, ByVal nscan&, ByVal readingsPosé&, ByVval
nReadings&, ByVal chanType&, ByVal chanGain&, ByVal startChan&, ByVal
bipolar&, ByVal noOffset&)

Program References
None

4.3-20 Daq APl Command Reference 908494 Programmer’s Manual

daqCalSetupConvert

Also See: dagReadCalFile, daqCalSetup,
dagCalConvert

Format

dagCalSetupConvert(handle, nscan, readingsPos, nReadings, chanType,
chanGain, startChan, bipolar, noOffset, counts, scans)

Purpose

dagCalSetupConvert both configures and performs the calibration of the specified data.

Parameter Summary

Parameter Type Description

handle DagHandleT | Handle to the device to be calibrated

nscan DWORD Number of channels in a single scan

readingsPos | DWORD Position of the readings to be calibrated within the scan

nReadings DWORD Number of readings to calibrate

chanType DcalType Type of channel/board from which the readings to be calibrated are
read

chanGain DagAdcGain | Gain setting of the channels to be calibrated

startChan DWORD Channel number of the first channel to be converted

bipolar BOOL If true, the DagBook/DaqgBoard is configured for bipolar readings;
if false, it is configured for unipolar readings

noOffset BOOL If true, the offset calibration constant will not be used to calibrate
the readings; if False, the offset calibration will be used

counts PWORD Raw data from one or more scans

scans DWORD Number of scans of raw data in the counts array

Parameter Values

handle: obtained from the dagOpen function

nscan: the number of channels in the scan group configuration (see dagAdcSetScan)

readingsPos: the position of the channels to calibrate within the scan (see dagAdcSetScan)

nReadings: the number of readings to calibrate from 1 to 4,294,967,295; however, memory limitations

may apply

chanType: see table below

chanGain: see ADC Gain Definition table for chanGain parameter definitions

startChan: must be a valid device channel within the scan group definition (see dagAdcSetScan)

bipolar: valid values are either true (= 0) or false (=0)

noOffset: valid values are either true (= 0) or false (=0)

counts: avalid pointer to an array of uncalibrated scan data whose size must be at least equal to
(scans * scan size * 2)

scans: the number of scans to be calibrated from 1 to 4,294,967,295; however, memory limitations may

apply

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-21

Parameter Type Definitions

chanType - DcalType
Definitions Channel Configuration Description
DcalTypeDefault Any voltage channel Defines a calibration of main unit or expansion channel voltage
DcalTypeCJC Cold Junction Compensation Defines a calibration of expansion CJC channel for a
Channel thermocouple module or card.
DcalTypeBypass Filter Bypass mode for DBK4 Defines a calibration for DBK4 channel in filter bypass mode
DcalTypeFilter Filter Cutoff mode for DBK4 Defines a calibration for DBK4 channel in filter cutoff mode

The value for the chantype parameter should be set to Dcal TypeCJC (1) when calibrating a
CJC channel of a thermocouple module or card, and Dcal TypeDefaul t (0) when reading any
other channel.

Returns
DerrzZClnvParam Invalid parameter value
DerrNoError No error

6 For more details on error messages refer to the Daq Error Table.

Function Usage

The dagCalSetupConvert function will setup the calibration in the same manner as the daqCal Setup
function and will perform the calibration in the same manner as the daqCal Convert function:

Like the dagCal Settup function, this function requires that all data to be calibrated comes from consecutive
channels, each configured for the same gain, polarity, and channel type. The calibration can be configured to
use only the gain calibration constant and not the offset constant--this allows the offset to be removed at
runtime using the zero compensation functions.

Refer to the dagCal Setup function for a description of the counts, nscan,
readingPos, nreadings, chanType, chanGain, startChan, bipolar and
noOffset parameters.

Like the daqCalConvert function, this function will modify the array of data passed to it. The counts
parameter specifies a pointer to an array of the raw A/D counts retrieved during an acquisition. Upon return,
the counts array will hold calibrated data. The scans parameter indicates the number of scans (as defined
by the current scan group configuration) in the acquisition.

Prototypes

C/C++

dagCalSetupConvert(DagHandleT handle,DWORD nscan, DWORD readingsPos, DWORD
nReadings, DcalType chanType, DagAdcGain chanGain, DWORD startChan, BOOL
bipolar, BOOL noOffset, PWORD counts, DWORD scans);

Visual BASIC

VBdaqCalSetupConvert&(ByvVal handle&, ByVal nscan&, ByVal readingsPosé&,
ByVal nReadings&, ByVal chanType&, ByVal chanGain&, ByVal startChan&,
Byval bipolaré&, ByVal noOffset&, counts%, ByVal scans&)

Program References
DBK81EX.CPP, DBK82_83EX.CPP, DBK9OEX.CPP

4.3-22 Daq APl Command Reference 908494 Programmer’s Manual

daqClose

Also See: daqOpen
Format

dagClose(handle)
Purpose

daqgClose is used to close a device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device to be closed

Parameter Values

handle: obtained from the dagOpen function

Returns

DerrNoError No error

Function Usage

Once the specified device has been closed, no subsequent communication with the device can be performed.
In order to re-establish communications with a closed device, the device must be re-opened with the dagOpen
function.

Prototypes
C/IC++
dagClose(DagHandleT handle);

Visual BASIC
VBdaqClose&(ByVval handle&)

Program References

DAQADCEX01.CPP, DAQDIGIOEXO1.CPP, DAQDIGIOEXO02.CPP, DAQADCEXO02.CPP,
DAQADCEXO3.CPP, DAQADCEX04.CPP, DAQADCEXO5.CPP, DAQADCEXO06.CPP,
DAQADCEXO7 .CPP, DAQDACEXO01.CPP, DAQ9513_01.C, DBKOZEX.CPP, DBKO4EX.CPP,
DBKOSEX.CPP, DBKO7EX.CPP, DBKOS8EX.CPP, DBKO9EX.CPP, DBK12_13EX.CPP,
DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP, DBK18EX.CPP,
DBK81EX.CPP,DBK82_83EX.CPP, DBKOOEX.CPP, DBK20_21EX.CPP, DBK23_24EX.CPP,
DBK25EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP,
DBK50EX.CPP, DBKS51EX.CPP, DBK52EX.CPP, DBK53_54EX.CPP, DAQDACEX02.CPP,
DAQTMREX01.CPP, DAQDACEX03.CPP, DAQEX.FRM (VB)

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-23

daqCreateDevice

Format

dagCreateDevice(pDevinfo)

Purpose

daqgCreateDevice creates a device in the Windows Registry using the specified device information which is
equivalent to creating the device using the DagX control panel applet.

Parameter Summary

Parameter

Type Description

pDevinfo

DaqgDevInfoPT

Pointer to the device information structure that defines the device to be created

Parameter Values
pDevinfo: see the DagDevInfoT table below

Parameter Type Definitions

pDevinfo — (DagDevinfoT)

Definition Description Format

AliasName Device alias name STRING

DeviceType Main chassis device type (see the DhiHardwareVersion table of the DaqgHardwareVersion
dagGetlInfo function)

DeviceSubType | Main chassis device sub type (see the DagHardwareSubType table of | DagHardwareSubType
the dagGetinfo function)

Reservedl Reserved for future use DWORD

Reserved?2 Reserved for future use DWORD

InfoType Indicates which one of the following structures contain valid interface | DaqlnfoType
specific device information (see the DaglnfoType table below)

Tcp TCP interface information (see the DaginfoTcpT below) DaginfoTcpT

TcpChild TCP child device interface information (see the DaglnfoTcpChildT DaqInfoTcpChildT
below)

Parallel Parallel port interface information (see the DaglnfoParallelT below) DagInfoParallel T

Pci PCI and Compact PCI bus interface information (see the DaqInfoPciT
DagInfoPciT below)

PcCard PC Card interface information (see the DaglnfoPcCardT below) DagInfoPcCardT

Generic ISA bus interface information (see the DaglnfoGenericT below) DaqInfoGenericT

InfoType — (DaqlnfoType)

Definition

Description

DaqinfoTypeUnknown

device information

Indicates that the DagDevInfoT device information structure has no interface specific

DaqinfoTypeGeneric

interface information

Indicates that the Generic structure element of the DagDevInfoT structure contains valid

DaqinfoTypeTcp

interface information

Indicates that the Tcp structure element of the DagDevInfoT structure contains valid

DaqinfoTypeTcp

Child
valid interface information

Indicates that the TcpChild structure element of the DagDevInfoT structure contains

DaqinfoTypeParallel

interface information

Indicates that the Parallel structure element of the DagDevInfoT structure contains valid

DaqinfoTypePci

interface information

Indicates that the Pci structure element of the DagDevInfoT structure contains valid

DaglnfoTypePcCard

interface information

Indicates that the PcCard structure element of the DagDevInfoT structure contains valid

4.3-24 Daq APl Command Reference

908494

Programmer’s Manual

Tcp — (DaqlnfoTcpT)

Definition Description Format

IPMode IP Address connection mode (see DaqlPModeT table below) DaqlPModeT

SerialNum Device serial number (not required if IPMode is STRING
DaglPModeManuallP)

IPAddress Device IP address (not required if IPMode is DaglPModeAutoDetect) | STRING

IPMode — (DaglPModeT)

Definition

Description

DaqlPModeAutoDetect

on the serial number of the device

Indicates that the connection to a TCP device or TCP child device will be made based

DaqlPModeManuallP

manually defined IP address

Indicates that the connection to a TCP device or TCP child device will be made using a

TcpChild — (DaginfoTcpChildT)

Definition Description Format

ParentAliasName Alias name of the TCP parent device to which this device is connected STRING

ExpPort Expansion port number of the TCP parent device to which this device is | DWORD
connected

Tcp TCP interface information of the TCP parent device to which this DaqinfoTcpT

device is connected (not required by dagCreateDevice, see the
DaqInfoTcpT table above)

Parallel — (DaglnfoParallelT)

Definition Description Format
LPTPort Parallel port number to which this device is connected DWORD
Protocol Parallel port protocol (see the following DagProtocol table) DagProtocol
DagProtocol

Value Returned Protocol

DagProtocolNone Communications not established

DagProtocol4 Standard LPT Port 4-bit mode

DagProtocol8 Standard LPT Port 8-bit mode

DagProtocolSMC666 SMC 37C666 EPP mode

DagProtocolFastEPP WBK20/21 Fast EPP mode

DagProtocolECP Enhanced Capability Port

DagProtocol8BitEPP 8-bit EPP mode

DagProtocolISA ISA bus card DagBoards

DagProtocolPcCard PCCard for Daq (PCMCIA)

DagProtocolUSB USB protocol

DagProtocolPCI PCI bus Data Acquisition Boards

DagProtocolCPCI Compact PCI (cPCI) Data Acquisition Boards

DagProtocol TCPIP Ethernet

Pci — (DaglInfoPciT)

Definition Description Format
SerialNum Device serial number DWORD
Bus PCI bus number in which the device is installed DWORD
Slot PCI slot number in which the device is installed DWORD

Programmer’s Manual

908494

Daqg APl Command Reference

4.3-25

PcCard — (DaqglnfoPcCardT)

Definition Description Format
Socket PC Card socket number DWORD
BasePortAddr Base port address DWORD
InterruptLevel Interrupt level DWORD
DriverInstance Driver instance DWORD
DagModel Dag model number DWORD
Generic — (DaqglnfoGenericT)
Definition Description Format
BasePortAddr Base port address DWORD
Protocol Device protocol (see the DagProtocol section of these tables) DagProtocol
InterruptLevel Interrupt level DWORD
DMAChannel DMA channel DWORD
Returns

DerrNoError if successful or a DagError error code (see the DagError table at the end of chapter 4)

Function Usage

This function can be used to programmatically create devices that can be opened using daqOpen. This function can
be used instead of or in conjunction with the DagX control panel applet. It can also be used with dagDeleteDevice
to create devices on the fly or with dagGetDevicelnventory to dynamically create newly detected devices.

When creating a device, be sure that the alias name is unique and the device type is correct. The InfoType
parameter should be set to indicate which interface information structure is used.

Prototypes
C/C++

daqCreateDevice(DagDevInfoPT pDevinfo);

Visual BASIC

VBdagCreateDevice&(Devinfo As DagDevInfoT)

Program References

None

4.3-26 Daqg APl Command Reference 908494

Programmer’s Manual

daqCvtChannelType

Format
dagCvtChannelType (ChType, ChSubType, pChTypeStr, ChTypeStrSize)

Purpose
dagCvtChannel Type converts a channel type and sub type to a string.

Parameter Summary

Parameter Type Description

ChType DagAdcExpChType Channel type

ChSubType DagAdcExpChSubType | Channel sub type

pChTypeStr LPSTR C/C++ only: String format of the channel type
ChTypeStrSize | DWORD C/C++ only: Size of the channel type string

Parameter Values

ChType: see DagAdcExpChType of the daqGetinfo function

ChSubType: see DagAdcExpChSubType of the daqGetinfo function
pChTypeStr: pointer to a string large enough to hold the channel type string
ChTypeStrSize: Size of the channel type string in bytes

Returns

Nothing in C/C++,
The channel type string in Visual BASIC

Function Usage
This function converts a channel type and sub type to a string.

Prototypes

C/C++

dagCvtChannel Type(DagAdcExpChType ChType, DagAdcExpChSubType ChSubType, PCHAR
pChTypeStr, DWORD ChTypeStrSize);

Visual BASIC
VBdaqCvtChannelType$(ByVal ChType&, ByVal ChSubType&)

Program References
None

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-27

daqCvtHardwareType

Format

dagCvtHardwareType (HwType, HwSubType, pHwTypeStr, HwTypeStrSize)

Purpose

dagCvtHardwareType converts a hardware type and sub type to a string.

Parameter Summary

Parameter Type Description

HwType DaqHardwareVersion Hardware type

HwSubType DaqgHardwareSubType Hardware sub type

pHwWTypeStr LPSTR C/C++ only: String format of the hardware type
HwTypeStrSize | DWORD C/C++ only: Size of the hardware type string

Parameter Values

HwType: see DagHardwareVersion of the dagGetHardwarelnfo function
HwSubType: see DagHardwareSubType of the dagGetHardwarelnfo function
pHwWTYypeStr: pointer to a string large enough to hold the hardware type string
HwTypeStrSize: Size of the hardware type string in bytes

Returns
Nothing in C/C++,

The hardware type string in Visual BASIC

Function Usage

This function converts a hardware type and sub type to a string.

Prototypes
C/C++

dagCvtHardwareType(DagHardwareVersion HwType, DagHardwareSubType HwSubType, PCHAR

pHwTypeStr, DWORD HwTypeStrSize);

Visual BASIC

VBdagCvtHardwareType$(ByVal HwType&, ByVal HwSubType&)

Program References

None

4.3-28 Daqg APl Command Reference

908494

Programmer’s Manual

daqCvtLinearConvert

Also See: daqCvtLinearSetup,
dagCvtLinearSetupConvert, daqCvtSetAdcRange

Format
dagCvtLinearConvert(counts, scans, fvalues, nValues)
Purpose

dagCvtLinearConvert converts the ADC readings into floating point numbers using the linear
relationship that was specified with daqCvtLinearSetup.

Parameter Summary

Parameter Type Description
counts PWORD Acquired ADC readings to be converted
scans DWORD Number of scans to be converted
fvalues PFLOAT | Array to hold the converted readings
nValues DWORD Size of the reading array

Parameter Values

counts: valid pointer to an array of integer words (2 bytes) which contain the data to perform the linear
conversion
scans: the number of scans to be converted, from 1 to the size of the counts array (in scans)
fvalues: valid pointer to an array of single precision floating point (4 bytes) values which will store the
converted readings upon return of this command
nValues: the size of the fValues arrary should be at least equal to:
[scans * (channels in scan) * (the sample size, normally 2 bytes)]

Returns
DerrNoError No error

Function Usage

For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
(i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DagScan/2000 Series, DagLab/2000
Series, and DaqBoard/2000 Series devices.

The dagCvtLinearConvert function may be invoked repeatedly to perform multiple conversions, each
using the same linear relationship. For convenience, daqCvtL inearSetupConvert can perform both
setup and conversion.

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-29

Prototypes

C/C++

dagCvtLinearConvert(PWORD counts, DWORD scans, PFLOAT fValues, DWORD
nValues);

Visual BASIC
VBdaqCvtLinearConvert&(counts%, ByVal scans&, fValues!, ByVal nValues&)

Program References
None

4.3-30 Daqg APl Command Reference 908494 Programmer’s Manual

daqCvtLinearSetup

Also See: daqCvtLinearConvert,
dagCvtLinearSetupConvert,
dagCvtSetAdcRange

Format

dagCvtLinearSetup(nscan, readingsPos, nReadings, signall, voltagel,
signal2, voltage2, avg)

Purpose

dagCvtLinearSetup saves the data required for dagCvtLinearConvert to perform conversions.

Parameter Summary

Parameter Type Description
nscan DWORD Number of readings in a single scan
readingsPos DWORD Position within the scan of the first reading to convert
nReadings DWORD Number of consecutive ADC readings to convert
signall FLOAT Transducer input signal that produces voltagel
voltagel FLOAT Transducer output voltage for input signall
signal2 FLOAT Transducer input signal that produces vol tage2
voltage2 FLOAT Transducer output voltage for input signal2
avg DWORD Type of averaging to use

Parameter Values

nscan: valid values range from 1 to 512
readingsPos: valid values range from 0 to (nscan —1)

nReadings: valid values range from 1 to (nscan — readingsPos)

signall: single precision floating point (4 bytes) value representing transducer input voltage
voltagel: single precision floating point (4 bytes) value representing transducer output voltage
signal2: single precision floating point (4 bytes) value representing transducer input voltage
voltage2: single precision floating point (4 bytes) value representing transducer output voltage
avg: see table below

Parameter Type Definitions

avg
Definition Description
avg = 0 Specifies block averaging--all scans are averaged together to compute a single value for each channel
avg = 1 Specifies no averaging--each scan’s readings are converted into measured signals
avg > 2 Specifies moving average--each scan’s readings are averaged with the avg-1 preceding scans’ readings before
conversion.
Returns
DerrNoError No error

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-31

Function Usage

For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
(i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DaqScan/2000 Series, DagLab/2000
Series, and DaqBoard/2000 Series devices.

For convenience, daqCvtLinearSetupConvert can perform both setup and conversion.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since
each scan’s readings are averaged with the preceding scan, the results from the first scan (which has no
preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first
scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each
subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In
another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the
four preceding it.

Prototypes

C/C++

dagCvtLinearSetup(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT
signall, FLOAT voltagel, FLOAT signal2, FLOAT voltage2, DWORD avQ);

Visual BASIC

VBdaqCvtLinearSetup (ByVal nscan&, ByVal readingsPos&, ByVal nReadingsé&,
Byval signall!, Byval voltagel!, ByVal signal2!, ByVal voltage2!, ByVal
avgs&)

Program References
None

4.3-32 Daq APl Command Reference 908494 Programmer’s Manual

dagCvtLinearSetupConvert

Also See: daqCvtLinearConvert, dagCvtLinearSetup,
dagCvtSetAdcRange

Format

dagCvtLinearSetupConvert(nscan, readingsPos, nReadings, signall, voltagel,
signal2, voltage2, avg, counts, scans, fValues, nValues)

Purpose

dagCvtLinearSetupConvert both sets up the linear conversion process and converts the ADC readings
into floating point numbers.

Parameter Summary

Parameter Type Description
nscan DWORD Number of channels in a single scan
readingsPos | DWORD Position within the scan of the first reading to convert
nReadings DWORD Number of consecutive ADC readings to convert
signall FLOAT Transducer input signal that produces vol tagel
voltagel FLOAT Transducer output voltage for input signall
signal2 FLOAT Transducer input signal that produces vol tage2
voltage2 FLOAT Transducer output voltage for input signal2
avg DWORD Type of averaging to use
counts PWORD Array of acquired ADC readings to be converted
scans DWORD Number of scans to be converted
fvalues PFLOAT Array to hold the converted readings
nValues DWORD Size of the reading array

Parameter Values

nscan: valid values range from 1 to 512
readingsPos: valid values range from O to (nscan —1)
nReadings: valid values range from 1 to (nscan — readingsPos)
signall: single precision floating point (4 bytes) value representing transducer input voltage
voltagel: single precision floating point (4 bytes) value representing transducer output voltage
signal2: single precision floating point (4 bytes) value representing transducer input voltage
voltage2: single precision floating point (4 bytes) value representing transducer output voltage
avg: see table below
counts: valid pointer to an array of integer words (2 bytes) which contain the data to perform the linear
conversion
scans: the number of scans to be converted from 1 to the size of the counts array (in scans)
fValues: valid pointer to an array of single precision floating point (4 bytes) values which will store the
converted readings upon return from this command
nValues: the size of the fValues arrary should be at least equal to:
(scans * channels in scan * the sample size, normally 2)

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-33

Parameter Type Definitions

avg
Definition Description
avg = 0 Specifies block averaging--all scans are averaged together to compute a single value for each channel
avg = 1 Specifies no averaging--each scan’s readings are converted into measured signals
avg > 2 Specifies moving average--each scan’s readings are averaged with the avg-1 preceding scans’ readings
before conversion.
Returns
DerrNoError No error

Function Usage

For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
(i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DagScan/2000 Series, DagLab/2000
Series, and DaqBoard/2000 Series devices.

The dagCvtLinearSetupConvert combines the functions of the both the dagCvtLinearConvert
function and the dagCvtLinearSetup function.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since
each scan’s readings are averaged with the preceding scan, the results from the first scan (which has no
preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first
scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each
subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In
another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the
four preceding it.

Prototypes

C/C++

dagCvtLinearSetupConvert(DWORD nscan, DWORD readingsPos, DWORD nReadings,
FLOAT signall, FLOAT voltagel, FLOAT signal2, FLOAT voltage2, DWORD avg,
PWORD counts, DWORD scans, PFLOAT fValues, DWORD nValues);

Visual BASIC

VBdaqCvtLinearSetupConvert&(ByVal nscan&, ByVal readingsPos&, ByVval
nReadings&, ByVal signalll!, ByVal voltagel!, ByVal signal2!, ByVval
voltage2!, ByvVal avg&, counts%, ByVal scans&, fValues!, ByVal nValuesé&)

Program References
None

4.3-34 Daq APl Command Reference 908494 Programmer’s Manual

daqCvtRawDataFormat

Also See: dagAdcSetDataFormat,
dagAdcTransferSetBuffer

Format
dagCvtRawDataFormat(buf, action, lastRetCount, scanCount, chanCount)

Purpose

dagCvtRawDataFormat converts raw data to a specified format.

Parameter Summary

Parameter Type Description
buf PWORD Pointer to the buffer containing the raw data
action DagAdcCvtAction | Type of conversion action to perform on the raw data
lastRetCount | DWORD Last value in the retCount parameter returned from the
dagAdcTransferGetStat function
scanCount DWORD Length of the raw data buffer in scans
chanCount DWORD Number of channels per scan in the raw data buffer

Parameter Values

buf: apointer to an array of values from 0 to 65,535.

action: see table below

lastRetCount: valid values range from 1 to 4,294,967,295; however, memory limitations may apply
scanCount: valid values range from 1 to 4,294,967,295; however, memory limitations may apply
chanCount: valid values range from 1 to 72

Parameter Type Definitions

action-(DagAdcCvtAction)
Definition Description

DacaUnpack Decompresses raw data

DacaRotate Reformats a circular buffer into a linear buffer
Returns

DerrNoError No error
Function Usage
For all functions of the form daqCvt. . ., raw data to be converted must be unsigned

(i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DagScan/2000 Series, DaqlLab/2000
Series, and DaqBoard/2000 Series devices.

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-35

The buf parameter specifies the pointer to the data buffer containing the raw data. Prior to calling this
function, this user-allocated buffer should already contain the entire raw data transfer. Upon completion, this
data buffer will contain the converted data (the buffer must be able to contain all the converted data).

The scanCount parameter specifies the length of the raw buffer in scans. Since the converted data will
overwrite the raw data in the buffer, make sure the specified buffer is large enough to contain all of the
converted data.

This function should be called after the raw data has been acquired. See the transfer data
functions (of the form dagAdcTransfer..) for more details on the collection of raw data.

Prototypes
C/C++

dagCvtRawDataFormat(PWORD buf, DagAdcCvtAction action, DWORD lastRetCount,
DWORD scanCount, DWORD chanCount);

Visual BASIC

VBdaqCvtRawDataFormat&(buf%, ByVal action&, ByVal lastRetCount&, ByVal
scanCount&, ByVal chanCount&)

Program References
None

4.3-36 Daq APl Command Reference 908494 Programmer’s Manual

daqCvtRtdConvert

Also See: daqCvtRtdSetup, dagCvtRtdSetupConvert

Format
dagCvtRtdConvert(counts, scans, temp, ntemp)

Purpose
dagCvtRtdConvert takes raw acquisiton data and converts it to a Celsius scale.

Parameter Summary

Parameter Type Description
counts PWORD Array of one or more scans of raw data as received from the device
scans DWORD Number of scans of raw data in counts parameter (number of pre-
trigger + post-trigger scans)
temp PSHORT Variable array to hold converted temperatures
ntemp DWORD Size of temperature array

Parameter Values

counts: valid pointer to an array of integer words (2 bytes) which contain the raw data to perform the RTD
conversion

scans: the number of scans to be converted from 1 to the size of the counts array (in scans)

temp: valid pointer to an array of single precision floating point (4 bytes) values which will store the

converted readings upon return from this command

ntemp: The value of the ntemp parameter should be equal to number of RTDs specified in setup times the
number of scans. If averaging is used, then ntemp should be equal to: [(the number of RTDs) *
scans * (the value of the avg parameter as set in the daqCvtRtdSetup function)]

Returns
DerrRtdNoSetup Setup was not called
DerrRtdTArraySize Temperature array is not large enough
DerrNoError No error

6 For more details on error messages refer to the Daq Error Table.

Function Usage

For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
(i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DaqScan/2000 Series, DaglLab/2000
Series, and DaqBoard/2000 Series devices.

The dagCvtRtdConvert function takes acquired data from a resistance temperature detector (RTD) and
converts them to temperature readings in Celsius, with a resolution in tenths of a degree (0.1°C). Before this
commannd is executed, the RTD conversion should be configured using the daqCvtRtdSetup function.
The total number of data conversions [scans * (RTD channels per scan) * 4] must be less than 32,767.

For convenience, both setup and conversion can be performed at once by daqCvtRtdSetupConvert.

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-37

Using Resistance Temperature Detectors (RTDs)

Many devices can measure temperatures through use of DBK9 RTD expansion cards. Up to 8 RTDs can
attach to each DBK9 and up to 32 DBK9s can be attached to a single device; allowing for up to 256
temperature readings. The software currently supports 100, 500, and 1000 ohm RTDs. The RTDs must all be
of the same type, and the reading groups for all RTDs must follow each other in the scan sequence. All non-
RTD data conversion, if any, must be done by other means.

The RTD measurement functions are designed for simple temperature measurement in which each RTD
channel is read 4 times. These 4 readings must be grouped together consecutively during a scan in the
following order, with the appropriate gain: Dbk9VoltageA (gain=0), Dbk9VoltageB (gain=1),
Dbk9VoltageC (gain=3), and Dbk9VoltageD (gain=3).

The temperature conversion functions use input data from one or more device scans. They take 4 voltage
readings for each RTD channel, apply the appropriate averaging method, convert the voltages to a resistance,
and then (using the appropriate curves for the RTD type) convert the resistance into a temperature. To
illustrate, suppose the data in the following table was gathered:

Prototypes
C/C++

daqCvtRtdConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

Visual BASIC
VBdaqCvtRtdConvert&(counts¥%, ByVal scansé&, temp%, ByVal ntempé&)

Program References

None

Readings Channel 0 Readings Channel 1
Scan 0 1 2 3 4 5 6 7
1 ChOVa ChO Vb ChoVc chovd Ch1va Ch1Vb Ch1vc Chivd
2 ChO0Va Ch0 Vb Cho0Vc Ch 0 Vvd Ch1Vva Ch1Vb Ch1Vc Chivd
3 ChO0Va Ch0 Vb Cho0Vc Ch 0 Vvd Ch1Vva Ch1Vb Ch1Vc Chivd
4 ChO0Va Ch0 Vb Cho0Vc Ch 0 Vvd Ch1Vva Ch1Vb Ch1Vc Chivd
5 ChO0Va Ch0 Vb Cho0Vc Ch 0 Vvd Ch1Vva Ch1Vb Ch1Ve Chivd
The 4 readings for each channel are grouped together in order. Temperatures
If this scan data is passed to dagqCvtRtdConvert(through Scan 0 1
the counts parameter) with averaging disabled (avg 1 cho°C chi°C
parameter in daqCvtRtdSetup set to 1), the function will 2 cho°c Chi°C
return the temp parameters shown in the table. Temperatures 3 cho°c Chi°C
returned will be in tenths of a degree Celsius. 4 cho°C chi°C
5 Cho°C Ch1°C
If the scan data is passed to daqCvtRtdConvert (through Temperatures
the counts parameter) with averaging set to block averaging 0 1
(avg parameter in daqCvtRtdSetup setto 0), the Average of
function will return the temp parameter values shown in the all Temps Cho°C Ch1°C
table.

4.3-38 Daqg APl Command Reference

908494

Programmer’s Manual

daqCvtRtdSetup

Format

Also See: daqCvtRtdSetup, daqCvtRtdSetupConvert

dagCvtRtdSetup(nscan, startPosition, nRtd, rtdType, avg)

Purpose

dagCvtRtdSetup sets up parameters for subsequent resistance temperature detector (RTD) data

conversions.

Parameter Summary

Parameter Type Description
nscan DWORD Total number of channel readings in a single scan
startPosition | DWORD Position of the first RTD reading group in the scan
nRtd DWORD Number of the RTDs’ signals that are to be converted to temperature
values
rtdType RtdType | Type of RTDs being used to collect data
avg DWORD Type of averaging to use

Parameter Values

nscan: valid values range from 1 to 512; this number should be equivalent to (the number of RTDs * 4) +

any additional channels
startPosition: valid values range from 1 to 507; the first scan position will be position 0, and the last

will be position (nscan-1)

nRtd: valid values range from 1 to 128
rtdType: see table below

avg: see table below

Parameter Type Definitions

rtdType- (RtdType)
Definition Description
Dbk9RtdTypel00 Value for a 100 ohm RTD
DbkORtdType500 Value for a 500 ohm RTD
Dbk9RtdTypelK Value for a 1000 ohm RTD
avg
Definition Description
avg = 0 Specifies block averaging--all scans are averaged together to compute a single value for each channel
avg = 1 Specifies no averaging--each scan’s readings are converted into measured signals
avg > 2 Specifies moving average--each scan’s readings are averaged with the avg-1 preceding scans’
readings before conversion.
Returns
DerrRtdParam Setup parameter out-of-range
DerrRtdValue Invalid RTD type
DerrNoError No error

For more details on error messages refer to the Daq Error Table.

Programmer’s Manual

908494 Daqg APl Command Reference 4.3-39

Function Usage

For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
(i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DaqScan/2000 Series, DagLab/2000
Series, and DaqBoard/2000 Series devices.

For more detailed information on using RTDs refer to the entry for the daqgCvtRtdConvert function. For
convenience, both setup and conversion can be performed at once by dagqCvtRtdSetupConvert.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since
each scan’s readings are averaged with the preceding scan, the results from the first scan (which has no
preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first
scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each
subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In
another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the
four preceding it.

Prototypes

C/C++

dagCvtRtdSetup(DWORD nscan, DWORD startPosition, DWORD nRtd, RtdType
rtdType, DWORD avg);

Visual BASIC

VBdaqCvtRtdSetup&(ByVal nscan&, ByVal startPosition&, ByvVal nRtd&, ByVval
rtdType&, ByvVal avg&)

Program References
None

4.3-40 Daq APl Command Reference 908494 Programmer’s Manual

daqCvtRtdSetupConvert

Also See: daqCvtRtdSetup, dagCvtRtdConvert
Format

dagCvtRtdSetupConvert(nscan, startPosition, nRtd, rtdType, avg, counts,
scans, temp, ntemp)

Purpose

dagqCvtRtdSetupConvert both sets up the resistance temperature detector (RTD) data conversion process
and converts that RTD data to a Celsius scale.

Parameter Summary

Parameter Type Description
nscan DWORD Total number of channel readings in a scan
startPosition | DWORD Pasition of the first RTD reading group in the scan
nRtd DWORD Number of RTDs beings scanned
rtdType RtdType Type of RTDs being used
avg DWORD Type of averaging to be used
counts PWORD Pointer to raw A/D data from one or more scans
scans DWORD Number of scans of raw data in counts (number of pre-trigger +

post-trigger scans)

temp PSHORT Variable array to hold converted temperatures
ntemp DWORD Size of temperature array

Parameter Values

nscan: valid values range from 1 to 512; this number should be equivalent to:
[(the number of RTDs * 4) + (any additional channels)]
startPosition: valid values range from 1 to 507; the first scan position will be position 0, and the last
will be position (nscan-1)
nRtd: valid values range from 1 to 128
rtdType: see table below
avg: see table below
counts: valid pointer to an array of integer words (2 bytes) which contain the raw data to perform the RTD
conversion
scans: the number of scans to be converted from 1 to the size of the counts array (in scans)
temp: valid pointer to an array of single precision floating point (4 bytes) values which will store the
converted readings upon return from this command
ntemp: the value of the ntemp parameter should be equal to number of RTDs specified in setup times the
number of scans. If averaging is used, then ntemp should be equal to:
[(number of RTDs) * (scans) * (the value of the avg parameter as set in the
daqgCvtRtdSetup function)].

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-41

Parameter Type Definitions

RtdType-(RtdType)
Definition Description
Dbk9RtdTypel00 Value for a 100 ohm RTD
Dbk9RtdType500 Value for a 500 onm RTD
Dbk9RtdTypelK Value for a 1000 ohm RTD
Avg
Definition Description
avg = O Specifies block averaging--all scans are averaged together to compute a single value for each channel
avg = 1 Specifies no averaging--each scan’s readings are converted into measured signals
avg > 2 Specifies moving average--each scan’s readings are averaged with the avg-1 preceding scans’
readings before conversion.
Returns
DerrRtdParam Setup parameter out-of-range
DerrRtdTArraySize Temperature storage array not large enough
DerrRtdValue Invalid RTD type
DerrNoError No error

For more details on error messages refer to the Daq Error Table.

Function Usage

For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
(i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DagScan/2000 Series, DagLab/2000
Series, and DaqBoard/2000 Series devices.

The dagCvtRtdSetupConvert combines the operations of the both the daqCvtRtdConvert function
and the daqCvtRtdSetup function. For more detailed information on using RTDs refer to the entry for the
dagCvtRtdConvert function.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since
each scan’s readings are averaged with the preceding scan, the results from the first scan (which has no
preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first
scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each
subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In
another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the

four preceding it.

4.3-42

Daqg APl Command Reference

908494

Programmer’s Manual

Prototypes

C/C++

dagCvtRtdSetupConvert(DWORD nscan, DWORD startPosition, DWORD nRtd,
RtdType rtdType, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD
ntemp);

Visual BASIC

VBdaqCvtRtdSetupConvert&(ByVal nscan&, ByVal startPosition&, ByVal nRtd&,
Byval rtdTypeé&, ByvVal avg&, counts%, ByVal scans&, temp%, ByVal ntemp&)

Program References
None

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-43

dagCvtSetAdcRange

Also See:daqCvtLinearSetup, dagCvtLinearConvert
dagCvtLinearSetupConvert

Format
dagCvtSetAdcRange (Admin, Admax)

Purpose
dagCvtSetAdcRange sets the ADC range for use by the conversion functions (i.e., all functions of the form
daqCvt...).
Parameter Summary
Parameter Type Description
Admin FLOAT A/D minimum voltage range (in volts)
Admax FLOAT A/D maximum voltage range (in volts)

Parameter Values:

Admin: valid values depend on the device and signal being processed
Admax: valid values depend on the device and signal being processed

Returns

DerrNoError No error

Function Usage

@ For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
/.-_/ (i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DaqScan/2000 Series, DagLab/2000
Series, and DagBoard/2000 Series devices.

The dagCvtSetAdcRange function is used by the conversion functions to establish the range of an
acquisition. The voltage range is dependent on the acquisition’s gain values as set in the dagAdcSetScan
function—see dagAdcSetScan for more information.

Prototypes

C/C++
dagCvtSetAdcRange(FLOAT Admin, FLOAT Admax);

Visual BASIC
VBdaqCvtSetAdcRange&(ByVal ADmin!, ByVal ADmax!)

Program References

None

4.3-44 Daq APl Command Reference 908494 Programmer’s Manual

daqCvtTCConvert and dagCvTCConvertF

Also See: daqCvtTCSetup, daqCvtTCSetupConvert, dagCvtTCSetupConvertF

Format

dagCvtTCConvert(counts, scans, temp, ntemp)

Purpose

dagCvtTCConvert and daqCvtTCConvertF each convert raw data acquired from a thermocouple (T/C)
to a Celsius scale. See Note 1.

Parameter Summary

Parameter Type Description
counts PWORD Aurray of one or more scans of raw data
scans DWORD Number of scans of data in counts array (number of pre-trigger + post-
trigger scans)
temp PSHORT | Variable array to hold converted temperature results (Note 1)
ntemp DWORD Number of entries in the temperature array

Parameter Values

counts: valid values range from 0 to 65,536 (each raw data item may be any 16-bit value)
scans: valid value range from 1 to 4,294,967,295; however, memory limitations may apply

temp: valid converted values stored in this array range from -2,000 (-200°C) to +13,720 (+1,372°C),

depending on the thermocouple type

ntemp: value of the ntemp parameter should be equal to number of T/Cs specified in setup times the
number of scans. If averaging is used, then ntemp should be equal to: [(number of T/Cs) *

(scans) * (the value of the avg parameter as set in the dagCvtTCSetup function)]

Returns

DerrTCE_NOSETUP
DerrTCE_PARAM

DerrNoError

Setup was not called
Parameter out-of-range
No error

6 For more details on error messages refer to the Daq Error Table.

Function Usage

Nd

For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
/u (i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DaqScan/2000 Series, DaqlLab/2000
Series, and DaqBoard/2000 Series devices.

Note 1: daqCvtTCConvert converts temperature readings to values in tenths of degrees Celsius (0.1°C).

dagCvtTCConvertF stores actual temperature values, i.e., actual instead of a value converted
to the nearest tenth of a degree °C.

Programmer’s Manual

908494

Daqg APl Command Reference

4.3-45

The daqCvtTCConvert takes raw A/D readings from a thermocouple (T/C) and converts them to
temperature readings in tenths of degrees Celsius (0.1°C), see Note 1. The temp array actually stores the
converted values as 10 times the Celsius temperature--for example, 50°C would be represented as 500 and -
10°C would be -100. The value in the ntemp parameter is checked by the functions to avoid writing past the
end of the array.

Note 1: Unlike dagCvtTCConvert, daqgCvtTCConvertF stores actual temperature values instead of values
converted to temperature readings in tenths of degrees Celsius.

Before this commannd is executed, the conversion should be configured using the daqCvtTCSetup
function. For convenience, both setup and conversion can be performed at once by
dagCvtTCSetupConvert. All non-thermocouple data conversion, if any, must be done by other means.

@ The total number of data conversions (scan * channels per scan) must be less than 32,768.

Y 4

Using Thermocouples (T/Cs)

Some products can measure thermocouple temperatures using a internal thermocouple channels or expansion
thermocouple modules or cards. These products normally include a cold-junction compensation circuit (CJC)
channel. This channel must be used in order to compensate for the temperature at the juncture of the
thermocouple to the device. Also, some temperature measurement devices incorporate a zero offset channel
which also can be used to null any offset errors inherent in the system. The CJC channel and zero-offset
channel location depend upon the module or card type. Please refer to your hardware documentation for your
temperature measurement to determine the location of the CJC and zero channels (if applicable). You can also
refer to the examples listed below for programming your specific device. The following example uses Channel
0 as the CJC channel and Channel 1 is shorted for performing auto-zero compensation (as described in the
“Correcting Data” section below). This particular example assumes 14 TC channels so Channels 2 through 15
accept thermocouples for temperature measurement. Up The software supports type J, K, T, E, N28, N14, S,
R and B thermocouples.

The three temperature measurement conversion functions (daqCvtTCConvert, daqCvtTCSetup,and
dagqCvtTCSetupConvert) are designed for temperature measurement where the cold-junction
compensation circuit (CJC) channel (channel 0) reading from the T/C card is immediately followed in the scan
sequence by the T/C channel readings. All readings must be from the same type of T/C. The CJC and T/C
readings are taken with the optimal gains (as described in the “T/C Gains Settings” section below).

How The T/C Acquisition And Conversion Works

The temperature conversion functions take input data from one or more scans from the device. They then
examine the CJC and thermocouple readings within that scan and (after optional averaging), convert them to
temperatures which are stored as output. The procedure for the scan varies, depending on whether auto-zeroing
has been enabled or disabled setting If auto-zeroing has been enabled, the scan readings would resemble the
following table:

Scan Reading
0 1 2 3 4 5
1 CJC Zero J Zero cJc Jla Jib Jic
2 CJC Zero J Zero cJc J2a J2b J2c
3 CJC Zero J Zero cJc J3a J3b J3c
4 CJC Zero J Zero cJc Jda J4b J4c

The first 2 readings of each scan are non-temperature voltage readings to compensate for the CJC circuit and
the shorted channel 0. The third reading is from the CJC, and the remaining 3 readings are from 3 type J
thermocouples. The first 2 readings will be used to remove offset errors in the CJC and T/C reading. However,
if the auto-zero feature is disabled, the first 2 readings will be ignored, as shown in the following table:

4.3-46 Daq APl Command Reference 908494 Programmer’s Manual

Scan Reading
Shorted Channels 0 1 2 3
1 V (ignored) V (ignored) cJC Jla J1ib Jlc
2 V (ignored) V (ignored) cJC J2a J2b J2c
3 V (ignored) V (ignored) cJC J3a J3b J3c
4 V (ignored) V (ignored) cJC Jda Jab J4c

In either case, the CJC and T/C readings are used to produce one temperature result for each T/C reading.
Thus, the 24 original readings are reduced to 12 temperatures.

To measure temperatures, the scan must be set up so the T/C measurements consecutively follow their
corresponding CJC measurement (the CJC measurement need not be the first element in the scan). If auto-
zeroing is enabled, the CJC measurement must be preceded by both a CJC zero measurement and a T/C zero
measurement.

All of the thermocouples converted with a single invocation of the conversion functions must be of the same
type: J, K, T, E, N28, N14, S, R, or B. To measure with more than one type of thermocouple, they must be
sorted by type within the scan, and each type must be preceded by the related CJC.

The scan is not restricted to thermocouple measurements. The scan may include other types of signals such as
voltage, current, or digital input; but conversion of these readings cannot be performed by the temperature
conversion functions cannot handle them.

T/C Gains Settings

The temperature measurements must be made with the correct gain settings. The gain settings for the different
thermocouple types depend on the bipolar/unipolar setting of the device, and the type of card being used. PC
cards can only be set for bipolar acquisitions, and have their own set of gain codes. The gains settings should
be established with the dagAdcSetScan function, as specified in the following tables.

Unipolar operations are not recommended for thermocouple measurement unless the
measured temperatures will be greater than the device temperature.

DBK19 and DBK52 Gain Codes
T/IC Unipolar Gain Code Bipolar Gain Code Bipolar Gain Codes for
Type Dag/2000 Series devices*
and PC Cards

cJC Dbk19UniCJC Dbk19BiCJC Dbk19PCCBiCJC

J Dbk19UniTypeJd Dbk19BiTypeJ Dbk19PCCBiTypeJ

K Dbk19UniTypeK Dbk19BiTypeK Dbk19PCCBiTypeK

T Dbk19UniTypeT Dbk19BiTypeT Dbk19PCCBiTypeT

E Dbk19UniTypeE Dbk19BiTypeE Dbk19PCCBiTypeE
N28 | Dbk19UniTypeN28 Dbk19Bi TypeN28 Dbk19PCCBi TypeN28
N14 Dbk19UniTypeN14 Dbk19BiTypeN14 Dbk19PCCBiTypeN14

S Dbk19UniTypeS Dbk19BiTypeS Dbk19PCCBiTypeS

R Dbk19UniTypeR Dbk19BiTypeR Dbk19PCCBiTypeR

B Dbk19UniTypeB Dbk19BiTypeB Dbk19PCCBiTypeB

* Dag/2000 Series devices include DagBook/2000 Series, DagScan/2000 Series, DaqLab/2000 Series, and

DagBoard/2000 Series devices.

Programmer’s Manual

908494

Daqg APl Command Reference 4.3-47

DBK81,DBK82,DBK83,DBK84 and DagBook/2020 Gain Codes

T/IC Unipolar Gain Code Bipolar Gain Code Bipolar Gain Codes for
Type Dag/2000 Series devices*
and PC Cards
CcJC Dbk81UniCJC Dbk81BiCJC Dbk81PCCBiCJC
J Dbk81UniTypeJ Dbk81BiTypeJ Dbk81PCCBiTypeJ
K Dbk81Uni TypeK Dbk81Bi TypeK Dbk81PCCBi TypeK
T Dbk81UniTypeT Dbk81BiTypeT Dbk81PCCBiTypeT
Dbk81UniTypeE Dbk81BiTypeE Dbk81PCCBiTypeE
N28 | Dbk81UniTypeN28 Dbk81BiTypeN28 Dbk81PCCBi TypeN28
N14 | pbk81UniTypeN14 Dbk81BiTypeN14 Dbk81PCCBiTypeN14
Dbk81UniTypeS Dbk81BiTypeS Dbk81PCCBiTypeS
R Dbk81UniTypeR Dbk81BiTypeR Dbk81PCCBiTypeR
B Dbk81UniTypeB Dbk81BiTypeB Dbk81PCCBiTypeB

* Daqg/2000 Series devices include DagBook/2000 Series, DaqgScan/2000 Series, DagLab/2000 Series, and

DagBoard/2000 Series devices.

DBK90 and DBK100 Gain Codes

T/IC Unipolar Gain Code Bipolar Gain Code Bipolar Gain Codes for
Type Daqg/2000 Series devices*
and PC Cards
CJC Dbk90UNiCJC Dbk90BiCJC Dbk9OPCCBiCJC
J Dbk90UNi TypeJ Dbk90BiTypeJ DbkOOPCCBiTypeJ
K Dbk90Uni TypeK Dbk90Bi TypeK Dbk9OOPCCBiTypeK
T Dbk90Uni TypeT Dbk90Bi TypeT Dbk90OPCCBiTypeT
E Dbk90UNi TypeE Dbk90BiTypeE DbkOOPCCBiTypeE
N28 Dbk90UNi TypeN28 Dbk90BiTypeN28 DbkOOPCCBiTypeN28
N14 Dbk90Uni TypeN14 Dbk90BiTypeN14 DbkOOPCCBiTypeN14
S Dbk90UniTypeS Dbk90BiTypeS Dbk90PCCBiTypeS
R Dbk90UNni TypeR Dbk90BiTypeR DbkOOPCCBiTypeR
B Dbk90UNi TypeB Dbk90BiTypeB DbkOOPCCBiTypeB

* Dag/2000 Series devices include DagBook/2000 Series, DaqgScan/2000 Series, DagLab/2000 Series, and

DagBoard/2000 Series devices.

Unipolar operations are not recommended for thermocouple measurement unless the
measured temperatures will be greater than the device temperature.

4.3-48 Daq APl Command Reference

908494

Programmer’s Manual

When using gain values from the preceding tables to measure TCs, the following temperature ranges apply:

Thermocouple mV Outputs For Temperature Ranges
Depending on Ambient Temperature
T/IC Measured Temperature Range | Measured Temperature Range | Measured Temperature Range
Type @ 0°C ambient @ 25°C ambient @ 50°C ambient
Temp (°C) 0°C Output Temp (°C) 25°C Output Temp (°C) 50°C Output
(mV) (mV) (mV)

J -200 to 760 -7.91042.9 -200 to 760 9.21t041.6 -200 to 760 -11.8t0 39.0

K -200 to 1372 -5.9t054.9 | -200to 1372 -6.9t053.9 | -200to 1372 | -8.9 to 52.9 (50.0)

T -200 to 400 -5.6 10 20.9 -200 to 400 -6.6t0 19.9 -200 to 400 -8.7 10 17.7

E -270 to 1000 -9.8t076.4 | -270 to 1000 -11.3t0 74.9 | -270 to 1000 -14.51t0 71.7
N28 -270 to 400 -4.31013.0 -270 to 400 -5.0t012.3 -270 to 400 -6.4 10 10.9
N14 0 to 1300 0.0to 47.5 0 to 1300 -0.7 10 46.8 0 to 1300 -2.0t0 45.5

IS -50 to 1780 -0.210 18.8 -50 to 1780 -0.410 18.7 -50 to 1780 -0.7 to 18.4

R -50 to 1780 -0.2t021.3 -50 to 1780 -0.41t021.1 -50 to 1780 -0.7 t0 20.8

B 50 to 1780 0.0t013.4 50 to 1780 0.0t013.4 50 to 1780 0.0t013.4

Correcting Data

Two software techniques (software calibration and zero compensation) can be used to increase the accuracy of
a temperature module or card.

e Software calibration uses gain and offset calibration constants, unique to each card, to compensate for
inherent errors on the card.

e Zero compensation is a method by which any offset voltage on the card can be removed at run-time. This
is done by measuring a shorted channel at the same gain on the actual input to find the offset, and
subtracting this value from the actual reading.

The thermocouple linearization function has a special auto-zero compensation feature that will perform zero
compensation on the raw thermocouple data before linearizing when using a temperature module or card. The
auto-zero feature is enabled by default, but can be disabled using the dagAutoZeroCompensate function.
It is not available when using unipolar mode.

If a temperature module or card is used with auto-zeroing enabled, the CJC channel reading described above
must be preceded by 2 readings from the shorted channel (channel 1). The first shorted reading must be at the
same gain setting as the CJC reading. The other shorted reading must be at the gain of the T/C to be converted.
If, instead, software calibration is used with the temperature module or card, the calibration constants for the
card to be used should be entered into the calibration file.

Prototypes
C/IC++
daqCvtTCConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
Visual BASIC
VBdaqCvtTCConvert&(counts%, ByVal scans&, temp%, ByVal ntemp&)

Program References
DBK19EX.CPP,DBK81EX.CPP, DBK82_83EX.CPP, DBK9OEX.CPP

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-49

daqCvtTCSetup

Also See: daqCvtTCConvert, daqCvtTCConvertF, dagCvtTCSetupConvert, dagCvtTCSetupConvertF

Format
dagqCvtTCSetup(nscan, cjcPosition, ntc, tcType, bipolar, avg)

Purpose

daqCvtTCSetup sets up the conversion of data acquired from a thermocouple (T/C).

Parameter Summary

Parameter Type Description

nscan DWORD Number of channel readings in a single scan

cjcPosition | DWORD Position of the cold-junction compensation circuit (CJC) reading within
each scan--not the CJC zero reading, if any

ntc DWORD Number of thermocouple signals that are to be converted to temperature
values

tcType TCType | Type of thermocouples that generated the measurements

bipolar BOOL Must be set true if the readings were acquired with the device set for
bipolar operation; must be set false (zero) for unipolar operation

avg DWORD Type of averaging to be performed

Parameter Values

nscan: valid values range from 2 to 512; this number should be equal to
(the number of T/Cs + the number of CJCs + any zero readings + any additional voltage readings)

cjcPosition: valid values depend on whether or not zero compensation is

being used: values range from 0 to

(nscan-2) with no zero compensation, and from 2 to (nscan-2) with zero compensation
ntc: valid values range from 1 to [(hscan-1)-cjcPosition]
tcType: see table below
bipolar: valid values are either true (= 0) or false (=0)
avg: see table below

Parameter Type Definitions

tcType—(TCType)
Definition Description
Dbk19TCTypeJ Specifies a Type J thermocouple
Dbk19TCTypeK Specifies a Type K thermocouple
Dbk19TCTypeT Specifies a Type T thermocouple
Dbk19TCTypeE Specifies a Type E thermocouple
Dbk19TCTypeN28 Specifies a Type N28 thermocouple
Dbk19TCTypeN14 Specifies a Type N14 thermocouple
Dbk19TCTypeS Specifies a Type S thermocouple
Dbk19TCTypeR Specifies a Type R thermocouple
Dbk19TCTypeB Specifies a Type B thermocouple
avg
Definition Description
avg = 0 Specifies block averaging--all scans are averaged together to compute a single value for each channel
avg = 1 Specifies no averaging--each scan’s readings are converted into measured signals
avg > 2 Specifies moving average--each scan’s readings are averaged with the avg-1 preceding scans’
readings before conversion

4.3-50 Daqg APl Command Reference 908494 Programmer’s Manual

Returns

DerrTCE_TYPE Invalid thermocouple type
DerrTCE_PARAM Parameter out-of-range
DerrNoError No error

6 For more details on error messages refer to the Daqg Error Table.

Function Usage

For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
(i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DaqScan/2000 Series, DaqlLab/2000
Series, and DagBoard/2000 Series devices.

Note: The following example assumes a CJC position of “0” and a Channel Zero position of “1.”
The position of these channels is device dependent. Refer to your device-specific hardware
documentation to determine the appropriate position of these channels for your application.

The daqCvtTCSetup function is used to set the values required to convert raw thermocouple (T/C) data to
data on a Celsius scale. It must be follwed with the daqCvtTCConvert function to actually convert the data.
For convenience, both setup and conversion can be performed at once by daqCvtTCSetupConvert. All of
the T/C conversion functions (i.e., functions of the form daqCvtTC...)can convert several consecutive scans
of data in a single invocation.

The cjcPosition parameter determines the positon of the CJC reading in the scan group. Each scan of
temperature data must include a reading of the CJC signal on the expansion board to which the thermocouples
are attached. If zero compensation is being used, then the first two scans in each group are reserved for zero
compensation data, and the CJC scan must follow immediately thereafter. The illustration below shows a how
a typical T/C acquisition with zero compensation would collect data:

Scan Position o 1 2 3 4 0 1 2 3 0 1

DataCollected [| 0 | 0 | cic [Typed|Typed]| 0 | 0 | cic [1ypek].... 0 T
F 5

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-51

The first reading of the scan is position 0, and the last reading is (nscan—1). The thermocouple signal
readings must immediately follow the CJC reading in the scan data, so the first thermocouple signal must be at
scan position (cjcPosition+1), the next is at (cjcPosition+2), and so on. In the illustration, we see
that two type J thermocouple readings are taken directly after the CJC scan. In the following scan group, two
zero scans are followed by a CJC scan, which is itself followed by one type K thermocouple scan. Note that for
any single call of the conversion function, all thermocouples in a scan group must be of the same type.

If zero compensation is not being used in a scan, the CJC scan is placed in position 0, followed by the
thermocouple scans. The following illustration shows how this data would be organized:

Scan Position 0 1 2 0 1 il 1
Data Collected || cJC |Type J | Type J|| ciC [Type K CIC [TypeT

+\ Call ‘J/'/KCEII 2)

The CJC readings must be taken with the appropriate gains set with the dagAdcSetScan function. The
required gain settings for the CJC and thermocouple channels change depending on the unipolar/bipolar
mode—see the dagCvtTCConvert function for specific info on T/C gains settings.

Moving Averages

To better illustrate the moving average feature of the avg parameter, suppose the avg value is set to 3. Since
each scan’s readings are averaged with the preceding scan, the results from the first scan (which has no
preceding scan) are not averaged at all. However, the results from the second scan are averaged with the first
scan, and the results from the third scan are averaged with the preceding two scans. After the third scan, each
subsequent scan is averaged with the preceding two scans (since the avg value is 3, and avg-1 is two). In
another instance, if the avg value is set to 5, then each scan after the fifth scan would be averaged with the
four preceding it.

Prototypes

C/C++

dagqCvtTCSetup(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType,
BOOL bipolar, DWORD avg);

Visual BASIC

VBdaqCvtTCSetup&(ByVal nscan&, ByVal cjcPosition&, ByVal ntc&, ByVal
tcType&, Byval bipolaré&, Byval avg&)

Program References
DBK19EX.CPP

4.3-52 Daq APl Command Reference 908494 Programmer’s Manual

daqCvtTCSetupConvert and daqCvtTCSetupConvertF

Also See: daqCvtTCConvert, daqCvtTCConvertF, dagCvtTCSetup
Format

dagCvtCSetupConvert(nscan, cjcPosition, ntc, tcType, bipolar, avg, counts,
scans, temp, ntemp)

Purpose

dagCvtTCSetupConvert and daqCvtTCSetupConvertF are each used to set up and convert raw
thermocouple (T/C) data to data on a Celsius scale. See Note 1.

Parameter Summary

Parameter Type Description

nscan DWORD Number of channel readings in a single scan

cjcPosition | DWORD Position of the CJC reading within the scan

ntc DWORD Number of thermocouple readings that immediately follow the CJC reading
within the scan

tcType TCType Type of thermocouples being measured

bipolar BOOL Must be set true if the readings were acquired with the device set for
bipolar operation; must be set fal se for unipolar operation

avg DWORD Type of averaging to use

counts PWORD Array of raw data from one or more scans

scans DWORD Number of scans of raw data in counts array (number of pre-trigger + post-
trigger scans)

temp PSHORT Variable array to hold converted temperature results (see Note 1)

ntemp DWORD Number of entries in the temperature array

Parameter Values

nscan: valid values range from 2 to 512; this number should be equal to: [(the number of T/Cs) + (the
number of CJCs) + (any zero readings) + (any additional voltage readings)]
cjcPosition: valid values depend on whether or not zero compensation is being used: values range from 0
to (nscan-2) with no zero compensation, and from 2 to (nscan-2) with zero
compensation
ntc: valid values range from 1 to [(hscan-1)-cjcPosition]
tcType: see table below
bipolar: valid values are either true (= 0) or false (=0)
avg: see table below
counts: valid values range from 0 to 65,536 (each raw data item may be any 16-bit value)
scans: valid value range from 1 to 4,294,967,295; however, memory limitations may apply
temp: valid converted values stored in this array range from —2,000 (-200°C) to +13,720 (+1,372°C),
depending on the thermocouple type. (See Note 1)
ntemp: the value of the ntemp parameter should be equal to number of T/Cs specified in setup times the
number of scans. If averaging is used, then ntemp should be equal to: [(number of T/Cs) *
(scans) * (the value of the avg parameter as set in the dagCvtTCSetup function)]

Note 1: daqCvtTCSetupConvert converts temperature readings to values in tenths of degrees Celsius (0.1°C).
dagCvtTCSetupConvertF stores actual temperature values, i.e., actual instead of a value converted
to the nearest tenth of a degree °C.

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-53

Parameter Type Definitions

tcType—(TCType)

DBK19 and DBK52

Definition Description
Dbk19TCTyped Specifies a Type J thermocouple
Dbk19TCTypeK Specifies a Type K thermocouple
Dbk19TCTypeT Specifies a Type T thermocouple
Dbk19TCTypeE Specifies a Type E thermocouple
Dbk19TCTypeN28 Specifies a Type N28 thermocouple
Dbk19TCTypeN14 Specifies a Type N14 thermocouple
Dbk19TCTypeS Specifies a Type S thermocouple
Dbk19TCTypeR Specifies a Type R thermocouple
Dbk19TCTypeB Specifies a Type B thermocouple

tcType—(TCType)

DBK81,DBK82,DBK83,DBK84,and DagBook/2020

Definition Description
Dbk81TCTypeJd Specifies a Type J thermocouple
Dbk81TCTypeK Specifies a Type K thermocouple
Dbk81TCTypeT Specifies a Type T thermocouple
Dbk81TCTypeE Specifies a Type E thermocouple
Dbk81TCTypeN28 Specifies a Type N28 thermocouple
Dbk81TCTypeN14 Specifies a Type N14 thermocouple
Dbk81TCTypeS Specifies a Type S thermocouple
Dbk81TCTypeR Specifies a Type R thermocouple
Dbk81TCTypeB Specifies a Type B thermocouple

tcType—(TCType)

DBK90 and DBK100

Definition Description
Dbk90TCTyped Specifies a Type J thermocouple
Dbk90TCTypeK Specifies a Type K thermocouple
Dbk90TCTypeT Specifies a Type T thermocouple
Dbk90TCTypeE Specifies a Type E thermocouple
Dbk90TCTypeN28 Specifies a Type N28 thermocouple
Dbk90TCTypeN14 Specifies a Type N14 thermocouple
Dbk90TCTypeS Specifies a Type S thermocouple
Dbk90TCTypeR Specifies a Type R thermocouple
Dbk90TCTypeB Specifies a Type B thermocouple
avg
Definition Description
avg = 0 Specifies block averaging--all scans are averaged together to compute a single value for each channel
avg = 1 Specifies no averaging--each scan’s readings are converted into measured signals
avg > 2 Specifies moving average--each scan’s readings are averaged with the avg-1 preceding scans’

readings before conversion

4.3-54 Daq APl Command Reference

908494

Programmer’s Manual

Returns

DerrTCE_TYPE Invalid thermocouple type
DerrTCE_PARAM Parameter out-of-range
DerrNoError No error

6 For more details on error messages refer to the Daqg Error Table.

Function Usage

For all functions of the form daqCvt. . ., raw data to be converted must be unsigned
(i.e., the dafUnsigned value must be set using the dagAdcSetScan function).

For T/C and RTD conversion, users of Dag/2000 Series devices* and/or Daq PC Cards must
be sure that the main unit is using ten volt range gains settings, either unipolar (0 V to 10 V)
or bipolar (-5 V to +5 V).

See the “T/C Gains Settings” section in the daqCvtTCConvert function entry for the
appropriate settings.

* Dag/2000 Series devices include DagBook/2000 Series, DaqScan/2000 Series, DaqlLab/2000
Series, and DagBoard/2000 Series devices.

The daqCvtTCSetupConvert function combines the operationns of the both the dagCvtTCConvert
function and the daqCvtTCSetup function. For more detailed information on using thermocouples (T/Cs)
and converting data refer to the entries for daqCvtTCConvert and daqCvtTCSetup

The daqCvtTCSetupConvertF function combines the operationns of the both the daqCvtTCConvertF
function and the daqCvtTCSetup function. For more detailed information on using thermocouples (T/Cs)
and converting data refer to the entries for daqCvtTCConvertF and dagCvtTCSetup

Prototypes

C/C++

dagCvtTCSetupConvert(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType
tcType, BOOL bipolar, DWORD avg, PWORD counts, DWORD scans, PSHORT temp,
DWORD ntemp);

Visual BASIC

VBdaqCvtTCSetupConvert&(ByVal nscan&, ByVal cjcPosition&, ByVal ntcé&,
Byval tcType&, ByVal bipolar&, ByVval avg&, counts%, ByVal scansé&, temp%,
ByVval ntemp&)

Program References
DBK19EX.CPP, DBK52EX.CPP, DBK81EX.CPP, DBK82_ 83EX.CPP, DBK9OEX.CPP

Programmer’s Manual 908494 Daqg APl Command Reference 4.3-55

This page is intentionally blank.

4.3-56 Daqg APl Command Reference 908494 Programmer’s Manual

dagDacSetOutputMode

Format

Also See: dagDacWt, dagDacWtMany

dagDacSetOutputMode(handle, deviceType, chan, outputMode)

Purpose

dagDacSetOutputMode sets the output mode of the digital-to-analog converter (DAC) or digital pattern
output operations for the specified channel.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the DAC waveform
output mode will be set
deviceType DagDacDeviceType | Specifies the device type
chan DWORD Specifies the DAC / digital output channel number
outputMode DagDacOutputMode | Defines the DAC waveform output mode to use

Parameter Values

handle: obtained from the dagqOpen function.

deviceType: see the table in the “Selecting the Output Channel” section below for details

chan: valid values depend on the value of the deviceType parameter; see the table in the “Selecting the
Output Channel” section below for details

outputMode: see table below

Parameter Type Definitions

OutputMode—(DagDacOutputMode)
Definition Description
DdomVoltage Specifies a single, DC voltage or current output mode.
DdomStaticWave Specifies static waveform/pattern output mode.
DdomDynamicWave Specifies dynamic waveform/pattern output mode. (Does Not Apply to DagBoard/500 Series)
DdomDigitalDirect Specifies direct mode for P3 digital. (Does Not Apply to DagBoard/500 Series or /3000 Series)
DdomUnipolar Specifies unipolar output mode. (DagBoard/500 only)
DdomBipolar Specifies bipolar output mode. (DagBoard/500 only)
Returns
DerrNoError No error

Function Usage

Normally, the dagDacSetOutputMode function must be called prior to any output operations on the
specified channels. Generally, this function configures the specified port for DC style or waveform output
from DACs or pattern output from the 16-bit P3 DIO port.

Programmer’s Manual

908494 Dagq APl Command Reference 4.4-1

Selecting the Output Channel

The output channel for which to set the mode is determined by the chan and the deviceType parameters.
The device type is represented by predefined settings described below. The channel is simply an integer
(starting at 0) which represents the channel location relative to the first channel of the same type. The table
below describes this relationship:

Device Type Channel Description
(deviceType) (chan)
DddtLocal 0 Set output mode for DACO on the main unit device
1 Set output mode for DAC1 on the main unit device
2 Set output mode for DAC2 on the main unit device
3 Set output mode for DAC3 on the main unit device
DddtDbk N*4 + 0 Set output mode for channel0 on a DBK2 or DBK5 on bank N
N*4+ 1 Set output mode for channell on a DBK2 or DBK5 on bank N
N*4 + 2 Set output mode for channel2 on a DBK2 or DBK5 on bank N
N*4 + 3 Set output mode for channel3 on a DBK2 or DBK5 on bank N
DddtLocalDigital 0 Set Output Mode for the local P3 16-bit DIO channel on the main
unit. This setting only applies when using the local P3 16-hit DIO
channel for streamed output.

Setting the Output Mode

The term waveform/pattern output is used extensively throughout the entries for the
‘g functions of the form dagDac.... This refers to an analog waveform output modes and/or
S5~ digital pattern output modes. These terms describe output to digital-to-analog converter
(DAC) channels and/or digital input/output (DIO) channels that are synchronously
updated by a clock source defined by the application.

The outputMode parameter indicates the type of output update to be performed on the specified
DAC/Digital output channel. Generally, the output mode is either direct, asynchronous update or a
waveform/pattern output.

There are two basic types of waveform/pattern output. One is a static mode that allows downloading the entire
waveform/pattern output buffer to the internal FIFO on the device for unattended output. The other is a
dynamic mode that allows continuous update of the output by the application. The settings for all of the
possible modes are as follows:

DdomVo I tage— Specifies a single, DC voltage or current output mode. This mode defines the output of the
specified DAC channel to be updated only when written to explicitly. The valid range over which actual
voltage and current values can be written to the port depends upon the specified range of the local DAC device
or the DBK2 or DBKS5 (see output range specifications for your device). When this mode is set with the
dagDacSetOutputMode function, no change to the current output state of the channel will be performed.
See dagDacWt and dagDacWtMany for the actual writing of the DAC channel values. No waveform/pattern
outputs can be generated for the specified channel while the channel is in the DdomVol tage mode. This
setting represents the default setting for all channels.

4.4-2 Daq APl Command Reference 908494 Programmer’s Manual

DdomStaticWave- Specifies static waveform/pattern output mode. This mode allows the generation of a
non-streamed waveform output to the specified DAC/Digital Output channel. In this mode, the aggregate size
of the waveform/pattern output buffer must be less than or equal to the size of the internal waveform/pattern
output FIFO in the device. This allows the entire waveform/pattern output buffer to be loaded into the device’s
internal output FIFO. Once the sample updates have been transferred (or downloaded) to the device, the
device is responsible for outputting the data. No other further sample update management needs to be
performed by the application (other than monitoring the progress of the waveform/pattern output). While the
size is limited and no changes to the waveform can be made once the output is started, this mode has the
advantage of not having to periodically feed output data (through the program) to the device for the
waveform/pattern output to continue.

Device Output FIFO Size (Static Waveform/Pattern Output)
DagBoard (ISA) 4,096 total update samples
DagBoard/500 128,000 total update samples (allocated in PC memory)
DagBoard/1000 Series 128,000 total update samples (allocated in PC memory)
DagBoard/2000 Series Devices 512,000 total update samples (allocated in PC memory)
which support DAC
DaqBook/2000 Series 128,000 total update samples (internal FIFO)
DaqlL.ab/2000 Series
DagScan/2000 Series
DagBoard/3000 Series 512,000 total update samples (allocated in PC memory)
G The aggregate waveform/pattern output buffer size is equal to (the number of sample

4~ updates for each channel) * (the number of channels configured for static waveform mode).
DdomDynami cWave- Specifies dynamic waveform/pattern output mode. This mode allows continual,
dynamic updating of the waveform/pattern output. Dynamic waveform/pattern output generation is not size
dependent, and waveform/pattern output updating can be performed indefinitely. Actual waveform/pattern
output generation updating is performed by continually feeding waveform/pattern data to the device using the
dagDacWaveSetBuffer and dagDacTransferStart routines to continually fill the device’s
waveform/pattern output FIFO. The waveform transfer operation to the waveform/pattern output FIFO of the
device can be halted at any time with dagDacTransferStop; Stopping the transfer to the
waveform/pattern output FIFO of the device, however, will not stop the device from outputting what remains
in its FIFO. To stop the device from outputting samples from its internal waveform/pattern output FIFO, the
dagAdcDisarm function must be used.

G@ The DdomDynamicWave mode is not valid forDagBoard/500 Series boards.

Using Static and Dynamic Output Modes

The DdomStaticWave and DdomDynamicWave output modes allow the configuration of one or more
channels for waveform/pattern output from DAC or digital input/output (DIO) channels. However, the
DdomStaticWave and DdomDynamicWave output modes have special considerations when they are used.

Both modes allow waveform/pattern output to any of the available DAC or DIO channels. However, when
using these modes, each channel must be configured to use the same mode--either DdomStaticWave or
DdomDynamicWave. So, it is not possible to mix DdomStaticWave and DdomStaticWave
configurations on the same device for a given waveform/pattern output. There is no problem with configuring
one or more channels as direct (DdomVo I tage) output along with other channels that are configured for
waveform/pattern output.

Programmer’s Manual 908494 Daq APl Command Reference 4.4-3

When configuring the update transfer buffer via dagDacWaveSetBuffer in static mode, the update transfer
buffer stores the update samples in a seperate buffer for each channel. However, in dynamic mode the update
transfer buffer stores the update samples for all the channels configured for waveform/pattern output, not just
for the channel specified. Since the buffer is shared, all waveform/pattern output channels must have the same
number of sample updates. This means that the transfer buffer size depends upon the total number of channels
configured for waveform/pattern output and the total number of updates for each channel. See
dagDacWaveSetBuffer for more details.

The update clock for all waveform/pattern output channels must be the same source. All DAC and P3 16-bit
Digital channels must use the same update clock for updating their outputs. See the entry for
dagDacWaveSetClockSource for more details.

The DagBoard/2000 Series devices allow digital output data to be streamed to the P3 16-bit DIO port for
pattern output. This digital output data can be streamed concurrently with waveform output to the DAC
channels specified using the same output update clock. Alternatively, the streamed digital output can be
streamed exclusively to the P3 16-bit DIO output channel without generating waveform output to any of the
DAC channels. However, P3 Digital Pattern Output and DAC waveform output cannot be performed
concurrently with different update clocks.

Prototypes

C/C++

dagDacSetOutputMode(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, DagDacOutputMode outputMode);

Visual BASIC

VBdagDacSetOutputMode&(ByVal handleé&, ByVal deviceType&, ByvVal chan&,
Byval outputMode&)

Program References
DAQDACEX02.CPP, DAQDACEX03.CPP, DBKO2EX.CPP, DBKO5.CPP, DAQEX.FRM (VB)

4.4-4 Dagq APl Command Reference 908494 Programmer’s Manual

dagDacTransferGetStat

Also See: dagDacWaveSetBuffer,
dagDacTransferStart, dagDacTransferStop

Format
dagDacTransferGetStat(handle, deviceType, chan, active, retCount)
Purpose

dagDacTransferGetStat returns the current status and the total transfer count of the current
waveform/pattern output channel.

nfe)

Parameter Summary

DAC output mode must be set to DdomDynamicWave for this function to be called.
See the dagDacSetOutputMode function for details.

Parameter Type Description

handle DagHandleT Handle of the device from which to retrieve current
waveform/pattern output transfer status

deviceType | DagDacDeviceType | Specifiesthe DAC / digital output type

chan DWORD Specifies the DAC / digital output channel

active PDWORD Indicates the current state of the acquisition and transfer in
the form of a bit mask

retCount PDWORD Total number of waveform/pattern output samples

transferred for the current waveform/pattern output transfer

Parameter Values

handle: obtained from the dagOpen function
deviceType: see table below
chan: valid values depend on the value chosen for the deviceType parameter; see deviceType table
below
active: see table below
retCount: the total number of updates can range from 0 to 4,294,967,295 updates; however, memory
limitations may apply

Parameter Type Definitions

deviceType-(DagDacDeviceType)
Definition chan Value Description
DddtLocal 0 Retrieve the status of a waveform/pattern output transfer where DACO is one of
the channels being output.
1 Retrieve the status of a waveform/pattern output transfer where DACL1 is one of
the channels being output.
2 Retrieve the status of a waveform/pattern output transfer where DAC?2 is one of
the channels being output.
3 Retrieve the status of a waveform/pattern output transfer where DAC3 is one of
the channels being output.
DddtLocalDigital 0 Retrieve the status of a waveform/pattern output transfer where the 16-bit P3
Digital port is one of the channels being output.

Programmer’s Manual 908494 Dagq APl Command Reference 4.4-5

active
Definition Description

DdafWaveformActive A waveform/pattern output is active. The trigger may or may not yet have occurred, but the
waveform/pattern output has at least been armed.

DdafWaveformTriggered The waveform/pattern output has been triggered. Data is now being streamed from the
specified channels of the devices DAC channel(s) and/or P3 16-bit digital port.

DdafTransferActive A transfer from PC-based buffers/files to the output FIFO on the device is currently active.

Returns
DerrNoError No error

Function Usage

The dagDacTransferGetStat function will get the current status of a dynamic waveform/pattern output
transfer for the specified DAC or digital output channel.

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form dagDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to digital-to-analog converter
(DAC) channels and/or digital input/output (DI1O) channels that are synchronously
updated by a clock source defined by the application.

Waveform/Pattern Output Progress
In the subsequent discussion, these three terms are used as follows:

o A sample refers to the data for a single output channel.

e An update refers to data for all channels that are configured for waveform/pattern output. An update
consists of all data required to update all channels during a single output clock pulse.

e The write position of the buffer described below is a pointer to the next update block to be written to
the internal FIFO on the device. If using a circular buffer, then the data that has already been written
but not yet updated by the application may then be updated by the application. When using a circular
buffer, it is left to the application to maintain the pointer(s) to the data that it has updated.

The retCount parameter can be defined in two manners, depending on the output mode. If the output is set
to dynamic mode with the DdwmNShot or DdwmInfinite values set (using the dagDacWaveSetMode
function), retCount is equal to the number of updates read in from the dynamic buffer. However, if either
the output is set to either static mode, or dynamic mode with the DdwmNF i Ie I terations value set (using
the dagDacWaveSetMode function), retCount is equal to the number of DAC updates since triggered.
See the dagDacWaveSetBuffer function on for more information on buffer allocation modes.

The current write position within the buffer (measured in updates) is equal to

retCount mod scanCount

where mod is defined as the integer remainder of dividing retCount by scanCount (as defined by the
dagDacWaveSetBuffer function). Since all channels in the waveform/pattern output are updated
concurrently, this number represents the number of updates performed for all channels.

The current write position within the buffer (measured in total samples) is equal to
(retCount mod scanCount) * (total output channels)

where the value of (total output channels) is the total number of channels that are configured for
waveform/pattern output (channels whose output mode is set to DdomStaticWave or
DdomDynamicWave). Since each sample is a 2-byte word, this number can be multiplied by 2 to get the
current write position within the buffer in bytes.

4.4-6 Dagq APl Command Reference 908494 Programmer’s Manual

Putting it all together

The following table shows a number of different scenarios (each assumes a total scan count of 1,000,000
output updates). These scenarios are representative of some typical waveform/pattern output states but do not
necessarily represent all of the possible states.

States (active) Progress Description
(retCount)

DdafWaveformActive + 210,000 The waveform/pattern output is active and has been triggered and is

DdafWaveformTriggered + currently outputting updates to the DAC/Digital Output ports

DdafTransferActive specified. A transfer to buffer is also active and a total of 210,000
updates have been output so far.

DdafWaveformActive + 0 The waveform/pattern output has been armed but has not yet been

DdafTransferActive triggered. A transfer to buffer is also active but no updates have been
output so far because the trigger event has not yet occurred.

DdafTransferActive 0 A waveform/pattern output transfer has been configured and started
(dagAdcTransferSetBuffer, dagDacTransferStart)
but the acquisition has not yet been armed. The acquisition needs to
be armed using dagDacWaveArm.

) 1,000,000 The waveform/pattern output has triggered and has completed. The
transfer is not active and 1,000,000 updates have been performed. So
the both the transfer and the waveform/pattern output from the device
are complete.

Prototypes
C/C++

dagDacTransferGetStat(DagHandleT handle, DagDacDeviceType deviceType,
DWORD chan, PDWORD active, PDWORD retCount);

Visual BASIC

VBdagDacTransferGetStat&(ByVval handleé&, ByVal deviceType&, ByvVal chan&,

active&, retCount&)

Program References
None

Programmer’s Manual

908494 Dagq APl Command Reference 4.4-7

daqgDacTransferStart

Format

Also See: dagDacWaveSetBuffer, dagDacTransferGetStat

dagDacTransferStop, dagDacWaveDisarm

dagDacTransferStart(handle, deviceType, chan)

Purpose

dagDacTransferStart initiates a dynamic waveform/pattern output transfer to the output FIFO on the

specified device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which a waveform transfer is
to be initiated
deviceType DagDacDeviceType | Specifies the type
chan DWORD Specifies the channel

Parameter Values

handle: obtained from the dagOpen function
deviceType: see table below
chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType

table below

Parameter Type Definitions

DeviceType—(DagDacDeviceType)
Definition chan Value Description
DddtLocal 0 Start the transfer of waveform/pattern output data where DACO is one of the
channels being output.
1 Start the transfer of waveform/pattern output data where DACL is one of the
channels being output.
2 Start the transfer of waveform/pattern output data where DAC2 is one of the
channels being output.
3 Start the transfer of waveform/pattern output data where DACS3 is one of the
channels being output.
DddtLocalDigital 0 Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is
one of the channels being output.
Returns
DerrNoError No error

4.4-8 Dagq APl Command Reference

908494 Programmer’s Manual

Function Usage

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form dagDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to digital-to-analog converter
(DAC) channels and/or digital input/output (DIO) channels that are synchronously
updated by a clock source defined by the application.

The waveform/pattern output transfer will be performed from the waveform/pattern output buffer configured
using the dagDacWaveSetBuffer function to the device’s internal output FIFO. This transfer will continue
until:

e The entire waveform/pattern output buffer has been transferred to the internal output FIFO on the
device.

e The transfer is halted (with the dagDacTransferStop function).

e The waveform/pattern output is disarmed (with the dagDacWaveDi sarm function).
The waveform output can be specified for any DAC channel or the 16-bit DIO channel located on the P3 port,
However, the transfer is initiated for all channels configured for dynamic waveform/pattern output mode

(DdomDynamicWave). The dagDacSetOutputMode function should be used to set the output mode to
DdomDynami cWave prior to calling this function.

G@ This function should be used only with waveform/pattern output modes.

Prototypes
C/C++

dagDacTransferStart(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan);

Visual BASIC
VBdagDacTransferStart&(ByVval handle&, ByVal deviceType&, ByVal chan&)

Program References

None

Programmer’s Manual 908494 Daq APl Command Reference 4.4-9

daqgDacTransferStop

Format

Also See: dagDacWaveSetBuffer, dagDacTransferGetStat,

dagDacTransferStart, dagDacWaveDisarm

dagDacTransferStop(handle, deviceType, chan)

Purpose

dagDacTransferStop stops a dynamic waveform/pattern output transfer for the specified DAC or digital

output channel if one is currently active.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the current DAC waveform
transfer will be stopped
deviceType DagDacDeviceType | Specifies the DAC type
chan DWORD Specifies the DAC channel

Parameter Values

handle: obtained from the dagOpen function
deviceType: see table below
chan: valid values depend on the value chosen for the deviceType parameter; see the deviceType

table below

Parameter Type Definitions

DeviceType—(DagDacDeviceType)
Definition chan Value Description
DddtLocal 0 Stop the transfer of waveform/pattern output data where DACO is one of the
channels being output.
1 Stop the transfer of waveform/pattern output data where DAC1 is one of the
channels being output.
2 Stop the transfer of waveform/pattern output data where DAC?2 is one of the
channels being output.
3 Stop the transfer of waveform/pattern output data where DAC3 is one of the
channels being output.
DddtLocalDigital 0 Stop the transfer waveform/pattern output data where the 16-bit P3 Digital port is
one of the channels being output.
Returns
DerrNoError No error

4.4-10 Daq APl Command Reference

908494 Programmer’s Manual

Function Usage

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form dagDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to digital-to-analog converter
(DAC) channels and/or digital input/output (DIO) channels that are synchronously
updated by a clock source defined by the application.

The dagDacTransferStop function will terminate the transfer of waveform/pattern output data; however,
it will not halt the waveform output on the specified channel. Output data already sent to the devices
waveform/pattern output FIFO will continue to be output until there is no more data in the FIFO. The transfer
may be re-initiated for the same waveform/pattern output transfer buffer or another buffer by again calling the
dagDacTransferStart function. To terminate the waveform output as well as the transfer, refer to the
dagDacWaveDisarm function. The output mode must be set to DdomDynami cWave via the
dagDacSetOutputMode function prior to calling this function.

G@ This function should be used only with waveform/pattern output modes.

Prototypes
C/C++

dagDacTransferStop(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan);

Visual BASIC
VBdagDacTransferStop&(ByVvVal handle&, ByVal deviceType&, ByVal chang&)

Program References
None

Programmer’s Manual 908494 Dag APl Command Reference 4.4-11

dagDacWaveArm

Also See: dagDacWaveDisarm
Format

dagbDacWaveArm(handle, deviceType)
Purpose

dagDacWaveArm arms a waveform/pattern output for all channels configured for waveform/pattern output
modes for the specified device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which a DAC waveform output will
be armed
deviceType | DagDacDeviceType | Specifies the DAC type

Parameter Values

handle: obtained from the dagOpen function
deviceType: see table below

Parameter Type Definitions

deviceType-(DagDacDeviceType)
Definition Description
DddtLocal DAC output from P1 for ISA type DagBoards;
DAC output from P3.
DddtLocalDigital DAC output from the 16-bit P3 digital port.
Returns
DerrNoError No error

Function Usage

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form dagDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to digital-to-analog converter
(DAC) channels and/or digital input/output (DIO) channels that are synchronously updated
by a clock source defined by the application.

The dagDacWaveArm function enables a waveform/pattern output based upon the current waveform/pattern
output channel configuration. Channels configured for waveform/pattern output need to be set either
DdomStaticWave or DdomDynami cWave output mode to be included in the waveform/pattern output
operation

(see dagDacSetOutputMode for more details on configuration channel output modes).

4.4-12 Daq APl Command Reference 908494 Programmer’s Manual

Before Invoking dagDacWaveArm

This function requires that all waveform channels are properly set to the correct modes and that the
waveform/pattern output trigger events, the output modes, and the update clock are all set before this function
is invoked. Specifically, the following steps need to be performed before calling this function:

e Configure all the output channels to be included in the waveform/pattern output as static or dynamic
output mode (DdomStaticWave or DdomDynamicWave) via the dagDacSetOutputMode
function.

e |f streaming output from a file, then set the disk file using the dagDacWaveSetDiskFi le for each
channel that as been configured for waveform/pattern output (the disk file should name should be the
same for all output channels).

e Set the waveform/pattern output clock source for each output channel via the
dagDacWaveSetClockSource function.

e |f the selected clock source uses the internal waveform/pattern output pacer clock, then set the output
update frequency using the dagDacWaveSetFreq function.

e Set the trigger event which will initiate the waveform/pattern output via the dagDacWaveSetTrig
function.

e Configure the update mode and waveform/pattern output termination conditions using the
dagDacWaveSetMode function.

e Though it is not required, it is also recommended that the transfer buffer is allocated and the transfer
is enabled prior to invoking this function (dagDacWaveSetBuffer and the
dagDacTransferStart functions.

After Invoking dagDacWaveArm

Once the preliminary steps have been taken to setup up dagDacWaveArm, it can be used to arm the device
for waveform/pattern output. However, the device will not begin the actual output of data to the ports
configured for waveform/pattern output until the trigger event has occurred (unless the trigger event is
configured as DdtsImmediate). The trigger event is configured using the dagDacWaveSetTrig
function.

Once triggered, the device will begin outputting data from its internal output FIFO. Therefore, it is important
to have already transferred at least the first block of data from the application allocated output transfer buffer to
the device’s internal output buffer before the trigger event occurs. For more information on transferring data
from the application to the internal output FIFO, see dagDacWaveSetBuffer and
dagDacTransferStart. While the waveform/pattern output operation is occurring, the progress of the
waveform/pattern output may be monitored using the dagDacTransferStart function.

The waveform/pattern output will terminate based upon the update mode set by the dagDacWaveSetMode
function. Regardless of the update mode, however, any waveform/pattern output may be terminated by issuing
the dagDacWaveDisarm function for the device.

When this function is invoked, the driver determines if there are any problems with any of the
waveform/pattern output configuration parameters issued by application. Since the bulk of the actual
waveform/pattern output configuration is performed when this function is invoked, any potential configuration
problems or parameter value conflicts will be detected here.

Programmer’s Manual 908494 Dag APl Command Reference 4.4-13

Prototypes
C/C++
dagDacWaveArm(DagHandleT handle, DagDacDeviceType deviceType);
Visual BASIC
VBdagDacWaveArm&(ByVal handleé&, ByVal deviceType&)

Program References
DAQDACEX02.CPP, DAQDACEX03.CPP

4.4-14 Daq APl Command Reference 908494 Programmer’s Manual

dagDacWaveDisarm

Also See: dagDacWaveArm
Format

dagDacWaveDisarm(handle, deviceType)
Purpose
dagDacWaveDisarm disarms a waveform/pattern output if one is active on the specified device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which a DAC waveform output
will be disarmed
deviceType | DagDacDeviceType Specifies the DAC type

Parameter Values

handle: obtained from the dagOpen function
deviceType: see table below

Parameter Type Definitions

deviceType-(DagDacDeviceType)
Definition Description
DddtLocal DAC output from P2 of the device
DddtLocalDigital DAC output from the 16-bit P3 digital port
Returns
DerrNoError No error

Function Usage

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form daqDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to digital-to-analog converter
(DAC) channels and/or digital input/output (DIO) channels that are synchronously
updated by a clock source defined by the application.

The dagDacWaveDisarm function will disable the waveform/pattern output on the specified device and
terminate any output buffer transfers that are currently active (see dagDacTransferStop for more details
on output buffer transfer termination). Waveform/pattern output will be terminated immediately, regardless of
the current state of the waveform/pattern output or the state of the digital-to-analog converter (DAC) or digital
input/output (D10) channels from which the waveform/pattern output is being generated.

Prototypes
C/IC++
dagDacWaveDisarm(DagHandleT handle, DagDacDeviceType deviceType);
Visual BASIC
VBdagDacWaveDisarm&(ByVal handleé&, ByVal deviceType&)

Program References
DAQDACEX02.CPP, DAQDACEX03.CPP

Programmer’s Manual 908494 Dag APl Command Reference 4.4-15

dagDacWaveGetFreq

Also See: dagDacWaveArm,
dagDacWaveDisarm, dagDacWaveSetFreq

Format
dagDacWaveGetFreq(handle, deviceType, chan, freq)
Purpose

dagDacWaveGetFreq retrieves the current setting for the waveform/pattern output update frequency (in
Hz) for the specified device (selected by dagDacWaveSetClockSource).

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which to retrieve the current
waveform output frequency
deviceType DagDacDeviceType | Specifies the DAC type

chan DWORD Specifies the DAC channel
freq PFLOAT Returns the current DAC waveform output frequency
setting

Parameter Values

handle: obtained from the dagOpen function
deviceType: see table below
chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType
table below
freq: pointer to a single precision floating point value (4 bytes) that will store the update frequency update
upon return from this function.

Parameter Type Definitions

DeviceType—(DaqgDacDeviceType)
Definition chan Value Description
DddtLocal 0 Start the transfer of waveform/pattern output data where DACO is one of the
channels being output.
1 Start the transfer of waveform/pattern output data where DACL is one of the
channels being output.
2 Start the transfer of waveform/pattern output data where DAC2 is one of the
channels being output.
3 Start the transfer of waveform/pattern output data where DAC3 is one of the
channels being output.
DddtLocalDigital 0 Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is
one of the channels being output.

4.4-16 Daq APl Command Reference 908494 Programmer’s Manual

Returns

DerrNoError No error

Function Usage

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form daqDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to digital-to-analog converter
(DAC) channels and/or digital input/output (DIO) channels that are synchronously
updated by a clock source defined by the application.

The dagDacWaveGetFreq function returns the frequency via the freq parameter, The frequency is
dependent upon the clock source chosen for the selected device (see dagDacWaveSetClockSource. The
Freq parameter is a pointer to a single-precision floating point variable that must be allocated by the calling
application. The waveform/pattern output update frequency is programmed with the dagDacWaveSetFreq
function.

G The returned frequency value (freq) will not be valid until the waveform is armed with the
9~ dagDacWaveArm function.

Getting the Actual Output Update Frequency

The frequency programmed using the dagDacWaveSetFreq function may not be obtainable. The reason
for this is that either the frequency specified was outside of the operating update frequency of the output pacer
clock, or the frequency is not attainable due to the resolution of the pacer clock. If the latter is the case, then
the output pacer clock will be programmed to the nearest attainable frequency. If the frequency is outside of
the operating range of the pacer clock, then an error will be generated. See the dagDacWaveGetFreq
function for more information on the actual setting of the output pacer clock frequency.

The specifications section of the device user’s manual provides the frequency settings for the device.

Prototypes

C/C++

dagDacWaveGetFreq(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, PFLOAT freq);

Visual BASIC
VBdagDacWaveGetFreg&(ByVal handle&, ByVal deviceType&, ByVal chan&, freq!)

Program References
None

Programmer’s Manual 908494 Dag APl Command Reference 4.4-17

dagDacWaveSetBuffer

Format

Also See: dagDacTransferStart, dagDacTransferStop

dagDacWaveSetBuffer(handle, deviceType, chan, buf, scanCount,

transferMask)

Purpose

dagDacWaveSetBuffer configures a waveform/pattern output transfer buffer for the specified device and

channel.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device for which a DAC waveform transfer
buffer will be configured

deviceType DagDacDeviceType | Specifies the DAC type
chan DWORD Specifies the DAC channel
buf PWORD Pointer to the user allocated waveform transfer buffer
scanCount DWORD Length of the waveform buffer in output samples
transferMask | DWORD Configures the buffer transfer mode

Parameter Values

handle: obtained from the dagOpen function
deviceType: see table below
chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType

table below

buf: pointer to buffer which contains scanCount updates for each channel in waveform/pattern output

mode

scanCount: length of the buffer in updates for each channel can be 1 to 4,294,967,295; however, memory
limitations may apply
transferMask: see table below

Parameter Type Definitions

DeviceType—(DaqgDacDeviceType)
Definition chan Value Description
DddtLocal 0 Start the transfer of waveform/pattern output data where DACO is one of the
channels being output.
1 Start the transfer of waveform/pattern output data where DACL1 is one of the
channels being output.
2 Start the transfer of waveform/pattern output data where DAC?2 is one of the
channels being output.
3 Start the transfer of waveform/pattern output data where DAC3 is one of the
channels being output.
DddtLocalDigital 0 Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is
one of the channels being output.
transfterMask
Definition Description
DdtmUserBuffer Selects a user buffer for waveform/pattern output
DdtmDriverBuffer Selects a driver buffer for waveform/pattern output

Returns

4.4-18 Daq APl Command Reference

908494

Programmer’s Manual

DerrNoError No error

Function Usage

The term waveform/pattern output is used extensively throughout the entries for the functions of
the form dagDac.... This refers to an analog waveform output modes and/or digital pattern
output modes. These terms describe output to digital-to-analog converter (DAC) channels
and/or digital input/output (DIO) channels that are synchronously updated by a clock source
defined by the application.

The dagDacWaveSetBuffer function allows you to configure a waveform/pattern output transfer buffer
for the specified device and channel. This function may be used to configure a user-supplied buffer for
transferring user supplied data to any of the output channels capable of performing waveform or streamed
output.

Buffer Location, Length, and Settings

The buf parameter is the address of the waveform/pattern output transfer buffer allocated by the application.
If the application is supplying the buffer, then this value must be an address to an adequately allocated buffer

The scanCount parameter is the total length of the output transfer buffer in updates per channel. The
number of channels configured for waveform/pattern output determines the total number of samples required
for each update. Therefore the buffer size to be allocated (in bytes):

scanCount * (number of output channels configured for waveform/pattern output)
* (the sample size: 2 bytes)

Buffer Management

Buffer management for waveform/pattern output depends upon the output mode setting, described as follows:

Static Waveform/Pattern Mode

If the waveform/pattern output mode has been defined to be static (see dagDacSetOutputMode, then the
following steps must be performed to complete the static waveform/pattern output operation:

e Specify the output transfer buffer location and details with the dagDacWaveSetBuffer function.
The specified buf parameter must point to memory which has already been allocated by the
application prior to calling this function. The allocated buffer must be large enough to hold all of the
output updates required for each channel to complete the entire static waveform/pattern output, as
determined by the current waveform/pattern output channel configuration. The output data must fit
entirely within the internal waveform/pattern output FIFO on the device.

e Configure any waveform/pattern settings (such as update mode, trigger sources, frequency settings
that need to be configured.

e (Call the dagDacTransferStart function to download the output transfer buffer into the internal
waveform/pattern output FIFO on the device.

e Arm the waveform/pattern output by issuing the dagDacWaveSetTrig function.
e Trigger the waveform/pattern output (if necessary).

e The status of the static waveform/pattern output can be monitored by calling the
dagDacTransferGetStat function.

Programmer’s Manual 908494 Dag APl Command Reference 4.4-19

Dynamic Waveform/Pattern Mode with Circular Buffer

If the waveform/pattern output mode has been defined to be dynamic (see dagDacSetOutputMode) anda
circular output transfer buffer is to be used, then the following will need to be performed to complete the
dynamic waveform/pattern output operation:

e Specify the output transfer buffer location and details with the dagDacWaveSetBuffer function.
The specified buf parameter must point to memory which has already been allocated by the
application prior to calling this function. The allocated buffer must be large enough to hold the
number of output updates for each channel required for the block of data to be transferred as
determined by the current waveform/pattern output channel configuration.

e Configure any waveform/pattern settings (such as update mode, trigger sources, frequency settings
that need to be configured

e (Call the dagDacTransferStart function to download the output transfer buffer into the internal
waveform/pattern output FIFO on the device.

e Arm the waveform/pattern output by issuing the dagDacWaveSetTrig function.
e Trigger the waveform/pattern output (if necessary).

e Monitor status of the dynamic waveform/pattern output calling the dagDacTransferGetStat
function. The total amount of data transferred from the circular output transfer buffer to the
waveform/pattern output FIFO on the device will be returned in the retCount parameter. The
current position of the next data block to be written to the waveform/pattern output FIFO on the
device can be calculated using the value of the retCount parameter. Please refer to the
dagDacTransferGetStat function for a complete discussion of calculating the current write
position pointer.

In general, the size allocated should be at least large enough to handle any delays that may be encountered
between buffer updates by the application without the buffer running completely empty. As the
waveform/pattern output progresses, the waveform/pattern output FIFO on the device will be filled by
emptying the unread data in the output transfer buffer. This value can vary, depending upon the ability of the
application to frequently update the buffer, and the update rate at which the outputs are clocked. However, a
good general rule is to make the size of the output transfer buffer at least that of the size of the
waveform/pattern output FIFO on the device.The filling of the output FIFO with data in the output transfer
buffer is performed automatically by the driver without checking whether the application has updated the
buffer. Therefore, the application needs to be aware of the current write position within the buffer, as well as
feeding new data updates to the buffer portions which have already been written but not updated. This function
should be called with the DdtmCycleOn flag set.

Dynamic Output Transfer Buffer Organization

The output transfer buffer is organized into sequences of update data blocks. Each update data block represent
the sample data necessary to update all output channels configured for waveform/pattern output. The sample
data is ordered according to the output channel for which it will be output. Each update data block is ordered
as follows:

DACO DAC1 DAC2 DAC3 P3 DO

If any of the above channels is not configured for waveform/pattern output, then it will simply not be included
in the update data block--however, the channel ordering will not change. If, for example, a waveform/pattern
output is configured for DACO, DAC2 and P3 DO will have the following update data block:

DACO DAC2 P3 DO

4.4-20 Daq APl Command Reference 908494 Programmer’s Manual

The transfer output buffer is organized into update data blocks. When the output update clock fires, the next
available update data block is loaded from the internal waveform/pattern output FIFO on the device to the port,
which then presents the values to either the DAC or digital port for output.

Data Presented to Outputs

DACO | DAC1 | DAC2 | DAC3 | P3DO0O DACO | DAC1 | DAC2 | DAC3 | P3DO

| T

Update clock Update clock

v

< Processing Output FIFO

Likewise, the buffer is organized in a similar manner.

DACO | DAC1 DAC2 | DAC3 P3D0 DACO | DAC1 DAC2 | DAC3 P3D0

Update Data Block 0 Update Data Block 1

As the output FIFO empties, the driver will automatically transfer data from the output transfer buffer to the
output FIFO on the device. This transfer process will continue until either the waveform/pattern output
transfer is stopped via the dagDacTransferStop function, the waveform/pattern output is halted with the
dagDacWaveDisarm function or the waveform/pattern output is normally terminated as defined by the
dagDacWaveSetMode function.

Buffer Output Channel Data Format

The format for each update sample in the buffer is a 16-bit integer. This parameter is an integer value ranging
from 0 to 65,535. This is a 16-bit value and the 16-bit value spans the range over which the output can vary,
depending upon the specified range of the port for the device.

Some DAC channels use 16-bit D/A converters--in these converters, each bit in the 16-bit integer corresponds
to one bit programmed to the D/A converter. However, some DAC channels have 12-bit D/A converters. In
this case, the low order nibble (4-bits) of the 16-bit sample will be ignored.

The specifications section of the device user’s manual provides the ranges and the associated resolution values
for the device.

Programmer’s Manual 908494 Dag APl Command Reference 4.4-21

Prototypes

C/C++

dagDacWaveSetBuffer(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, PWORD buf, DWORD scanCount, DWORD transferMask);

Visual BASIC

VBdagDacWaveSetBuffer&(ByvVal handle&, ByVal deviceType&, ByvVal chané&,
buf%(), ByVal scanCount&, ByVal transferMask&)

Program References
DAQDACEX02.CPP

4.4-22 Daq APl Command Reference 908494 Programmer’s Manual

dagDacWaveSetClockSource

Format

Also See: dagDacWaveSetFreq, dagDacWaveGetFreq

dagDacWaveSetClockSource(handle, deviceType, chan, clockSource)

Purpose

dagDacWaveSetClockSource sets the clock source for waveform/pattern output to the digital-to-analog
converter channels (DAC) and the digital input/output (D10O) channels.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the waveform output clock
source will be set
deviceType DagDacDeviceType Specifies the DAC type
chan DWORD Specifies the DAC channel
clockSource | DagDacClockSource | Set the clock to the specified source

Parameter Values

handle: obtained from the dagqOpen function
deviceType: see table below
chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType

table below

clockSource: see table below

Parameter Type Definitions

deviceType—(DagDacDeviceType)
Definition chan Value Description
DddtLocal 0 Start the transfer of waveform/pattern output data where DACO is one of the
channels being output.
1 Start the transfer of waveform/pattern output data where DACL1 is one of the
channels being output.
2 Start the transfer of waveform/pattern output data where DAC?2 is one of the
channels being output.
3 Start the transfer of waveform/pattern output data where DAC3 is one of the
channels being output.
DddtLocalDigital 0 Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is
one of the channels being output.

Programmer’s Manual

908494 Dag APl Command Reference 4.4-23

clockSource-(DagbacClockSource)

Note: For daq9513 specific commands [used only for DagBoard and DagBooks of the 100 and 200 Series]
refer to Appendix D.

Definition Description

DdcsDacClock Specifies using the internal waveform/pattern output pacer clock on the device
(see dagDacWaveSetFreq).

DdcsGatedDacClock | Specifies using the internal waveform/pattern output clock which is then gated
through an external input (TTL input). Refer to pinout in user’s manual for
connection location.

DdcsAdcClock Specifies that the waveform/pattern output clock follow that of current
acquisition clock setting (see dagAdcSetClockSource).
DdcsExternal TTL Specifies an external timebase supplied via External Dac Pacer Clock Input.
Refer to pinout in user’s manual for connection location.
DdcsRisingEdge Clock Control Flag

DdcsRisingEdge = 0x0

DdcsFal lingEdge Clock Control Flag
DdcsFallingEdge = 0x100

DdcsOutputDisable | Output Control Flag
Disables the Dac internal clock output (see note 1).

DdcsOutputEnable Output Control Flag
Enables the Dac internal clock output (see note 1).

Note 1: This note applies to the Daq Devices listed in the first block of the above table.

To enable the pacer output you must include the clock source with a parameter that enables the
output clock; in other words, you have to write your dagDacWaveSetClockSource
command as follows:

C/C++ Style:
dagDacWaveSetClockSource (handle, deviceType, chan,
DdcsDacClock | DdcsOutputEnable);
Visual Basic Style:
VBdagDacWaveSetClockSource (handle, deviceType, chan,
DdcsDacClock + DdcsOutputEnable);
The DdcsOutputEnable parameter is defined in the header file in the Dagx - bas module
(VB):
' DagBoard/2000 Output Control Flags

Global Const DdcsOutputDisable = 0
Disables the Dac internal clock output.

Global Const DdcsOutputEnable = &H1000
Enables the Dac internal clock output.

4.4-24 Daq APl Command Reference 908494 Programmer’s Manual

Returns
DerrNoError No error

Function Usage

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form daqDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to digital-to-analog converter
(DAC) channels and/or digital input/output (DIO) channels that are synchronously
updated by a clock source defined by the application.

The dagDacWaveSetClockSource function’s clockSource parameter specifies the clock source to
use for updating all DAC/DIO channels which have been configured for waveform/pattern output. Regardless
of the clock source selected, all channels configured for waveform/pattern output (see
dagDacSetOutputMode will be synchronously updated upon each update clock pulse.

If using DaqBoard(I1SA): If the more than one DAC channel waveform/pattern output is
active, the update frequency for each channel is this rate divided by the total number of
active DAC waveform output channels.

Prototypes

C/C++

dagDacWaveSetClockSource(DagHandleT handle, DagDacDeviceType deviceType,
DWORD chan, DaqgDacClockSource clockSource);

Visual BASIC

VBdagDacWaveSetClockSource&(ByVal handle&, ByVal deviceType&, ByvVal chané&,
ByVal clockSource&)

Program References
DAQDACEX02.CPP, DAQDACEX03.CPP

Programmer’s Manual 908494 Dag APl Command Reference 4.4-25

dagDacWaveSetDiskFile

Format

Also See: dagDacWaveSetBuffer,

dagDacSetOutputMode, dagDacTransferGetStat

dagDacWaveSetDiskFile(handle, deviceType, chan, filename, numUpdateCycles,
offsetBytes, offsetUpdateCycles, dataFormat)

Purpose

dagDacWaveSetDiskFi le configures a waveform/pattern output for streaming from a file.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device from which

deviceType DagDacDeviceType Specifies the DAC type

chan DWORD Specifies the DAC channel

fileName LPSTR String representing the path and
filename of the disk file to be output

numUpdateCycles DWORD Number of update cycles to read from
file

offsetBytes DWORD Offset for header in bytes

offsetUpdateCycles | DWORD Number of update cycles to skip at the
start of the file

dataFormat DagDacWaveFileDataFormat | Format of data file

Parameter Values

hnadle: obtained from the dagOpen function
deviceType: see table below
chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType

table below

FileName: pointer to a valid string containing the path and file name of the output data file
numUpdateCycles: the number of usable updates cycles in the file can range from 0 to 4,294,967,295;
however, disk memory limitations may apply. If set to 0, will read all cylces from the

file

offsetBytes: the number of bytes to skip at the beginning of the file range from 0 to 4,294,967,295;
however, disk memory limitations may apply
offsetUpdateCycles: the number of update cycles to skip at the beginning of the file range from 0 to

dataFormat: see table below

4,294,967,295, however, disk memory limitations may apply

4.4-26 Daq APl Command Reference

908494

Programmer’s Manual

Parameter Type Definitions

deviceType—(DagDacDeviceType)
Definition Chan Value Description
DddtLocal 0 Start the transfer of waveform/pattern output data where DACO is one of the
channels being output.
1 Start the transfer of waveform/pattern output data where DACL is one of the
channels being output.
2 Start the transfer of waveform/pattern output data where DAC2 is one of the
channels being output.
3 Start the transfer of waveform/pattern output data where DACS3 is one of the
channels being output.
DddtLocalDigital 0 Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is
one of the channels being output.
dataFormat-(DagDacWaveFi leDataFormat)
dataFormat Value Data Format DAC Output P3 Digital Sample Data
Output Termination
DdwdfBinaryCounts 16-bit word Raw D/A Counts Word is 16-bit None -- fixed 2
(low/high byte) (low/high byte) Pattern bytes
DdwdfBinaryCountsHL 16-bit word Raw D/A Counts Word is 16-bit None — fixed 2
(high/low byte) (high/low byte) Pattern bytes
DdwdfBinaryFloat Single Precision Float Float D/A Volts Integer portion is None - fixed 4
(4 bytes) (-10.0 to +10.0) 16-bit Pattern bytes
DdwdfBinaryDouble Double Precision Float Double D/A volts Integer portion is None — fixed 8
(8-bytes) (-10.0 to +10.0) 16-bit Pattern bytes
DdwdfAsci iCountsDec Decimal ASCII chars ASCII Decimal D/A Counts | Decimal value is Any non-Dec
(0-65535) 16-bit Pattern ASCII chars
DdwdfAsci iCountsHex Hex ASCII chars ASCII Hex Hex value is 16-bit | Any non-Hex
(0-FFFF) D/A Counts Pattern ASCII chars
DdwdfAsciiCountsBin Binary ASCII chars ASCII Binary D/A Counts Decimal value is Any non-Bin
(0-1111111111111111) 16-bit Pattern ASCII chars
DdwdfAsci iCountsOct Octal ASCII chars ASCII Octal Decimal value is Any non-Octal
(0-177777) D/A Counts 16-bit Pattern ASCII chars
DdwdfAsciiFloat Floating Point ASCII chars | ASCII Float Float value Any non-Floating
(-10.0 - 65535.0) Voltage (integer portion) is | Point
(-10.0 - +10.0) 16-bit Pattern ASCII chars
Returns
DerrNoError No error

Programmer’s Manual 908494 Dag APl Command Reference 4.4-27

Function Usage

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form daqDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to digital-to-analog converter
(DAC) channels and/or digital input/output (DIO) channels that are synchronously
updated by a clock source defined by the application.

The dagDacWaveSetDiskFi le function has two prerequisites: first, the appropriate channels have been
configured for waveform/pattern output using dynamic output mode (see the dagDacSetOutputMode
function) and second, the dagDacWaveSetBuffer function must be set to DdtmDriverBuffer.
Generally, the waveform/pattern should be configured in the same manner as a standard transfer from a PC
memory-based buffer, with the exception that no transfer buffer needs to be allocated. The driver will
automatically transfer all data from the specified file to the internal output FIFO on the device while the output
transfer is active.

File Location

The Filename parameter specifies the location of the waveform/pattern output file. This is a string variable
that contains the path and file name to open. The path may be any valid local or network path name.

However, it should be noted, that a path to a network file may have intrinsic file 1/O delays associated with it
that would hinder the output process under high throughput configurations. Care should be exercised when
specifying a file that is not local to the PC controlling the waveform/pattern output operation.

File Organization

The following sections describe the layout and format of the source file for the waveform/pattern output
operation from file. This function supports a number of different data formats for the source file, as well as
providing mechanisms to output any contiguous block of update output data within the file.

File Layout

The offsetBytes and the offsetUpdateCycles parameters allow the start of the update data to be
offset from the beginning of the file. The offsetBytes parameter indicates that a certain number of bytes
appear at the beginning of the file that should be ignored. These bytes may be file header information or other
data but are not valid output samples. If there is no file header information or non-output data, then
offsetBytes should be set to 0. The offsetUpdateCycles parameter indicates that a certain amount
of output update cycle data should be ignored. The value of this parameter specifies the number of output
cycles that should be ignored at the beginning of the file. If the oFfsetBytes is non-zero, then these output
update cycles may follow the header or other information in the file. An output cycle consists of an update data
block which consists of all channel data necessary for one update clock output for all configured channels. The
numUpdateCycles parameter indicates the number of output update cycles to output from the file after the
offset data. This value does not indicate the number of total output cycles to perform during the output from
file operation, it simply indicates the number of cycles in the file that should be output for each iteration of the
file.

The following table shows how the entire file is organized. The arrows indicate the iterations of the valid
output cycle data within the file when the file is being output to the device.

o In the following table, the shaded areas indicate the portion of the file that is to be ignored for the
waveform/pattern output from file operation.

e |f the numUpdateCycles value is set to 0, then all the data after the offset data and before the
end of the file will be used during the output operation.

o The following table represents a file that has sample data for DAC0, DAC1, DAC2, DAC3 and P3
Digital Output channels. A file with data for a different channel configuration will change
accordingly. The number of cycles to ignore will be based upon the waveform/pattern output
channels that are currently configured(see dagDacSetOutputMode function).

4.4-28 Daq APl Command Reference 908494 Programmer’s Manual

Header Information (of fsetEytes in bytes)
Cycle 0 EFadi] Dact Lac2 DACS F3 DO
Data Data Data Data Data
Cycle 1 EF el BFey| LAc2 LACS P3 D0
Diata Data Data Dista Data
Cycle 2 EFa] DAcCt Lac2 DACS P3 D0
Data Data Data Data Data
Cycle 3 LAaCn DACT [ac2 DACS F3 D0
Data Drata Data Data Ciata
Cyele .. Lacn (BFes| Lac2 DACS F3 D0
Data Data Diata Data Data
Cyole (of feetUpdat elyoles-1) DACD DA Dac2 DAC3 P3I00
Diata Data Data Data Data
& | Cyole(of fsetUpdat eCyeles) DACO DACH DAC2 DACS FaD0
Data Data Drata Data Data
Cyele (of fzetUpdat eCyolas +1) DACO D ACH DACZ DACS EANTH]
Data Data Data Data Data
Cyele .. Lacn Dac Lac2 LACa P3D0
Data Data Data Data Data
Cyele .. Dacn DACT DAC2 DACS F3D0O
Data Data Data Data Data
Cycle .. [EF] DaCt DAaC2 LACa F300O
Data [ata Drata Data [ata
Cycle ... DACTD DACT Dac? DACS P00
Diata Data Diata Diata Data
Cyele [of fzetUpdat eCyoles + Daco Dac Dac2 DAC3 P3aD0
X MalpdateCyoles - 1) Data Data Data Data Data
Cyole (of foetUpdat elvoles + DACO D ACY DaC2 | DACS | P3D0
ManlfpdateCyoles) Data [iata Data Data [ata
Cyole (of fzetTpdatelycles + LACO DAcT Dac2 DACS P3 D0
ManlTpdateCycles + 1) Data Data Diata [iata Data
Cyele .. EF el (BPa | [ac2 DACS F3 00O
Diata Data Diata Diata Data
Cyele (EOF cyde) Dacn Dact Lac2 DAC3 F3D0
Data Data Data Data Data

The driver will automatically calculate the number of complete output update cycles in the file using the offset
information, the number of channels currently configured for waveform/pattern output, the size of the data
samples and the total file size.

Update Cycle Data Blocks

The waveform/pattern output file is organized into sequences of update data blocks. Each update data block

represent the sample data necessary to update all output channels configured for waveform/pattern output for
one output cycle. Each output cycle is initiated by an update clock pulse (see dagDacWaveSetFreq and
dagDacWaveSetClockSource). The sample data is ordered according to the output channel for which it
will be output. Each update data block is ordered as follows:

‘ DACO ‘ DAC1 ‘ DAC2 ‘ DAC3 ‘ P3 DO ‘

If any of the above channels is not configured for waveform/pattern output then it will simply not be included
in the update data block, however, the channel ordering will not change. If for example a waveform/pattern
output is configured for DACO, DAC2 and P3 DO will have the following update data block:

‘ DACO ‘ DAC2 ‘ P3 DO ‘

Programmer’s Manual 908494 Dag APl Command Reference 4.4-29

Update/Sample Data Format

The dataFormat parameter allows the selection of the format of the output sample data that applies to the
file. The file must have the its sample data formatted in one of the following valid formats in order to be used
for a waveform/pattern output from file operation. The while the layout of the output file is fixed, the format of
the output sample data can vary greatly. Several output sample data formats are available in both binary and
ASCII data formats.

Output From File Operation

Once the waveform/pattern output has been configured and the output from file has been setup using this
function, the waveform/pattern output operation can be armed using the dagDacWaveArm function. When
the waveform/pattern output operation is armed, the driver will transfer as much output data as possible to the
internal output FIFO on the device. Once the waveform/pattern output operation is triggered, the driver will
then refill the internal output FIFO as room becomes available from the specified output data file. The cycle
data transferred from the output data file to the internal output FIFO is read from the valid output cycle data
area defined by the file layout table in the “File Layout” section (unshaded update cylces)

Output
[Header Info | Offset Cycles | Valid Data Cycles [Unused Cycles || FIFO

|A
«

While the waveform/pattern output operation is active, the driver will continue to fill the internal output FIFO
with output cycle data until the waveform/pattern output termination condition is satisfied. The
waveform/pattern output termination is configured by setting the appropriate update mode using the
dagDacWaveSetMode function. Once cycle data is transferred to the internal output FIFO on the device,
the device is responsible for maintaining the output FIFO and updating the output channels every update clock
pulse. When the output update clock “fires”, the next available update data block is loaded from the internal
waveform/pattern output FIFO on the device to the port, which then presents the values to the DAC or digital
port for output.

Data Presented to Outputs

‘ DACO ‘ DAC1 ‘ DAC2 ‘ DAC3 ‘ P3 DO ‘ DACO ‘ DAC1 ‘ DAC2 ‘ DAC3 ‘ P3 DO ‘

Update clock (Update Cycle 0) Update clock (Update Cycle 1)

v

Processing Output FIFO

The status of a waveform/pattern output operation can be monitored using the dagDacTransferGetStat
function. When in waveform/pattern output-from-file mode, the retCount parameter indicates the number of
iterations of the file and not the total number of update cycles.

The amount of data transferred of the will automatically calculate the number of complete output update cycles
in the file using the offset information, the number of channels currently configured for waveform/pattern
output, the size of the data samples and the total file size.

4.4-30 Daq APl Command Reference 908494 Programmer’s Manual

Prototypes

C/C++

dagDacWaveSetDiskFile(DagHandleT handle, DagDacDeviceType deviceType,
DWORD chan, LPSTR filename, DWORD numUpdateCycles, DWORD OffsetBytes,
DWORD OffsetUpdateCycles, DagDacWaveFileDataFormat dataFormat);

Visual BASIC

VBdagDacWaveSetDiskFile&(ByVval handleé&, ByVal deviceType&, ByvVal chan&,
Byval filename$, ByVal numUpdateCycles&, ByVal OffsetBytes&, ByVal
OffsetUpdateCycles&, ByVal dataFormat&)

Program References
None

Programmer’s Manual 908494 Dag APl Command Reference 4.4-31

dagDacWaveSetFreq

Also See: dagDacWaveGetFreq, dagDacWaveSetClockSource
Format
dagDacWaveSetFreq(handle, deviceType, chan, freq)
Purpose

dagDacWaveSetFreq sets the waveform/pattern output update frequency (in Hz) for the specified device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the waveform output update
frequency will be set
deviceType DagDacDeviceType | Specifies the DAC type

chan DWORD Specifies the DAC channel
freq FLOAT Sets the DAC waveform output frequency to the specified
frequency

Parameter Values

handle: obtained from the dagqOpen function

deviceType: see table below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType
table below

Freq: single precision floating point value (4 bytes) that contains the update frequency from
0.0 to 500000.0 Hz

Parameter Type Definitions

DeviceType—(DagDacDeviceType)
Definition chan Value Description
DddtLocal 0 Start the transfer of waveform/pattern output data where DACO is one of the
channels being output.
1 Start the transfer of waveform/pattern output data where DACL is one of the
channels being output.
2 Start the transfer of waveform/pattern output data where DAC2 is one of the
channels being output.
3 Start the transfer of waveform/pattern output data where DAC3 is one of the
channels being output.
DddtLocalDigital 0 Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is
one of the channels being output.
Returns
DerrNoError No error

4.4-32 Daq APl Command Reference 908494 Programmer’s Manual

Function Usage
nfe)

The frequency is set via the Freq parameter and is dependent upon the clock source chosen for the selected
device. The clock source can be configured via the dagDacWaveSetClockSource function. The
waveform/pattern output update frequency is the rate at which samples are sent from the internal output FIFO
to a single output channel.

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form dagDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to DAC and/or digital output
channels that are synchronously updated by a clock source defined by the application.

Setting the Output Update Frequency

The output update frequency is set via the freq parameter. This parameter sets the internal waveform/pattern
output pacer clock (in Hz) and represents the frequency at which all channels configured for waveform/pattern

output will be updated. Each time the configured waveform/pattern output pacer clock fires, a sample for each
channel will be loaded from the internal FIFO into the appropriate DAC or digital output device and output.

The frequency programmed using the freq function may not be obtainable. The reason for this is that either
the frequency specified is outside of the operating update frequency of the output pacer clock, or, due to the
resolution of the pacer clock, the frequency is not attainable. If the latter is the case, then the output pacer clock
will be programmed to the nearest attainable frequency. If the frequency is outside of the operating range of
the pacer clock, then an error will be generated. See the dagDacWaveGetFreq function for more
information on setting the output pacer clock frequency.

The specifications section of the device user’s manual provides the acceptable frequency values for the device.

Prototypes

C/C++

dagDacWaveSetFreq(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, FLOAT freq);

Visual BASIC

VBdagDacWaveSetFreq&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal
freq!)

Program References
DAQDACEX02.CPP, DAQDACEX03.CPP

Programmer’s Manual 908494 Dag APl Command Reference 4.4-33

dagDacWaveSetMode

Also See: dagDacWaveSetTrig, dagDacWaveSetFreq
Format

dagDacWaveSetMode(handle, deviceType, chan, mode, updateCount)

Purpose

dagDacWaveSetMode sets the waveform/pattern update mode for the output operation.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the DAC waveform
output mode will be set
deviceType DagDacDeviceType Specifies the DAC type
chan DWORD Specifies the DAC channel
mode DagbDacWaveformMode Specifies the desired DAC waveform output mode
updateCount | DWORD Sets the total sample update count

Parameter Values

handle: obtained from the dagOpen function
deviceType: see table below
chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType
table below
mode: see table below
updateCount: the total number update samples per channel to output can range from 1 to 4,294,967,295;
however, memory limitations may apply

Parameter Type Definitions

DeviceType—(DaqgDacDeviceType)

Definition chan Value Description
DddtLocal 0 Start the transfer of waveform/pattern output data where DACO is one of the
channels being output.
1 Start the transfer of waveform/pattern output data where DACL1 is one of the
channels being output.
2 Start the transfer of waveform/pattern output data where DAC?2 is one of the
channels being output.
3 Start the transfer of waveform/pattern output data where DAC3 is one of the
channels being output.
DddtLocalDigital 0 Start the transfer waveform/pattern output data where the 16-bit P3 Digital port is
one of the channels being output.

mode—(DagDacWaveformMode)

Definition Description
DdwmNShot Write the specified number of DAC points, then disarm
DdwmNFi lelterations | Write the specified number of file iterations, then stop (file mode only)?
DdwmInfinite Cycle through the buffer until the dagDacWaveDisarm function is executed
Returns
DerrNoError No error

4.4-34 Daq APl Command Reference 908494 Programmer’s Manual

Function Usage
pC

The dagDacWaveSetMode function controls how the waveform/pattern is going to proceed and how the
waveform/pattern output will terminate.

Setting the Update Mode

The mode parameter defines the state in which the waveform/pattern is to proceed and under what conditions
it should terminate. Here, there are two basic modes that can be set with the mode parameter. The first, set by
the value DdwmNShot, will continue the waveform/pattern output until a specified update count has been
satisfied. The second, set by the value DdwmInfinite, will continue the waveform/pattern output
indefinitely until explicitly terminated by the application. The deviceType and chan parameters must
correspond with a channel that has been configured for waveform/pattern output using the
dagDacSetOutputMode function. The mode values are defined as follows:

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form dagDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to DAC and/or digital output
channels that are synchronously updated by a clock source defined by the application.

DdwmNShot — Continues generating waveform/pattern output until updateCount number of samples have
been output to each channel. Upon completion of the specified amount of updates, the waveform/pattern
output will automatically terminate and disarm the waveform/pattern output for all channels. For more
information on configuring channels for waveform/pattern output operation, see dagDacSetOutputMode.
Since each output update clock initiates an output on each channel concurrently, the updateCount
parameter indicates the number of sample updates that are to occur on each channel before the
waveform/pattern output operation is terminated.

DdwmInfinite — Continues generating waveform/pattern output indefinitely. The waveform/pattern output
will continue indefinitely until the application issues a dagDacWaveDisarm function or a fatal error
condition occurs during the waveform/pattern output operation. In this mode the updateCount parameter is
ignored.

DdwmNFi lel terations — Continues generating waveform/pattern output until the the specified nhumber of
file interations are written, then stops. This setting only works in file mode. Note that, while in this mode, the
updateCount parameter of the dagWaveSetMode function will return values in terms of file iterations
instead of updates (an update consists of all data required to update all channels during a single output clock
pulse).

With either mode, the waveform/pattern output will not actually begin until the waveform/pattern output
operation has been properly armed (dagDacWaveArm) and triggered (dagDacWaveSetTrig)

Prototypes

C/C++

dagDacWaveSetMode(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, DagDacWaveformMode mode, DWORD updateCount);

Visual BASIC

VBdagDacWaveSetMode&(ByVal handleé&, ByVal deviceType&, ByVal chané&, ByVval
mode&, ByVal updateCount&)

Program References
DAQDACEX02.CPP, DAQDACEX03.CPP

Programmer’s Manual 908494 Dag APl Command Reference 4.4-35

dagDacWaveSetPredefWave

Also See: dagDacWaveSetUserWave
Format

dagDacWaveSetPredefWave(handle, deviceType, chan, waveType, amplitude,
offset, dutyCycle, phaseShift)

Purpose

dagDacWaveSetPredefWave specifies a pre-defined waveform for DAC waveform output on the
specified device channel.

G@ dagDacWaveSetMode is used to set the update rate and cycling mode for this waveform.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device to setup a pre-defined waveform output

deviceType | DagDacDeviceType | Specifies the DAC type

chan DWORD Specifies the DAC channel

waveType DagDacWaveType Specifies the predefined waveform output type

amplitude | DWORD Sets the peak-to-peak amplitude for which to generate the pre-
defined waveform

offset DWORD Sets the offset for the pre-defined waveform

dutyCycle | DWORD Sets the duty cycle as a percentage of the predefined waveform

phaseShift | DWORD Set the phase shift (in degrees) of the predefined waveform
relative to other DAC channel

Parameter Values

handle: obtained from the dagqOpen function

deviceType: see table below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType
table below

waveType: see table below

amplitude: valid values range from 0 to 65,535 (in D/A counts)

offset: valid values range from 0 to 65,535 (representing the voltage level in D/A counts)

dutyCycle: duty cycle is a percentage of the predefined waveform and can range from 1 to 100

phaseShift: phase shift is degrees to shift the predefined waveform from 0 to 360

4.4-36 Daq APl Command Reference 908494 Programmer’s Manual

Parameter Type Definitions

deviceType—(DagDacDeviceType)

Definition chan Value Description
DddtLocal 0 Start the transfer of waveform/pattern output data where DACO is one of the
channels being output.
1 Start the transfer of waveform/pattern output data where DACL1 is one of the
channels being output.
2 Start the transfer of waveform/pattern output data where DAC?2 is one of the
channels being output.
3 Start the transfer of waveform/pattern output data where DAC3 is one of the
channels being output.

WaveType-(DagDacWaveType)

Definition Description

DdwtSine Output a sine wave

DdwtSquare Output a square wave

DdwtTriangle Output a triangle wave

Returns

DerrlInvDacChan The DAC channel number doesn’t exist
DerrlnvDacParam Parameters were out-of-range
DerrinvPredefWave Predefined waveform is not supported
DerrMemAlloc Not enough memory was available to build the waveform
DerrNotCapable Hardware is not capable of this function
DerrNoError No error

6 For more details on error messages refer to the Daq Error Table.

Function Usage

The dagDacWaveSetPredefWave function creates the defined waveform on the specified channel buffer

as soon as the acquisition is armed—however, this function should only be used in static output mode.

DagBoard (ISA-Type), DagBook/2000 Series, DagBoard/2000 Series, and cPCI
DagBoard/2000c Series

When using the dagDacWaveSetPredefWave function with the DagBoard(ISA) devices, it is important to
note that they use 12-bit DAC’s. However, for consistancy, all functions use 16-bit values. The driver will
convert 16-bit parameters to appropriate 12-bit values for the DagBoard (ISA), while the 16-bit value is passed

directly to 1000 Series and 2000 Series devices.

Thus, an amp i tude or ofFfset value of 0 corresponds to the minimum output of the DAC, as follows:

e -10V for DaqBoard/2000 Series
e (QV for DagBoard (ISA-type)

A value of 65,535 corresponds to the maximum output of the DAC, as follows:
e 10V for DagBoard/2000 Series
e 5V for DagBoard (ISA-type)
The specifications section of the device user’s manual provides the resolution values for the device; for

example: the voltage for a DagBoard/2000 Series devices has a resolution of approximately 0.305 mV
(20 VV /1 65,535).

Programmer’s Manual 908494 Dag APl Command Reference 4.4-37

Prototypes

C/C++

dagDacWaveSetPredefWave(DagHandleT handle, DagDacDeviceType deviceType,
DWORD chan, DagDacWaveType waveType, DWORD amplitude, DWORD offset, DWORD
dutyCycle, DWORD phaseShift);

Visual BASIC

VBdagDacWaveSetPredefWave&(ByVvVal handle&, ByVal deviceTypeé&, ByvVal chan&,
ByVal waveType&, ByVal amplitudeé&, ByVal offset&, ByVal dutyCycle&, ByVal
phaseShift&)

Program References
DAQDACEX02.CPP, DAQDACEX03.CPP

4.4-38 Daq APl Command Reference 908494 Programmer’s Manual

dagDacWaveSetTrig

Format

Also See: dagDacWaveSetMode

dagDacWaveSetTrig(handle, deviceType, chan, triggerSource, rising)

Purpose

dagDacWaveSetTrig sets the trigger event for the waveform/pattern output operation.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle of the device for which to set DAC
waveform triggering
deviceType DagDacDeviceType Specifies the DAC type
chan DWORD Specifies the DAC channel
triggerSource | DagDacTriggerSource | Specifies the DAC output trigger source
rising BOOL Boolean indicating the trigger source edge

Parameter Values

handle: obtained from the daqOpen function

deviceType: seetab

le below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType

table below

triggerSource: see table below
rising: this parameter is ignored with the current trigger source definitions available with this command

Parameter Type Definitions

deviceType—(DagDacDeviceType)

Definition chan Value Description
DddtLocal 0 Set the trigger source of waveform/pattern output operation where DACO is
one of the channels being output.
1 Get the trigger source of waveform/pattern output operation where DACL is
one of the channels being output.
2 Set the transfer of waveform/pattern output data where DAC?2 is one of the
channels being output.
3 Set the transfer of waveform/pattern output data where DACS3 is one of the
channels being output.
DddtLocalDigital 0 Set the transfer waveform/pattern output data where the 16-bit P3 Digital port

is one of the channels being output.

triggerSource-(DagDacTriggerSource)

Definition Description
DdtsImmediate Output immediately after arming
DdtsSoftware Output upon calling the dagDacWaveSoftTr igfunction from user or software
DdtsAdcClock Output on a signal from the ADC clock.

Programmer’s Manual

908494 Dag APl Command Reference 4.4-39

Returns

DerrNoError No error

Function Usage

nge

The dagDacWaveSetTrig function is used to setup the trigger event to initiate a waveform/pattern output
for all channels which have been configured for waveform/pattern output mode. For more information on
configuring channels for waveform/pattern output, see the dagDacSetOutputMode function.

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form dagDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to DAC and/or digital output
channels that are synchronously updated by a clock source defined by the application.

Setting the Waveform/pattern Output Trigger Event

The triggerSource parameter specifies the source of the event that will trigger the waveform/pattern
output operation. Currently, there are only two valid trigger events that can be set with the triggerSource
parameter. The first, set with the value DdtsImmediate, indicates that the waveform/pattern output
operation should trigger immediately upon being armed. The second, set with the value DdtsImmediate,
indicates that the waveform/pattern output operation should be triggered upon the application issuing a
command to do so. The deviceType and chan parameters must correspond with a channel that has been
configured for waveform/pattern output using the dagDacSetOutputMode function. The trigger event
values are defined as follows:

DdtsImmediate - Trigger the waveform/pattern output operation immediately upon execution of the
dagDacWaveArm function. This trigger source is used to trigger the waveform/pattern output immediately
upon successfully arming the operation. Since, however, many of the configuration error conditions and
conflicts are detected during the arm operation, it is important to handle error conditions properly when using
this trigger source.

DdtsSoftware — Trigger the waveform/pattern output operation upon execution of the
dagDacWaveSoftTrig function. This trigger source requires that the dagDacWaveArm function be
issued before the dagDacWaveSoftTrig function. Once armed, the application may trigger the
waveform/pattern output operation at any time by issuing dagDacWaveSoftTrig function.

DdtsAdcClock — Trigger on the ADC clock, useful when trying to synchronize the waveform/pattern output
with the ADC clock. This trigger source is valid only for Dag 2000 Series devices.

G@ The rising flag is currently ignored and is reserved for future use.

Prototypes

C/C++

dagDacWaveSetTrig(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, DagDacTriggerSource triggerSource, BOOL rising);

Visual BASIC

VBdagDacWaveSetTrig&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal
triggerSource&, ByVal rising&)

Program References
DAQDACEX02.CPP, DAQDACEXO03.CPP

4.4-40 Daq APl Command Reference 908494 Programmer’s Manual

dagDacWaveSetUserWave

Also See: dagDacWaveSetPredefWave

Format
dagDacWaveSetUserWave(handle, deviceType, chan)

Purpose
dagDacWaveSetUserWave configures a user-defined buffer for DAC waveform output.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device to which the user-defined waveform
will be output
deviceType DagDacDeviceType | Specifies the DAC device type
chan DWORD Specifies the DAC device channel

Parameter Values

handle: obtained from the dagqOpen function

deviceType: see table below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType
table below

Parameter Type Definitions

deviceType—(DagDacDeviceType)
Definition chan Value Description
DddtLocal 0 Configure a user defined waveform for waveform/pattern output operation,
where DACQO is one of the channels being output.
1 Configure a user defined waveform for waveform/pattern output operation,
where DACL1 is one of the channels being output.
2 Configure a user defined waveform for waveform/pattern output operation,
where DAC?2 is one of the channels being output.
3 Configure a user defined waveform for waveform/pattern output operation,
where DAC3 is one of the channels being output.
DddtLocalDigital NA The 16-bit P3 Digital port is not applicable.
Returns
DerrInvDacChan The DAC channel number doesn’t exist
DerrinvBuf A waveform buffer was not specified
DerrMemAlloc Not enough memory was available to build the waveform
DerrNotCapable Hardware is not capable of this function
DerrNoError No error

For more details on error messages refer to the Daqg Error Table.

Programmer’s Manual 908494 Dag APl Command Reference 4.4-41

Function Usage
nge

Any arbitrary waveform can be built in an array. dagDacWaveSetUserWave can then be called by

specifying pointers to the beginning of the waveform, the size of the array, and the target DAC channel to
send the waveform.

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form dagDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to DAC and/or digital output
channels that are synchronously updated by a clock source defined by the application.

The data value should be 16-bit WORD which will be converted to the corresponding voltage by the D/A
converter. Reference the device user’s manual in regard to D/A range and resolution.

For example; the voltage for a DagBoard/2000 Series board has a resolution of approximately 0.305 mV
(20 V' / 65,535).

Prototypes
C/C++

dagDacWaveSetUserWave(DagHandleT handle, DagDacDeviceType deviceType,
DWORD chan);

Visual BASIC
VBdagDacWaveSetUserWave&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Program References
DAQDACEX03.CPP

4.4-42 Daq APl Command Reference 908494 Programmer’s Manual

dagDacWaveSoftTrig

Also See: dagDacWaveSetTrig

Format
dagDacWaveSoftTrig(handle, deviceType, chan)
Purpose

dagDacWaveSoftTrig activates a software trigger for the waveform/pattern output operation on the
specified device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which to trigger the DAC waveform
output
deviceType | DagDacDeviceType | Specifies the DAC device type
chan DWORD Specifies the DAC device channel

Parameter Values

handle: obtained from the dagOpen function

deviceType: see table below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType
table below

Parameter Type Definitions

DAC Device Type Definitions — DagDacDeviceType
Definition chan Value Description
DddtLocal 0 Software trigger the waveform/pattern output operation where DACO is one of the
channels being output.
1 Software trigger the waveform/pattern output operation where DAC1 is one of the
channels being output.
2 Software trigger the waveform/pattern output data where DAC?2 is one of the
channels being output.
3 Software trigger the waveform/pattern output data where DAC3 is one of the
channels being output.
DddtLocalDigital 0 Software trigger the waveform/pattern output data where the 16-bit P3 Digital
port is one of the channels being output.

Returns

DerrNoError No error

Programmer’s Manual 908494 Dag APl Command Reference 4.4-43

Function Usage

The term waveform/pattern output is used extensively throughout the entries for the
functions of the form daqgDac.... This refers to an analog waveform output modes and/or
digital pattern output modes. These terms describe output to DAC and/or digital output
channels that are synchronously updated by a clock source defined by the application.

The trigger event must first have been configured for software triggering with the dagDacWaveSetTrig
function prior to calling this function, and the trigger source must have been set to DdtsSoftware. Once
issued, the waveform/pattern output operation will begin; the updating of all channels configured for
waveform/pattern output will also begin. The deviceType and chan parameters must correspond with a
channel that has been configured for waveform/pattern output using the dagDacSetOutputMode function.

Prototypes
C/C++

dagDacWaveSoftTrig(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan);

Visual BASIC
VBdagDacWaveSoftTrig&(ByVval handle&, ByVal deviceType&, ByVal chang&)

Program References
DAQDACEX03.CPP

4.4-44 Daq APl Command Reference 908494 Programmer’s Manual

dagDacWt

Also See: dagDacWtMany

Format
dagbDacWt(handle, deviceType, chan, dataval)

Purpose

dagDacWt sets the output value of a local or expansion DAC channel.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device whose channel value will be updated
deviceType DagDacDeviceType | Specifies the DAC type
chan DWORD D/A channel to output to the selected D/A channel
dataval WORD Value to output to the selected D/A channel

Parameter Values

handle: obtained from the dagOpen function

deviceType: see the table in the “Selecting the Output Channel” section below

chan: valid values depend on the values chosen for the deviceType parameter; see the deviceType
table in the “Selecting the Output Channel” section below

dataVal : valid values range from 0 to 65,535

Returns
DerrinvChan Invalid channel
DerriInvDacVal Invalid data value
DerrNoError No error

0 For more details on error messages refer to the Daq Error Table.

Function Usage

The channel specified by the dagDacWt function must be an appropriate DAC channel type, and the channel
must have been configured as a direct output channel prior to calling this function. See
dagDacSetOutputMode for setting the output mode to be direct (using the DdomVo l tage value).

Setting the DAC Value

The value of the DAC channel is written using the dataVal parameter. This parameter is an integer value
ranging from 0 to 65,535. This is a 16-bit value, and it spans the range over which the output can vary,
depending upon the specified range of the port for the device.

Some devices use 16-bit D/A converters, in which case each bit in the 16-bit integer corresponds to one bit
programmed to the D/A converter. However, some devices have 12-bit D/A converters. In this case, the low
order nibble (4-bits) of the programmed dataVal value will be ignored when the D/A is programmed.

The specifications section of the device user’s manual provides the ranges and the associated resolution values
for the device.

Programmer’s Manual 908494 Dag APl Command Reference 4.4-45

Selecting the Output Channel

The chan and the deviceType parameters determine which output channel’s voltage will be set. The
device type is represented by predefined settings described below. The channel is simply an integer (starting at

0) which represents the channel location relative to the first channel of the same type. The table below
describes this relationship:

deviceType—(DagDacDeviceType)
Device Type chan Value Description
DddtLocal 0 Output data value to DACO
1 Output data value to DAC1
2 Output data value to DAC2
3 Output data value to DAC3
DddtDbk N*4+ 0 Set output for channel0 on a DBK2 or DBKS5 on bank N
N*4 + 0 Set output for channell on a DBK2 or DBKS5 on bank N
N*4 + 0 Set output for channel2 on a DBK2 or DBKS5 on bank N
N*4 + 0 Set output for channel3 on a DBK2 or DBKS5 on bank N
DddtLocalDigital N/A The 16-bit P3 Digital port is not applicable for analog output operations

If using an analog hardware trigger with DagBook, TempBook or DagBoard(I1SA)
products, the DAC channel 1 (deviceType = DddtLocal and chan = 1) is not available to be
programmed. The reason for this is that the DAC channel 1 is used to configure the trigger
level for the acquisition.

ndel
Prototypes
C/C++

dagDacWt(DagHandleT handle, DaqgDacDeviceType deviceType, DWORD chan, WORD
dataval);

Visual BASIC
VBdagDacWt&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal dataval%)

Program References
DAQEX.FRM (VB)

4.4-46 Daq APl Command Reference 908494 Programmer’s Manual

dagDacWtMany

Format

dagDacWtMany(handle, deviceTypes, chans, dataVals, count)

Purpose

dagDacWtMany sets the output values of multiple local or expansion DAC channels.

Parameter Summary

Also See: dagDacWt

Parameter Type Description
handle DagHandleT Handle to the device whose channel values will be updated
deviceTypes DagDacDeviceType | Pointer to an array which specifies the DAC types
chans PDWORD Pointer to any array which specifies the DAC channels
datavals PWORD Pointer to an array which gives a value to output to the
D/A channel
count DWORD Length of all the arrays

Parameter Values

handle: obtained from the dagOpen function
deviceTypes: see table below
chans: pointer to an array of output channel numbers; for channel number values, refer to the

deviceTypes table below

dataVals: valid values range from 0 to 65,535
count: the total number of analog channels to output range from 1 to 512

Parameter Type Definitions

deviceType-(DagDacDeviceType)

Returns

Definition chan Value Description
DddtLocal 0 Output data value to DACO
1 Output data value to DAC1
2 Output data value to DAC2
3 Output data value to DAC3
DddtDbk N*4+ 0 Set output for channel0 on a DBK2 or DBKS5 on bank N
N*4 + 0 Set output for channell on a DBK2 or DBKS5 on bank N
N*4 + 0 Set output for channel2 on a DBK2 or DBKS5 on bank N
N*4 + 0 Set output for channel3 on a DBK2 or DBKS5 on bank N
DddtLocalDigital NA The 16-bit P3 Digital port is not applicable for analog output operations
DerrinvDacVal Invalid data value
DerrNoError No error

For more details on error messages refer to the Daq Error Table.

Programmer’s Manual

908494 Dag APl Command Reference

4.4-47

Function Usage

The channels specified by the dagDacWtMany function must be the appropriate DAC channel types, and the
channels must have been configured as direct output channels prior to calling this function. See
dagDacSetOutputMode for setting the output mode to be direct (DdomVoltage).

The dagDacWtMany function operates in a similar manner to the single output version of the function,
dagDacWt. Here, the deviceTypes and chans parameters are arrays of DAC channel types and channel
numbers. The dataVals parameter is an array of output values corresponding to the deviceTypes and
chans arrays. The total number of channels to update (which should be equivalent to the number of entries in
each array) is set by the count parameter. Since this function is a multichannel version of the dagDacWt
function, please refer to the dagDacWt function for a complete description of the parameters and other
settings.

Prototypes

C/C++

dagDacWtMany(DagHandleT handle, DagDacDeviceType *deviceTypes, PDWORD
chans, PWORD dataVals, DWORD count);

Visual BASIC

VBdagDacWtMany&(ByVal handle&, deviceTypes&, chans&, dataValsé&, ByVval
count&)

Program References
DAQDACEX01.CPP, DBKO2ExX.cpp, DBKO5Ex.Cpp DAQEX.FRM (VB)

4.4-48 Daq APl Command Reference 908494 Programmer’s Manual

daqDefaultErrorHandler

Also See: daqGetLastError, dagProcessError,
dagSetDefaultErrorHandler

Format
dagDefaul tErrorHandler(handle, errCode)
Purpose
dagDefaul tErrorHandler displays an error message and then exits the application program.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device to which will be attached to the default error handler
errCode DaqgError Error code number of the detected error

Parameter Values

handle: obtianed form the dagOpen function
errCode: valid return values can be found in the Daq Error Table

Returns
None
Function Usage

When the device library is loaded, it invokes the default error handler whenever it encounters an error. The error
handler may be changed with dagSetErrorHandler.

6 For more details on error messages refer to the Daqg Error Table.

Prototypes
C/IC++
dagDefaultErrorHandler(DagHandleT handle, DagError errCode);
Visual BASIC
VBdagDefaultErrorHandler(ByVal handle&, ByVal errCode&)
Program References
DAQADCEXO5.CPP, DAQADCEXO06 .CPP

Programmer’s Manual 908794 Dag APl Command Reference 4.5-1

daqDeleteDevice

Format
dagDeleteDevice(Al iasName)

Purpose
dagDeleteDevice deletes the specified device from the Windows Registry

Parameter Summary

Parameter Type Description
AliasName LPSTR | Pointer to a character string containing the alias name of the device to delete

Parameter Values
AliasName: Pointer to a character string containing the alias name of the device to delete

Returns
DerrNoError if successful or a DagError error code (see the DagError table at the end of chapter 4).

Function Usage

This function deletes the specified device from the Windows Registry. Devices created using the daqCreateDevice
function or the DagX control panel applet can be deleted with this function.

Prototypes

C/C++

dagDeleteDevice(LPSTR AliasName);
Visual BASIC

VBdagDeleteDevice&(ByVal AliasName$)

Program References
None

4.5-2 Daq APl Command Reference 908794 Programmer’s Manual

dagFormatError

Also See: daqgSetDefaultErrorHandler,
dagSetErrorHandler, dagProcessError,
dagGetLastError, dagDefaultErrorHandler

Format

dagFormatError (errorNum, msg)
Purpose
dagFormatError returns the text-string equivalent for the specified error condition code.

Parameter Summary

Parameter Type Description
errorNum DagError Error condition whose text will be returned
msg PCHAR Pointer to a character string which will store the returned error text

Parameter Values

errorNum: see the Daq Error Table
msg: pointer to a character string which will hold error text; see the Daq Error Table for more details

Returns
DerrNoError No error
Function Usage

The error condition is specified by the errorNum parameter. The error text will be returned in the character string
pointed to by the msg parameter. The character string space must have been previously allocated by the application
before calling this function. The allocated character string should be, at minimum, 64 bytes in length.

6 For more details on error messages refer to the Daq Error Table.

Prototypes

C/IC++
dagFormatError(DagError errorNum, PCHAR msg)
Visual BASIC
VBdagFormatError&(ByVal errorNumé&, ByRef msg As Byte)

Program References
None

Programmer’s Manual 908794 Dag APl Command Reference 4.5-3

daqGetChannelType

Format
dagGetChannelType(handle, chan, option, pChSubType)

Purpose
dagGetChannel Type gets the channel type and sub type of the specified channel of the current device

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device for which the channel type and sub type is to be
obtained

chan DWORD Specifies which channel

option BOOL Selects an option card or main unit if applicable

pChSubType | DaqChannelSubType * Pointer to a value that will contain the channel sub type

Parameter Values

handle: obtained from the daqOpen function

channel: from 0 to the maximum number of channels available on the system

option: 0 for the main unit or non-zero for an option card

pChSubType: Pointer to a value that will contain the channel sub type or NULL if the channel sub type is not desired
(see DagAdcExpSubType of the dagGetHardwarelnfo function)

Returns

The channel type of the specified channel of the current device (see DagAdcExpType of the dagGetHardwarelnfo
function)

Function Usage
This function gets the channel type and sub type of the current device.

Prototypes

C/C++

dagGetChannel Type(DagHandleT handle, DWORD chan, BOOL option, DagAdcExpSubType *pChSubType);
Visual BASIC

VBdaqGetChannelType&(ByVal handle&, ByVal chan&, ByVal bOption&, ChSubType&)

Program References
None

4.5-4 Daq APl Command Reference 908794 Programmer’s Manual

daqGetDeviceCount

Format

dagGetDeviceCount (deviceCount)

Purpose

Also See: daqGetDevicelList, daqOpen

daqGetDeviceCount returns the number of currently configured devices.

Parameter Summary

Parameter

Type

Description

deviceCount

DWORD

Pointer to which the device count is to be returned

Parameter Values

deviceCount: a pointer to asingle value ranging from 1 to 4

Returns

DerrNoError

Function Usage

No error

The daqGetDeviceCount function will return the number of devices currently configured in the system. The
devices do not need to be opened for this function to properly detect the number of devices configured. If the
number returned does not seem appropriate, the device configuration list should be checked via the Dag*
Configuration applet located in the Control Panel. Refer to the configuration section in your device’s user manual
for more details (also see daqOpen for the Dag* Configuration applet example).

Prototypes
C/C++

dagGetDeviceCount(DWORD deviceCount);

Visual BASIC

VBdaqGetDeviceCount&(devCount As Long)

Program References

DAQADCEXO01.CPP

Programmer’s Manual

908794

Dag APl Command Reference 4.5-5

daqGetDevicelnfo

Format
dagGetDevicelnfo(handle, pDevinfo)

Purpose
dagGetDevicelnfo gets the device information for the currently opened device

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the device information is to be obtained
pDevinfo DaqgDevInfoPT | Pointer to the device information structure to return the device information

Parameter Values

handle: obtained from the daqOpen function
pDevinfo: see the DagDevInfoT table of the dagCreateDevice function

Returns
DerrNoError if successful or a DagError error code (see the DagError table at the end of chapter 4)

Function Usage

This function will get the device information of the device actually connected. This information may be slightly different
than the information contained in the Windows Registry. For example, if a WaveBook/516A was created using the DagX
control panel applet, but a WaveBook/512A is actually connected, the device information structure returned by this
function will reflect the WaveBook/512A.

Prototypes

C/C++

dagGetDevicelnfo(DagHandleT handle, DagDeviInfoPT pDevinfo);
Visual BASIC

VBdaqGetDevicelnfo&(ByVal handle&, Devinfo As DagDevInfoT)

Program References
None

4.5-6 Dagq APl Command Reference 908794 Programmer’s Manual

dagGetDevicelnventory

Format
dagGetDevicelnventory(pInfoList, pInfoListCount, pMatchinfo, flags)

Purpose
dagGetDevicelnventory builds a device information list of devices that exist in the Windows Registry and/or devices that
can be dynamically detected

Parameter Summary

Parameter Type Description

pInfoList DaqgDevInfoPT | Pointer an array of device information structures

pinfoListCount | PDWORD Pointer to the number of elements in the device information list

pMatchlinfo DaqgDevInfoPT | Pointer to a device information structure containing device matching information
flags DWORD One or more device information flags

Parameter Values

plInfoList: a pointer to an array of DagDevInfoT structures (see the DagDevInfoT table of the dagCreateDevice
function)

pInfoListCount: upon entry, the value that pInfoListCount points to should be set to the number of elements in the
information list array; upon exit, the value that pInfoListCount points to will be set to the number of elements in the
information list that were modified

pMatchlnfo: if any of the match info flags are set in the flags parameter, pMatchinfo should point to a device
information structure containing the appropriate match information, otherwise pMatchinfo can be NULL

flags: see the DagDevInfoFlagsT table below

Parameter Type Definitions

flags — (DagDevInfoFlagsT)

Definition Description

DaqinfoFlagsCreated Enables searching the Windows registry for created devices and returns those that
are found

DaqinfoFlagsNotCreated Enables searching the Windows registry for created devices but removes those that
are found

DaglnfoFlagsDetected Enables searching for detectable devices and returns those that are detected

DaglnfoFlagsNotDetected Enables searching for detectable devices but removed those that are detected

DaginfoFlagsTestPassed Enables testing of detected and/or created devices and returns those that pass the
communications test

DaglnfoFlagsTestFailed Enables testing of detected and/or created devices and returns those that pass the
communications test

DaginfoFlagsNew Returns devices that are detected, but not yet created (DaqlnfoFlagsDetected +
DagInfoFlagsNotCreated)

DaginfoFlagsRemoved Returns devices that are created, but failed the communications test
(DaglnfoFlagsCreated + DaglnfoFlagsTestFailed)

DaginfoFlagsAvailable Returns devices that are created, and passed the communications test
(DaglnfoFlagsCreated + DaglnfoFlagsTestPassed)

DaqInfoFlagsMatchAlias Causes any devices whose alias does not match the specified alias to be removed
from the list

DagInfoFlagsMatchParentAlias | Causes any devices whose parent alias does not match the specified alias to be
removed from the list

DagInfoFlagsMatchType Causes any devices whose device type does not match the specified device type to be
removed from the list

DagInfoFlagsMatchSubType Causes any devices whose device type and device sub type do not match the
specified device type and device sub type to be removed from the list

DaqinfoFlagsMatchProdGroup | Causes any devices whose device product group does not match the product group of
the specified device type to be removed from the list

DagInfoFlagsMatchProdFamily | Causes any devices whose device product family does not match the product family
of the specified device type to be removed from the list

Programmer’s Manual 908794 Dag APl Command Reference 4.5-7

Returns
DerrNoError if successful or a DagError error code (see the DagError table at the end of chapter 4)

Function Usage

This function will return the subset of created and detected devices specified by the flags parameter. At least one of the
DagInfoFlagsCreated, DaglnfoFlagsNotCreated, DaglnfoFlagsDetected or DaglnfoFlagsNotDetected flags must be
specified and no more than one of the DaglnfoFlagsMatch flags can be specified (see preceding table).

The AliasName element of the pMatchinfo structure must be set if the DaglnfoFlagsMatchAlias or
DagInfoFlagsMatchParentAlias flag is set.

The DeviceType element of the pMatchInfo structure must be set if the DaglnfoFlagsMatchType,
DagInfoFlagsMatchSubType, DaglnfoFlagsMatchProdGroup or DaglnfoFlagsMatchProdFamily flag is set.

The DeviceSubType element of the pMatchinfo structure must be set if the DaglnfoFlagsMatchSubType flag is set.

Prototypes

C/C++

dagGetDevicelnventory(DagDevinfoPT pinfoList, PDWORD pinfoListCount, DagDevInfoPT pMatchinfo,
DWORD flags);

Visual BASIC

VBdagGetDevicelnventory&(InfoList() As DagDevInfoT, InfoListCount As Long, ByVal Flags As Long,
Matchinfo As DagDevInfoT)

Program References
None

4.5-8 Daq APl Command Reference 908794 Programmer’s Manual

daqGetDeviceList

Also See: daqGetDeviceCount, dagOpen
Format

dagGetDeviceList (devicelList, deviceCount)
Purpose

dagGetDeviceList returns a list of currently configured device names.

Parameter Summary

Parameter Type Description
devicelist DagDeviceListT | Pointer to memory location to which the device list is to be returned
deviceCount | DWORD Number of devices returned in the device list

Parameter Values

deviceList: pointer to an array of returned device names, each name containing up to 64 characters
deviceCount: valid values range from 1 to 4

Returns

DerrNoError No error

Function Usage

The dagGetDevicelList function will return the device names in the deviceL i st parameter for the number
of devices returned by the deviceCount parameter. The deviceList entry contains an array of device names
each consisting of up to 64 characters. Each device name can then be used with the dagqOpen function to open the
specific device. The DagDeviceL istT parameter must point to an appropriately sized memory area which can
hold all the names for all the configured devices before calling this function. If it is not known how many devices
are configured, then call the dagGetDeviceCount function before calling this function.

If the number returned does not seem appropriate, the device configuration list should be checked via the Dag*
Configuration applet located in the Control Panel. Refer to the configuration section in your device’s user manual
for more details.

Prototypes
C/IC++
dagGetDeviceList(DagDevicelListT *devicelList, DWORD *deviceCount);
Visual BASIC
VBdaqGetDevicelList&(devList As DagDevicelListT, devCount As Long)
Program References
DAQADCEXO1.CPP

Programmer’s Manual 908794 Dag APl Command Reference 4.5-9

daqGetDeviceProperties

Format

dagGetDeviceProperties(dagName, deviceProps)

Purpose

dagGetDeviceProperties returns the properties for a specified device.

Parameter Summary

Parameter Type Description
dagName LPSTR Pointer to a character string representing the name of the
device for which to retrieve properties
deviceProps DagDevicePropsT | Pointer to the memory area for which to return the properties
of the device specified by dagName

Parameter Values

dagName: a pointer to a string of characters—no effective range of values applies

deviceProps: see table below

Parameter Type Definitions

deviceProps-(DagDevicePropsT)

Definition Description Format
deviceType Main Chassis Device Type Definition DWORD
basePortAddress Port Address (ISA Address, LPT Port, etc) DWORD
dmaChannel DMA Channel (if applicable) DWORD
protocol Interface Protocol DWORD
alias Device Alias Name STRING
maxAdChannels Maximum A/D channels (with full expansion) DWORD
maxDaChannels Maximum D/A channels (with full expansion) DWORD
maxDiglnputBits Maximum Dig. Inputs (with full expansion) DWORD
maxDigOutputBits Maximum Dig. Outputs (with full expansion) DWORD
maxCtrChannels Maximum Counter/Timers (with full expansion) DWORD
mainUnitAdChannels Maximum Main Unit A/D channels (no expansion) DWORD
mainUnitDaChannels Maximum Main Unit D/A channels (no expansion) DWORD
mainUnitDiglnputBits Maximum Main Unit Digital Inputs (no expansion) DWORD
mainUnitDigOutputBits Maximum Main Unit Digital Outputs (no expansion) DWORD
mainUnitCtrChannels Maximum Main Unit Counter/Timer channels (no exp.) DWORD
adFifoSize A/D on-board FIFO Size DWORD
daFifoSize D/A on-board FIFO Size DWORD
adResolution Maximum A/D Converter Resolution DWORD
daResolution Maximum D/A Converter Resolution DWORD
adMinFreq Minimum A/D Conversion Scan Frequency (Hz) FLOAT
adMaxFreq Maximum A/D Conversion Scan Frequency (Hz) FLOAT
daMinFreq Minimum D/A Output Update Frequency (Hz) FLOAT
daMaxFreq Maximum D/A Output Update Frequency (Hz) FLOAT

Returns

DerrNoError

No Error

If this function fails, make sure the dagName parameter references a valid device that is
currently configured. This can be checked via the Dag* Configuration applet located in the
Control Panel. Refer to the configuration section in your device’s user manual for more details.

4.5-10

Daq APl Command Reference

908794

Programmer’s Manual

Function Usage

Passing the name of the device in the dagName parameter specifies the device. This name should be a valid name
of a configured device. The properties for the device are returned in the deviceProps parameter. The
deviceProps parameter is a pointer to an application-allocated memory area which will hold the device-
properties structure. This memory must have been allocated before calling this function. Upon return, the memory
area pointed to by the deviceProps parameter will contain the properties for the device.

Prototypes
C/C++
dagGetDeviceProperties(LPSTR dagName, DagDevicePropsT *deviceProps);

Visual BASIC
VBdagGetDeviceProperties(dagName$, deviceProps as DagDevicePropsT)

Program References
DAQADCEX01.CPP

Programmer’s Manual 908794 Daq APl Command Reference 4.5-11

daqGetDriverVersion

Format

dagGetDriverVersion (version)

Purpose

Also See: daqGetHardwarelnfo

dagGetDriverVersion retrieves the revision level of the driver currently in use.

Parameter Summary

Parameter

Type

Description

version

PDWORD

Pointer to the version number of the current device driver

Parameter Values

version: apointer to a value from 100 to 10,000

Returns
DerrNoError
Prototypes
C/C++

No error

dagGetDriverVersion(PDWORD version);

Visual BASIC

VBdaqGetDriverVersion&(version&)

Program References
None

4.5-12 Daqg APl Command Reference

908794

Programmer’s Manual

daqGetHardwarelnfo

Also See: daqGetDriverVersion, daqOpen

Format
dagGetHardwarelnfo(handle, whichInfo, info)
Purpose

dagGetHardware Info retrieves hardware information for the specified device.
Parameter Summary

Parameter Type Description
handle DagHandleT | Handle to the device
whichInfo | Daglnfo Specifies what type of device information to retrieve
info VOID Pointer to the information returned from the selected device; data returned
varies according to info type selected

Parameter Values

handle: obtained from the dagOpen function
whichInfo: see table below
info: pointer to a returned value; value ranges depend on information requested

Parameter Type Definitions

whichInfo—(DagHardwarelnfo)

Definition Description

DhiHardwareVersion Returns value of type DagHardwareVersion (see table below)
DhiProtocol Returns value of type DagProtocol (see table below)
DhiADmin ADC Output Low Range

DhiADmax ADC Output High Range

DhiHardwareSubType Returns value of type DagHardwareSubType (see next page)

The following tables give the possible return values when DagHarware Info is set to
DhiHardwareVersion or DhiProtocol. DaqSubType information follows the table below.

DhiHardwareVersion DhiHardwareVersion

VEIlE Device VEIlE Device

Returned Returned

0 DagBook100 23 DagBo0ok2000 Series Device (A, E, or X)
1 DagBook112 24,25, 26, 27, 28 Reserved

2 DagBook120 29 WaveBook/512A

3 DagBook200 or DagBook/260 30 WaveBook/516A, WaveBook/516E

4 DagBook216 31 WBK?25

5 DagBoard100 32 WBK40

6 DagBoard112 33 WBK41

7 DagBoard200 34 DagBoard/1000

8 DagBoard216 35 DagBoard/1005

9 Daql12 36 DagLab/2000 Series

10 Daqg216 37 DaqgScan/2000 Series

11 WaveBook512 38 DagBoard/500

12 WaveBook516 39 DaqgBoard/505

13 TempBook66 40 DaqgBoard/3000

14 PersonalDag56 41 DagBoard/3001

15 WaveBook516_250 42 DaqgBoard/3005

16 WaveBook512_10V 43 UsbDagDevice

17 DagBoard2000, DagBoard/2000c 44 PersonalDag3000

18 DagBoard2001, DagBoard/2001c 45 ZonicPod

19 DagBoard2002, DagBoard/2002c 46 DaqgBoard/3006

20 DagBoard2003, DagBoard/2003c 47 DagBoard/3000USB

21 DagBoard2004, DagBoard/2004c 0x100 - DagTemp7 0x200 — DagTemp7A
22 DagBoard2005, DagBoard/2005¢ 0x400 - DagTempl14 0x800 - DagTempl4A

Programmer’s Manual 908794 Daq APl Command Reference 4.5-13

Hardware Sub Type Definitions

typedef enum {
/I a hardware sub type of DaqSubTypeDefault indicates that the hardware device type
/I is defined by the hardware version
DaqgSubTypeDefault =0,

// sub types for the DaqBook2000 main type

DagSubTypeDaqBook2000A = 0, // DagBook/2000A or DagBook/2000X
DagSubTypeDaqBook2000E = 1, // DagBook/2000E
DagSubTypeDaqBook2001 = 2, // DagBook/2001
DagSubTypeDaqBook2020 = 3, // DagBook/2020
DagSubTypeDaqBook2005 = 4, // DagBook/2005

// sub types for the DaqLab2000 main type

DagSubTypeDaqlLab2001 = 0, // DagLab/2001
DagSubTypeDaqlLab2005 = 1, // DagLab/2005

// sub types for the DagScan2000 main type

DagSubTypeDaqScan2001 = 0, // DagScan/2001
DagSubTypeDaqScan2002 = 1, // DagScan/2002
DagSubTypeDaqScan2004 = 2, // DagScan/2004
DagSubTypeDaqScan2005 = 3, // DagScan/2005

// sub types for the WaveBook516A main type

DagSubTypeWaveBook516A = 0, // WaveBook/516A
DagSubTypeWaveBook516E = 1, // WaveBook/516E
DagSubTypeZonicBook618 = 2, // ZonicBook/618

/7 sub types for the DagBoard2000 main type

DaqSubTypeDagBoard2000 = 0, // DagBoard/2000
DagSubTypeDaqTemp7A =1, // DaqTemp/7A

// sub types for the DagBoard2001 main type

DagSubTypeDaqgBoard2001 = 0, // DagBoard/2001
DagSubTypeDaqTempl4A =1, // DaqTemp/14A

/7 sub types for the DagBoard2005 main type
DaqSubTypeDagBoard2005 = 0, // DagBoard/2005
DaqgSubTypeDaqTemp7 =1, // DaqTemp/7
DagSubTypeDaqTempl4 = 2, // DaqTemp/14

4.5-14 Daq APl Command Reference 908794 Programmer’s Manual

// sub types for the UsbDagDevice main type

DagSubTypeUnknownUsbDaqgDevice =0,
DagSubTypeDevelUsbDaqgDevice =1,
DagSubTypeBlankUsbDagDevice =2,

// sub types for the PersonalDag3000 main type
DagSubTypePersonalDag3001 =0,
DagSubTypePersonalDag3005 =1,

// sub types for the ZonicPod main type
DagSubTypeZonicPod4 =0,

DaqgSubTypeZonicPod8 =1,

// sub types for the DaqBoard3000USB main type

DagSubTypeDagBoard3000USB =0,
DagSubTypeDagBoard3001USB =1,
DagSubTypeDagBoard3005USB =2,

} DagHardwareSubType;

Programmer’s Manual 908794 Daq APl Command Reference 4.5-15

DhiProtocol
Definition Description
DagProtocolNone Communications not established
DagProtocol4 Standard LPT Port 4-bit mode
DagProtocol8 Standard LPT Port 8-bit mode
DagProtocol SMC666 SMC 37C666 EPP mode
DagProtocolFastEPP WBK20/21 Fast EPP mode
DagProtocol ECP Enhanced Capability Port
DagProtocol8BitEPP 8-bit EPP mode
DagProtocol 1SA ISA bus card DagBoard 100/200
DagProtocolPcCard PCCard for Dag (PCMCIA)
DagProtocolUSB USB protocol (PersonalDaq)
DagProtocolPCl PCI bus card, DagBoard/2000 Series
DagProtocolCPCI Compact PCI (cPCl) bus card, cPCI DagBoard/2000c Series
DagProtocol TCPIP Ethernet

Returns

DerrNoError No error

Function Usage

This function has been obsoleted by the daqGetInfo function, and his presented here only as a
reference. See daqGetInfo for more details.

The dagGetHardware I nfo function retrieves hardware information for the device specified by the handle
parameter. The device must have been opened previously to calling dagGetHardware Info by the dagqOpen
function.

Prototypes
C/C++
dagGetHardwarelnfo(DagHandleT handle, Daglnfo whichlnfo, VOID *info);

Visual BASIC
VBdaqGetHardwarelnfo&(ByVvVal handle&, ByVal whichInfo&, info As Any)

Program References

None

4.5-16 Daqg APl Command Reference 908794 Programmer’s Manual

daqGetHardwareType

Format
dagGetHardwareType(handle, pHwSubType)

Purpose
dagGetHardwareType gets the device type and sub type of the current device

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device for which the device type and sub type is to be
obtained

pHwSubType | DagHardwareSubType * | Pointer to a value that will contain the device sub type

Parameter Values

handle: obtained from the dagOpen function
pHwSubType: Pointer to a value that will contain the device sub type or NULL if the device sub type is not desired
(see DagHardwareSubType of the dagGetHardwarelnfo function)

Returns
The device type of the current device (see DagHardwareVersion of the dagGetHardwarelnfo function)

Function Usage
This function gets the device type and sub type of the current device.

Prototypes

C/C++

dagGetHardwareType(DagHandleT handle, DagHardwareSubType *pHwSubType);
Visual BASIC

VBdagGetHardwareType&(ByVal handle&, HwSubType&)

Program References
None

Programmer’s Manual 908794 Daq APl Command Reference 4.5-17

daqGetinfo

Also See: daqGetDriverVersion,
dagOpen, daqGetHardwarelnfo

Format
dagGetiInfo(handle, chan, whichInfo, info)
Purpose

dagGetInfo retrieves specific information for the specified device.
Parameter Summary

Parameter Type Description
handle DagHandleT | Handle to the device
chan DWORD Specifies which channel.
whichInfo | Daglnfo Specifies what type of device information to retrieve
info VOID Pointer to the information returned from the selected device; data returned
varies according to info type selected

Parameter Values

handle: obtained from the dagOpen function

chan: valid values range from 0 to 511

whichInfo: see table below

info: pointer to a returned value; value ranges depend on information requested

Parameter Type Definitions

whichInfo—-(Daglnfo)

Definition Description
DdiHardwareVersionlnfo Returns value of type DaqHardwareVersion (see table: DdiHardwareVersionlnfo)
DdiProtocol Info Returns value of type DagProtocol (see table: DdiProtocol Info)
DdiChTypelnfo Returns channel type (DagAdcExpType)
DdiChOptionTypelnfo Returns channel option type (DagAdcEXpType)
DdiADminInfo ADC Output Low Range

DdiADmaxInfo ADC Output High Range

DdiChanCountlinfo Not Used

DdiNVRAMDate Info Date String

DdiNVRAMTimelnfo Time String

DdiDbk4MaxFreqlnfo Returns the current DBK4 LPF setting
DdiDbk4SetBaselinelnfo Returns the current DBK4 baseline setting
DdiDbk4Excitationinfo Returns the current DBK4 excitation source setting
DdiDbk4ClocklInfo Returns the current DBK4 clock setting
DdiDbk4GainInfo internally used by dagAdcSetScan
DdiDbk7SlopelInfo Returns the current DBK7 slope
DdiDbk7DebounceTimelnfo Returns the current DBK7 debounce setting
DdiDbk7MinFreglnfo Returns the current DBK7 min frequency setting
DdiDbk7MaxFreqlnfo Returns the current DBK7 max frequency setting
DdiDbk50GainInfo internally used by dagAdcSetScan
DdiPreTrigFreglnfo Returns the pre-trigger sample rate (Hz)
DdiPostTrigFreqlnfo Returns the post-trigger sample rate (Hz)
DdiPreTrigPeriodlnfo Returns the pre-trigger sample period (sec)
DdiPostTrigPeriodinfo Returns the pre-trigger sample period (sec)
DdiOptNVRAMDate Info WaveBook parameter

DdiOptNVRAMT imelnfo WaveBook parameter

DdiExtFeatures Returns data flag(s) of type DagHardwareExtFeatures (see table: DdiExtFeatures)
DdipDagCalibrationTime Personal Daq initial calibration period
DdiFifoSize FIFO capacity in WORD's of data
DdiFifoCount Count of WORD's of data currently in the FIFO

(continued)

4.5-18 Daqg APl Command Reference 908794 Programmer’s Manual

(continued)

Definition Description
DdiSerialNumber Serial Number String
DdiAdcClockSource Current Clock Source
DdiFirmwareVersion Firmware Version (String)
DdiHardwareVersion Hardware Version (String)
DdiDriverVersion Driver Version (String)
DdiAdcTriggerScan Trigger Scan Number (DWORD)

DdiAdcPreTriggerCount

Amount of Pre-Trigger Scans (DWORD)

DdiAdcPostTriggerCount

Amount of Post-Trigger Scans (DWORD)

DdiSetpointStatusReg

Returns 16-bit value indicating setpoint status

DdiWbk180penSensorStatus

Returns opens sensor status for specified WBK18 channel

DdiWbk180penSensorStatus

Returns opens sensor status for specified WBK18 channel

DdiWbk18PosOverRangeStatus

Returns positive over-range status for specified WBK18 channel

DdiWbk18NegOverRangeStatus

Returns negative over-range status for specified WBK18 channel

DdiWbk18LowPassMode Returns current Low Pass mode enumeration value
DdiWbk18LowPassCutOff Returns current Low Pass cutoff frequency
DdiWbk18HighPassCutOff Returns current High Pass mode enumeration value
DdiWbk18CurrentSrc Returns current ICP current state

DdiWbk180verRangeEnable Returns current state of over range enable in the form a an 8 bit mask
DdiWbk18esMode Returns current mode

DdiWbk18esFreq Returns current frequency setting — register read

DdiWbk18esAmplitude

Returns an enumeration representing the current amplitude setting —register read

DdiWbk18esFreqCycleTime

Returns current cycle time in microseconds

DdiWbkl18esFregDurationTime

Returns current duration in microseconds

DdiWbk180verRangeLimit

Returns current over range limit setting as a percentage.

DdiWbk18esRelay

Returns current relay position setting — register read

DdiWbk180penSensorStatusAll

Returns an 8 bit value indicating status for all 8 WBK18 channels

DdiWbk18PosOverRangeStatusAll

Returns an 8 bit value indicating status for all 8 WBK18 channels

DdiWbk18NegOverRangeStatusAll

Returns an 8 bit value indicating status for all 8 WBK18 channels

DdiWbk18TEDsStatus

Returns one byte of status:

0 = TEDs Transducer Found -- ,Operation complete
1 = TEDS Operation Busy

2 = Operation complete, NO TEDs Found

4 = Channel is shorted

DdiWbk18TEDsData

Returns 34 byte array of TEDs info as follows:
info[0] = Status

info[1] = Amount of TEDS data available
info[2] = First byte of TEDS data if available
info[3..33] = Rest of TEDS data

DdiWbk18TEDsDataCount

Returns the Amount of TEDS data available

DdiChSubTypelnfo Returns Channel sub type
DdiChOptionSubTypelnfo Returns Option sub type
DdiSetpointStatusReg Returns a 16 bit value indicating the status for all channels

Programmer’s Manual

908794 Daqg APl Command Reference

4.5-19

The following table lists the possible return values when DagGetinfo is set to DdiChTypelInfo, oris set to
DdiChOptionTypelnfo.

DdiChTypeInfo (Returnschannel type (DagAdcExpType)
DdiChOptionTypeInfo (Returnschannel option type (DagAdcExpType)

Definition Value Device
DaetNotDefined 0 Bank is unknown, or undefine the bank
DaetDbk50 1 DBK50/51 option
DaetDbk5 2 DBKS5 option

DaetDbk2 3 DBK2 option

DaetDbk4 4 DBK4 option

DaetDbk7 5 DBK?7 option

DoctWbk11 6 WBK11 SSH channel
DoctWbk12 7 WBK12 filter card
DoctWbk13 8 WBK13 filter & SSH card
DmctWbk512 9 WaveBook/512 channel
DmctWbk10 10 WBK10 channel
DmctWbk14 11 WBK14 channel
DmctWbk15 12 WBK15 channel
DmctResponseDac 13 Response DAC on WaveBook
DmctWbk16 14 WBK16 channnel
DmctWbk516 15 WaveBook/516
DmctpDag 16 Personal Daq option
DmctWbk516_250 17 250 kHz WaveBook/516
DoctPga516 18 WaveBook/516 PGA board
DmctWbk512_10V 19 WaveBook/512 10V
DmctWbk10_10V 20 WBK10 10V
DmctWbk16_SSH 21 WBK16 channel with SSH
DmctWbk10A 22 WBKZ10A channel
DoctWbk12A 23 WBK12A filter card
DoctWbk13A 24 WBKZ13A filter & SSH card
DmctWbk17 25 WBK17 channel
DmctWbk512A 26 WaveBook/512A channel
DmctWbk516A 27 WaveBook/516A channel
DmctWbk18 28 WBK18 channel
DaetDbk90 29 DBKO90 channel

4.5-20

Daq APl Command Reference

908794

Programmer’s Manual

The following tables give the possible return values when DaqGetlInfo is set to DdiHardwareVersioninfo,
DdiProtocol Info, or DdiExtFeatures.

DdiHardwareVersioninfo DdiHardwareVersioninfo
Value . Value .

Returned RIS Returned I

0 DagBook100 24 Reserved

1 DagBook112 25 Reserved

2 DagBook120 26 Reserved

3 DagBook200 or DagBook/260 27 Reserved

4 DagBook216 28 Reserved

5 DagBoard100 29 WaveBook/512A

6 DagBoard112 30 WaveBook/516A, WaveBook/516E
7 DagBoard200 31 WBK25

8 DagBoard216 32 WBK40

9 Daql12 33 WBK41

10 Dag216 34 DaqgBoard/1000

11 WaveBook512 35 DagBoard/1005

12 WaveBook516 36 DaqgLab/2000 Series
13 TempBook66 37 DaqgScan/2000 Series
14 PersonalDag56 38 DaqgBoard/500

15 WaveBook516_250 39 DaqgBoard/505

16 WaveBook512_10V

17 DagBoard2000, DagBoard/2000c

18 DaqgBoard2001, DagBoard/2001c

19 DagBoard2002, DagBoard/2002c

20 DagBoard2003, DagBoard/2003c 0x100 DagTemp?

21 DagBoard2004, DagBoard/2004c 0x200 DagTemp7A

22 DaqgBoard2005, DagBoard/2005¢c 0x400 DagTempl4

23 DagBook2000 Series Device (A, E, or X) 0x800 DagTempl4A

DdiProtocol Info

Value Returned

Protocol

DagProtocolNone Communications not established
DagProtocol4 Standard LPT Port 4-bit mode
DagProtocol8 Standard LPT Port 8-bit mode
DagProtocol SMC666 SMC 37C666 EPP mode
DagProtocolFastEPP WBK20/21 Fast EPP mode
DagProtocolECP Enhanced Capability Port
DagProtocol8BitEPP 8-bit EPP mode

DagProtocol 1SA ISA bus card DagBoard 100/200
DagProtocolPcCard PCCard for Dag (PCMCIA)
DagProtocolUSB USB protocol (PersonalDaq)
DagProtocolPCIl PCI bus card DagBoard/2000 Series
DagProtocolCPCI Compact PCI (cPCl) bus card, cPCI DagBoard/2000c Series
DagProtocol TCPIP Ethernet
DdiExtFeatures

Value Returned

Extended Feature Info

Wavebook Mega-FIFO features

DhefFifoOverflowMode FIFO has Overflow Protection mode
DhefFifoCycleMode FIFO has Cycle ("Finite") Mode
DhefFifoDataCount FIFO has readable current-WORD's-of-data count
Wavebook516 features

DhefTrigDigPattern Can trigger on a digital pattern
DhefTrigPulselnput Can trigger on a pulse input
DhefAcqClkExternal Can pace acquisition to an external clock

Programmer’s Manual

908794

Daqg APl Command Reference

4.5-21

DdiChSubTypelnfo

Value Returned

DaqSubTypeDefault Default Sub type
DagqSubTypeDagBook2000A DagBook/2000A or DagBook/2000X
DagSubTypeDagBook2000E DagBook/2000E
DagqSubTypeDagBook2001 DagBook/2001
DagqSubTypeDaqBook2020 DagBook/2020
DaqSubTypeDagBook2005 DagBook/2005
DagqSubTypeDaglL ab2001 Dagl ab/2001
DagSubTypeDagLab2005 DagLab/2005
DagSubTypeDagScan2001 DagScan/2001
DagqSubTypeDagScan2002 DagScan/2002
DaqSubTypeDagScan2004 DagScan/2004
DagSubTypeDagScan2005 DagScan/2005
DagSubTypeWaveBook516A WaveBook/516A
DagqSubTypeWaveBook516E WaveBook/516E
DagSubTypeZonicBook618 ZonicBook/618
DagSubTypeDagBoard2000 DagBoard/2000
DagqSubTypeDagqTemp7A DaqTemp/7A
DaqSubTypeDagBoard2001 DagBoard/2001
DagqSubTypeDaqTempl4A DaqTemp/14A
DagSubTypeDagBoard2005 DagBoard/2005
DaqSubTypeDagTemp? DagTemp/7
DaqSubTypeDaqTempl4 DaqTemp/14
DagqSubTypeDagBoard3000USB DaqBoard/3000USB
DagqSubTypeDagBoard3001USB DagBoard/3001USB
DaqSubTypeDagBoard3005USB DagBoard/3005USB
DagqSubTypeDagBoard3006USB DagBoard/3006USB
DagSubTypePersonalDag3000 PersonalDag/3000
DagSubTypePersonalDag3001 PersonalDag/3001
DagSubTypePersonalDag3005 PersonalDag/3005
DagSubTypePersonalDag3006 PersonalDag/3006

Returns

DerrNoError No error

Function Usage

The daqGetInfo function retrieves specific information for the device specified by the handl e parameter. The
device must have been opened previously to calling dagGetInfo by the dagqOpen function. The values returned
vary in data type. If it is not specified by the whichInfo table in the “Parameter Type Definitions” section above,
the returned data type remains the same as the type it was originally set as.

When the which Info parameter is set to DdiHardwareVersionlInfo, the result is the same as using the
dagGetHardware Info function.

The daqGetInfo function should be used instead of daqGetHardwarelnfo.

Prototypes
C/C++
dagGetInfo(DagHandleT handle, DWORD chan, Daglnfo whichlnfo, VOID *info);

Visual BASIC
VBdaqGetInfo&(ByVvVal handle&, ByVal chan&, ByVal whichlnfo&, info As Any)

Program References
None

4.5-22 Daqg APl Command Reference 908794 Programmer’s Manual

daqGetLastError

Also See: dagDefaultErrorHandler,
dagProcessError, dagSetDefaultErrorHandler

Format
dagGetLastError (handle, errCode)

Purpose
dagGetLastError retrieves the last error condition code registered by the driver.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device
errCode DagError Pointer to a value which holds the last returned error code

Parameter Values

handle: obtained from the dagOpen function
errCode: pointer to a valid error code ranging from 0 to 1,000

Returns
DerrNoError No error
Function Usage

This function will return the last error registered by the driver against the device specified by the handle
parameter. The last error registered against the device will be returned in the memory pointed to by the
errorCode parameter.

6 For more details on error messages refer to the Daq Error Table.

Prototypes
C/C++
dagGetLastError(DagHandleT handle, DagError *errCode);

Visual BASIC
VBdaqGetLastError&(ByVval handle&, errCode&)

Program References
None

Programmer’s Manual 908794 Daq APl Command Reference 4.5-23

daqlOGet8255Conf

Also See: daqlORead, daglOReadBit,
daglOWrite, daqlOWriteBit, dagSetOption

Format
daqgl0Get8255Conf(handle, portA, portB, portCHigh, portCLow, config)
Purpose

daq10Get8255ConT sets and retrieves the configuration for the specified 8255 device with the specified port
configurations.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device
portA BOOL 8255 port A value
portB BOOL 8255 port B value
portCHigh BOOL 8255 port C high nibble value
portCLow BOOL 8255 port C low nibble value
config PDWORD Pointer to a value representing the 8255’s current configuration

Parameter Values

handle: obtained from the dagOpen function

portA: valid values are either true (= 0) or false (=0)

portB: valid values are either true (#0) or false (=0)
partCHigh: valid values are either true (= 0) or false (=0)
portCLow: valid values are either true (= 0) or false (=0)
config: apointer to the configuration value ranging from 0 to 65,535

Returns
DagError See Dag Error Table

6 For more details on error messages refer to the Daq Error Table.

Function Usage

The configuration is returned in the config parameter and will indicate the current configuration of the 8255. This
configuration must then be written to the control register of the desired 8255 with the daq10Wr i te function.
When set to true, the portA, portB, portCHigh and portCLow flags will configure the respective port as an
input port. If the flag is set to False, the port will be configured as an output.

daqSetOption will work for single byte use.

4.5-24 Daq APl Command Reference 908794 Programmer’s Manual

Prototypes

C/C++

daqgl0Get8255Conf(DagHandleT handle, BOOL portA, BOOL portB, BOOL portCHigh,
BOOL portCLow, PDWORD config);

Visual BASIC

VBdaql0Get8255Conf&(ByVvVal handle&, ByVal portA&, ByVal portB&, ByVal
portCHigh&, ByVal portCLowé&, config&)

Program References
DAQDIGIOEXQ1.CPP, DBK20_ 21EX.CPP, DBK23_ 24EX.CPP, DAQEX.FRM (VB)

Programmer’s Manual 908794 Daq APl Command Reference 4.5-25

daqlORead

Format

Also See: daqlOReadBit, daglOWrite,
daglOWriteBit, daqgSetOption

daglORead(handle, devType, devPort, whichDevice, whichExpPort, value)

Purpose

daqg l10Read reads the specified port on the selected device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device to perform the 10 read
devType DaqlODeviceType 10 device type
devPort DaqlODevicePort 10 device port selection
whichDevice DWORD 10 device instance to read from
whichExpPort DaglOExpansionPort | 10 device expansion port to read from
value PDWORD Pointer to returned 10 read value

Parameter Values

handle: obtained from the dagOpen function
devType: see table below

devPort: see table below

whichDevice: valid values range from 0 to 171
whichExpPort: see table below

value: pointer to a value ranging from 0 to 65,535

Parameter Type Definitions

devType—(DaqlODeviceType)

Definition Description
DiodtLocalBitlO P2 — Local addressing by bit
DiodtLocal8255 P2 — Local addressing on the device
DiodtP2Local8 P2 — Local addressing by byte
DiodtP3LocalDigl6 P3 — Local addressing for HS 16-bit Dig 1/0
DiodtP3LocalCtril6 P3 — Local addressing of 16-bit counters
DiodtP2Exp8 P2 — Expansion addressing by byte
DiodtExp8255 DBK20, DBK21
DiodtDbk23 DBK23
DiodtDbk24 DBK24
DiodtDbk25 DBK25

4.5-26 Daqg APl Command Reference

908794 Programmer’s Manual

devPort—(DaqlODevicePort)

Definition Description
Local Bit I1/0
DiodpBitlO | P2 — Addressing by bit
P2 Sequential 8-Bit Addressing
DiodpP2Local8 P2 — Local addressing by byte
DiodpP2Local IR P2 — Local Internal register (for configuring P2)
DiodpP2Exp8 P2 — Expansion adressing by byte
P3 Digital Port
DiodpP3LocalDigl6 P3 — Local addressing for HS 16-bit Dig I/0
DiodpP3LocalDiglIR P3 — Local Internal register (for configuring P3)
Local 8255, Dbk20, Dbk21 (Daq Device and DBK)
Diodp8255A P2 — Digital byte wide Port A
Diodp8255B P2 — Digital byte wide Port B
Diodp8255C P2 — Digital byte wide Port C
Diodp8255IR P2 —Internal register (for configuring P2)
Diodp8255CHigh P2 — Digital 4-bit wide Port C
Diodp8255CLow P2 — Digital 4-bit wide Port C
DiodpP3LocalCtril6 P3 — 16-bit Counter
Dbk23
DiodpDbk23A DBK23 - Digital byte wide Port A
DiodpDbk23B DBK23 - Digital byte wide Port B
DiodpDbk23C DBK23 - Digital byte wide Port C
DiodpDbk23Unused Not used
Dbk24
DiodpDbk24A DBK?24 - Digital byte wide Port A
DiodpDbk24B DBK?24 - Digital byte wide Port B
DiodpDbk24C DBK?24 - Digital byte wide Port C
DiodpDbk24Unused Not used
DiodpDbk25 DBK25

whichExpPort-(DaqlOExpansionPort)

Definition Description
DioepP1 Note that DioepP1 is for DigiBook only.
DioepP2 DBK20/21 Port 2
DioepP3 DBK20/21 Port 3

Function Usage

The dag10Read function will return the current state of the port in the value parameter. Normally, if the
selected port is a byte-wide port, the port state will occupy the low-order byte of the vallue parameter. Digital 10
channels for the port corresponds to each bit within this low-order byte. If the bit is set, it indicates the channel is in
a high state. If the bit is not set, the channel is indicated to be in a low state. This function requires that
daqgl0Get8255ConT or dagqSetOption be called prior to invocation to configure the specifed port as an input

port.
Local I/0

Those devices which support the P2 port have built-in Intel 8255C chips which can be used as general purpose 1/0.
The 8255C has 3 configurable DIO ports (PortA, PortB, PortC). These ports are 8-bit ports which can be
individually programmed as either input or output ports. All three of the local P2 ports can be read asynchronously

using the daql0Read function.

Additionally, there is a 16-bit Digital port on P3 of the main unit.* If devices allow this port to be used as a high
speed digital port which can be scanned synchronously along with other analog channels in a acquisition.

Some devices, such as the DagBook/2000 Series, DaqlLab/2000 Series, DagScan/2000 Series, DagBoard/2000
Series [and 2000c Series] products, can also access this port asynchronously as a general purpose DIO port. If using
the DagBoard/2000 Series [or 2000c Series] products, the daql ORead function can be used to read this port

asynchronously.

*Note: P3 for DagBoard/2000 Series boards is obtained by connecting an appropriate DBK200 Series board to the DagBoard/2000
Series board’'s P4 connector, via cable.

Programmer’s Manual 908794

Daq APl Command Reference 4.5-27

Expansion I/O

There are several expansion options (DBK2x) that allow the DIO to be expanded on the main unit of the device.
These expansion units operate off of the P2 port of the main unit (if the main unit supports P2) and can be accessed
asynchronously. These expansion cards vary in numbers of DIO as well as DIO connectivity and isolation
characteristics (see the User Manual on characterstics of your particular DBK2x card). All of the DBK2x series
expansion cards can be accessed asynchronously.

When using a DBK20 Series expansion card on P2, the Local P2 port becomes inaccessible.

The following table describes typical port settings. “n” is the expansion card’s position in a system. In a three
card system the first card would have n = 0, the second card n =1, and the third card n = 2.

Digital I/0O Port | devType | devPort | whichDevice | whichExpPort
P2 Local DIO (one 8255 — three 8-bit DIO banks)
P2 Local 8255 Port A DiodtP2Local8 DiodpP2Local8 Diodp8255A DioepP2
(P2 pins 30-37)
P2 Local 8255 Port B DiodtP2Local8 DiodpP2Local8 Diodp8255B DioepP2
(P2 pins 3-10)
P2 Local 8255 Port C DiodtP2Local8 DiodpP2Local8 Diodp8255C DioepP2
(P2 pins 22-28)
P3 Local DIO/HS Digital 10 (one 16-bit DIO bank)
P3 Local 16-bit Port* DiodtP3LocalDigl6 DiodpP3LocalDigl6 | DiodpP3LocalDigl6 DioepP3
(P3 pins 3-10, 22-29)
P2 Expansion DIO with DBK20/21 (dual 8255’s — six 8-bit DIO banks) “n” is the expansion card’s position in a system.
P2 Exp 8255-0 Port A DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255A DioepP2
(see DBK20/21 doc)
P2 Exp 8255-0 Port B DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255B DioepP2
(see DBK?20/21 doc)
P2 Exp 8255-0 Port C DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255C DioepP2
(see DBK?20/21 doc)
P2 Exp 8255-1 Port A DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255A + 4 DioepP2
(see DBK20/21 doc)
P2 Exp 8255-1 Port B DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255B + 4 DioepP2
(see DBK?20/21 doc)
P2 Exp 8255-1 Port C DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255C + 4 DioepP2
(see DBK20/21 doc) (see example)
P2 Expansion DIO with DBK23 (three 8-bit DIO banks) “n” is the expansion card’s position in a system.
P2 Exp DBK23 Port A DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23A DioepP2
P2 Exp DBK23 Port B DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23B DioepP2
P2 Exp DBK23 Port C DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23C DioepP2
P2 Expansion DIO with DBK?24 (three 8-bit DIO banks)
P2 Exp DBK24 Port A DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24A DioepP2
P2 Exp DBK24 Port B DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24B DioepP2
P2 Exp DBK24 Port C DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24C DioepP2
P2 Expansion DIO with DBK25 (one 8-bit DIO bank) “n” is the expansion card’s position in a system.
P2 Exp DBK25 Port | DiodtDbk25 | DiodpP2Exp8 [n + DiodpDbk25 | DioepP2
WBK17
WBK17 Digital Output | DiodtWbk17 | DiodpWbk17_8Bit [Firstchannel onunit(9,17,25...) | DioeP1

Example of Calculating “whichDevice” for three DBK20 P2 Exp 8255-1 Port C banks.

whichDevice: (Note 1) Result:
(nx8) + Diodp8255B + 4 Diodp8255B + 4
n=0

For the first positioned card n= 0.
Thus for the first card’s P2 Exp 8255-1 Port C

Diodp8255B + 12

For the second positioned card n= 1.
Thus for the second card’s P2 Exp 8255-1 Port C ...

(nx8) + Diodp8255B + 4
n=1

For the third positioned card n= 2. Diodp8255B + 20

Thus for the third card’s P2 Exp 8255-1 Port C
Note 1: The equation is from the whichDevice column and “P2 Exp 8255-1" row (shaded), in the preceding table.

(nx8) + Diodp8255B + 4
n=2

Returns

DerrNoError No error

4.5-28 Daqg APl Command Reference 908794 Programmer’s Manual

Prototypes

C/C++

daglORead(DagHandleT handle, DaqlODeviceType devType, DaqlODevicePort
devPort, DWORD whichDevice, DaqlOExpansionPort whichExpPort, PDWORD value);

Visual BASIC

VBdaqlORead&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal
whichDeviceé&, ByVal whichExpPorté&, value&)

Program References

DAQDIGIOEXO1.CPP, DAQDIGIOEX02.CPP, DBK20_21EX.CPP, DBK23_24EX.Cpp,
DBK25EX.CPP, DAQEX.FRM (VB)

Programmer’s Manual 908794 Daq APl Command Reference 4.5-29

daqlOReadBit

Also See: daqlORead, dagqlOWrite, dagqlOWriteBit
Format

daglOReadBit(handle, devType, devPort, whichDevice, whichExpPort, bitNum,
bitvalue)

Purpose
daqglOReadBi t reads a specified bit on the selected device and port.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which to perform the 10
devType DaqlODeviceType 10 device type
devPort DaqlODevicePort 10 device port selection
whichDevice DWORD 10 device selection
whichExpPort DaglOExpansionPort | 10 expansion port address
bitNum DWORD 10 port bit location to read
bitvValue PBOOL 10 port bit value (true - high, false — low)

Parameter Values

handle: obtained from the dagOpen function

devType: see table below

devPort: see table below

whichDevice: valid values range from 0 to 171
whichExpPort: see table below

bitNum: valid values range from 1 to 16

bitvalue: valid values are either true (= 0) or false (=0)

Parameter Type Definitions

devType-(DaqlODeviceType)

Definition Description
DiodtLocalBitlO P2 — Local addressing by bit
DiodtLocal8255 P2 — Local addressing on device
DiodtP2Local8 P2 — Local addressing by byte
DiodtP3LocalDigl6 P3 — Local addressing for HS 16-bit Dig 1/0
DiodtP3LocalCtril6 P3 — Local addressing of 16-bit counters
DiodtP2Exp8 P2 — Expansion addressing by byte
DiodtExp8255 DBK20, DBK21
DiodtDbk23 DBK23
DiodtDbk24 DBK24
DiodtDbk25 DBK25

4.5-30 Dag APl Command Reference 908794 Programmer’s Manual

devPort-(DaqlODevicePort)

Definition | Description
Local Bit /0
DiodpBitlO | P2 — Addressing by bit
P2 Sequential 8-Bit Addressing
DiodpP2Local8 P2 — Local addressing by byte
DiodpP2Local IR P2 — Local Internal register (for configuring P2)
DiodpP2Exp8 P2 — Expansion adressing by byte
P3 Digital Port
DiodpP3LocalDigl6 P3 — Local addressing for HS 16-bit Dig 1/O
DiodpP3LocalDiglIR P3 — Local Internal register (for configuring P3)

Local 8255, Dbk20, Dbk21 (Daq device and DBK)

Diodp8255A P2 — Digital byte wide Port A
Diodp8255B P2 — Digital byte wide Port B
Diodp8255C P2 — Digital byte wide Port C
Diodp8255IR P2 —Internal register (for configuring P2)
Diodp8255CHigh P2 — Digital 4-bit wide Port C
Diodp8255CLow P2 — Digital 4-bit wide Port C
DiodpP3LocalCtri6 P3 — 16-bit Counter

Dbk23

DiodpDbk23A DBK23 - Digital byte wide Port A
DiodpDbk23B DBK23 - Digital byte wide Port B
DiodpDbk23C DBK23 - Digital byte wide Port C
DiodpDbk23Unused Not used

Dbk24

DiodpDbk24A DBK?24 - Digital byte wide Port A
DiodpDbk24B DBK24 - Digital byte wide Port B
DiodpDbk24C DBK?24 - Digital byte wide Port C
DiodpDbk24Unused Not used

DiodpDbk25 DBK25

whichExpPort-(DaqlOExpansionPort)

Definition Description
DioepP1 Note that DioepP1 is for DigiBook only.
DioepP2 DBK20/21 Port 2
DioepP3 DBK20/21 Port 3
Returns
DagError See Dag Error Table

For more details on error messages refer to the Daq Error Table.

Function Usage

The dagl10ReadBi t function will return the current state of the selected bit in the bitValue parameter. The
selected bit (specified by the b 1 tNum parameter) corresponds to the input/output (1/0) channel on the port which is
to be read. The bitValue will be true indicating a high state or fal se indicating a low state. This function
requires that daq10Get8255ConT or daqSetOption be called prior to invocation to configure the specifed

port as an input port.

Programmer’s Manual

908794

Daqg APl Command Reference

4.5-31

Local I/O
Those devices which support the P2 port have built-in Intel 8255C chips which can be used as general purpose 1/0.
The 8255C has 3 configurable digital input/output (DI1O) ports (PortA, PortB, PortC). These ports are 8-bit ports
which can be individually programmed as either input or output ports. All three of the local P2 ports can be read
asynchronously using the dagqlOReadB it function.

Additionally, there is a 16-bit Digital port on P3 of the main unit.* If devices allow this port to be used as a high
speed digital port which can be scanned synchronously along with other analog channels in a acquisition.

Some devices, such as the DagBook/2000 Series, DaglLab/2000 Series, DagScan/2000 Series, DagBoard/2000
Series [and 2000c Series] products, can also access this port asynchronously as a general purpose DIO port. If using
the DagBoard/2000 Series [or 2000c Series] products, the daql ORead function can be used to read this port

asynchronously.

*Note: P3 for DagBoard/2000 Series boards is obtained by connecting an appropriate DBK200 Series board to the DagBoard/2000
Series board’'s P4 connector, via cable.

Expansion I/O
There are several expansion options (DBK2x) that allow the DIO to be expanded on the main unit of the device.
These expansion units operate off of the P2 port of the main unit (if the main unit supports P2) and can be accessed
asynchronously. These expansion cards vary in numbers of DIO as well as DIO connectivity and isolation
characteristics (see the User Manual on characterstics of your particular DBK2x card). All of the DBK2x series
expansion cards can be accessed asynchronously.

When using a DBK20 Series expansion card on P2, the Local P2 port becomes inaccessible.

The following table describes typical port settings. “n” is the expansion card’s position in a system. In a three
card system the first card would have n = 0, the second card n =1, and the third card n = 2.

Digital /0O Port | devType | devPort | whichDevice | whichExpPort
P2 Local DIO (one 8255 — three 8-bit DIO banks)
P2 Local 8255 Port A DiodtP2Local8 DiodpP2Local8 Diodp8255A DioepP2
(P2 pins 30-37)
P2 Local 8255 Port B DiodtP2Local8 DiodpP2Local8 Diodp8255B DioepP2
(P2 pins 3-10)
P2 Local 8255 Port C DiodtP2Local8 DiodpP2Local8 Diodp8255C DioepP2
(P2 pins 22-28)
P3 Local DIO/HS Digital 10 (one 16-bit DIO bank)
P3 Local 16-bit Port* DiodtP3LocalDigl6 DiodpP3LocalDigl6 | DiodpP3LocalDigl6 DioepP3
(P3 pins 3-10, 22-29)
P2 Expansion DIO with DBK20/21 (dual 8255’s — six 8-bit DIO banks) “n” is the expansion card’s position in a system.
P2 Exp 8255-0 Port A DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255A DioepP2
(see DBK20/21 doc)
P2 Exp 8255-0 Port B DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255B DioepP2
(see DBK?20/21 doc)
P2 Exp 8255-0 Port C DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255C DioepP2
(see DBK?20/21 doc)
P2 Exp 8255-1 Port A DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255A + 4 DioepP2
(see DBK20/21 doc)
P2 Exp 8255-1 Port B DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255B + 4 DioepP2
(see DBK20/21 doc)
P2 Exp 8255-1 Port C DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255C + 4 DioepP2
(see DBK20/21 doc) (see example)
P2 Expansion DIO with DBK23 (three 8-bit DIO banks) “n” is the expansion card’s position in a system.
P2 Exp DBK23 Port A DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23A DioepP2
P2 Exp DBK23 Port B DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23B DioepP2
P2 Exp DBK23 Port C DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23C DioepP2
P2 Expansion DIO with DBK24 (three 8-bit DIO banks)
P2 Exp DBK24 Port A DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24A DioepP2
P2 Exp DBK24 Port B DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24B DioepP2
P2 Exp DBK24 Port C DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24C DioepP2
P2 Expansion DIO with DBK25 (one 8-bit DIO bank) “n” is the expansion card’s position in a system.
P2 Exp DBK25 Port | DiodtDbk25 | DiodpP2Exp8 [n + DiodpDbk25 | DioepP2
WBK17
WBK17 Digital Output | DiodtWbk17 | DiodpWbk17_8Bit [Firstchannel onunit(9,17,25...) | DioeP1

4.5-32

Daq APl Command Reference

908794

Programmer’s Manual

Example of Calculating “whichDevice” for three DBK20 P2 Exp 8255-1 Port C banks.

whichDevice: (Note 1) Result:
For the first positioned card n=0. (nx8) + Diodp8255B + 4 = Diodp8255B + 4
Thus for the first card’s P2 Exp 8255-1 Port C n=0
For the second positioned card n= 1. (nx8) + Diodp8255B + 4 = Diodp8255B + 12
Thus for the second card’s P2 Exp 8255-1 PortC n=1
For the third positioned card n= 2. (nx8) + Diodp8255B + 4 = Diodp8255B + 20
Thus for the third card’s P2 Exp 8255-1 Port C n=2

Note 1: The equation is from the whichDevice column and “P2 Exp 8255-1" row (shaded), in the preceding table.

Prototypes

C/C++

daglOReadBit(DagHandleT handle, DaqlODeviceType devType, DaglODevicePort
devPort, DWORD whichDevice, DaqlOExpansionPort whichExpPort, DWORD bitNum,
PBOOL bitvValue);

Visual BASIC

VBdaqlOReadBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal
whichDeviceé&, ByVal whichExpPorté&, ByVal bitNum&, bitValue&)

Program References
DAQEX.FRM (VB)

Programmer’s Manual 908794 Daq APl Command Reference 4.5-33

daqlOWrite

Format

Also See: daqlORead, dagqlOReadBit, daqlOWriteBit

daglOWrite(handle, devType, devPort, whichDevice, whichExpPort, value)

Purpose

daqg lOwrite writes to the specified port on the selected device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device to perform the 10 write
devType DaqlODeviceType 10 device type
devPort DaqlODevicePort 10 device port selection
whichDevice DWORD 10 device instance to write from
whichExpPort DaqglOExpansionPort | |0 device expansion port to write from
value DWORD Pointer to 10 value to write

Parameter Values

handle: obtained from the dagOpen function
devType: see table below

devPort: see table below

whichDevice: valid values range from 0 to 171
whichExpPort: see table below

value: valid values range from 0 to 65,535

Parameter Type Definitions

devType—(DaglODeviceType)

Definition Description

DiodtLocalBitlO P2 — Local addressing by bit

- P2 - Local addressing on DaqBook/2000 Series, DagBoard/2000 Series and cPCI
DiodtLocal8255 DagBoard/2000c Series Devices
DiodtP2Local8 P2 — Local addressing by byte
DiodtP3LocalDigl6 P3 — Local addressing for HS 16-bit Dig I/O
DiodtP3LocalCtrl6 P3 — Local addressing of 16-bit counters
DiodtP2Exp8 P2 — Expansion addressing by byte
DiodtExp8255 DBK20, DBK21
DiodtDbk23 DBK23
DiodtDbk24 DBK24
DiodtDbk25 DBK25
DiodtWbk17 WBK17

4.5-34 Daqg APl Command Reference

908794

Programmer’s Manual

devPort—(DaqlODevicePort)

Definition | Description
Local Bit I1/0
DiodpBitlO | P2 — Addressing by bit
P2 Sequential 8-Bit Addressing
DiodpP2Local8 P2 — Local addressing by byte
DiodpP2Local IR P2 — Local Internal register (for configuring P2)
DiodpP2Exp8 P2 — Expansion adressing by byte
P3 Digital Port
DiodpP3LocalDigl6 P3 — Local addressing for HS 16-bit Dig I/0
DiodpP3LocalDiglIR P3 — Local Internal register (for configuring P3)
Local 8255, Dbk20, Dbk21 (Dag device and DBK only)
Diodp8255A P2 — Digital byte wide Port A
Diodp8255B P2 — Digital byte wide Port B
Diodp8255C P2 — Digital byte wide Port C
Diodp8255IR P2 —Internal register (for configuring P2)
Diodp8255CHigh P2 — Digital 4-bit wide Port C
Diodp8255CLow P2 — Digital 4-bit wide Port C
DiodpP3LocalCtril6 P3 — 16-bit Counter
Dbk23
DiodpDbk23A DBK23 - Digital byte wide Port A
DiodpDbk23B DBK23 - Digital byte wide Port B
DiodpDbk23C DBK23 - Digital byte wide Port C
DiodpDbk23Unused Not used
Dbk24
DiodpDbk24A DBK?24 - Digital byte wide Port A
DiodpDbk24B DBK?24 - Digital byte wide Port B
DiodpDbk24C DBK?24 - Digital byte wide Port C
DiodpDbk24Unused Not used
DiodpDbk25 DBK25
Wbk17
DiodpWbk17_8Bit WBK17 - 8-bit digital output
whichExpPort—(DaqlOExpansionPort)

Definition Description
DioepP1 Note that DioepP1 is only for DigiBook and WaveBook applications.
DioepP2 DBK?20/21 Port 2
DioepP3 DBK20/21 Port 3

Returns
DagError See Dag Error Table

For more details on error messages refer to the Daq Error Table.

Function Usage

The daq10Wr i te function will output to the port the bit battern represented by the value parameter. Normally,
if the selected port is a byte-wide port, the port state will occupy the low-order byte of the value parameter.
Digital 1/0 channels for the port corresponds to each bit within this low-order byte. If the bit is set, it indicates the
channel is in a high state. If the bit is not set, the channel is indicated to be in a low state. This function requires that
daql0Get8255ConT or dagqSetOption be called prior to invocation to configure the specifed port as an output
port.

Programmer’s Manual 908794 Daq APl Command Reference 4.5-35

Local I/O

Those devices which support the P2 port have built-in Intel 8255C chips which can be used as general purpose 1/0.
The 8255C has 3 configurable DIO ports (PortA, PortB, PortC). These ports are 8-bit ports which can be
individually programmed as either input or output ports. All three of the local P2 ports can be written
asynchronously using the daq 10Wr i te function.

Additionally, there is a 16-bit Digital port on P3 of the main unit.* If P3 is supported, the DagBook/100 Series,
DagBook/200 Series, Daq PC-Card, ISA-type DagBoard, DagBook/2000 Series, DagBoard/2000 Series*, and cPCI
DagBoard/2000c Series devices allow this port to be used as a high speed digital port which can be scanned
synchronously along with other analog channels in a acquisition.

Some devices, such as the DagBook/2000 Series, DagBoard/2000 Series [and 2000c Series] products, can also
access this port asynchronously as a general purpose DIO port. If using the DagBoard/2000 Series [or 2000c Series]
products, the daq 1 0Read function can be used to read this port asynchronously.

*Note: P3 for DagBoard/2000 Series boards is obtained by connecting an appropriate DBK200 Series board to the DagBoard/2000
Series board’'s P4 connector, via cable.

Expansion I/O

There are several options that allow for DIO expansion. These expansion options, referred to as the DBK20 Series
cards, operate off of the main unit’s P2 port and can be accesssed asynchronously. The expansion cards vary in
number of DIO, connectivity, and isolation characteristics. Refer to the DBK Cards and Options User’s Manual
(p/n 457-0905) in regard to the specifics of your particular DBK20 Series card.

When using a DBK20 Series expansion card on P2, the Local P2 port becomes inaccessible.

The following table describes typical port settings. “n” is the expansion card’s position in a system. In a three
card system the first card would have n = 0, the second card n =1, and the third card n = 2.

Digital /0O Port | devType | devPort | whichDevice | whichExpPort
P2 Local DIO (one 8255 — three 8-bit DIO banks)
P2 Local 8255 Port A DiodtP2Local8 DiodpP2Local8 Diodp8255A DioepP2
(P2 pins 30-37)
P2 Local 8255 Port B DiodtP2Local8 DiodpP2Local8 Diodp8255B DioepP2
(P2 pins 3-10)
P2 Local 8255 Port C DiodtP2Local8 DiodpP2Local8 Diodp8255C DioepP2
(P2 pins 22-28)
P3 Local DIO/HS Digital 10 (one 16-bit DIO bank)
P3 Local 16-bit Port* DiodtP3LocalDigl6 DiodpP3LocalDigl6 | DiodpP3LocalDigl6 DioepP3
(P3 pins 3-10, 22-29)
P2 Expansion DIO with DBK20/21 (dual 8255’s — six 8-bit DIO banks) “n” is the expansion card’s position in a system.
P2 Exp 8255-0 Port A DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255A DioepP2
(see DBK20/21 doc)
P2 Exp 8255-0 Port B DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255B DioepP2
(see DBK?20/21 doc)
P2 Exp 8255-0 Port C DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255C DioepP2
(see DBK20/21 doc)
P2 Exp 8255-1 Port A DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255A + 4 DioepP2
(see DBK20/21 doc)
P2 Exp 8255-1 Port B DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255B + 4 DioepP2
(see DBK20/21 doc)
P2 Exp 8255-1 Port C DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255C + 4 DioepP2
(see DBK20/21 doc) (see example)
P2 Expansion DIO with DBK23 (three 8-bit DIO banks) “n” is the expansion card’s position in a system.
P2 Exp DBK23 Port A DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23A DioepP2
P2 Exp DBK23 Port B DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23B DioepP2
P2 Exp DBK23 Port C DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23C DioepP2
P2 Expansion DIO with DBK24 (three 8-bit DIO banks)
P2 Exp DBK24 Port A DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24A DioepP2
P2 Exp DBK24 Port B DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24B DioepP2
P2 Exp DBK24 Port C DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24C DioepP2
P2 Expansion DIO with DBK25 (one 8-bit DIO bank) “n” is the expansion card’s position in a system.
P2 Exp DBK25 Port | DiodtDbk25 | DiodpP2Exp8 [n + DiodpDbk25 | DioepP2
WBK17
WBK17 Digital Output | DiodtWbk17 | DiodpWbk17_8Bit [Firstchannel onunit(9,17,25...) | DioeP1

4.5-36

Daq APl Command Reference 908794 Programmer’s Manual

Example of Calculating “whichDevice” for three DBK20 P2 Exp 8255-1 Port C banks.

whichDevice: (Note 1) Result:
For the first positioned card n=0. (nx8) + Diodp8255B + 4 = Diodp8255B + 4
Thus for the first card’s P2 Exp 8255-1 Port C n=0
For the second positioned card n= 1. (nx8) + Diodp8255B + 4 = Diodp8255B + 12
Thus for the second card’s P2 Exp 8255-1 PortC n=1
For the third positioned card n= 2. (nx8) + Diodp8255B + 4 = Diodp8255B + 20
Thus for the third card’s P2 Exp 8255-1 Port C n=2

Note 1: The equation is from the whichDevice column and “P2 Exp 8255-1" row (shaded), in the preceding table.

Prototypes

C/C++

daglOWrite(DagHandleT handle, DaqlODeviceType devType, DaglODevicePort
devPort, DWORD whichDevice, DaqlOExpansionPort whichExpPort, DWORD value);

Visual BASIC

VBdaqlOWrite&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal
whichDeviceé&, ByVal whichExpPorté&, ByVal value&)

Program References
DAQDIGIOEXQ1.CPP, DBK20_21EX.CPP, DBK23_ 24EX.CPP, DAQEX.FRM (VB)

Programmer’s Manual 908794 Daq APl Command Reference 4.5-37

daqlOWriteBit

Also See: daqlORead, dagqlOReadBit, dagqlOWrite

Format

daglOWriteBit(handle, devType, devPort, whichDevice, whichExpPort, bitNum,
bitvalue)

Purpose

daqglOWriteBit writes a specified bit on the selected device and port.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle of the device to perform an 10 write to
devType DaqlODeviceType 10 device type
devPort DaqlODevicePort 10 device port selection
whichDevice DWORD 10 device selection
whichExpPort DaglOExpansionPort | 10 device expansion port address
bitNum DWORD Bit number on port to write
bitvalue BOOL Bit value to write (true — high, false — low)

Parameter Values

handle: obtained from the dagOpen function

devType: see table below

devPort: see table below

whichDevice: valid values range from 0 to 171
whichExpPort: see table below

bitNum: valid value range from 1 to 16

bitvalue: valid values are either true (= 0) or false (=0)

Parameter Type Definitions

devType-(DaqlODeviceType)

Definition Description
DiodtLocalBitl0 P2 — Local addressing hy bit
DiodtLocal8255 P2 - Local addressing on I_Danoc_)k/ZOOO Series, DagBoard/2000 Series and cPCI

DagBoard/2000c Series devices

DiodtP2Local8 P2 — Local addressing hy byte
DiodtP3LocalDigl6 P3 — Local addressing for HS 16-bit Dig I/O
DiodtP3LocalCtrl6 P3 — Local addressing of 16-bit counters
DiodtP2Exp8 P2 — Expansion addressing by byte
DiodtExp8255 DBK20, DBK21
DiodtDbk23 DBK23
DiodtDbk24 DBK24
DiodtDbk25 DBK25

4.5-38 Daqg APl Command Reference 908794 Programmer’s Manual

devPort-(DaqlODevicePort)
Definition | Description

Local Bit I1/0
DiodpBitlO | P2 — Addressing by bit
P2 Sequential 8-Bit Addressing
DiodpP2Local8 P2 — Local addressing by byte
DiodpP2Local IR P2 — Local Internal register (for configuring P2)
DiodpP2Exp8 P2 — Expansion adressing by byte
P3 Digital Port
DiodpP3LocalDigl6 P3 — Local addressing for HS 16-bit Dig I/0
DiodpP3LocalDiglIR P3 — Local Internal register (for configuring P3)
Local 8255, Dbk20, Dbk21 (Daq device and DBK only)
Diodp8255A P2 — Digital byte wide Port A
Diodp8255B P2 — Digital byte wide Port B
Diodp8255C P2 — Digital byte wide Port C
Diodp8255IR P2 —Internal register (for configuring P2)
Diodp8255CHigh P2 — Digital 4-bit wide Port C
Diodp8255CLow P2 — Digital 4-bit wide Port C
DiodpP3LocalCtril6 P3 — 16-bit Counter
Dbk23
DiodpDbk23A DBK23 - Digital byte wide Port A
DiodpDbk23B DBK23 - Digital byte wide Port B
DiodpDbk23C DBK23 - Digital byte wide Port C
DiodpDbk23Unused Not used
Dbk24
DiodpDbk24A DBK?24 - Digital byte wide Port A
DiodpDbk24B DBK?24 - Digital byte wide Port B
DiodpDbk24C DBK?24 - Digital byte wide Port C
DiodpDbk24Unused Not used
DiodpDbk25 DBK25
whichExpPort—(DaqlOExpansionPort)

Definition Description
DioepP1 Note that DioepP1 is for DigiBook only.
DioepP2 DBK20/21 Port 2
DioepP3 DBK20/21 Port 3

Returns
DagError See Dag Error Table

Function Usage

The daqlOWriteBit function will set the current state of the selected bit in the bitValue parameter. The
selected bit (specified by the b i tNum parameter) corresponds to the 1/O channel on the port which is being written
to. The bitValue can be set to true indicating a high state or false indicating a low state. This function
requires that daq10Get8255ConT or daqSetOption be called prior to invocation to configure the specifed
port as an output port.

Local I/O

Those devices which support the P2 port have built-in Intel 8255C chips which can be used as general purpose 1/0.
The 8255C has 3 configurable DIO ports (PortA, PortB, PortC). These ports are 8-bit ports which can be
individually programmed as either input or output ports. All three of the local P2 ports can be programmed
asynchronously using the daq 1OWriteBit function.

Additionally, there is a 16-bit Digital port on P3 of the main unit.* If devices allow this port to be used as a high
speed digital port which can be scanned synchronously along with other analog channels in a acquisition.

*Note. P3 for DagBoard/2000 Series boards is obtained by connecting an appropriate DBK200 Series board to the DagBoard/2000
Series board’s P4 connector, via cable.

Programmer’s Manual 908794 Daq APl Command Reference 4.5-39

Some devices, such as the DaqBook/2000 Series, DaqlLab/2000 Series, DagScan/2000 Series, DagBoard/2000
Series [and 2000c Series] products, can also access this port asynchronously as a general purpose DIO port. If using
the DagBoard/2000 Series [or 2000c Series] products, the daq ORead function can be used to read this port

asynchronously.

Expansion I/O

There are several expansion options (DBK2x) that allow the DIO to be expanded on the main unit of the device.
These expansion units operate off of the P2 port of the main unit (if the main unit supports P2) and can be accessed
asynchronously. These expansion cards vary in numbers of DIO as well as DIO connectivity and isolation
characteristics (see the User Manual on characterstics of your particular DBK2x card). All of the DBK2x series
expansion cards can be accessed asynchronously.

When using a DBK20 Series expansion card on P2, the Local P2 port becomes inaccessible.

The following table describes typical port settings. “n” is the expansion card’s position in a system. In a three
card system the first card would have n = 0, the second card n =1, and the third card n = 2.

Digital I/0O Port | devType | devPort | whichDevice | whichExpPort
P2 Local DIO (one 8255 — three 8-bit DIO banks)
P2 Local 8255 Port A DiodtP2Local8 DiodpP2Local8 Diodp8255A DioepP2
(P2 pins 30-37)
P2 Local 8255 Port B DiodtP2Local8 DiodpP2Local8 Diodp8255B DioepP2
(P2 pins 3-10)
P2 Local 8255 Port C DiodtP2Local8 DiodpP2Local8 Diodp8255C DioepP2
(P2 pins 22-28)
P3 Local DIO/HS Digital 10 (one 16-bit DIO bank)
P3 Local 16-bit Port* DiodtP3LocalDigl6 DiodpP3LocalDigl6 | DiodpP3LocalDigl6 DioepP3
(P3 pins 3-10, 22-29)
P2 Expansion DIO with DBK20/21 (dual 8255’s — six 8-bit DIO banks) “n” is the expansion card’s position in a system.
P2 Exp 8255-0 Port A DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255A DioepP2
(see DBK20/21 doc)
P2 Exp 8255-0 Port B DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255B DioepP2
(see DBK?20/21 doc)
P2 Exp 8255-0 Port C DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255C DioepP2
(see DBK?20/21 doc)
P2 Exp 8255-1 Port A DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255A + 4 DioepP2
(see DBK20/21 doc)
P2 Exp 8255-1 Port B DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255B + 4 DioepP2
(see DBK20/21 doc)
P2 Exp 8255-1 Port C DiodtExp8255 DiodpP2Exp8 (nx8) + Diodp8255C + 4 DioepP2
(see DBK20/21 doc) (see example)
P2 Expansion DIO with DBK23 (three 8-bit DIO banks) “n” is the expansion card’s position in a system.
P2 Exp DBK23 Port A DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23A DioepP2
P2 Exp DBK23 Port B DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23B DioepP2
P2 Exp DBK23 Port C DiodtDbk23 DiodpP2Exp8 (nx4) + DiodpDbk23C DioepP2
P2 Expansion DIO with DBK?24 (three 8-bit DIO banks)
P2 Exp DBK?24 Port A DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24A DioepP2
P2 Exp DBK24 Port B DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24B DioepP2
P2 Exp DBK24 Port C DiodtDbk24 DiodpP2Exp8 (nx4) + DiodpDbk24C DioepP2
P2 Expansion DIO with DBK25 (one 8-bit DIO bank) “n” is the expansion card’s position in a system.
P2 Exp DBK25 Port | DiodtDbk25 | DiodpP2Exp8 [n + DiodpDbk25 | DioepP2
WBK17
WBK17 Digital Output | DiodtWbk17 | DiodpWbk17_8Bit [Firstchannel onunit(9,17,25...) | DioeP1

Example of Calculating “whichDevice” for three DBK20 P2 Exp 8255-1 Port C banks.

whichDevice: (Note 1) Result:
(nx8) + Diodp8255B + 4 Diodp8255B + 4
n=0

For the first positioned card n= 0.
Thus for the first card’s P2 Exp 8255-1 Port C

For the second positioned card n= 1. Diodp8255B + 12

Thus for the second card’s P2 Exp 8255-1 Port C ...

(nx8) + Diodp8255B + 4
n=1

Diodp8255B + 20

For the third positioned card n= 2.
Thus for the third card’s P2 Exp 8255-1 Port C

Note 1: The equation is from the whichDevice column and “P2 Exp 8255-1" row (shaded), in the preceding table.

(nx8) + Diodp8255B + 4
n=2

4.5-40 Daqg APl Command Reference 908794 Programmer’s Manual

Prototypes

C/C++

daglOWriteBit(DagHandleT handle, DaqlODeviceType devType, DaqlODevicePort
devPort, DWORD whichDevice, DaqlOExpansionPort whichExpPort, DWORD bitNum,
BOOL bitvalue);

Visual BASIC

VBdaqlOWriteBit&(ByVal handle&, ByVal devType&, ByvVal devPorté&, Byval
whichDeviceé&, ByVal whichExpPorté&, ByVal bitNum&, ByVal bitvValue&)

Program References
DAQEX.FRM (VB)

Programmer’s Manual 908794 Daq APl Command Reference 4.5-41

daqOnline

Also See: daqOpen, daqClose
Format
dagOnline(handle, online)
Purpose

dagOnl ine determines if a device is online.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle of the device to test for online
online PBOOL Boolean indicating whether the device is currently online

Parameter Values

handle: obtained from the dagOpen function
online: apointer to a boolean value; values are either true (= 0) or false (=0)

Returns
DerrNoError No error
Function Usage

The handl e parameter for this function must be a valid device handle which has been opened using the daqOpen
function. The onl ine parameter indicates the current online state of the device (true = device online;
false = device not online).

Prototypes

C/C++
dagOnline(DagHandleT handle, PBOOL online);

Visual BASIC
VBdaqOnline&(ByVal handle&, online&)

Program References
None

4.5-42 Daq APl Command Reference 908794 Programmer’s Manual

daqOpen

Also See: daqClose, dagOnline
Format

dagOpen(LPSTR dagName)
Purpose
daqgOpen opens an installed device for operation.

Parameter Summary

Parameter Type
dagName LPSTR

Description
String representing the name of the device to be opened.

Parameter Values
dagName: a pointer to a string of characters—no effective range of values applies
Returns

handle A handle to the specified device (-1 if open failed).

For more details on error messages refer to the Daq Error Table.

Function Usage

The dagOpen function will initiate a session for the device name specified by the dagName parameter by opening
the device, initializing it, and preparing it for further operation. The dagName specified must reference a currently
configured device. Refer to Daq Configuration utility sections of your user’s manual (on the CD-ROM) if
needed. An example of assigning a new Device Name follows shortly.

Example of Accessing and Using the Dag Configuration Control Panel Applet

J Address I[EI Control Parel

%4 Dag™ Configuration

&.&dd Mew Hardware DraqBoard/ 2000 Properties | Test Hardware I
.-’-‘«dd.f'Flemove Proarams — Device Settings

Daq* Configuration
Dag* Driver
Configuration Utility

u Corel Yersions

gty 0ag” Configuration
[T r—

Device Hame:

& Daq Configuration

Device Type: |DagBoard/2000 j @

Device lnventom

‘ 1
Propertiez | Add Devicel Remove I

Cloze |

DagBoard/ 2000 Hardvare:
@ Bus 0, 5lat 10, 5/N 2863311530" (5) =
fi DagBoard2k0
L DanDaLD “The zerial number iz shown for reference only.
&2 Dagbodl Wwhen you have multiple boards a device name is
|

matched to a particular board by phyzical zlot, not
b gerial number,

Device Besources... |

o]

Cancel | Spm |

To access the Daq Configuration applet and change its device name:

. Run the Daq Configuration control panel applet. Navigation from the desktop to the applet is as

follows:

Start = Settings = Control Panel = Dag Configuration
. Double-click on the Device Inventory’s DagBoard2KO0 icon. The DagBoard/2000 Properties tab will

appear.

Programmer’s Manual 908794

Daq APl Command Reference 4.5-43

. Enter a device name in the text box, or use the default “DagBoard2K0.” Device Name is for identifying
the specific DagBoard/2000 Series board [or cPCI DagBoard/2000c Series board]. Note that Device
Name actually refers to the PCI[cPCI] slot and not to the actual DagBoard/2000 Series board[or cPCI
DagBoard/2000c].

Programming Note:

It should be noted that the dagName parameter of daqOpen should correspond to the name of the
device presented here. In this case, “DagBoard2K0” should be used as the dagName to open the
DagBoard/2000 Series board [or cPCI DagBoard/2000c] represented here. Notice the device named
“DaqBook0” directly under the “DagBoard2k0” device. To open the this device the dagName
parameter of daqOpen should be set to “DagBook0”

e Verify “DagBoard/2000” is listed as the Device Type. Note that available device types can be viewed via
the pull-down list.

. Confirm that the DagBoard/2000 text box shows a Bus #, Slot #, and Serial Number.
e Verify that the DagBoard/2000’s serial number matches the serial number obtained in step 5.

Steps 5 and 6 apply only to DagBoard/2000 Series [and 2000c Series] devices.

Obtaining a Device’s handle

daqgOpen should be performed prior to any other operation performed on the device. This function will return a
device handle that is used by other functions to reference the device. Once the device has been opened, the device
handle should be used to perform subsequent operations on the device. If successful, this function will return a non-
negative handl e which can then be used in subsequent API calls.

Most functions in this manual require a device handle in order to perform their operation. When the device session
is complete, dagClose may be called with the device handle to close the device session.

If a -1 is returned as the handle then dagOpen function failed to properly open the device. If this
occurs, the returned handle is not valid and cannot be used in any other handle based function. The
-1 handle constitutes a fatal error condition and the device cannot be further accessed.

Prototypes
C/C++
dagOpen (LPSTR dagName);
Visual BASIC
VBdaqOpen& (ByVal dagName$)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQDIGIOEX01.CPP, DAQDIGIOEX02.CPP,
DAQEX.FRM (VB)

4.5-44 Daq APl Command Reference 908794 Programmer’s Manual

daqgProcessError

Also See: dagSetDefaultErrorHandler,
dagGetLastError, dagDefaultErrorHandler

Format

dagProcessError (handle, errCode)
Purpose
dagProcessError initiates an error for processing by the driver.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the specified error is to be processed
errCode DagError Pointer to a value which specifies the device error code to process

Parameter Values

handle: obtained from the dagOpen function
errCode: apointer to a value ranging from 0 to 1,000

Returns

6 For more details on error messages refer to the Daqg Error Table.

Function Usage
The dagProcessError function can be used to initiate processing for a device-defined error.
Prototypes

C/C++
dagProcessError(DagHandleT handle, DagError errCode);

Visual BASIC
VBdaqgProcessErroré&(ByVal handle&, ByVal errCode&)

Program References
None

Programmer’s Manual 908794 Daq APl Command Reference 4.5-45

daqReadCalFile

Also See: daqCalSetup,
dagCalConvert, daqCalSetupConvert

Format
dagReadCalFile (handle, calfile)

Purpose

dagReadCalFi le is the initialization function for reading in the calibration constants from the calibration text
file.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device which will be associated with the calibration file
calfile LPSTR File name with optional path information of the calibration file

Parameter Values

handle: obtained from the dagOpen function
calfile: apointerto astring of characters; if the value of calfile is null or empty (“”), the default
calibration file DAQBOOK.CAL will be read.

Returns
DerrinvCalfile Error occurred while opening or reading calibration file
DerrNoError No error

6 For more details on error messages refer to the Daq Error Table.

Function Usage

The dagReadCalFile function (usually called once at the beginning of a program) will read all the calibration
constants from the specified file. The cal i le parameter specifies the path\filename of the calibration file to read.
If calibration constants for a specific channel number and gain setting are not contained in the file, ideal calibration
constants will be used—essentially performing no calibration for that channel. If an error occurs while trying to
open the calibration file, ideal calibration constants will be used for all channels and a non-zero error code will be
returned by the dagReadCalFi le function.

Prototypes
C/IC++
dagReadCalFile(DagHandleT handle, LPSTR calfile);

Visual BASIC
VBdagReadCalFile&(ByVal handle&, Byval calfile$)

Program References
DBK19EX.CPP, DBK52EX.CPP

4.5-46 Daqg APl Command Reference 908794 Programmer’s Manual

daqSetDefaultErrorHandler

Also See: dagDefaultErrorHandler, daqGetLastError,
dagProcessError, daqgSetErrorHandler

Format
dagSetDefaultErrorHandler(handler)

Purpose
dagSetDefaultErrorHandler sets the driver to use the default error handler specified for all devices.

Parameter Summary

Parameter Type Description
handler DagErrorHandlerFPT Pointer to a user-defined error handler function.

Parameter Values

handler: a pointer to a user-defined function
Returns

DerrNoError No error
Function Usage

The dagSetDefaul tErrorHandler function allows you to set the driver to use a default error handler
specified by the DagErrorHandleFPT. The DagErrorHandleFPT parameter should point to the function
defined by the application that will be used to process the error codes passed to it. This parameter should be set prior
to calling the function. This function can also be used to disable on-screen error reporting by setting the
DagErrorHandleFPT to nul 1(0).

6 For more details on error messages refer to the Daq Error Table.

Prototypes
C/C++
dagSetDefaultErrorHandler(DagErrorHandlerFPT handler);
Visual BASIC
VBdaqgSetDefaultErrorHandler&(ByVal handler&)

Program References
None

Programmer’s Manual 908794 Daq APl Command Reference 4.5-47

daqSetErrorHandler

Also See: dagSetDefaultErrorHandler,
dagDefaultErrorHandler,
dagGetLastError, dagProcessError

Format
vdagSetErrorHandler (handle, handler)

Purpose
dagSetErrorHandler specifies the routine to call when an error occurs in any function for the specified device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device to which to attach the specified error
handler
handler DagErrorHandlerFPT | Pointer to a user-defined error handler function

Parameter Values

handle: obtained from the dagOpen function
handler: a pointer to a user-defined function

Returns
DerrNoError No error
Function Usage

The dagSetErrorHandler function specifies an error handler for the device currently open with the handle
parameter. It should be used if it is desirable to use a error handler other than the default error handler for a specific
device. This function allows the application to specify its own routine to be called when errors occur on processing
commands for the device. If it is desirable to have no action occur when a command error is detected on the device,
use this function with a nul I (0) parameter. The default error routine is dagDefaul tErrorHandler.

6 For more details on error messages refer to the Daqg Error Table.

Prototypes
C/IC++
dagSetErrorHandler(DagHandleT handle, DaqgErrorHandlerFPT handler);
Visual BASIC
VBdaqgSetErrorHandler&(ByVvVal handle&, ByVal handler&)

Program References
DAQADCEX05.CPP, DAQADCEX06.CPP, DAQEX.FRM (VB)

4.5-48 Daqg APl Command Reference 908794 Programmer’s Manual

daqSetOption

Format

Also See: dagAdcExpSetBank

dagSetOption (handle, chan, flags, optionType, optionValue)

Purpose

dagSetOption allows the setting of options for a device’s channel/signal path configuration.

Parameter Summary

Parameter Type Description
handle DagHandleT The handle to the device for which to set the option
chan DWORD The channel number on the device for which the option is to be set
flags DWORD Flags specifying the options to use
optionType DagOptionType | Specifies the type of option
optionValue FLOAT The value of the option to set

Parameter Values

handle: obtained from the dagOpen function.
chan: valid values range from 0 to 271

flags: see table below

optionType: see table below
optionValue: values available depend on optionType parameter --see optionType table below

Parameter Type Definitions

(For WBK17 Only)

flags
Definition Description
DcofChannel Apply option to the channel specified by the chan parameter.
DcofModule Apply option to the entire module for which chan is located.
DcofSubChannellLow Counter Low Word. SubChannel identifier for WBK17 Detection Options. Use enum + detection number

(1 through 16). Note that WBK17 Detector Options require sub-channel in DaqChanOptionFLagType.
Some Option Types have enumerated Option Values (DagChanOptionValue).

DcofSubChannelHigh
(For WBK17 Only)

Counter High Word. SubChannel identifier for WBK17 Detection Options. Use enum + detection number
(1 through 16). Note that WBK17 Detector Options require sub-channel in DagChanOptionFLagType.
Some Option Types have enumerated Option Values (DagChanOptionValue).

optionType-DagOptionType

DBK 4 Options

Option Type I Option Value oL
(optionType) Description (optionvalue) Description
DdcotDbk4MaxFreq Set the DBK4 Low Pass DcovDbk4Freql8kHz LPF 3dB level is 18MHz
Filter (LPF) Frequency DcovDbk4Freq9000Hz LPF 3dB level is 9IMHz
DcovDbk4Freq4500Hz LPF 3dB level is 4.5MHz
DcovDbk4Freq2250Hz LPF 3dB level is 2.25MHz
DcovDbk4Freql125Hz LPF 3dB level is 1125Hz
DcovDbk4Freq563Hz LPF 3dB level is 563Hz
DcovDbk4Freq281Hz LPF 3dB level is 281Hz
DcovDbk4Freql41Hz LPF 3dB level is 141Hz

DdcotDbk4SetBaseline

Set the DBK4 Baseline usage

DcovDbk4Basel ineNever

Baseline is not set when
configuring the scan group (see
dagAdcSetScan)

DcovDbk4Basel ineOneShot

Baseline is set when configuring
the next scan group (see
dagAdcSetScan)

(continued)

Programmer’s Manual

908594

Dag APl Command Reference

4.6-1

(DBK4 Continued)

Option Type

Option Value

Rising/Falling edge

(optionType) Description (optionvalue) Description
- - Enable/Disable the excitation TRUE Enables (turn on) excitation source
DdcotDbkaExcitation source on the DBK4 FALSE Disables (turn off) excitation source
. . Enables Switched Capacitor Clock
DdcotDbk4Clock Egagg{grlsgggktgi??gt;?g4 TRUE (must be enabled if using filter)
P FALSE Disables Switched Capacitor Clock
DdcotDbk4Gain For Internal Use N/A N/A
DBK 7 Options
DdcotDbk7Slope ?ﬁ;rI]DrEIIiI(I:D(EnKIS;']SS TRUE Count on Rising Edge of Signal
DdcotDbk55S1ope FALSE Count on Falling Edge of Signal

DdcotDbk7DebounceTime
DdcotDbk55DebounceTime

Set the DBK7/DBK55

signal Debounce Setting

DcovDbk7DeboucneNone

No debouncing

DcovDbk7Debounce600us

600us Debounce time

DcovDbk7Debounce2500us

2500us Debounce time

DcovDbk7DebouncelOms 10ms Debounce time

DdcotDbk7MinFreq Set the DBK7/DBK55 Set the DBK7/DBK55 minimum
DdcotDbk55MinFreq minimum measured 0-1,000,000 measured frequency to the value

frequency specified
DdcotDbk7MaxFreq Set the DBK7/DBK55 Set the DBK7/DBK55 minimum
DdcotDbk55MaxFreq maximum measured 0-1,000,000 measured frequency to the value

frequency specified

DBK 50 Options

DdcotDbk50Gain For Internal Use | NZA N/A

DBK 90 Options

DdcotDbk90StartChanOn

Set Channel to DBK90

DdcotDbk90StartChanOffAll

Clear all DBK90 channels

DdcotDbk90StartChanOff

Clear Channel to DBK90

Option Type

DmotDbk90GlitchReject

=2 Used to reject high magnitude changes in the data stream.

Option Values

DmovDbk90GI itchRejectOff | =0
DmovDbk90GIitchRejectOn | =1

Turns glitch rejection off.
Turns glitch rejection on.

DBK 100 Options

Note:

DBK100 devices make use of the DBK90 Option Types and Values. See preceding DBK90 section.

4.6-2

Dag APl Command Reference

957193

Programmer’s Manual

optionType-DaqOptionType continued

Option Type
(optionType)

Description

Option Value
(optionValue)

Description

Main Unit Options

DbotFifoOverflowMode

Enable/Disable FIFO
flushing upon overrun of
the FIFO (used w/WBK30)

TRUE

Upon FIFO overrun condition the
acquisition will terminate but the
FIFO will NOT be flushed until all
the data is transferred out of the
FIFO

FALSE

Upon FIFO overrun condition the
acquisition will terminate and the
FIFO will be immediately flushed.
Once flushed no data may be
retrieved from the FIFO.

DbotFifoCycleMode

Enables/Disables
overwriting of data within
the FIFO. (used
w/WBK30)

TRUE

Allows data to be continuously
acquired to the FIFO without
transferring data from the FIFO until
the acquisition has been completed.
This mode is useful when it is
desirable to take a pre-defined
amount of pre-trigger data.

FALSE

Will not allow the old FIFO data to
be overwritten. This mode requires
that either the entire acquisition be
acquired within the FIFO or that data
in the FIFO be continuously
transferred to the PC. This mode is
useful when collecting a non-pre-
triggered acquisition of unknown or
infinite length or a pre-trigger
acquisition of unknown or infinite
length. This mode requires that the
application continuously transfer
data from the FIFO.

DbotFifoCycleSize

Cycle buffer length in 16-
bit WORDs (used
w/WBK?30)

1-2,684,354,550

Specifies the amount of the FIFO to
use for the specified FIFO operation.
This value can never exceed the
memory size of the WBK30 module.
If using pre-trigger with the
DbotFifoCycleMode mode the
value should be:

pre-trigger size + post-trigger size

DbotFifoFlush

Flush all data in the FIFO
now (used w/WBK30)

N/A

Executes an immediate flushing of
the WBK30 FIFO. All data will be
removed from the FIFO and will no
longer be available for transfer

DbotFifoNoFlushOnDisarm

Disable Buffer Flushing
upon Disarm (used
w/WBK30)

TRUE

Specifies that the data is to remain in
the FIFO after the acquisition has
been completed or the acquisition
has been disarmed. The FIFO data
will be available for transfer
following a disarm operation.

FALSE

Specifies that the data is to be
flushed from the FIFO after the
acquisition has been has been
disarmed by the application. The
FIFO data will NOT be available for
transfer following a disarm
operation.

Programmer’s Manual

908594

Dag APl Command Reference

4.6-3

Option Type and Value Definitions Continued--DagOptionType

Digital I/O, Counter and Timer Options

Option Type Description Option Value Description
(optionType) (optionVvalue)
- Set the 8-bit local P2 port channel to be
D Set Input/Output mode for 8- DeovDigital Input an input channel P
cotp2Local8lode bit Local P2 port channel Set the 8-bit local P2 port channel to b
it Local P2 por DcovDigitalOutput et the 8-bit local P2 port channel to be
an output channel
- Set the 8-bit expansion P2 port channel
Set Input/Output mode for 8- DeovbigitalInput to be an input channel
DcotP2Exp8hiode bit Expansion P2 port channel Set the 8-bit ion P2 port ch |
p p DcovDigitalOutput et the 8-bit expansion P2 port channe
to be an output channel
- Set the 16-bit local P3 port to be an
Set Input/Output mode for DeovDigital Input input channel i
DeotP3Locali6iode 16-bit Local P3 port Set the 16-bit local P3 port to b
P DcovDigitalOutput et the it local Fo port 10 be an
output channel
Enables/Disables cascading DcovCountercascade !Enable ca_iscading of 16-hit counters
counter channels on into 32-bit counters
DcotCounterCascade DaqBook/2000 Series, Use single 16-bit counters — do not
DagBoard/2000 Series, and DcovCounterSingle cascade counters.
cPCI DagBoard/2000c Series.
Enable clear on read of the selected
counter(s). When counter channels are
Enables/Disables Clear on DcovCounterClearOnRead included in the acquisition scanning and
Read of counter channel on pulse counting is required this mode
DcotCounterMode DaqBook/2000 Series, must be set
DagBoard/2000 Series and Disables clear on read of the selected
cPCI DagBoard/2000c Series. DcovCounterTotal ize counter(s). _This mo_de:\ allows counters
to free-run in a totalizing mode of
operation.
Turn Counter Channel On/Off DcovCounteron Enable counting by turning the counter
or manually clear counter w/ channel On
DagBook/2000 Series, Disable counting by turning the
DeotCountercontrol DagBoard/2000 Series [and DeovCounterOff counter channeIgOf}; ’
/2000c Series] products. This Manually clear the counter channel.
mode should only be used Counter will continue to count if still
when reading counters DcovCounterManualClear enabled.
asynchronously
Turn ALL Counter Channels Enable counting for ALL counter
On/Off or manually clear DcovCounterOn channels by turning the counter
ALL Counter Channels w/ channels On
DaqBook/2000 Series, Disable counting for ALL counter
DmotCounterControl DaqgBoard/2000 Series DcovCounterOff channels by turning the counter
[and /2000c Series] product. channels Off
This mode should only be Manually clear the ALL counter
used when reading counters DcovCounterManualClear channels. Counters will continue to
asynchronously count if still enabled.
Used to enable and set the 0 thru 13 0,1 disables oversampling. Number of
sample value for, or disable, (for 14 sample settings samples 2, 4, 8, 16, 32, 64 ... 16384,
DmotOverSampleAmount oversampling (averaging) of 2, 4, 8, 16, 32, 64, where 0 sets 2, 1 sets 4,2 sets 8. ..
data before data is delivered 128, etc. up to 16384) 13 sets 16,384 samples.
to the buffer.
Selects Counter Edge TRUE Increment Counter on Rising Edge of
Detection (Rising/Falling) input signal
DcotCounterEdge for DagBook/2000 Series, Increment Counter on Falling Edge of
DagBoard/2000 Series [and FALSE input signal
/2000c Series] products
- - 16-bit Number (freq = 1IMHz 16-bit value divides the IMHz clock by
DcotTimerDivisor / (Divisor + 1)) 0-65,535 1 10 65535
Turn Timer Channel On/Off - Enables Timer Channel Output by
D - w/ DagBook/2000 Series, DeovTimerOn turning the Timer Channel On.
cotTimerControl ; - -
DagBoard/2000 Series DeovTimerOFf Disables Timer Channel Output by
[and /2000c Series] products. turning the Timer Channel Off.
Turn ALL Timer Channel(s - Enables ALL Timer Channel Outputs
D - On/Off w/ Danook/ZOOO() DeovTimerOn by turning all the Timer ChannelspOn.
motTimerControl . . - -
Series, DagBoard/2000 Series DeovTimerOFf Disables ALL Timer Channel Outputs

[and /2000c Series] products.

by turning all the Timer Channels Off.

4.6-4

Dag APl Command Reference

908594

Programmer’s Manual

Option Type and Value Definitions Continued--DagOptionType
3000 Series Device Options
Option Type (optionType) Option Value (optionValue) Description
DcotCounterEnhDebounceTime Sets debounce to:
DcovCounterEnhDebounce500ns =0 500 ns
Used to bypass the debounce mode, or to set a —
channel’s comparator output to one of 16 DcovCounterEnhDebouncel500ns =1 1500 ns
debounce times. Debounce is used to eliminate DcovCounterEnhDebounce3500ns =2 3500 ns
switch-induced transients typically associated —
with electro-mechanical devices including relays, | P€ovCounterEnhDebounce7500ns =3 7500 ns
proximity switches, and encoders. DcovCounterEnhDebounce15500ns =4 15500 ns
Note that there are two debounce modes, one for DeovCounterEnhDebounce31500ns =5 31500 ns
“After Stable” and another for “Before Stable.” DcovCounterEnhDebounce63500ns =6 63500 ns
See: DeotCounterEnhbebounceTrigger DcovCounterEnhDebouncel27500ns = 7 127500 ns
DcovCounterEnhDebouncel00us =8 100 ps
DcovCounterEnhDebounce300us =9 300 ps
DcovCounterEnhDebounce700us =10 700 ps
DcovCounterEnhDebouncel500us =11 1500 ps
DcovCounterEnhDebounce3100us =12 3100 ps
DcovCounterEnhDebounce6300us =13 6300 pus
DcovCounterEnhDebouncel2700us =14 12700 ps
DcovCounterEnhDebounce25500us = 15 25500 ps
DcovCounterEnhDebounceNone = 16 bypass
Selects for detection:
DcotCounterEnhEdge
Determines whether the rising edge or falling DcovCounterEnhRisingEdge = 0 | The"Rising Edge”
edge is to be detected. DcovCounterEnhFal lingEdge = 1 | The “Falling Edge”
- - Sets ticksize to:
DcotCounterEnhTickSize
DcovCounterEnhTick20_83ns =0 20.83 ns
Determines the ticksize; which is the fundamental | DcovCounterEnhTick208_3ns =1 208.3 ns
unit of time for period, pulsewidth, and timing . —
measurements. DcovCounterEnhTick2083_3ns =2 2083.3ns
DcovCounterEnhTick20833_3ns =3 20833.3 ns
DcotCounterEnhControl DcovCounterEnhDisable =0 Disables counter
DcovCounterEnhEnable =1 Enables counter
DcovCounterEnhClear =2 Clears counter
DmotCounterEnhControl DcovCounterEnhDisable = 0 | Disables all counters
DcovCounterEnhEnable =1 Enables all counters
DcovCounterEnhClear =2 Clears all counters

Usage Note: Combine the applicable mode with the desired mode-specific settings via option values.
The following three option values are available for all Option Types listed above.

DcovCounterEnhMode Counter
DcovCounterEnh_ClearOnRead
DcovCounterEnhModeMask_32Bit

Programmer’s Manual 908594 Dag APl Command Reference 4.6-5

Option Type and Value Definitions Continued--DagOptionType

3000 Series Device Options (continued)

Option Type (optionType)

DcotCounterEnhDebounceTrigger
Sets the mode of the debounce module to Trigger After Stable, or to Trigger Before Stable.
Option Value (optionvalue)

DcovCounterEnhTriggerAfterStable = 0

DcovCounterEnhTriggerAfterStable selects the “Trigger After Stable” mode. This mode
rejects glitches and only passes state transitions after a specified period of stability (the debounce time).
This mode is used with electro-mechanical devices like encoders and mechanical switches to reject switch
bounce and disturbances due to a vibrating encoder that is not otherwise moving. The debounce time
should be set short enough to accept the desired input pulse but longer than the period of the undesired
disturbance.

Option Value (optionValue)

DcovCounterEnhTriggerBeforeStable =1

DcovCounterEnhTriggerBeforeStable selects the Trigger Before Stable mode. Use this mode
when the input signal has groups of glitches and each group is to be counted as one. The trigger before
stable mode will recognize and count the first glitch within a group but reject the subsequent glitches within
the group if the debounce time is set accordingly. In this case the debounce time should be set to
encompass one entire group of glitches.

3000 Series Device Options

Option Type (optionType) | Option Value (optionValue) | Description

DcotCounterkEnhMapChannel

DcovCounterEnhMap_Channel_0 = 0 Selects the mapped channel to
Used to select the mapped channel. DcovCounterEnhMap_Channel_1 -1 Eﬁa%r:]il(;f the counter input
For the 3000 Series devices, a mapped ~DcovCounterEnhMap_Channel _2 =2
channel is one of 4 signals that can get DcovCounterEnhMap_Channel 3 = 3 Thereare 4 post-debounce
multiplexed into a channel’s counter - - channel input signals that can
module. be individually selected as
mapped channels.
The mapped channel can participate
with the channel’s input signal by These are:
gating the counter, clearing the Channel_0
counter, etc. Channel_1
Channel_2
Channel_3

4.6-6

Dag APl Command Reference 908594 Programmer’s Manual

Option Type and Value Definitions Continued--DagOptionType

3000 Series Device Options (continued)

Option Type
(optionType)

Option Value
(optionvalue)

Description

DcotCounterEnhMeasurementMode

Enumeration with
Bit-Masking.

The options can be
combined.

DcovCounterEnhMode Counter

Counter Mode

DcovCounterEnhCounter_Totalize

Totalize Mode — The counter counts up and rolls over on
the 16-bit or 32-bit boundary.

DcovCounterEnhCounter_ClearOnRead

Clear On Read Mode - The counter is cleared at the
beginning of every scan; and the final value of the counter
[the value just before it was cleared] is latched and
returned to the Wavebook/516.

DcovCounterEnhCounter_Roll0ver

Rollover Mode - The counter continues to count upward,
rolling over on the 16-bit or 32-bit boundary.

DcovCounterEnhCounter_StopOnTop

Stop at the Top Mode - The counter will stop at the top
of its count. The top of the count is FFFF for the
16-bit option and FFFFFFFF for the 32-bit option.

DcovCounterEnhCounter_LatchOnS0S

Selects start of scan. Latches the counter outputs at the
beginning of every scan.

DcovCounterEnhCounter_LatchOnMap

Selects the mapped signal to latch the counter outputs.
This allows the user to know the exact counter value
when an edge is present on another channel.

DcovCounterEnhCounter_DecrementOff

Sets the counter decrement option to “off.”

DcovCounterEnhCounter_DecrementOn

Sets the counter decrement option to “on.”

DcovCounterEnhCounter_CountChan

Selects channel for count.

DcovCounterEnhCounter_CountMap

Selects mapped channel for count.

DcovCounterEnhModeMask_16Bit

Selects 16-Bit counter.

DcovCounterEnhModeMask_32Bit

Selects 32-Bit counter.

DcovCounterEnhModeMaskGatingOff

Selects gating “off.”

DcovCounterEnhModeMaskGatingOn

Selects gating “on.” When “On”, the counter is enabled
when the mapped channel to gate the counter is high.

When the mapped channel is low, the counter is disabled
(but holds the count value).

DcovCounterEnhMode_ OFF

Turns the Enhanced Counter Mode “off.”

DcovCounterEnhMode_Counter

Turns the Enhanced Counter Mode “on.”

DcotCounterEnhMeasurementMode (continued)

Programmer’s Manual

908594

Dag APl Command Reference 4.6-7

Option Type and Value Definitions Continued--DagOptionType

3000 Series Device Options (continued)

Option Type
(optionType)

Option Value
(optionvalue)

Description

DcotCounterEnhMeasurementMode

(continued)

Enumeration
with Bit-
Masking.

The options can
be combined.

DcovCounterEnhMode_ Period

Period Mode

DcovCounterEnhPeriod_X1
DcovCounterEnhPeriod_X10
DcovCounterEnhPeriod_X100
DcovCounterEnhPeriod_X1000

Used to select the number of periods to time, per
measurement. Choices are:
1, 10, 100, or 1000

DcovCounterEnhPeriod_MeasChan
DcovCounterEnhPeriod_MeasMap

Selects to measure input channel’s period.

Selects to measure the mapped channel’s period.

DcovCounterEnhModeMask_16Bit
DcovCounterEnhModeMask_32Bit

Selects 16-Bit counter.
Selects 32-Bit counter.

DcovCounterEnhModeMaskGatingOff
DcovCounterEnhModeMaskGatingOn

Gating can be selected On or Off. When “On”, the
counter is enabled when the mapped channel to gate the
counter is high. When the mapped channel is low, the
counter is disabled (but holds the count value).

DcovCounterEnhMode PulseWidth

Pulsewidth Mode

DcovCounterEnhPulseWidth_MeasChan

Selects to measure input channel’s pulsewidth.

DcovCounterEnhPulseWidth_MeasMap

Selects to measure the mapped channel’s pulsewidth.

DcovCounterEnhModeMask 16Bit

Selects 16-Bit counter.

DcovCounterEnhModeMask_32Bit

Selects 32-Bit counter.

DcovCounterEnhModeMaskGatingOff

DcovCounterEnhModeMaskGatingOn

Gating can be selected On or Off. When “On”, the
counter is enabled when the mapped channel to gate the
counter is high. When the mapped channel is low, the
counter is disabled (but holds the count value).

DcovCounterEnhMode_Timing

Timing Mode

DcovCounterEnhModeMask_16Bit

Selects 16-Bit counter.

DcovCounterEnhModeMask_32Bit

Selects 32-Bit counter.

DcovCounterEnhModeMaskGatingOff

DcovCounterEnhModeMaskGatingOn

Gating can be selected On or Off. When “On”, the
counter is enabled when the mapped channel to gate the
counter is high. When the mapped channel is low, the
counter is disabled (but holds the count value).

DcotCounterEnhMeasurementMode (continued)

4.6-8

Dag APl Command Reference

908594

Programmer’s Manual

Option Type and Value Definitions Continued--DagOptionType

3000 Series Device Options (continued)

Option Type
(optionType)

Option Value
(optionvalue)

Description

DcotCounterEnhMeasurementMode

(continued)

Enumeration
with
Bit-Masking.

The options can
be combined.

DcovCounterEnhMode_ Encoder

Encoder Mode

DcovCounterEnhEncoder_X1

DcovCounterEnhEncoder_X2

DcovCounterEnhEncoder_X4

Determines the encoder measurement mode:
1X, 2X, or4X.

DcovCounterEnhEncoder_LatchOnS0OS

Selects start of scan. Latches the counter outputs at the
beginning of every scan.

DcovCounterEnhEncoder_LatchOnZ

Selects the Encoder Z mapped signal to latch the counter
outputs. This allows the user to know the exact counter
value when an edge is present on another channel.

DcovCounterEnhEncoder_ClearOnZ_Off

DcovCounterEnhEncoder_ClearOnZ_On

Selects “clear on Z” On or Off. When On, the encoder Z
is referenced to clear the counter. The counter is cleared
on the rising edge of the mapped (Z) channel.

DcovCounterEnhModeMask_16Bit

Selects 16-Bit counter.

DcovCounterEnhModeMask_32Bit

Selects 32-Bit counter.

DcovCounterEnhModeMaskGatingOff

DcovCounterEnhModeMaskGatingOn

Gating can be selected On or Off. When “On”, the
counter is enabled when the mapped channel to gate the
counter is high. When the mapped channel is low, the
counter is disabled (but holds the count value).

Programmer’s Manual

908594

Dag APl Command Reference 4.6-9

Option Type and Value Definitions Continued--DagOptionType

WaveBook/516 ai

nd WBK12/13 Options

Option Type
(optionType)

Description

Option Value
(optionvalue)

Description

DcotPga516LowPassMode

Turn on or bypass the Low

DcovPga516LowPassBypass

Bypass the Low Pass Filter on
the WaveBook/516 PGA

Pass Filter on the
WaveBook/516 PGA

DcovPga516LowPassOn

Turn on the Low Pass Filter on
the WaveBook/516 PGA

DcotWbk12FilterCutOff

Set the cutoff frequency
for the WBK12 option

Values range from 400 Hz to 100KHz

Sets the cutoff frequency
somewhere between specified
range

DcotWbk12FilterType

Set the Filter Type for the

DcovWbk12FilterElliptic

Set the filter type for the
WBK12 to be Elliptic

WBK12 option

DcovWbk12FilterLinear

Set the filter type for the
WBK12 to be Linear

DcotWbk12Fi lIterMode

Set the filter mode on the

DcovWbk12Fi lterBypass

Bypass the WBK12 Filter

WBK12 option DcovWbk12FilterOn Turn on the WBK12 Filter
- Set the pre-filter mode for DcovWbk12PreFilterDefault | Leave pre-filter mode on
Deotibk12PreFilteriiode the WBK12 option. DcovWbk12PreFilterOff Turn off pre-filter mode

DcotWbk13FilterCutOff

Set the cutoff frequency
for the WBK13 option

Values range from 400 Hz to 100KHz

Sets the cutoff frequency
somewhere between specified
range

DcotWbk13FilterType

Set the Filter Type for the

DcovWbk13FilterElliptic

Set the filter type for the
WBK13 to be Elliptic

WBK13 option

DcovWbk13FilterLinear

Set the filter type for the
WBK13 to be Linear

DcotWbk13Fi lterMode

Set the filter mode on the

DcovWbk13Fi lterBypass

Bypass the WBK13 Filter

WBK13 option

DcovWbk13FilterOn

Turn on the WBK13 Filter

DcotWbk13PreFi lterMode

DcovWbk13PreFilterDefault

Leave pre-filter mode on

Set the pre-filter mode for
the WBK13 option.

DcovWbk13PreFilterOff

Turn off pre-filter mode

4.6-10

Daq APl Command Reference

908594

Programmer’s Manual

Option Type and Value Definitions Continued--DaqOptionType

WBK14 Options

channel

Option Type Description Option Value Description
(optionType) (optionvalue)
Bypass the Low Pass Filter
DcovWbk1l4LowPassBypass for the specified WBK14
channel
Turn on, bypass or set to Turn on the Low Pass Filter
ext clock the Low Pass DcovWbkl14LowPassOn for the specified WBK14
Deotwbkl4LowPassiode Filter (LPF) on a WBK14 channel i

DcovWbk14LowPassExtCIlk

Use External Clock to control
the cutoff frequency for the
Low Pass Filter for the
specified WBK14 channel

DcotWbk14LowPassCutOff

Set the Low Pass Filter
(LPF) cutoff frequency for
a WBK14 channel

1.0 to 100000.0 (Hz)

Set the Low Pass Filter
frequency (when LPF set to
DcovWbk14LowPassOn)
For the specified WBK14
channel

DcotWbk14HighPassCutOff

Set the High Pass Filter
(HPF) cutoff frequency for
a WBK14 channel

DcovWbk14HighPass0O_1Hz

Set the High Pass Filter
(HPF) frequency to 0.1 Hz for
the specified WBK14 channel

DcovWbk14HighPass10Hz

Set the High Pass Filter
(HPF) frequency to 10.0 Hz
for the specified WBK14
channel

DcotWbk14CurrentSrc

Set the current source for
the WBK14 channel

DcovWbk14CurrentSrcOff

Turn off the current source
for the specified WBK14
channel

DcovWbk14CurrentSrc2mA

Set the current source to 2mA
for the specified WBK14
channel

DcovWbk14CurrentSrc4mA

Set the current source to 4mA
for the specified WBK14
channel

DcotWbk14PreFi lterMode

Set the pre-filter mode for
a WBK14 channel

DcovWbk14PreFilterDefault

Use the built-in default 65 dB
pre-filter stage

DcovWbk12PreFilterOff

Turn the pre-filter off

DmotWbk14ExcSrcWaveform

Set the Excitation Source
waveform for a WBK14

DmovWbk14ExcSrcRandom

Use random signal waveform
generation for the excitation
waveform

DmovWbk14ExcSrcSine

Use Sine wave signal
waveform generation for the
excitation waveform

DmotWbk14ExcSrcFreq

Set the Excitation Source
frequency for a WBK14

1.0 to 550000.0 (Hz)

Sets the excitation source
waveform frequency

DmotWbk14ExcSrcAmplitude

Set the Excitation Source
amplitude fora WBK14

0.0 to 5.0 (Volts)

Sets the excitation source
waveform amplitude

DmotWbk14ExcSrcOffset

Set the Excitation Source
offset for a WBK14

-5.0 to 5.0 (Volts)

Sets the excitation source
signal offset

DmotWbk14ExcSrcApply

0.0 to 5.0 (Volts)

Apply excitation voltage

DcotWbk14ExtFilterRange

DcovWbk14FilterRange_ 1K

Sets the filter range for the
WBK14 channel to 1Khz

DcovWbk14FilterRange_ 5K

Sets the filter range for the
WBK14 channel to 5Khz

DcovWbk14FilterRange_ 10K

Sets the filter range for the
WBK14 channel to 10Khz

DcovWbk14FilterRange_15K

Sets the filter range for the
WBK14 channel to 15Khz

DcovWbk14FilterRange_20K

Sets the filter range for the
WBK14 channel to 20Khz

Programmer’s Manual

908594

Daqg APl Command Reference

4.6-11

Option Type and Value Definitions -- DagOptionType

WBK16 Options

Option Type Description Option Value Description
(optionType) (optionValue)
Selects the type of bridge DcovWWbk16ApplyFull Selects Full Bridge
configuration. -
DcovWbk16ApplyHalfQtrPos gtﬂae;:ttesr!-!BarlifaB:dge/
DcotWbk16Bridge For diagrams and related g
text, refer to the
WaveBook User’s
Manual (p/n 481-0901).
Used to select the shunt DcovWbk16ApplyNone normal reading, no shunt
value for internal shunt-
calibration resistors. The | DcovWbk16Apply120 Apply 120 ohm shgnt -B
- Shunts are not pre-installed.
shunt resistors are not pre-
DcotWbk16ShuntCal installed. DcovWbk16Apply350 Apply 350 ohm shunt — D
Shunts are not pre-installed.
In regard to shunt setup
! Apply 1 K ohm shunt - F
refer’to the WaveBook DcovWbk16ApplylK Shunts are not pre-installed.
User’s Manual
(p/n 481-0901). DcovWbk16AutoZero apply short (0 ohm)
DcotWbk16InDiag Sets input diagnostics. DcovWbk16ReadNone _Sets dlggnostlcs for reading
input signals.
Sets the Dac Offset See Note 2 at end of
DcotWbk160ffsetDac relative to input. 0.0 to 4095.0 See Note 2. WBK16 Table.
Used to select normal DcovWbk16Normal Normal signal polarity.
DcotWbk161nv _S|gnal polarity, orto DcovWbk16Inverted Inverts signal polarity.
invert the polarity, if
desired.
Used to bypass the single- | DcovWbk16FI1tBypass Bypasses the filter
pole low-pass filter -
(LPF), or set it to one of DcovWbk16FI1t10Hz Enables 10 Hz filter
two cut-off frequencies: DcovWbk16FItl1Khz Enables 1 K Hz filter
DcotWbk16FilterType 10Hz o redu_ce.hlgh
frequency noise; or
1K Hz for anti-aliasing &
slight noise rejection
while maintaining
moderate bandwidth.
Sets the input coupling. DcovWbk16CoupleDC Selects DC Coupling
Use AC coupling to reject -
unwanted DC offsets. DcovWbk16CoupleAC Selects AC Coupling
Use DC coupling when
DcotWbk16Couple both AC and DC
components are to be
presented to the
comparator as input.
Used to bypass or to DcovWbk16Bypassed Bypasses SSH function
DcotWbk16Sample er_]able the WBK16’s Enables the SSH function
Simultaneous Sample and | pcovWbk16Ssh (for WBK16 only)
Hold (SSH) function.
DcovWbk16Exc0_0 Selects 0.0 V
DcovWbk16Exc0_5 Selects 0.5V
Used to select the DcovWbk16Excl_0 Selects 1.0 V
DcotWbk16ExcDac calibrated excitation DAC
values for WBK16. DcovWbk16Exc2_0 Selects 2.0 V
DcovWbk16Exc5_0 Selects 5.0 V
DcovWbk16Exc10_0 Selects 10.0 V
Provides gain definitions DcovWbk16X1 Sets IAG gainto: x1
for the WBK16 IAG DCoVibk16X10 Sets IAG gain to: x 10
(Instrumentation
DcotWbk161AG Amplifier Gain). DcovWbk16X100 Sets IAG gain to: x 100
See Note 1 regarding DcovWbk16X1000 Sets IAG gain to: x 1000
Voltage Out & Total
Gain.
4.6-12 Daqg APl Command Reference 908594 Programmer’s Manual

Option Type and Value Definitions Continued--DagOptionType
WBK16 Options
hemTibey | Descrpton o e
DcovWbk16X1_00 Sets PGA gain to: x 1.00
DcovWbk16X1_28 Sets PGA gain to: x 1.28
DcovWbk16X1_65 Sets PGA gain to: x 1.65
DcovWbk16X2_11 Sets PGA gain to: x2.11
?g‘r"t’:]‘ée\jvggrl‘ée;i(w”s DcovWbk16X2_71 Sets PGA gain to; x 2.71
(Programmable Gain DcovWbk16X3_48 Sets PGA gain to: x 3.48
Dcotibk16PGA Amplifier) Dcovilbk16X4 47 Sets PGA gain to: x 4.47
) DcovWbk16X5_74 Sets PGA gain to: x5.74
?/e(fl t';'geteolu:eg‘a%'tg? Gain. | Pcoviibk16X7_37 Sets PGA gain to: x 7.37
DcovWbk16X9_46 Sets PGA gain to: x 9.46
DcovWbk16X12_14 Sets PGA gain to: x 12.14
DcovWbk16X15_58 Sets PGA gain to: x 15.58
DcovWbk16X20_00 Sets PGA gain to: x 20.00
Contains option value for Applies the excitation source
DmotWbk16 Immediate applying Excitation DmovWbk16ExcSrcApply voltage that is defined by
Voltage. DcotWbk16ExcDac.

Note 1: Vout = [(V|N X |AG) + DaCOffSEISCALED] X PGA
Where: Vour is Voltage Out, and V,y is Voltage In
Note 2: Software Function for Dac Offset (Bridge Offset)

This note pertains to the DcotWbk160ffsetDac option type that is discussed in the preceding table. The Dac
Offset, also referred to as bridge offset, can be set to values in the range of -3.0 volts to +3.0 volts, divided by the
gain of the Instrumentation Amplifier (IAG). To do so, the following conversion is used:

Offset Value = [(Offset Voltage) x IAG x 682.5] + 2047.5

Where: Offset Value is a number in the range of 0.0 to 4095.0.

Example:
In this example we will determine the Offset Value; i.e., an integer in the range of 0 to 4095 that will give us a
desired offset of 0.25 volts. We will make use of the following considerations. Actual applications will vary,
accordingly.

e the Instrumentation Amplifier Gain (IAG) is set to x 10, i.e., DcovWbk16X10
o the desired Offset Voltage is 0.25 volts

Using the above equation we find that our offset value is 3754. The solution follows.

(0.25x 10 x 682.5) + 2047.5 = 3754

Correlation of Offset Range with Instrumentation Amplifier Gain
IAG Value Allowable Range for Offset Voltage
x1 + 3.0 volts
x 10 + 0.3 volts
x 100 + 0.03 volts
x 1000 + 0.003 volts

Programmer’s Manual 908594 Daq APl Command Reference 4.6-13

Option Type and Value Definitions Continued--DagOptionType

WBK17 Options

Option Type Description Option Value Description
(optionType) (optionvalue)
DeotWbki7Level Sets the comparator -125 10 +12.5 Volts Threshold level.

threshold level.

Sets the input coupling.

Turns coupling “off.”

Use AC coupling to reject Deovitbk17CoupleOff
unwanted DC offsets. Sets counling to AC
DcotWbk17Coupling Use DC coupling when DcovWbk17CoupleAC pliing ’
both AC and DC
components are to be Sets coupling to DC.
presented to the DcovWbk17CoupleDC
comparator as input.
Used to bypass the DcovWWbk17FItBypass Bypasses the analog filter.
single-pole low-pass filter Sets cut-off frequency to
(LPF), or set it to one of DcovWbk17F1t100KHZz 100 kHz.
DcotWbk17FilterType three cut-off frequencies: Sets cut-off frequency to
100kHz, 20kHz, or Dcovibk17F1t20KHz A
30 Hz. Used to reject Sets cut-off frequency to
low-level noise. Dcovibk17F 1t30Hz ot aueney
DcovWbk17Debounce500ns 500 ns.
DcovWbk17Debouncel500ns 1500 ns.
Used to bypass the
debounce mode, or to set DcovWbk17Debounce3500ns 3500 ns.
a channel’s comparator DcovWbk17Debounce7500ns 7500 ns.
output to one of 16
debounce times. DcovWbk17Debouncel5500ns 15500 ns.
Debounce is used to DcovWbk17Debounce31500ns 31500 ns.
eliminate switch-induced
transients typically DcovWbk17Debounce63500ns 63500 ns.
associated with electro- DcovWbk17Debouncel27500ns 127500 ns.
DcotWbk17DebounceTime mecha_nlcal devices DcovWbk17DebouncelO0us 100 ps.
including relays,
proximity switches, and DcovWbk17Debounce300us 300 ps.
encaders. DcovWbk17Debounce700us 700 ps.
Note that there are two DcovWWbk17Debouncel500us 1500 ps.
debounce modes, “After
Stable” and “Before DcovWbk17Debounce3100us 3100 ps.
Stable.” See DcovWbk17Debounce6300us 6300 ps.
?ﬁgé\éVkél:l?Debounce DcovWbk17Debouncel2700us 12700 ps.
DcovWbk17Debounce25500us 25500 ps.

DcovWbk17DebounceNone

Selects debounce bypass.

Determines whether the

DcovWbk17RisingEdge

Selects the “Rising Edge”
for detection.

DcotWbk17Edge rising edge or falling Al ..

edge is to be detected. DcovWbk17Fal lingEdge Selects th_e Falling Edge

for detection.
Determines the ticksize. DcovWbk17Tick20ns Sets ticksize to 20 ns.
The ticksize is the DcovWbk17Tick200ns Sets ticksize to 200
i i ets ticksize to ns.

DcotWbk17TickSize fundamental unit of time -

for period, pulsewidth, DcovWbk17Tick2000ns Sets ticksize to 2 ys.

and timin

measuremgents. DcovWbk17Tick20000ns Sets ticksize to 20 ps.

4.6-14

Daq APl Command Reference

908594

Programmer’s Manual

Option Type and Value Definitions Continued--DagOptionType

WBK17 Options (continued)

Option Type
(optionType)

Description

Option Value
(optionvalue)

Description

DcotWbk17DebounceTrigger

Sets the mode of the
debounce module to
Trigger After Stable, or
to Trigger Before Stable.

DcovWbk17TriggerAfterStable

Selects the “Trigger After
Stable” mode. This mode
rejects glitches and only
passes state transitions after a
specified period of stability
(the debounce time). This
mode is used with electro-
mechanical devices like
encoders and mechanical
switches to reject switch
bounce and disturbances due
to a vibrating encoder that is
not otherwise moving. The
debounce time should be set
short enough to accept the
desired input pulse but longer
than the period of the
undesired disturbance.

DcovWbk17TriggerBeforeStable

Selects the Trigger Before
Stable mode. Use this mode
when the input signal has
groups of glitches and each
group is to be counted as one.
The trigger before stable
mode will recognize and
count the first glitch within a
group but reject the
subsequent glitches within the
group if the debounce time is
set accordingly. In this case
the debounce time should be
set to encompass one entire
group of glitches.

DcotWbk17MapChannel

Used to select the
mapped channel to be
either one of the counter
input channels or one of
the detection output
signals.

A mapped channel is
one of 16 signals that
can get multiplexed into
a channel’s counter
module. The mapped
channel can participate
with the channel’s input
signal by gating the
counter, clearing the
counter, etc. The 16
possible choices for the
mapped channel are the
8 input signals (post
debounce) and the 8
detection signals.

DcovWbk17Map_Channel_1

DcovWbkl17Map_Channel_2

DcovWbk17Map_Channel_3

DcovWbkl17Map_Channel_4

DcovWbk17Map_Channel_5

DcovWbk17Map_Channel_6

DcovWbk17Map_Channel_7

DcovWbk17Map_Channel_8

Selects the mapped channel to
be one of the counter input
channels.

There are 8 post-debounce
channel input signals that can
be individually selected as
mapped channels.

These are indicated as
Channel_1 for Channel 1,
Channel_2 for Channel 2, etc.

DcovWbk17Map_Detect_1

DcovWbk17Map_Detect_2

DcovWbk17Map_Detect_3

DcovWbk17Map_Detect_4

DcovWbk17Map_Detect_5

DcovWbk17Map_Detect_6

DcovWbk17Map_Detect_7

DcovWbk17Map_Detect_8

Selects the mapped channel to
be one of the detection output
signals.

Each input channel has an
associated detection signal,
e.g., Detect_1 for Channel 1.
The detection signal will go
active high when the
channel’s counter value meets
the detection module’s
setpoint criteria (programmed
into the pattern detection
module).

Programmer’s Manual

908594

Daq APl Command Reference 4.6-15

Option Type and Value Definitions Continued--DagOptionType

WBK17 Options (continued)

channels).

DcovWbk17DetClr_All

Option Type . . - _
(optionType) Description Option Value (optionValue) Description
Clears or resets a DcovWbk17DetClr_Chan Clears a channel.
DcotWbkl7DetectClear channel or a unit (all

Clears all channels.

DcotWbkl7DetectControl

Sets the type of
comparison to be made.

Can also be used to set
the detection to “off” or
to update the digital
output.

DcovWbk17DetCtri_Off

Detection setting “off.”

DcovWbk17DetCtri_Below_Low

Sets count for “below low
limit.”

DcovWbk17DetCtrl_Above High

Sets count for “above high
limit.”

DcovWbk17DetCtrl_Outside_Range

Sets count for “Outside of
range.”

DcovWbk17DetCtrl_Inside_Range

Sets for “Inside the range.”

DcovWbk17DetCtrl_Dig_Eqg_Dig

Sets for “Digital comp
setpoint equals the Digital
Output value.”

Digcomp equals the value
present on the digital
output port.

DcovWbk17DetCtrl_Update Dig

Updates digital output port,
using DigMask and
DigOut.

DcotWbkl7DetectLowLimit Sets low limit. 0 to 65535
DcotWbk1l7DetectHighLimit Sets high limit. 0 to 65535
DcotWbk17DetectDigComp Sets DigComp 0 to 255
DcotWbk17DetectDigMask Sets DigMask 0 to 255
DcotWbk17DetectDigOut Sets Digital Port Output | 0to 255

Select value from
applicable range.

DcotWbkl7MeasurementMode

Enumeration with
Bit-Masking

DcovWbk17Mode_OFF

Set Measurement Modes to
“Off.”

DcotWbkl7MeasurementMode
(continued)

Enumeration with
Bit-Masking.

The options can be
combined.

DcovWbk17Mode_Counter

Counter Mode

DcovWbk17Counter_Totalize

DcovWbk17Counter_ClearOnRead

Totalize Mode — The
counter counts up and rolls
over on the 16-bit or 32-bit
boundary.

Clear On Read Mode -
The counter is cleared at
the beginning of every
scan; and the final value of
the counter [the value just
before it was cleared] is
latched and returned to the
Wavebook/516.

DcovWbk17Counter_Rol10ver

DcovWbk17Counter_StopOnTop

Rollover Mode - The
counter continues to count
upward, rolling over on the
16-bit or 32-bit boundary.

Stop at the Top Mode -
The counter will stop at the
top of its count. The top of
the count is FFFF for the
16-bit option and
FFFFFFFF for the 32-bit
option.

4.6-16 Daqg APl Command Reference

908594

Programmer’s Manual

Option Type and Value Definitions Continued--DagOptionType

WBK17 Options (continued)

Option Type
(optionType)

Description

Option Value (optionValue)

Description

(continued)

DcotWbkl7MeasurementMode

Enumeration with
Bit-Masking.

The options can be
combined.

DcovWbk17Counter_LatchOnS0OS

DcovWbk17Counter_LatchOnMap

Selects start of scan.
Latches the counter outputs
at the beginning of every
scan.

Selects the mapped signal
to latch the counter
outputs. This allows the
user to know the exact
counter value when an
edge is present on another
channel.

DcovWbk17Counter_DecrementOff
DcovWbk17Counter_DecrementOn

Determines whether the
counter decrement option
is “off” or “on.”

DcovWbk17Counter_CountChan
DcovWbk17Counter_CountMap

Selects channel for count.

Selects mapped channel for
count.

DcovWbk17ModeMask_16Bit
DcovWbkl7ModeMask_32Bit

Selects 16-Bit counter.

Selects 32-Bit counter.

DcovWbk17ModeMaskGatingOff

DcovWbk17ModeMaskGatingOn

Gating can be selected On
or Off. When “On”, the
counter is enabled when
the mapped channel to
gate the counter is high.
When the mapped channel
is low, the counter is
disabled (but holds the
count value).

(continued)

DcotWbkl7MeasurementMode

Enumeration with
Bit-Masking.

The options can be
combined.

DcovWbkl17Mode Period

Period Mode

DcovWbk17Period_X1
DcovWbk17Period_X10
DcovWbk17Period_X100
DcovWbk17Period_X1000

Used to select the number
of periods to time, per
measurement. Choices
are:

1, 10, 100, or 1000

DcovWbk17Period_MeasChan

DcovWbk17Period_MeasMap

Selects to measure input
channel’s period.

Selects to measure the
mapped channel’s period.

DcovWbkl7ModeMask_16Bit
DcovWbkl1l7ModeMask_32Bit

Selects 16-Bit counter.
Selects 32-Bit counter.

DcovWbk17ModeMaskGatingOff

DcovWbk17ModeMaskGatingOn

Gating can be selected On
or Off. When “On”, the
counter is enabled when
the mapped channel to
gate the counter is high.
When the mapped channel
is low, the counter is
disabled (but holds the
count value).

Programmer’s Manual

908594

Daqg APl Command Reference

4.6-17

Option Type and Value Definitions Continued--DagOptionType

WBK17 Options (continued)

Option Type
(optionType)

Description

Option Value
(optionvalue)

Description

DcotWbkl7MeasurementMode
(continued)

Enumeration with
Bit-Masking.

The options can be
combined.

DcovWbk17Mode Pulsewidth

Pulsewidth Mode

DcotWbk17PulseWidth_MeasChan

DcotWbk17PulseWidth_MeasMap

Selects to measure input
channel’s pulsewidth.
Selects to measure the
mapped channel’s
pulsewidth.

DcovWbk17ModeMask_16Bit
DcovWbk17ModeMask_32Bit

Selects 16-Bit counter.
Selects 32-Bit counter.

DcovWbk17ModeMaskGatingOff

DcovWbk17ModeMaskGatingOn

Gating can be selected On or
Off. When “On”, the
counter is enabled when the
mapped channel to gate
the counter is high. When
the mapped channel is low,
the counter is disabled (but
holds the count value).

DcotWbkl7MeasurementMode
(continued)

Enumeration with
Bit-Masking.

The options can be
combined.

DcovWbk17Mode_Timing

Timing Mode

DcovWbk17ModeMask_16Bit
DcovWbkl7ModeMask_32Bit

Selects 16-Bit counter.
Selects 32-Bit counter.

DcovWbk17ModeMaskGatingOff

DcovWbk17ModeMaskGatingOn

Gating can be selected On or
Off. When “On”, the
counter is enabled when the
mapped channel to gate
the counter is high. When
the mapped channel is low,
the counter is disabled (but
holds the count value).

DcotWbkl7MeasurementMode
(continued)

Enumeration with
Bit-Masking.

The options can be
combined.

DcovWbk17Mode_ Encoder

Encoder Mode

DcovWbk17Encoder_1X
DcovWbk17Encoder_2X
DcovWbk17Encoder_4X

Determines the encoder
measurement mode: 1X,
2X, or 4X.

DcovWbk17Encoder_LatchOnS0S

DcovWbk17Encoder_LatchOnzZ

Selects start of scan.
Latches the counter outputs
at the beginning of every
scan.

Selects the Encoder Z
mapped signal to latch the
counter outputs. This allows
the user to know the exact
counter value when an edge
is present on another
channel.

DcovWbk17Encoder_ClearOnz_Off

DcovWbk17Encoder_ClearOnZ_On

Selects “clear on Z” On or
Off. When On, the encoder
Z is referenced to clear the
counter. The counter is
cleared on the rising edge of
the mapped (Z) channel.

DcovWbk17ModeMask_16Bit
DcovWbk17ModeMask_32Bit

Selects 16-Bit counter.
Selects 32-Bit counter.

4.6-18

Daq APl Command Reference

908594

Programmer’s Manual

Option Type and Value Definitions Continued--DaqOptionType

WBK17 Options (continued)

Option Type (optionType)

Description

Option Value
(optionvalue)

Description

DcotWbkl7MeasurementMode
(continued)

Enumeration with
Bit-Masking.

The options can be
combined.

DcovWbk17ModeMaskGatingOff

DcovWbk17ModeMaskGatingOn

Gating can be selected On or
Off. When “On”, the
counter is enabled when the
mapped channel to gate
the counter is high. When
the mapped channel is low,
the counter is disabled (but
holds the count value).

Option Type and Value Definitions Continued--DaqOptionType

WBK18 Options

Option Type (optionType)

Description

Option Value
(optionValue)

Description

DcotWbk18LowPassMode

Configure Low Pass
input filter for Bypass,
2-Pole or 8-Pole on a
WBK18

DcovWhbk18LowPassBypass

Bypass the Low Pass Filter
for the specified WBK18
Channel

DcovWhbk18LowPass_2_Pole

Set the Low Pass Filter to 2-
Pole roll off for the specified
channel

DcovWhbk18LowPass_8_Pole

Sets the Low Pass Filter to 8-
Pole roll off for the specified
channel

DcotWbk18LowPassCutOff

Sets the Low Pass input
filter cutoff frequency
for 2 pole or 8 pole
mode

DcovWbk18LPF_Cutoff 10Hz

Sets the Low Pass input filter
to 10Hz for the specified
channel

DcovWbk18LPF_Cutoff 20Hz

Sets the Low Pass input filter
to 20Hz for the specified
channel

DcovWhbk18LPF_Cutoff 50Hz

Sets the Low Pass input filter
to 50Hz for the specified
channel

DcovWbk18LPF_Cutoff_100Hz

Sets the Low Pass input filter
to 100Hz for the specified
channel

DcovWhk18LPF_Cutoff_200Hz

Sets the Low Pass input filter
to 200Hz for the specified
channel

DcovWbk18LPF_Cutoff 500Hz

Sets the Low Pass input filter
to 500Hz for the specified
channel

DcovWhbk18LPF_Cutoff_1000Hz

Sets the Low Pass input filter
to 1000Hz for the specified
channel

DcovWhbk18LPF_Cutoff _2000Hz

Sets the Low Pass input filter
to 2000Hz for the specified
channel

DcovWhbk18LPF_Cutoff 5000Hz

Sets the Low Pass input filter
to 5000Hz for the specified
channel

DcovWhbk18LPF_Cutoff_10000Hz

Sets the Low Pass input filter
to 10000Hz for the specified
channel

DcovWhbk18LPF_Cutoff_20000Hz

Sets the Low Pass input filter
to 20000Hz for the specified
channel

DcovWhbk18LPF_Cutoff_50000Hz

Sets the Low Pass input filter
to 50000Hz for the specified
channel

Programmer’s Manual

908594

Daqg APl Command Reference

4.6-19

Option Type and Value Definitions Continued--DaqOptionType

WBK18 Options (continued)
. - - Option Value Description
Option Type (optionType) Description (optionvalue)

DcotWbk18HighPassCutOff

Configures the High
Pass input filter for

DcovWhbk18HighPass0_1Hz

Sets the High Pass input filter
to 0.1Hz

0.1Hz, 10Hz or DC
coupling

DcovWhbk18HighPass10Hz

Sets the High Pass input filter
to 10Hz

DcovWhbk18HighPassDC

Sets the High Pass input filter
to DC coupling

DcotWbk18CurrentSrc

Enables/disables

DcovWhbk18CurrentSrcOff

Turn current off

channel output current
to power ICP sensors —
active at acquisition
arming

DcovWbk18CurrentSrc4mA

Turn current on

DcotWbk180OverRangeEnable

Enables/disables

DcovWhbk180verRangeOff

Disable

channel over-range
detection for the
specified channel

DcovWhbk180verRangeOn

Enable

DcotWbk18CurrentSrclmmediate

Enables/disables
channel output current

DcovWhbk18CurrentSrcOff

Turn current off

to power ICP sensors —
active immediately — for
the specified channel

DcovWbk18CurrentSrc4mA

Turn current on

DmotWhbk180verRangeLimit

Configure over-range
detection condition

1.0 to 100.0 (% of range)

Sets the level for the over-
range circuitry to detect an
over-range condition —
applies to all channels

DmotWhbk180verRangeEnable

Enables/disable over-
range detection for all
eight channels

0 to 255 (bit mask)

Each bit represents a channel.
Writing 255 enables all
channels

DmotWbk18esMode

Configures the analog

DmovWbk18esSine

Continuous sine wave output

output for continuous
sine or swept sine mode

DmovWhk18esSweptSine

Sweep through pre-set
frequency amplitude values

DmotWhbk18esAmplitude Set the amplitude for DmovWhk18esAmplitude10pp 10 volts p-p
continuous or swept -
modes DmovWhbk18esAmplitude5pp 5 volts p-p
DmovWhbk18esAmplitude2pp 2 volts p-p
DmovWhbk18esAmplitudelpp Lvoltp-p
DmovWbk18esAmplitude0_5pp 0.5 volt p-p
DmovWhk18esAmplitude0_2pp 0.2 volt p-p
DmovWhbk18esAmplitude0_1pp 0.1 volt p-p
DmovWhk18esAmplitudeO_Opp 0.0 volt p-p
DmotWhbk18esFreq Set the frequency for 1.0 to 5000 (Hz) Specifies the output
continuous or swept frequency
modes
DmotWbk18esRelay Controls the output DmovWhbk18esRelayOpen Specify relay open

relay

DmovWhbk18esRelayClosed

Specify relay closed

DmotWhbk18esFreqCycleTime

Swept mode buffer
cycle time. If total RAM
segments times the
duration time exceeds
the cycle time then
cycle time is ignored.

50 to 85699000 (microseconds)

Specify time in microseconds

DmotWhbk18esFregDurationTime

Specifies the duration a
frequency will be at the
output

50 to 85699000 (microseconds)

Specify time in microseconds

4.6-20

Daq APl Command Reference

908594

Programmer’s Manual

Option Type and Value Definitions Continued--DaqOptionType

WBK18 Options (continued)

Option Type (optionType)

Description

Option Value
(optionVvalue)

Description

DmotWbk18esImmediate

Performs an immediate
action on the analog
output

DmovWbk18esClearRAM

Erases all 1280 RAM
segments

DmovWhbk18esWriteRAM Increments the segment
pointer and writes the current
frequency, amplitude, relay
position, cycle time and
duration time to WBK18
RAM segment.

DmovWhbk18esStart Start output

DmovWhk18esStop Disable output — no voltage

DmotWhbk18esRelay Used to reset, turn on DmovWhbk18esRelayOpen Open relay excitation source
and turn off the -
excitation source DmovWhk18esRelayClosed Close relay excitation source

DmotWbk18esImmediate DmovWhk18esStop Stops excitation output

DmovWbk18esStart Starts excitation output

DmovWhbk18esWriteRAM Writes Amp/Freg/Relay

values to excitation source
RAM

DmovWbk18esClearRAM

Clears excitation source RAM

DbotlgnoreFirstScan

Setto On ifusing a
Wavebook as a Master
device and a DagL ab,
DagScan or DagBook,
WBKA40/41 as a slave
device

DbovlgnoreFirstScanOff

Includes first scan

DbovignoreFirstScanOn

Excludes first scan

Function Usage

The dagSetOption function may be used to set options or configuration settings for a device, module or channel.
Generally, this function allows setting states or configuration information for a particular feature for a given device,
module or channel that cannot or should not be set using normal scan configuration settings.

When configuring options which relate to module or channel configurtions, this function should be called to set the
option prior to arming the acquisition (see dagAdcArm) . The device should have already been opened prior to
calling this function (see daqOpen) and the handl e parameter indicates the device for which the option is to
apply.

The Flags parameter indicates if the option applies to a channel or an entire channel bank according to the module
used. The Flags parameter may be set to the following:

DcofChannel -- Apply option to the channel specified by the chan parameter.
DcofModule -- Apply option to the entire module for which chan is located.

The optionType specifies which option to apply. See the table in the “Parameter Type Definitions” section for a
complete description of valid option types.

The optionValue parameter specifies the value to set the option specfied by optionType (if applicable). See
the table in the “Parameter Type Definitions” section for more detailed description of the valid option values for the
desired option type.

Returns

DerrNoError No error

Programmer’s Manual

908594 Daq APl Command Reference 4.6-21

Prototypes

C/C++

dagSetOption(DagHandleT handle, DWORD chan, DWORD flags, DaqOptionType
optionType, FLOAT optionValue);

Visual BASIC

VBdaqSetOption&(ByVal handle&, ByVal chan&, ByVal flags&, ByVal optionType&,
Byval optionValuel)

Program References
DAQTMREXO1.CPP, DBKO4EX.CPP, DBKO7EX.CPP

4.6-22 Daqg APl Command Reference 908594 Programmer’s Manual

daqSetTimeout

Also See: dagWaitForEvent, dagwaitForEvents,
dagAdcTransferBufData, dagAdcRdN

Format
dagSetTimeout (handle, mSecTimeout)
Purpose
daqSetTimeout sets the time-out for waiting on either a single event or multiple events.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the event time-out is to be set
mSecTimeout DWORD Specifies time-out (in milliseconds) for events

Parameter Values

handle: obtained from the DagOpen function
mSecTimeout: valid values range from 1 to 4,294,967,295; however, large values will cause timeout to be
excessively long

Function Usage

The dagSetTimeout function can be used in conjunction with the dagWaitForEvent and
dagWaitForEvents functions to specify a maximum amount of time to wait for the event(s) to be satisfied.

The mSecTimeout parameter specifies the maximum amount of time (in milliseconds) to wait for the event(s) to
occur. If the event(s) do not occur within the specified time-out, the dagWaitForEvent and/or
dagWaitForEvents will return.

If this function is not called, a default timeout of 10,000 milleseconds (10 seconds) will be used.

@ The dagSetTimeout function can be used for dagAdcRdN functions.

Returns

DerrNoError No error

Prototypes
C/C++
dagSetTimeout(DagHandleT handle, DWORD mSecTimeout);
Visual BASIC
VBdaqgSetTimeout&(ByVal handle&, ByVal mSecTimeout&)

Program References
DAQADCEX04 .CPP, DAQADCEX05.CPP, DAQADCEX06.CPP

Programmer’s Manual 908594 Daq APl Command Reference 4.6-23

daqSetTriggerEvent

Format

Also See: dagAdcSetScan,
dagAdcSetTrig, dagAdcSetTrigEnhanced

dagSetTriggerkEvent(handle, trigSource, trigSensitivity, channel, gainCode,
level, variance, event)

flags, channelType,

Purpose

dagSetTriggerEvent sets an acquisition trigger start event or an acquisition stop event.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device for which the trigger event is to be
configured

trigSource DagAdcTriggerSource | Trigger source

trigSensitivity | DaqEnhTrigSensT Trigger sense and direction

channel DWORD Actual channel number of the trigger channel (NOT the
scan list location)

gainCode DagAdcGain Trigger channel gain code

flags DWORD Trigger channel flags

channelType DagChannel Type Type of channel

level FLOAT Trigger level in expected engineering units of the
channel type (Volts, Counts, or Deg C)

variance FLOAT Variance in the trigger

event DaqTriggerEvent Trigger event

Parameter Values

handle: obtained from the DagOpen function
trigSource: see table below
trigSenseitivity: see table below
channel : valid values range from 0 to 271
gainCode: see ADC Gain Definition table for gain parameter values
Tflags: see ADC Flag Definition table for Flags parameter values
channelType: see table below
level : valid values depend on channel type—see channel Type table below
variance: valid values depend on channel type—see channel Type table below
event: valid values indicate either a start trigger event (daqStartEvent) or a stop trigger event
(dagStopEvent)

4.6-24 Daq APl Command Reference

908594

Programmer’s Manual

Parameter Type Definitions

triggerSource-(DagAdcTriggerSource)

Definition Description

DatsImmediate Post-trigger data acquisition begins immediately upon invocation of the dagAdcArm function (no pre-trigger

(Trigger event only) data acquisition is possible with this trigger source)

DatsSoftware Post-trigger data acquisition begins upon a software command issued by the calling application (see
dagAdcSoftTrig)

DatsAdcClock Post-trigger data acquisition begins immediately upon invocation detection of the ADC Clock pulse being

Trigger event only) driven.

DatsGatedAdcClock Post-trigger data acquisition begins immediately upon invocation detection of the ADC Clock pulse being

Trigger event only) driven.

DatsExternal TTL Post-trigger data acquisition begins on the selectable edge of an external TTL signal.

(Trigger event only)

DatsHardwareAnalog | Post-trigger data acquisition begins upon a selectable criteria of the input signal (above level, below level,

(Trigger event only) rising edge, etc.) Must be defined as the first channel in the channel scan group

DatsSoftwareAnalog | Post-trigger data acquisition begins upon a selectable criteria of the input signal (above level, below level,
rising edge, etc.)

DatsDigPattern Post-trigger data acquisition beings upon receiving a specified digital pattern on a P2 or P3 digital port.

DatsPulse* Post-trigger data acquisition begins upon detection of a pulse of specified duration and magnitude on an analog

(Trigger event only)

input channel.

DatsCounter (P3)

Post-trigger data acquisition begins upon detection of specified counter criteria

DatsScanCount
(Stop event only)

Stop collecting post-trigger data when the specified number of post-trigger scans are completed

triggerSensitivity—(DagEnhTrigSensT)

Definition Trigger Sources Description

DetsRisingEdge DatsExternal TTL Triggers when the signal goes from low to high (TTL trigger) or rises
DatsHardwareAnalog through a specified level (Hardware & Software Analog)
DatsSoftwareAnalog
DatsEnhancedTrig

DetsFallingEdge DatsExternal TTL Triggers when the signal goes from high to low (TTL trigger) or falls
DatsHardwareAnalog through a specified level (Hardware & Software Analog)
DatsSoftwareAnalog
DatsEnhancedTrig

DetsAboveLevel DatsExternal TTL Triggers when the signal is above a specified level (Hardware &
DatsHardwareAnalog Software Analog and Digital Trigger)
DatsSoftwareAnalog
DatsEnhancedTrig

DetsBelowLevel DatsExternal TTL Triggers when the signal is below a specified level (Hardware &
DatsHardwareAnalog Software Analog and Digital Trigger)
DatsSoftwareAnalog
DatsEnhancedTrig

DetsEQLevel DatsSoftwareAnalog Triggers when the signal equals a specified level (Hardware & Software
DatsEnhancedTrig Analog and Digital Trigger)
DatsDigPattern

DetsNELevel DatsSoftwareAnalog Triggers when the signal does not equal a specified level (Hardware &
DatsEnhancedTrig Software Analog and Digital Trigger)
DatsDigPattern

DetsWindow DatsPulse Triggers at a specified pulse width or height

Programmer’s Manual

908594

Daq APl Command Reference 4.6-25

The data ranges described in the following table represent the maximum range over which the

level and variance parameters can be set for the channel type selected. The ranges for the
particular channel may be actually smaller depending upon the maximum A/D range of main
unit, the gain, the polarity and/or other range settings for which the actual input channel is
configured.

channelType-(DaqChannelType)

Returns

Definition Data Valid Data Ranges (level and variance)
Representation

DagTypeAnaloglocal | Voltage DaqBook/100 Series and /200 Series: -5.0 to +10.0 (Volts)
DagBoards(ISA): -5.0 to +10.0 (Volts)
DaqgBoard/500 Series: -10.0 to +10.0 (Volts)
DagBoard/1000 Series: -10 to +10.0 (Volts)
DagBoard/2000 Series: -10.0 to +10.0 (Volts)
DaqBook/2000 Series: -10.0 to +10.0 (Volts)
DaqLab/2000 Series: -10.0 to +10.0 (Volts)
DagScan/2000 Series: -10.0 to +10.0 (Volts)
Daq PC Cards: -10.0 to +10.0 (Volts)
WaveBook/512: -5.0 to +10.0 (Volts)

DaqTypeDigitalLocal | Digital Pattern P2: 0 to 255 (Dec)
P3: 0 to 65535 (Dec)

DagTypeDigitalExp Digital Pattern P2: 0 to 255 (Dec)

DagTypeCounterLocal | Counter Value P3: 0 to 65535 (Dec)

DagTypeDBK1 Voltage -10.0 to +10.0 (Volts)

DaqTypeDBK4 Voltage -5.0 to +10.0 (Volts)

DagTypeDBK7 Voltage -5.9 to +5.0 (Volts)

DagTypeDBK8 Voltage -5.0 to +5.0 (Volts)

DagTypeDBK9 Temperature (Degrees C) -200.0 to 850.0 (Degrees C)

DagqTypeDBK12 Voltage -5.0 to +10 (Volts)

DagTypeDBK13 Voltage -5.0 to +10 (Volts)

DaqTypeDBK14 Voltage -5.0 to +5.0 (Dependent upon TC type)

DagTypeDBK15 Voltage -5.0 to +10 (Volts)

DagTypeDBK16 Voltage -5.0 to +5.0 (Volts)

DaqTypeDBK17 Voltage -5.0 to +10.0 (Volts)

DaqTypeDBK18 Voltage -5.0 to +10.0 (Volts)

DaqTypeDBK19 Temperature (Degrees C) -270.0 to 1820.0 (Dependent upon TC type)

DagqTypeDBK20 Digital Pattern 0 — 255 (Dec)

DaqTypeDBK21 Digital Pattern 0 — 255 (Dec)

DaqTypeDBK22 Digital Pattern 0 — 255 (Dec)

DagTypeDBK23 Digital Pattern 0 — 255 (Dec)

DagqTypeDBK24 Digital Pattern 0 — 255 (Dec)

DagqTypeDBK25 Digital Pattern 0 — 255 (Dec)

DaqTypeDBK42 Voltage -5.0 to +5.0 (Volts)

DaqTypeDBK50 Voltage -300.0 to +300.0 (Volts)

DagTypeDBK51 Voltage -10.0 to +10.0 (Volts)

DagTypeDBK52 Temperature (Degrees C) -270.0 to 1820.0 (Dependent upon TC type)

DaqTypeDBK53 Voltage -10.0 to +10.0 (\Volts)

DaqTypeDBK54 Voltage -10.0 to +10.0 (Volts)

DaqTypeDBK56 Voltage -10.0 to +10.0 (Volts)

DagTypeDBK70 Voltage 0.0 to 5.0 (Volts)

DerrNoError No error

Daq APl Command Reference

908594

Programmer’s Manual

Function Usage
Defining the Trigger Channel

The channel parameter selects the trigger channel. The trigger channel must be a configured channel in the scan
list (see dagAdcSetScan). The type of channel selected can be set by the channe Il Type parameter. The
channel type will be used to properly interpret the value against which the device should be triggered (see the
“Setting the Trigger Level” and “Setting the Trigger Variance” sections below) in the context of the channel type
selected. For instance, if the channel is an thermocouple channel then the level and variance parameters will
be interpreted as values in degrees Celsius. The Flags parameter defines the configured settings for the channel
and should match the flags setting for the trigger channel configured using the dagAdcSetScan function.
Likewise, the gainCode parameter should match the gain code setting when the channel was configured using the
dagAdcSetScan function. If the same channel is in the scan multiple times, the 1% occurrence of the channel will
be used as the trigger channel.

Error Checking

It is important to note that only basic error checking in done when dagqSetTriggerEvent is called. Full
verification against the scan list and acquisition mode will take place during the dagAdcArm function.

Selecting the Trigger Event

The event parameter selects the definition of the trigger event to be either a start trigger event
(DagStartEvent) or a stop trigger event (DagStopEvent). The start trigger event defines the conditions under
which post-trigger acquisition data collection should be initiated or triggered. Stop events are events which signal
the current data acquisition process to terminate.

Setting the Trigger Source

The trigSource parameter specifies the trigger source to use as the start or stop trigger event. The start and stop
trigger event sources are both programmed using selected definitions from the dagAdcTriggerSource data
type. As described below, start and stop trigger event definitions may differ from device to device, so it is important
to note which start and stop trigger events can be configured for your device.

Setting the Start Trigger Event Source

The start trigger event defines the conditions under which post-trigger acquisition data collection should be initiated
or triggered. The start trigger event can vary in complexity from starting immediately, to starting on complex
channel value definitions. See the table in the “Setting the Trigger Variance” section for a list of some valid start and
stop trigger event definitions.

Setting the Stop Event Source

Stop events are events which signal the current data acquisition process to terminate. Here again, the stop event can
be as simple as that of a scan count, or as complex as involving a channel value level condition. Generally, there
are fewer options with stop event definitions than start event definitions. However, the DaqBook/2000 Series and
DaqgBoard/2000 series products do provide a rich set of stop event features based upon software channel value
definitions.

Programmer’s Manual 908594 Daq APl Command Reference 4.6-27

Setting the Trigger Level

The level parameter is used for those trigger types who depend on an input channel comparison to detect the
trigger start or stop event. The level parameter is a single precision floating point value which represents, in
engineering units, the level at (or around which) the trigger event should be detected. The actual level at which the
trigger event is detected depends upon trigger sensing and variability discussed later. Below is a table describing the
various ranges of possible values for the level paramter based on the trigger source:

Trigger Level Settings

Trigger/Stop Sources Meaning of level parameter
(dagAdcTriggerSource)
DatsSoftwareAnalog (P1) Voltage or temperature (in degrees C) at which the trigger level is to be defined. Trigger detection

performed in software.

DatsHardwareAnalog (P1) Voltage or temperature (in degrees C) at which the trigger level is to be defined. Trigger detection
performed in hardware.

DatsDigPattern (P2/P3) Defines bit pattern for the digital channel trigger. The valid values are:
0.0 (no bits set) - 255.0 (all bits set) for 8-bit digital channel banks (P2)
0.0 (no bits set) — 65,535.0 (all bits set) for 16-bit channel banks (P3)

DatsCounter (P3) Pulse or Totalize counter values (0.0 — 65,535)

DagBooks, TempBooks, DagBoard (ISA) and Daqg PC Cards have a fixed hardware based
hysteresis value, so the variance parameter is ignored for those devices when using with
DatsHardwareAnalog trigger source.

Setting the Trigger Sensitivity

Some trigger sources require a trigger sensitivity setting. The trigSensitivity setting is only required for
trigger sources which are based upon an input signal. The trigger sensitivity normally defines the way in which a
trigger event is detected based upon the characteristics of the trigger input signal. Often, it defines the way in which
the trigger input signal(s) should be compared to the trigger level parameter value.

Setting the Trigger Variance

While the trigSense parameter indicates the direction of the input signal relative to the 1evel parameter, the
var iance parameter specifies the degree to which the input signal can vary relative to level parameter. The
variance parameter is a single-precision floating point value which represents, in engineering units, the amount
that the trigger event can vary from the level parameter.

4.6-28

Daq APl Command Reference 908594 Programmer’s Manual

The range of trigger values defined by the variance and level parameters depends also upon the
trigSensitivity setting and the type of input channel that is configured as the trigger channel. The following

table describes how the the trigSource and trigSensitivity parameters influence the trigger values

established by the Ievel and var iance parameters.

DatsHardwareAnalog can only be used when the trigger channel is first channel in the scan
group configuration (see dagAdcSetScan)

Interaction of Trigger Variance with Trigger Level and Trigger Sensitivities

Trigger Start/Stop Trigger Trigger Start/Stop Criteria
Source Sensitivities

Analog (P1) DetsRisingEdge Triggers/Stops when: signal value < (level-variance)

DatsHardwareAnalog Then, signal value > level

DetsFallingEdge

Triggers/Stops when: signal value > (level+variance)
Then, signal value < level

DetsAbovelLevel Triggers/Stops when: signal value > (level)
DetsBelowLevel Triggers/Stops when: signal value < (level)
Analog (P1) DetsRisingEdge Triggers/Stops when: signal value < (level-variance)

DatsSoftwareAnalog

Then, signal value > level

DetsFallingEdge

Triggers/Stops when: signal value > (level+variance)
Then, signal value < level

DetsAbovelLevel Triggers/Stops when: signal value > (level)
DetsBelowLevel Triggers/Stops when: signal value < (level)
DetsEQLevel Triggers/Stops when: (level-variance)< signal value
< (level+variance)
DetsNELevel Triggers/Stops when: signal value < (level-variance)
or signal value > (level+variance)
Digital (P2/P3) DetsAbovelevel Triggers/Stops when:
DatsDigPattern Dig channel bank > (level AND (bitwise)variance)
DetsBelowLevel Triggers/Stops when:
Dig channel bank < (level AND (bitwise)variance)
DetsEQLevel Triggers/Stops when:
Dig channel bank = (level AND (bitwise)variance)
DetsNELevel Triggers/Stops when:
Dig channel bank = (level AND (bitwise)variance)
DetsRisingEdge Triggers/Stops when:

counter channel < (level-variance) Then,
counter channel > level

Counter (P3)
DatsCounter

DetsFallingEdge

Triggers/Stops when: counter channel > (level+variance)
Then, counter channel < level

DetsAbovelevel Triggers/Stops when: Counter channel > (level-variance)
DetsBelowLevel Triggers/Stops when: Counter channel < (level+variance)
DetsEQLevel Triggers/Stops when:

(level-variance)< counter channel < (level+variance)
DetsNELevel Triggers/Stops when: Counter channel < (level-variance)

Or counter channel > (level+variance)

Programmer’s Manual

908594

Daqg APl Command Reference

4.6-29

Prototypes

C/C++

dagSetTriggerEvent(DagHandleT handle, DagAdcTriggerSource trigSource,
DagEnhTrigSensT trigSensitivity, DWORD channel, DagAdcGain gainCode, DWORD
flags, DagChannelType channelType, FLOAT level, FLOAT variance,
DaqTriggerEvent event)

Visual BASIC

VBdaqgSetTriggerEvent&(ByvVal handle&, ByVal trigSourceé&, Byval
trigSensitivity&, ByVval channel&, ByVal gainCodeé&, Byval flags&, Byval
channelType&, ByVal levell!, ByVal variance!, ByVal trigEvent&)

Program References

DAQADCEX01.CPP, DAQADCEX02.CPP, DAQADCEX03.CPP, DAQADCEXO05.CPP,

DAQADCEXO06 .CPP, DAQADCEXO7.CPP, DBKO4EX.CPP, DBKO7EX.CPP, DBKO8S8EX.CPP,
DBKO9EX.CPP, DBK12_13EX.CPP, DBK15EX.CPP, DBK16EX.CPP, DBK17EX.CPP,
DBK18EX.CPP, DBK19EX.CPP, DBK42EX.CPP, DBK43EX.CPP, DBK44EX.CPP, DBK45EX.CPP,
DBK50EX.CPP, DBKS1EX.CPP, DBKS52EX.CPP, DBK53_54EX.CPP

4.6-30 Dag APl Command Reference 908594 Programmer’s Manual

daqTest

Format

Also See: DaqOpen

dagTest(handle, command, count, cmdAvailable, result)

Purpose

daqgTest tests a device for specific functionality.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device for which the test is to be performed
command DagTestCommand | Specifies the type of test to be run
count DWORD Optional parameter which specifies the length of the test

cmdAvailable PBOOL

Pointer to a return boolean indicating the availability of the test for
the device

result PDWORD

Pointer to the test result field

Parameter Values

handle: obtained from the DagOpen function
command: see table below
count: valid values range from 1 to 4,294,967,295; however, large values will result in excessively long tests
cmdAvailable: pointer to a boolean value; values are either true (= 0) or false (=0)

result: apointer to a value ranging from 0 to 4,294,967,295

Parameter Type Definitions

command-(DagTestCommand)

Definition

Description

DtstBaseAddressValid

Test to determine if communications at currently configured base address are valid.

DtstinterruptLevelValid

Test to determine if conflicts exist at the currently configured IRQ.

DtstDmaChannelValid

Test to determine if conflicts exist at the currently configured DMA channel.

This command definition verifies DMA via available Input and Output speed tests, i.e.,
DtstAdcFifolnputSpeed, DtstDacFifoOutputSpeed, DtstlOlnputSpeed,
and DtstlOOutputSpeed

DtstAdcFifolnputSpeed

Test to determine max speed for analog data transfer to computer memory.

DtstDacFifoOutputSpeed

Test to determine max speed for analog data transfer from computer memory.

DtstlOlnputSpeed

Test to determine max rate for digital data transfer to computer memory.

Dtstl00utputSpeed

Test to determine max rate for digital data transfer from computer memory.

DtstFifoAddrDataBusvalid

WaveBook Only : WBK30 communication check (use DtstFifoMemCellValid instead)

DtstFifoMemCellValid

WaveBook Only : MegaFIFO (WBK30) memory test.

DtstHardwareCompatibility

WaveBook Only : Verifies the DSP Boot Code revision level. 1 =PASS, 0=FAIL.

DtstFirmwareCompatibility

WaveBook Only: Verifies the FPGA revision level. 1 =PASS, 0=FAIL.

DtstExpansionCompatibility

WaveBook Only: Verifies that the connected WBK modules are compatible with the main unit.
1=PASS, 0=FAIL.

DtstExpUpgradeCompatibility

Returns

DerrNoError No Error

WaveBook Only: Verifies that the main unit Firmware is compatible with all connected WBK
modules. 1 =PASS, 0 =FAIL.

Programmer’s Manual

908594 Daq APl Command Reference 4.6-31

Function Usage

Test types performed by the daqTest function vary; test results are based on the type of test requested. Tests can
only be performed on valid, opened devices. If there are problems with the test, be sure to check that the device is
properly configured, that the device is powered-on, and that it is properly connected.

The command parameter specifies the test to run. There are two main types of tests: resource and performance.
The cmdAvai lable parameter is a pointer to a Boolean value that indicates whether or not the specified test is
available for the device.

The count parameter can be used to indicate the duration or length of the test. For instance, a resource test will be
run count times; and if any one iteration of the test fails, it will indicate an overall failure of the test. For a
performance test, the count parameter will indicate the number of times to run the test, and the test result will be
an average of all the tests performed.

Resource Tests

Resource tests are pass/fail and are useful in determining if the device has the appropriate resources to function
efficiently. If one or more of the resource tests fail, the Dag Configuration utility (found in the operating
system’s Control Panel) may be used to change the resource settings related to the problem. Valid resource test
types are defined as follows:

DtsBaseAddressVal id - This test will indicate if there is a problem communicating with the device at its
currently specified base address. A non-zero in the resullt parameter will indicate a failed condition. For
DaqgBook/2000 Series, DagBoard/2000 Series and cPCI DagBoard/2000c Series this command definition returns
the bus and slot code of the hardware as “slot + (bus * 256).”

DtsinterruptLevelValid - This test is not available for DagBook/2000 Series, DagBoard/2000 Series or
cPCI DagBoard/2000c Series boards. For other devices the test will indicate if there is a problem with performing
acquisitions using interrupts. A non-zero in the result parameter will indicate a failed condition. If this is the
case, the interrupts may not be properly configured (if the device is a DagBook, the LPT interrupts may not be
enabled on the system) or an interrupt conflict exists with another device.

DtsDmaChannelValid - (DagBoards only) This test will indicate if there is a problem with performing
acquisitions through DMA transfers with the currently configured DMA channel for the device. A non-zero in the
result parameter will indicate a failed condition. If this is the case, DMA may not be enabled for the device or a
conflict may exist with another device. For DagBook/2000 Series, DagqBoard/2000 Series and cPCl
DagBoard/2000c Series, this command definition verifies DMA via available Input and Output speed tests, i.e.,
DtstAdcFifolnputSpeed, DtstDacFifoOutputSpeed, DtstlOlnputSpeed, and
DtstlOOutputSpeed. See the following Performance Tests section for more information.

Performance Tests

Performance tests measure the speed at which certain operations can be performed on the device. In general, the
performance test results indicate the maximum rate at which the operation can be performed on the device. The
valid performance test types are defined as follows:

DtsAdcFifolnputSpeed - This test will determine the maximum rate at which analog input can be acquired
and transferred to system memory. Analog input performance results will be returned in the resullt parameter
with units of samples/second. (Note 1).

DtsDacFifoOutputSpeed - (DagBoards only) This test will determine the maximum rate at which analog
output data can be read from system memory and transferred to the device’s DAC FIFO. Analog output
performance results will be returned in the result parameter with units of samples/second. (Note 1).

DtslOInputSpeed - This test will determine the maximum rate at which digital input can be read from the
device’s DIO port and transferred to system memory. Digital input performance results will be returned in the
result parameter with units of bytes/second. (Note 1).

Dts100utputSpeed - This test will determine the maximum rate at which digital output can be read from
system memory and output to the device’s DIO port. Digital output performance results will be returned in the
result parameter with units of bytes/second. (Note 1).

Note 1: For DagBook/2000 Series, DagBoard/2000 Series and cPCl DagBoard/2000c Series the results are limited to 200 kHz and
are only available on the correct hardware.

4.6-32

Daq APl Command Reference 908594 Programmer’s Manual

Prototypes

C/C++

dagTest(DagHandleT handle, DaqTestCommand command, DWORD count, PBOOL
cmdAvailable, PDWORD result);

Visual BASIC

VBdaqTest&(ByVal handle&, ByVal command&, ByVal counté&, cmdAvailable&,
result&)

Program References

None

Programmer’s Manual 908594 Daq APl Command Reference 4.6-33

daqWaitForEvent

Also See: dagWaitForEvents, daqSetTimeout
Format

dagWaitForEvent(handle, event)
Purpose
dagWaitForEvent waits on a specific event to occur on the specified device.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle of the device for which to wait of the specified event
event DagTransferEvent Specifies the event to wait on

Parameter Values

handle: obtained from the DagOpen function
event: see table below

Parameter Type Definitions

dagEvent-(DaqTransferEvent)
Definition (dagEvent) Description
DteAdcData Data is present in the acquisition buffer
DteAdcDone Acquisition data transfer operation is complete
Returns
DerrNoError No Error

Function Usage

The dagWaitForEvent function will not return until the specified event (event) has occurred or the wait has
timed out— whichever comes first. The event time-out can be set with the function.

Note: The default timeout is 5 seconds.

Prototypes
C/C++
dagWaitForEvent(DagHandleT handle, DaqTransferEvent event);
Visual BASIC
VBdagWaitForEvent&(ByVal handle&, ByVal dagEvent&)

Program References
DAQADCEX04 .CPP, DAQADCEX05.CPP, DAQADCEX06.CPP, DAQEX.FRM (VB)

4.6-34 Daqg APl Command Reference 908594 Programmer’s Manual

daqWaitForEvents

Format

Also See: dagWaitForEvent, dagSetTimeout

dagWaitForEvents(handles, events, eventCount, eventSet, waitMode)

Purpose

dagWaitForEvents waits on specific device events to occur on the specified devices.

Parameter Summary

Parameter Type Description

handles DagHandleT Pointer to an array of handles which represent the list of device
on which to wait for the events

dagEvents DagTransferEvent Pointer to an array of events which represents the list of events
to wait on

eventCount DWORD Number of defined events to wait on

eventSet BOOL Pointer to an array of booleans indicating if the events have
been satisfied

waitMode DagWaitMode Specifies the mode for the wait

Parameter Values

handles: obtained from the DaqOpen function

events: see table below

eventCount: valid values range from 1 to 16

eventSet: valid values are either true (= 0) or false (=0)
waitMode: see table below

Parameter Type Definitions
dagEvents-(DagTransferEvent)

Definition Description
DteAdcData Data is present in the acquisition buffer
DteAdcDone Acquisition data transfer operation is complete

waitMode-(DagWaitMode)

Definition Description
DwmNoWait Do not wait. Return immediately with the current state of all events
DwmWaitForAny Wait until any event condition has been satisfied then return current states for all events
DwmWaitForAll Wait until all event conditions have been satisfied then return current states for all events
Returns
DerrNoError No Error

Function Usage

This function will wait on the specified events and will return based upon the criteria selected with the waitMode

parameter. A time-out for all events can be specified using the function. Events to wait on are specified by passing
an array of event definitions in the events parameter. The number of events is specified with the eventCount

parameter.

Note: The default timeout is 10 seconds.

Programmer’s Manual 908594 Daq APl Command Reference 4.6-35

Prototypes

C/C++

dagWaitForEvents(DagHandleT *handles, DaqTransferEvent *events, DWORD
eventCount, BOOL *eventSet, DagWaitMode waitMode);

Visual BASIC

VBdagWaitForEvents&(handles&(), events&(), Byval eventCount&, eventSet&(),
Byval waitMode&)

Program References

None

4.6-36 Daqg APl Command Reference 908594 Programmer’s Manual

daqgZeroConvert

Also See: dagZeroSetup,dagZeroSetupConvert
dagAutoZeroCompensate

Format
dagZeroConvert (counts, scans)
Purpose
dagZeroConvert compensates one or more scans according to the previously called dagZeroSetup function.

Parameter Summary

Parameter Type Description
counts PWORD Raw data from one or more scans
scans DWORD Number of scans of raw data in the counts array

Parameter Values

counts: apointer to an array ranging from 0 to 65,535
scans: valid values range from 1 to 4,295,967,295; however, memory limitiations may apply

Returns
DerrZClnvParam Invalid parameter value
DerrNoError No error

6 For more details on error messages refer to the Daq Error Table.

Function Usage
This function will modify the array of data passed to it.
Prototypes

C/C++
dagZeroConvert(PWORD counts, DWORD scans);

Visual BASIC
VBdaqgZeroConvert&(counts%, ByVal scans&)

Program References

None

Programmer’s Manual 908594 Daq APl Command Reference 4.6-37

daqZeroSetup

Also See: dagZeroConvert,dagZeroSetupConvert, dagAutoZeroCompensate

Format
dagZeroSetup (nscan, zeroPos, readingsPos, nReadings)
Purpose

dagZeroSetup defines which channels will be zeroed within a scan, the location of the shorted channel, the size
of the scan, and the number of readings to zero.

Parameter Summary

Parameter Type Description
nscan DWORD Number of readings in a single scan
zeroPos DWORD Position of the zero reading within the scan
readingsPos DWORD Position of the readings to be zeroed within the scan
nReadings DWORD Number of readings immediately following the zero reading that are sampled
at the same gain as the zero reading

Parameter Values

nscan: valid values range from 1 to 272
zeroPos: valid values range from 1 to 272
readingsPos: valid values range from 1 to 272
nReadings: valid values range from 1 to 270

Returns
DerrzZClnvParam Invalid parameter value
DerrNoError No error

6 For more details on error messages refer to the Daqg Error Table.

Function Usage

This function does not do the actual conversion. A non-zero return value indicates an invalid parameter error.

Prototypes
C/C++
dagZeroSetup(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD nReadings);

Visual BASIC

VBdaqgZeroSetup&(ByVal nscan&, ByVal zeroPos&, ByVal readingsPosé&, ByVval
nReadings&)

Program References
None

4.6-38 Daqg APl Command Reference 908594 Programmer’s Manual

daqZeroSetupConvert

Also See: dagZeroSetup, dagZeroConvert, dagAutoZeroCompensate

Format
dagZeroSetupConvert (nscan, zerroPos, readingsPos, nReadings, counts, scans)

Purpose

dagZeroSetupConvert performs both the setup and convert steps with one call.

Parameter Summary

Parameter Type Description

nscan DWORD Number of readings in a single scan

zeroPos DWORD Position of the zero reading within the scan

readingsPos DWORD Position of the readings to be zeroed within the scan

nReadings DWORD Number of readings immediately following the zero
reading that are sampled at the same gain as the zero
reading

counts DWORD Raw data from one or more scans

scans DWORD Number of scans of raw data in the counts array

Parameter Values

nscan: valid values range from 1 to 272

zeroPos: valid values range from 1 to 272

readingsPos: valid values range from 1 to 272

nReadings: valid values range from 1 to 270

counts: apointer to an array ranging from 0 to 65,535

scans: valid values range from 1 to 4,295,967,295; however, memory limitiations may apply

Returns
DerrZClnvParam Invalid parameter value
DerrNoError No error

6 For more details on error messages refer to the Daq Error Table.

Function Usage

This is useful when the zero compensation needs to be performed multiple times because data was read from
channels at different gains or from different boards.

Programmer’s Manual 908594 Daq APl Command Reference 4.6-39

Prototypes

C/C++

dagZeroSetupConvert(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD
nReadings, PWORD counts, DWORD scans);

Visual BASIC

VBdaqgZeroSetupConvert&(ByVal nscan&, ByVal zeroPosé&, ByVal readingsPosé&,
ByVal nReadings&, counts%(), ByVal scans&)

Program References
None

4.6-40 Daqg APl Command Reference 908594 Programmer’s Manual

API Error Codes - dagError

Error Name Code # hex - dec | Description

DerrNoError 00h - O No error — No errors encountered in performing action.
DerrBadChannel 0lh - 1 Specified LPT channel was out-of-range (Error Code Obsolete)
DerrNotOnLine 02h - 2 Requested device is not online - The device cannot be detected.

Corrective Actions:

If using a Book product:

. Check power on the device.

. Check that cabling is IEEE-1284 compliant and is securely connected to the
device and the computer. (if applicable).

. If using a plug in PCI or ISA parallel port, check to ensure that the plug in board
is properly installed and firmly seated in the bus slot.

. If using a PCMCIA (PC Card) parallel port card make sure that the card is firmly
and completely inserted into the socket controller. Also make sure that the
operating system properly recognizes the card as a parallel port device and
that its interrupt setting has no conflicts.

e Check that the device is properly configured in the Daq Configuration Applet in
the Control Panel. Make sure that the device is connected to the parallel port
for which it is configured.

If using a Daq PC card product:

. Check to ensure that the card is properly and fully inserted into the socket.

. Check to make sure that the operating system recognizes the card in the
Device Manager of the Control Panel; and make sure that its interrupt setting
has no conflicts.

. Check to ensure that the socket in which the card is installed corresponds to
the socket configured in the Dag Configuration Applet in the Control Panel

If using an ISA-board:

. Check to ensure that the product is firmly seated into the ISA bus slot.

. Check the Base Address and Interrupt settings on the board match the settings
in the Dag Configuration Applet in the Control Panel

If using a PCl-board:

. Check to ensure that the product is firmly seated into the PCI bus slot.

. Check that the operating system properly recognizes the device in the Device
Manager of the Control Panel.

. Check that the Serial Number on the device matches that reported by the Daq
Configuration Applet in the Control Panel.

. Check that the Bus and Slot number reported in the Daq Configuration Applet
in the Control Panel match the physical bus and slot number in which the
device is installed.

DerrNoDagbook 03h 3 Reserved for future use
DerrBadAddress 04h 4 Reserved for future use
DerrFIFOFull 05h 5 FIFO Full detected, possible data corruption. Input FIFO on device has oveflowed —

data loss or data corruption is possible under these conditions.
Corrective Actions:
. Reduce scan rate or channel count.
. If Book product select a parallel port protocol capable of higher throughput
speeds.

DerrBadDma

06h

DMA is currently being used (DagBoard(ISA) only) by another device

Corrective Actions:

. Change DMA channel for the DagBoard in the Daq configuration Applet in the
system Control Panel to another setting not used by other devices.

DerrBadlnterrupt

07h

Bad or illegal INTERRUPT level specified for device - Interrupt could not be
acquired.

Corrective Actions:

. Check system for devices configured with the same interrupt or interrupt
conflicts.

. If using DagBook check system to make sure that the interrupt is enabled on
the LPT port connected to DaqBook (BIOS and system settings configuration in
the Control Panel)

DerrDmaBusy

08h

DMA is currently being used (DagBoard(ISA) only)

Corrective Actions:

. Change DMA channel for the DagBoard in the Daq configuration Applet in the
system Control Panel to another setting not used by other devices.

DerrinvChan

10h

16

Invalid analog input channel - Channel number selected cannot be included in the
scan group because it is an invalid channel.

Corrective Actions:

. Check channel setting to ensure that it is correlated to a real physical channel
on the main unit or expansion device.

. Check that the channel is being configured on the desired device. Device
Handle should correspond to the device for which the channel is being
configured

Programmer’s Manual

908594 Daq APl Command Reference 4.7-1

API Error Codes (Cont.) —daqgError

Error Name Code # hex - dec | Description

DerrinvCount 11h - 17 Invalid count parameter — An invalid number was specified. This can be related to
number of scans requested, number of channels in a scan, number of updates or
scans in a buffer, number of scans requested to transfer and so on.

Corrective Actions:

. Check any API's where any channel, scan or buffer allocation is performed.

. Check API's that request transferred or updated data status requests.

. Check that passed count values are valid.

DerrlInvTrigSource 12h - 18 Invalid trigger source parameter Trigger source selected is not a valid trigger source
for the given device.
Corrective Actions:
. Check that the trigger source selected is a valid trigger source (see trigger
source table)
. Check device documentation to see if the device is capable of using the trigger
source.

DerrinvLevel 13h - 19 Invalid trigger level parameter — Trigger level programmed is invalid.

Corrective Actions:

e Check that the trigger value programmed is appropriate for the input range of
the selected device and channel.

DerrinvGain 14h - 20 Invalid channel gain parameter - Gain level programmed is invalid.

Corrective Actions:

. Check that the device and channel for the specified gain are capable of utilizing
the gain programmed. (see gain tables)

DerrinvDacVal 15h - 21 Invalid DAC output parameter

Corrective Actions:

. Make sure that the programmed DAC values are within the specified range of
the DAC output for the device and channel.

DerrlInvExpCard 16h - 22 Invalid expansion card parameter — parameter cannot be used with specified
expansion card or channel:

Corrective Actions:

. Do not use the illegal parameter

DerrinvPort 17h - 23 Invalid port parameter — Invalid DIO port reference.

Corrective Actions:

. Check that the port number programmed is valid DIO port for the device or DIO
expansion card.

DerrlInvChip 18h - 24 Invalid chip parameter (no ref)
DerrinvDigVal 19h - 25 Invalid digital output parameter — Digital output value not valid for output to digital
port

Corrective Actions:
. Inspect all daglO output parameters for inappropriate values for the given DIO
port and device.

DerrInvBitNum 1Ah - 26 Invalid bit number parameter — Bit number specified is not valid for specified DIO
port.

Corrective Actions:

. Check that bit number programmed is valid for specified DIO port and channel

DerrinvClock 1Bh - 27 Invalid clock parameter — Input or Output clock parameter or combination of clock
parameters programmed is not valid.

Corrective Actions:

e Check clock parameter values

. Check clock parameter flags

DerrinvTod 1Ch - 28 Invalid time-of-day parameter — Time of Day programmed on the 9513 chip is invalid

Corrective Actions:

. Check Dag9513TimeOfDay (tod) parameter used with daq9513SetMasterMode
API.

DerriInvCtrNum 1bh - 29 Invalid counter number — The counter number specified is not a valid counter
number for the 9513 device.

Corrective Actions:

e Use a counter number between 1 and 5 for the 9513.

DerrlinvCntSource 1Eh - 30 Invalid counter source parameter —The 9513 Counter Source parameter is not valid.
Corrective Actions:
. Select a defined Counter Source (see 9513 Counter Source tables)

DerrinvCtrCmd 1Fh - 31 Invalid counter command parameter — The 9513 Counter Command specified is not
valid.

Corrective Actions:

. Specify a valid 9513 Counter Command. (see 9513 counter command tables)

DerrinvGateCtrl 20h - 32 Invalid counter gate parameter — The specified gate is not valid when programming
counter mode.

Corrective Actions:

. Specify a valid 9513 Gate Control value. (see 9513 counter gate tables)

4.7-2 Daq APl Command Reference 908594 Programmer’s Manual

API Error Codes (Cont.) —daqgError

Error Name Code # hex - dec | Description
DerrInvOutputCtrl 21h - 33 | Invalid output control parameter — Bad Output Control specified when programming
the 9513 for timer output.
Corrective Actions:
. Specify a valid 9513 Gate Control value.
Derrinvinterval 22h - 34 | Invalid interval parameter — Bad interval specified when programming the 9513 for
frequency measurement over the interval.
Corrective Actions:
. Specify an interval for the 9513 that can properly be used to measure a
frequency over.
DerrTypeConflict 23h - 35 | Obsolete Error Code
DerrMultBackXfer 24h - 36 | A second background transfer was requested — Another acquisition transfer has
been requested when one is already active. Only one transfer can be active on a
device at any given time.
Corrective Actions:
e Wait for the first transfer to complete then start the new transfer
. Disarm (dagDisarm) the first transfer so that a new transfer can be started.
DerrinvDiv 25h - 37 | Invalid Fout divisor — foutDiv parameter for the daq9513SetMasterMode API is out of

range (>15)
Corrective Actions:
e Set the foutDiv parameter <15

Temperature Conversion Errors

Error Name

Code # hex - dec

Description

DerrTCE_TYPE

26h - 38

TC type out-of-range — An undefined TC type value has been specified.
Corrective Actions:
. Check that a valid TC type has been specified (see TC Types Table)

DerrTCE_TRANGE

27h - 39

Temperature out-of-CJC-range — Temperature at CJC is outside of the specified
operating range of the CJC. Invalid CJC readings and corresponding temperature
channel readings may be inaccurate due to CJC out of range.

Corrective Actions:

. Operate device and/or expansion units under temperature conditions which
are not outside the specified range of the CJC.

DerrTCE_VRANGE

28h - 40

Voltage out-of-TC-range — The voltage level of the TC input on the channel is
outside of the specified range of the TC configured for the channel. Temperature
readings may be inaccurate due to voltage levels being outside of the specified
range of the TC.

Corrective Actions:

. Check to ensure that the correct TC type is physically connected to the
specified channel and is connected securely.

. Check to ensure that the physical channel has been configured to the correct
TC value in the application.

e Check that the temperature level at the TC juncture is within the operating
range of the TC.

DerrTCE_PARAM

29h - 41

Unspecified parameter value error — bad parameter was passed to daqTCSetup
and/or daqTCConvert
Corrective Actions:
. Check to ensure that the dagTCSetup and dagTCConvert have been called
with the proper parameters for the operation.
. Check to ensure that dagTCSetup and dagTCConvert have not returned an
error

DerrTCE_NOSETUP

2Ah - 42

DaqTCConvert called before dagTCSetup — TC setup has not been properly
initialized — possibly due to order of precedence for these API's has not been
performed correctly.

Corrective Actions:

. Check to ensure that the dagTCSetup is called before dagTCConvert.

. Check to ensure that the daqTCSetup has been called with the proper

parameters for the operation.

. Check to ensure that dagTCSetup has not returned an error.

Device Capabilities

Error Name

Code # hex - dec

Description

DerrNotCapable

2Bh - 43

Device is incapable of function — The device is not capable of performing the
operation or function specified.
Corrective Actions:
e Refer to product documentation to ensure that the device is capable of
performing the specified operation or function.
. Check to ensure that the application is referencing the proper handle for the
device and not using a handle opened for another device.

Programmer’s Manual

908594 Daq APl Command Reference 4.7-3

API Error Codes (Cont.) —daqgError

Scanned Input Transfers

Error Name

Code # hex - dec

Description

DerrOverrun

2Ch - 44

A buffer overrun occurred — The acquisition transfer buffer located in PC memory
has overrun. When this occurs data loss and/or corruption is possible.

Corrective Actions:

. Make sure that the application has enough time to return to
processing/removing data from the buffer before it overruns.

. If using a Driver allocated buffer make sure that dagAdcTransferGetStat is
called often to manage the transfer.

. Increase the buffer size so that more processing/removing latencies can be
tolerated without overrunning.

. Decrease the acquisition rate and/or acquisition channel scan count.

Zero and Cal Conversion Errors

Error Name Code # hex - dec | Description
DerrZClnvParam 2Dh - 45 Unspecified parameter value error — An invalid parameter was specified during
dagZeroSetup or dagZeroConvert.
Corrective Actions:
. Check the parameter settings for dagZeroSetup and dagZeroConvert.
DerrZCNoSetup 2Eh - 46 Zero compensation has not been properly setup. dag..Convert was
called before daq..Setup or dagZeroSetup was not properly
performed
Corrective Actions:
. Make sure that dagZeroSetup was called before dagZeroConvert.
. Make sure that dagZeroSetup was called with the proper parameter definitions
and settings.
. Check any error codes returned from dagZeroSetup.
DerrinvCalFile 2Fh - 47 Cannot open the specified cal file — the calibration file specified by the calfile

parameter when executing the dagReadCalFile API could not be opened.
Corrective Actions:
. Make sure that the calibration file name and path have been properly defined
in the calfile string parameter.
. Make sure that the application has the appropriate system permissions to read
the file. This can be an issue under Windows/NT/2000 systems.

Environmental Errors

Error Name

Code # hex - dec

Description

DerrMemLock

30h - 48

Cannot lock allocated memory from operating system. This is a rare error condition
and is an operating system resource issue.

Corrective Actions:

. Shut down any applications that may have PC memory intense operations.

e Increase system memory size.

DerrMemHandle

31h - 49

Cannot get a memory handle from operating system This is a rare error condition
and is an operating system resource issue.

Corrective Actions:

. Shut down any applications which may have PC memory intense operations.

Pre-trigger acquisition Errors

Error Name

Code # hex - dec

Description

DerrNoPreTActive

32h - 50

No pre-trigger configured — pre-trigger operation could not be performed since no
pre-trigger has been defined.

Corrective Actions:

. Setup the acquisition for pre-trigger operation.

DAC FIFO Errors (DagBoard only)

Error Name

Code # hex - dec

Description

DerrlInvDacChan

33h - 51

DAC channel does not exist. The DAC channel specified does not exist for the
specified device. Channel number selected cannot be programmed because it is
an invalid DAC channel.

Corrective Actions:

. Check channel setting to ensure that it is correlated to a real physical DAC

channel on the main unit or expansion device.

. Check that the channel is being configured on the desired device. Device

Handle should correspond to the device for which the channel is being
configured

4.7-4

Daq APlI Command Reference

908594

Programmer’s Manual

API Error Codes (Cont.) —daqgError

Error Name Code # hex - dec | Description

DerrlInvDacParam 34h - 52 DAC parameter is invalid — A parameter passed to one of the DagDac... API's was
invalid.

DerrinvBuf 35h - 53 Buffer points to NULL or buffer size is zero when in User Buffer mode—The buffer
passed by the application is un-allocated or has a bad pointer address.

Corrective Actions:

. Properly allocate the memory pointed to by the buffer address.

. Check to ensure that the pointer to the buffer is properly passed to the API.

DerrMemAlloc 36h - 54 Could not allocate the needed memory — Memory could not be allocated by the
driver.

Corrective Actions:

. Shut down other applications that may be utilizing PC system memory.

. Free any unneeded dynamically allocated memory used by the application.

. Increase PC system memory.

DerrUpdateRate 37h - 55 Could not achieve the specified update rate — could not program the unit to scan or
update at the requested rate. In most cases the rate will automatically be set to
the nearest achievable rate.

Corrective Actions:

. Lower the rate requested — normally, the rate requested is not achievable due
to the rate being to high for the unit.

. Decrease channel count — the aggregate rate can be increased by reducing the
number of channels to scan.

. If using a DagBoard/2000 Series board the rate can be increased by ensuring
that Compatibility Mode (100Khz) is disabled.

DerrinvDacWave 38h - 56 Could not start waveforms because of missing or invalid parameters

- One or more of the waveform parameters is incorrect. This error will occur upon

dagDacWaveArm and could indicate that one or more waveform parameters is
not set properly.

Corrective Actions:

. Check parameters for API's like dagDacSetOutputMode and all the appropriate
dagDagWave... API's called to ensure that each parameter for each APl is
configured or set properly.

DerrlinvBackDac 3%h - 57 Could not start waveforms with background transfers — DAC waveform output
transfer already active. While multiple DAC [and P3 DIO] channels can be
updated concurrently during a transfer — no more than one transfer may be active
at any given time for a single main unit device.

Corrective Actions:

e Wait for the first transfer to complete then start the new transfer

. Disarm (dagDisarm) the first transfer so that a new transfer can be started.

DerrlinvPredWave 3Ah - 58 Predefined waveform not supported. Waveform type passed to

dagDacWaveSetPredefWave is not supported.
Corrective Actions:
. Check WaveForm Type parameter in dagDacWaveSetPredefWave to ensure
that value represents a valid waveform type definition defined by the
DagDacWaveType enumeration.

RTD Conversion Errors

Error Name

Code # hex - dec

Description

DerrRtdValue

3Bh - 59

RTD Value out-of-range — Error code generated if RTD value is outside of the
maximum 1k range. This error code can be generated by the daqCvtRtdSetup
API and indicates that the passed rtdValue parameter is out of range.

Corrective Actions:

. Inspect the rtdValue parameter for the daqCvtRtdSetup API for proper values.

DerrRtdNoSetup

3Ch - 60

No setup. This error can occur if the dagCvtRtdConvert API is called before the
daqCvtRtdSetup API. The error indicates that there is no setup information from
which a conversion can be performed.

Corrective Actions:

. Make sure that daqCvtRtdSetup API is called before the dagCvtRtdConvert

API.
. Make sure that the prior call to dagCvtRtdSetup returns without error.

DerrRtdArraySize

3Dh - 61

Obsolete Error Code

DerrRtdParam

3Eh - 62

Incorrect RTD parameter — This error code is generated if a bad parameter was
passed to the dagCvtRtdSetup API. The error code can be generated if either the
nScan or nRtd parameters are zero.

Corrective Actions:

. Check the nScan and nRtd parameters of the daqCvtRtdSetup API for

inappropriate settings.

Programmer’s Manual

908594 Daq APl Command Reference 4.7-5

API Error Codes (Cont.) —daqgError

Channel Bank/Option Errors

Error Name Code # hex - dec | Description

DerrlInvBankType 3Fh - 63 Invalid bank-type specified. This error code is returned from
dagAdcExpSetChanOption and dagAdcExpSetBank if the channel type passed is
either undefined or inappropriate for the bank.

Corrective Actions:
. Check the chanType parameter for the dagAdcExpSetBank API and the
optionType parameter for the dagAdcExpSetChanOption API

DerrBankBoundary 40h - 64 Simultaneous writes to DBK cards in different banks not allowed.

Error Name Code # hex - dec | Description

DerrinvFreq 41h - 65 Invalid scan frequency specified. Could not achieve the specified input scan
frequency — could not program the unit to scan or update at the requested rate. In
most cases the scan rate will automatically be set to the nearest achievable rate.

Corrective Actions:

. Lower the rate requested — normally, the rate requested is not achievable due
to the rate being too high for the unit.

. Decrease channel count — the aggregate rate can be increased by reducing the
number of channels to scan.

. If using a DagBoard/2000 Series board the rate can be increased by ensuring
that Compatibility Mode (100Khz) is disabled.

DerrNoDaq 42h - 66 Dag/112/216 not found (obsolete error code)

DerrlinvOptionType 43h - 67 Invalid option-type parameter - An invalid option type has been specified to the
daqgSetOption or dagAdcExpSetModuleOption API's. The optionType parameter
needs to be a valid value supported by the DaqOptionType definitions.

Corrective Actions:

. Check that the optionType parameter specified is a defined DaqOptionType.

. Check documentation for your device to determine if the device is capable of
setting the specified option.

DerrinvOptionValue 44h - 68 Invalid option-value parameter - An invalid option value has been specified to the
daqgSetOption or dagAdcExpSetModuleOption API's. The optionValue parameter
needs to be valid for the associated optionType parameter specified. The
optionValue parameter is a single precision floating point number that represents
the value to be set for the option. The most common occurrence of this error is
due to a value being passed that is outside the minimum and maximum allowable
settings for the option being set.

Corrective Actions:

. Check that the optionType parameter specified is the desired option to set.

. Check that the value being passed does not exceed the minimum or maximum
allowable settings for the option specified.

. Check documentation for your device to determine if the device is capable of
setting the specified option.

DerrTooManyHandles 60h - 96 No more handles available to open. Too many open sessions are active. Many

daqOpen API’s have been issued without closing enough sessions (dagClose).
There are no more handles available.

Corrective Actions:

. Close one or more devices (dagClose) so that a handle can become available.

DerrlInvLockMask 61h - 97 Error code reserved for future use

DerrAlreadylLocked 62h 98 Error code reserved for future use

DerrAcgArmed 63h - 99 Operation not available while an acquisition is armed. The operation must be

performed when there are no current acquisitions active or pending.
Corrective Actions:

e Wait until the acquisition terminates normally

e Terminate the acquisition with dagDisarm.

DerrParamConflict 64h - 100 Each parameter is valid, but the combination is invalid.

DerrlInvMode 65h 101 Invalid acquisition/wait/dac mode

DerrlInvOpenMode 66h - 102 Invalid file-open mode — The file open mode openMode (DagAdcOpenMode)

specified in the dagAdcSetDiskFile is invalid.
Corrective Action:
Check that the value passed for the openMode parameter is a valid
DagAdcOpenMode type.
4.7-6 Daq APl Command Reference 908594 Programmer’s Manual

API Error Codes (Cont.) —daqgError

Error Name

Code # hex - dec

Description

DerrFileOpenError 67h - 103 Cannot open the specified file — the file specified by the filename parameter in the

dagAdcSetDiskFile or the dagDacWaveSetDiskFile APIs could not be opened.

Corrective Actions:

. Make sure that the file name and path have been properly defined in the
filename string parameter.

. Make sure that the application has the appropriate system permissions to
read/open the file. This can be an issue, especially under Windows/NT/2000
systems.

DerrFileWriteError 68h - 104 Unable to write file. The file specified by the dagAdcSetDiskFile APl command

could not be written or pre-written.

Corrective Actions:

. Check that the application has called dagAdcSetDiskFile API prior to arming
the acquisition (dagAdcArm).

. Check the return codes from dagAdcSetDiskFile API to ensure that the file
was opened properly.

. Make sure that the application has the appropriate system permissions to
write the file. This can be an issue, especially under Windows/NT/2000
systems.

. Lack of adequate space on the target drive could cause a failure to write
acquired data during the acquisition or the pre-write operation (if requested).

Make sure that there is enough space on the target drive and path to write the
entirety of the acquisition.

DerrFileReadError 69h - 105 Unable to read file. The file specified by the dagDacWaveSetDiskFile API command

could not be read.

Corrective Actions:

. Check that the application has called dagDacWaveSetDiskFile API prior to
arming waveform output (dagDacWaveArm).

. Check the return codes from dagDacWaveSetDiskFile API to ensure that the
file was opened properly.

. Make sure that the application has the appropriate system permissions to read
the file. This can be an issue, especially under Windows/NT/2000 systems.

DerriInvClockSource 6Ah - 106 Invalid clock source selected — The clock source for the input or output operation is
not properly set for the device. The clockSource parameter (set in the
dagAdcSetClockSource or dagDacWaveSetClockSource APIs is not set to a valid
clock source for the given device.

Corrective Actions:

. If performing a clocked input operation with dagAdcSetClockSource make sure
that the clockSource selected is a valid clock source type
(DagAdcClockSource) for the given device.

. If performing a clocked output operation with dagDacWaveSetClockSource
make sure that the clockSource selected is a valid clock source type
(DagDacClockSource) for the given device.

DerrinvEvent 6Bh - 107 Invalid transfer event. The events specified by the events parameter in the
daqWaitForEvents or dagWaitForEvent API's was not a valid transfer event type
(DaqTransferEvent).

Corrective Action:

Check the events parameter to ensure that it is a valid DagTransferEvent event
type.

DerrTimeout 6Ch - 108 Time-out on wait — The wait on a single event or wait on multiple events timed-out.
The event(s) specified by the daqWaitForEvents or dagWaitForEvent API's did not
occur before the time-out for the events expired. The time-out for the event(s) is set
via the dagSetTimeout APl and is based in ms.

Corrective Actions:

e |f the event(s) are expected to occur within a given finite period that can be
determined then use the dagSetTimeout API to set the maximum time to wait
for the event(s) to occur.

. If the event(s) cannot be guaranteed to occur within a finite period then set the
time-out to be infinite by setting the parameter mSecTimeout=0 in the
dagSetTimeout API.

DerrinitFailure 6Dh - 109 Unexpected result occurred while initializing the hardware. This error is a general

failure indicating that the driver cannot properly communicate and/or initialize the

device.

Corrective Action:
Follow the procedures set forth in DerrNotOnline error code for your particular
device to make sure that the device is properly powered, connected and
configured.

Programmer’s Manual

908594 Daq APl Command Reference 4.7-7

API Error Codes (Cont.) — dagError

Error Name

Code # hex - dec

Description

DerrBufTooSmall

6Eh - 110

Buffer specified is too small for the requested operation. This is a general purpose
error code for operations that require a minimum buffer size. This error code is
device and operation specific.
Corrective Action:
Refer to device documentation for specific buffer size requirements for the
operation and device.

DerrinvType

6Fh - 111

Invalid Port/Channel type — This error indicates that an invalid request has been
made to perform an operation on a port or channel which is not capable of
performing the operation.
Corrective Operation:
Check the port/channel number and type to determine if the operation is
appropriate for that channel/port.

DerrArraySize

70h - 112

Used as a catch all for arrays not large enough. Returned if the operation cannot be

performed because the array is too small. This error code can be generated when

calling daqCvtLinearConvert when the number of (scans x nReadings) > nValues

when using moving average or when (nReadings > nValues when using block

averaging.

Corrective Actions:

. Check array size definitions and parameters

. If using dagCvtLinearConvert check that the nReadings are properly defined
and that daqCvtLinearSetup has been called prior to daqCvtLinearConvert.
Also make sure that scans, nReadings and nValues are properly set for the
averaging mode selected.

DerrBadAlias

71h - 113

Invalid Alias Name — The device alias name does not exist or is corrupt. The name
supplied or its associated device configuration is not properly stored in the operating
system registry. This is normally encountered when trying to open the
device(daqOpen) using the string defined by dagName or get the device properties
(dagDevicePropsT). This problem is generally due to the device either not being
configured at all or a typo in the name of the device.

Corrective Actions:

e Run the Dag Configuration Control Panel Applet. Check to see that the device
appears in the device list.

. If the device does not appear in the device list then Click <Add Device> and
follow instructions for configuring the device.

. If the device does appear in the list double-check spelling and other readable
characters such as _.-><)(. Remember that the device alias names are case
dependent so that the string used should match exactly as it appears in the
device list in the Dag Configuration Applet.

DerrInvCommand

72h - 114

Invalid test command — This error occurs when calling the daqTest API with an
invalid or undefined test. The command parameter is not a valid DagTestCommand
type.
Corrective Action:
Check the command parameter of the daqTest API to ensure that its value
represents a valid DagTestCommand type.

DerrinvHandle

73h - 115

Invalid device handle. The handle passed to the DagX API is not a valid handle.
The handle is created by calling the dagOpen API with the appropriately defined
device name.

Corrective Actions:

e Make sure that daqOpen for the device has been invoked before calling any
handle based API’s for the device.

. Check the returned handle value from dagOpen. If the handle is < 0 then the
handle is invalid indicating that the device associated with the dagName
parameter could not be successfully opened. (See DerrBadAlias for more
details)

. Check that the device has not been inadvertently closed (dagClose) prior to
calling a handle based API.

DerrNoTransferActive

74h - 116

Transfer not active — An operation that requires an input or output transfer to be
active was called when no transfer was currently active. This normally occurs if
dagAdcTransferBufData is called without a transfer currently being active.
Corrective Action:
Make sure that dagAdcTransferStart API has been called and the transfer is
currently active or was active before calling dagAdcTransferBufData.

DerrNoAcgActive

75h - 117

Acquisition not active — An operation that requires an acquisition to be active was
called when no acquisition was currently active.

DerrinvOpstr

76h - 118

Invalid operation string used for enhanced triggering (WaveBook only)

DerrDspCommFailure

77h - 119

Device with DSP failed communication (WaveBook only)

DerrEepromCommFailure

78h - 120

Device with EEPROM failed communication (WaveBook only)

4.7-8 Daq APl Command Reference

908594 Programmer’s Manual

API Error Codes (Cont.) — dagError

Error Name

Code # hex - dec

Description

DerrlInvEnhTrig

79h -

121

Device using enhanced trigger detected invalid trigger type — The triggerSources

array parameter of the dagAdcSetTrigEnhanced API contained an invalid enhanced

trigger source type (DagAdcTriggerSource) for the device.

Corrective Actions:

. Make sure that all trigger sources passed in the triggerSources array parameter
are valid enhanced trigger types defined by DagAdcTriggerSource types.

e Triggering capabilities vary from device to device. Make sure that the device is
capable of performing the trigger source as it has been defined.

DerrinvCalConstant

7Ah -

122

User calibration constant out of range

DerrinvErrorCode

7Bh -

123

Invalid error code — Invalid/Undefined error code encountered when errorNum
parameter contains an undefined error code when calling dagFormatError.
Corrective Action:

Make sure that the error code number passed represents a defined error code

DerriInvAdcRange

7Ch -

124

Invalid analog input voltage range parameter — Indicates that an invalid adcRange
parameter was passed. A number of APIs use the adcRange parameter that has
the type of DagAdcRangeT. This error indicates that at least one of these API's was
passed an invalid range parameter.
Corrective Action:
Check all API's that pass a parameter of type DagAdcRangeT. Make sure that
all are passing a valid range of the type DagAdcRangeT.

DerrinvCalTableType

7Dh -

125

Invalid calibration table type — An invalid calibration table type has been specified

when using the dagCal... API's. The tableType parameter does not specify a valid

table type (DaqCalTableTypeT) for specified device.

Corrective Actions:

. Inspect all dagCal... API's for invalid or undefined tableType parameters. Each
tableType parameter needs to take on values defined by DagCalTableTypeT.

. Check documentation for your device to make sure that the table type
reqguested is valid for your device.

DerrinvCallnput

7Eh -

126

Invalid calibration input signal selection — The calibration input signal selection was

invalid. The input parameter did not represent a valid calibration input selection

setting defined by DaqCallnputT when calling the dagCalSelectinputSignal or

daqConfCalConstants API's

Corrective Actions:

. Inspect the dagCalSelectinputSignal and the dagConfCalConstants API’s to
ensure that only valid DagCallnputT types are passed to the input parameter.

. Check documentation for your device to make sure that the
daqCalSelectinputSignal and the dagConfCalConstants API's are valid for your
device.

DerrlInvRawDataFormat

7Fh -

127

Invalid raw-data format selection — Indicates an invalid raw data type selected if the
flags settings in daqSetTriggerEvent indicate an invalid raw type for the trigger
channel. This will be the case if the trigger channel is digital and the flags indicate
Signed raw data. This error may also occur if setting the rawFormat in the
dagAdcSetDataFormat to a type not defined (DagAdcRawDataFormatT)
Corrective Actions:
. If using the dagSetTriggerEvent API and setting the trigger channel to be
digital channel then set the flags parameter to use Unsigned raw data.
. If using the dagAdcSetDataFormat API then make sure that the value
passed in the rawFormat parameter is a valid type defined by
DagAdcRawDataFormatT

DerrNotImplemented

80h -

128

Feature/function not implemented yet — The requested feature or function is not yet
implemented. No corrective action available.

DerrinvDioDeviceType

81h -

129

Invalid digital 1/0O device type — An invalid Digital I/O device type was passed to a
daqlO... APIl. The devType parameter for a digital IO API is not properly defined as
a DaqlODeviceType type.
Corrective Action:
Inspect all daglO... API's and digital I/0O API's that use the devType
parameter for values that are not defined by the DaglODeviceType type.

DerrlnvPostDataFormat

82h — 130

Invalid Post Data Format — Indicates an invalid post processing data type when
using the dagAdcSetDataForma API. The postProcFormat parameter in the
dagAdcSetDataFormat is set to a type not defined by DagAdcPostProcDataFormatT
Corrective Action:
If using the dagAdcSetDataFormat API then make sure that the value passed
in the postProcFormat parameter is a valid type defined by
DagAdcPostProcDataFormatT

Programmer’s Manual

908594 Daq APl Command Reference 4.7-9

API Error Codes (Cont.) — dagError

Error Name Code # hex-dec | Description

DerrDagStalled 83h — 131 PersonalDaq Only. The low level driver has stalled in an attempt to continue
collecting data.
Corrective Actions:

. If using the PersonalDag check that the unit is still properly connected

to the PC and that all USB cables and hubs are properly connected.
DerrDagLostPower 84h — 132 PersonalDag Only. The PersonalDaq does not have enough power to operate
properly. The unit either does not have enough power supplied to it by the host
pc or the auxiliary power is not connected. Some PC’s and notebooks may not
supply the appropriate power necessary for the PersonalDaqg to operate properly.
Corrective Actions:

. Some PC's and notebooks may not supply the appropriate power
necessary for the PersonalDaq to operate properly and you may need
to operate the PersonalDaq with the auxiliary power connection
attached. Check the manual for instructions on using the auxiliary
power input.

e Another way to circumvent this problem is to place an external USB
hub between the host computer and the PersonalDag. The placement
of the USB hub allows the PersonalDagq to run off power supplied by
the hub rather than the host PC.

DerrDagMissing 85h — 133 PersonalDaqg Only. The PersonalDaq is missing. This occurs when a session is
open with a PersonalDag but the PersonalDag has been found to be missing.
Corrective Actions:

. Check the USB cable connections on the PC, PersonalDag as well as
any USB hubs in use.

DerrScanConTig 86h — 134 The scan configuration programmed is not legal. One or more channel
configuration parameters have been found to be in error.
Corrective Actions:

. Check that all channels have been configured using legal parameters
and settings for that channel type. Inspect channel parameter settings
and flags for each channel being configured using the dagAdcSetScan
or dagAdcRd... API functions.

DerrlInvTrigSense 87h — 135 Invalid trigger sense specified. The trigger sense specified for a hardware based
trigger (either TTL or Analog) is not allowed for the current device.
Corrective Actions:

. Check that your device is capable of the using the trigger sense
provided. For instance, some devices can use TTL Above and Below
Level while not being available on other devices.

DerrinvTrigEvent 88h — 136 Invalid trigger event specified. The trigger event specified is not available for the
device being configured.

. Check that the value being passed is a legal value based upon trigger
sense values in the header file for the programming language which
you are using.

Corrective Actions:

. Check that your device is capable of the using the trigger sense
provided. For instance, some devices can use Software Analog Level
triggers while not being available on other devices.

. Check that the value being passed is a legal trigger Event which is
defined in the header file for the programming language which you are
using.

DerrlinvTrigChannel 89h — 137 Invalid trigger channel specified. The trigger channel specified for a trigger Event
is not valid.
Corrective Actions:

. Check that the trigger channel provided is a valid channel number.

. Check that the trigger channel provided is currently configured in the
scan list. See dagAdcSetScan for details on channel scan list
configuration

DerrDacWaveformNotActive 8Ah — 138 An invalid waveform operation has been issued while a waveform operation is not

currently active. This may occur if the application issues an APl which is only
valid while waveform output is currently active.
Corrective Actions:

e Typically this error will be issued when a waveform API such as
dagDacArm function is issued while a waveform output is currently
active. The application should refrain from making such calls during an
active waveform output operation.

4.7-10 Daq API Command Reference

908594 Programmer’s Manual

API Error Codes (Cont.) — dagError

Error Name

Code # hex-dec

Description

DerrDacWaveformActive

8B - 139

An invalid waveform operation has been issued while a waveform operation is
currently active. This may occur if the application issues an API which is only valid
while waveform output is not currently active.

Corrective Actions:

Typically this error will be issued when a waveform API such as
dagDacTransferGetStat function is issued while a waveform output is not
currently active. The application should refrain from making such calls when a
waveform is not active.

DerrDacNotEnoughMemory

8Ch

140

There is not enough memory to download the requested static waveform.
Corrective Actions:

e Static waveforms are limited to 256,000 total update samples across all
output channels. Change your static waveform to use a smaller
number of updates or reduce the number of DAC channels for which
you are outputting waveforms.

DerrDacBufferNotEqual

8Dh

141

The specified dynamic waveform buffers for each output channel are not of equal
size. In dynamic waveform mode the waveforms for each output channel must
be exactly the same size.
Corrective Actions:
e Check that the output for each channel of waveform output is exactly
the same size.

DerrDacBufferTooSmall

8Eh

142

The specified dynamic waveform buffer is too small to output. The waveform
cannot be updated with a buffer less than 4096 update samples.
Corrective Actions:
. Check that the output buffer is greater than 4096 when using dynamic
waveform output mode.

DerrDacBufferUnderrun

8Fh

143

The specified dynamic waveform output operation has underrun. A waveform
output underrun occurs when the DAC is able to output data faster than the
controlling application can update the dynamic waveform buffers.
Corrective Actions:

. Update the waveform buffer in a more timely manner.

. Increase the size of the waveform buffer to allow greater latency if the

application cannot update the buffer quickly enough
. Decrease the DAC output update rate.

DerrDacPacerOverrun

90h

144

The specified dynamic waveform output operation has experienced a pacer clock
overrun. A pacer clock overrun will occur if the clock pulses pacing the outputs
from the DAC's occur at less than 10us intervals. Normally, this should only occur
if clocking the outputs from an external source or the ADC pacer clock since the
DAC pacer clock is limited to 10us intervals.
Corrective Actions:

e The only way to avoid this condition is to make sure that the clock

pacing the DAC outputs never runs at less than 10us intervals.

DerrDacPacerOverrun

91h

145

The specified acquisition operation has experienced a pacer clock overrun. A
pacer clock overrun will occur if the clock pulses pacing the acquisition occur at
less than 5us intervals. Normally, this should only occur if clocking the acquisition
from an external source since the internal ADC pacer clock is limited to 5us
intervals.
Corrective Actions:

e The only way to avoid this condition is to make sure that the clock

pacing the acquisition never runs at less than 5us intervals.

DerrAdcNotReady

92h

146

N/A

DerrArbitrationFailure

93h- 147

The board could not be communicated with properly on the PCI bus. This error
indicates a critical condition that may cause the board to function improperly.
Corrective Actions:
. Move the board to be another bus or slot number.
. Check BIOS settings to ensure that DMA is enabled on the bus and slot
number in which the board is installed.

DerrDacWaveFileTooSmall

94h - 148

The specified dynamic waveform output file is too small to perform the desired
waveform output.
Corrective Actions:

. Increase the size of the waveform output file.

Programmer’s Manual

908594 Daq APl Command Reference 4.7-11

API Error Codes (Cont.) — dagError

Error Name Code # hex-dec | Description

DerrDacBufferUnderrun 95h - 149 The specified dynamic waveform output operation has underrun. A waveform
output underrun occurs when the DAC is able to output data faster than the
controlling application can update the dynamic waveform buffers.
Corrective Actions:

e Update the waveform buffer in a more timely manner.

. Increase the size of the waveform buffer to allow greater latency if the

application cannot update the buffer quickly enough
. Decrease the DAC output update rate.

DerrDacWaveModeConflict 96h - 150 Conflicting waveform output modes have been specified. Mixing of static and
dynamic waveform modes is not allowed for concurrent waveform output from
different DAC channels.
Corrective Actions:
. Change all DAC waveform channels to be either dynamic or static
waveform output modes.

DerrTedsInfolnvStatus 97h — 151 WaveBook Series Only - Invalid TEDS status operation. No TEDS support can
be found on this channel.
Corrective Actions:

. Check that a TEDS capable transducer is connected to the channel

input
. Check that the application intends to use a TEDS capable channel.
DerrAlreadyCreated 98h - 152 Device already created — Attempting to create a device which already exists.

Duplicate device entries are not permitted.
Corrective Actions:
. Check the device name for which you are creating. Make sure device
name does not already exist. Device names and settings can be
checked via the DagX control panel applet.

DerrParentNotCreated 99%h - 153 Device Parent Not Created — Attempting to create a device whose specified
parent device does not exist.
Corrective Actions:

. Create the parent device for the device you are attempting to create.

e Check the parent device name for the device for which you are
creating. Make sure that the parent device name already exists and is
the device name which you are attempting to create a child from..
Device names and settings can be checked via the DagX control panel
applet.

DerrUnableToCreateDevice 9Ah - 154 Unable to create specified device. Unable to create the specified device due to
registry path or access issues.
Corrective Actions:
. Make sure that the application and User privileges for the PC has
access rights to write registry locations in the HKLM registry key.

DerrUnableToDeleteDevice 9Bh — 155 Unable to Delete specified device. Unable to delete the specified device due to
registry path or access issues.
Corrective Actions:
. Make sure that the application and User privileges for the PC has
access rights to write registry locations in the HKLM registry key.

DerrlinvIPAddress 9Ch - 156 Invalid IP Address — IP Address specified was zero which is an invalid IP address
setting.
Corrective Actions:

. Specify a proper, non-zero, IP address.

DerrOutputEnableConflict 9Dbh - 157 Output Enable Conflict — A DagBoard/500 device has an output conflict. Timerl
and AdcClockOutput are in conflict.
Corrective Actions:
. Disable Timerl or disable AdcClockOutput. Both cannot be enabled at
the same time.

DerrCalDataTypeMismatch 9Eh - 158 Calibration Data Type Mismatch — Calibration points do not match the data type.
Corrective Actions:
o Verify the data type and enter new calibration points of the same data
type.

DerrDacFifoUnderrun 9Fh - 159 DAC Fifo Underrun — Data is not being sent fast enough.
Corrective Actions:

. Decrease the waveform playback speed

e Increase the buffer size

4.7-12 Daq API Command Reference 908594 Programmer’s Manual

API Error Codes (Cont.) — daqgError

Error Name Code # hex-dec | Description

DerrSetpointCountMismatch | AO - 160 Setpoint Count Mismatch — The number of Setpoints does not equal the number
of channel setpoint flags set.
Corrective Actions:
. Correct the mismatch situation. Each Setpoint must have one
associated channel setpoint flag set.

DerrSetpointLevelInvalid Al - 161 Setpoint Level Invalid — The Setpoint Level is outside the channel’s range.
Corrective Actions:
. Change the Setpoint Level and/or the associated channel's range such
that the Setpoint Level falls within the channel’s range.

DerrSetpointOutputType A2 - 162 Setpoint Output Type Invalid — The Setpoint Output Type is invalid.
Corrective Actions:
. Set an appropriate output type for the setpoint.

DerrSetpointOutputvValue A3 - 163 Setpoint Output Value Invalid — The Setpoint Output Value is outside the
channel’s range.
Corrective Actions:
. Change the Setpoint Output value and/or the associated channel’s
range such that the setpoint output value falls within the channel’s
range.

DerrSetpointLimits A3 - 164 Setpoint Comparison — Error flags when Limit B is greater than Limit A. For
outside or inside window limits (DsfOutsideLimits, DsflnsideLimits)and
for hysteresis (DsfHysteresis) Limit A must be greater than Limit B.

Corrective Actions:
. Ensure that the value for Limit A is greater than the value for Limit B.

Programmer’s Manual 908594 Daq APl Command Reference 4.7-13

This page is intentionally blank.

908494 Programmer’s Manual

Appendix A A

Appendix A was removed due to outdated material.

Programmer’s Manual 988294 Porting Applications A-1

A-2 Porting Applications 988294 Programmer’s Manual

Appendix B — Using Borland C++ B

This appendix illustrates beginning a project with 32-bit Borland C++ Builder VV5.0. Subsequent or previous
versions of Borland C++ may require changes or modifications to these procedures. In this case, please consult
Borland C++ documentation. However, though the project build procedures may differ, other 32-bit versions of
Borland C++ (4.0, 6.0 or later) should function as well.

Note: The DagX.DLL has been developed and built using Microsoft Visual C++. However, a Borland C++
compatible export library BCB5DagX.LIB is available.

Note: BCB5DagX.LIB and other language support files and examples are located in:
<InstallDirectory>\DagX\Programming Language Support\dag\C\32-bit Enhanced API\...

To begin your first project, perform the following:
1) Launch Borland C++ IDE.

2) Under the File menu, select New.

3) Select the project type that best meets your needs; or if building an existing DagX example, select Console
Wizard and use the following settings:

Source Type: C++

Use VCL: NO

Multi Threaded: NO

Console Application: YES

Specify project source: YES

Select the DagX example file of interest.

4) Under the Project menu, select Add to Project.

5) Add . \lib\BCB5DaqgX.LIB to the project by browsing to the DagX Programming Language Support directory
described above.

6) If using an existing DagX example, include the file .\include\DagRoutines.CPP
Note: _kbhit() may not be defined; use kbhit() instead.

7) If creating a new .cpp file, place an include statement for DagX.H before any references to the DagX API
functions.

8) Under Compiler Options, set the “Pre-compiled header” option to “None”
9) IMPORTANT! Under Compiler Options, set the “Treat enum types as ints” option to true.

10) Save the project.

Programmer’s Manual 939198 Using Borland C++ B-1

B-2 Using Borland C++ 939198 Programmer’s Manual

Custom OEM Installation C

This appendix consists of two parts. Both outline the procedures required for custom reseller hardware and driver installation
and distribution; and both include the names of driver files and their locations.

0 Part 1 applies to USB devices operating under a Windows 2000 or Windows XP operating system.

o0 Part 2 applies to non-USB devices operating under a Windows 9x, Me operating system, or under a
Windows NT/2000/XP system, with device exceptions as noted.

Part 1 — USB Devices Operating under Windows 2000 or XP
Applies to:
Personal Dag/3000 Series devices
DaqgBoard/3000USB Series devices

The following files are required for installation by OEM.

PDaqg3K. inf (requested when the hardware is detected)
DaqClIn.dll

DaqColn.dll

PDaq3KLD.sys

PDaq3K.sys

DagXx.dll

File Installation is automated for the Personal Dag/3000 and DagBoard/3000USB
Series devices on plug-and-play operating systems.

Programmer’s Manual 958293 Custom OEM Installation C-1

or Windows NT, 2000, XP Systems

This section applies to non-USB devices with exclusions as noted above. The following files are required

for installation by OEM.

Part 2 — Non-USB Devices Operating under Windows 9x, Me,

Installation by OEM excludes TempBook, Daq PC-Card, Personal Daq,
WaveBook, WBK20, and DBK35.

WIN 9x/Me

WIN NT/2000/XP

WIN 9x/Me and
WIN NT/2000/XP

For All Devices
dagRes.vxd

For DagBoard/2000 Series and
DagBook/2000 Series devices
DagFind.vxd

For All Devices

dagRes.sys

For All Devices
DagX.cpl
DagX.dll
DagComp.-dll
(if using compatibility layer)

Device Series

Files for Windows System Drivers

DaqgBoard/500 WIN 2000/XP
DaqBd50x. inf
DaqBd50x.sys
DagBoard/1000 WIN 9x/Me WIN 2000/XP WIN NT
DaqBoard/2000 DagX.inf DagXNT.inf DagBrd2k.sys
Dag2k0.vxd DagBrd2k.sys
Dag2kl.vxd
Dag2k2.vxd
Dag2k3.vxd
DaqBoard/3000 WIN 2000/XP
DagXNT.inf
DagBrd2k.sys
DaqBook/2000 WIN NT/2000/XP
DaqLab/2000 DagBk2k.sys
DagScan/2000
DaqBook/2000A WIN NT/2000/XP WIN 9x/Me

DagBk2k.sys

DagBk2kO0 . vdx
DagBk2k1.vdx
DagBk2k2 . vdx
DagBk2k3.vdx

ISA-Type DagBoards

WIN 9x

DagBrdO.vxd
DagBrdl.vxd
DagBrd2.vxd
DagBrd3.vxd

WIN NT/2000/XP
DagBrd.sys

DaqBook/100 WIN 9x

DaqBook/200 DagBkO.vxd
DagBk1.vxd
DagBk2.vxd
DagBk3.vxd

WIN NT/2000/XP
DagBk.sys

C-2 Custom OEM Installation

958293

Programmer’s Manual

Installation Locations:

Place all .DLLs and .CPLs into C:\Windows\System (9X/Me) or C:\Windows\System32 (NT/2000/XP)
Place all .VxDs into C:\Windows\System (9X/Me Only)
Place all .SYSs into C:\Windows\System32\Drivers (NT/2000/XP Only)

You must reboot the computer and then configure the device via the Daq Configuration
applet in the Control Panel. Refer to the applicable device user’s manual for more
information.

PDF versions of the manuals are included on the data acquisition CD and can be
accessed from the CD’s intro-screen using the <View PDFs> button.

File Installation is automated via the .INF files for the DagBoard/500, /1000, and /2000 Series Boards
under plug-and-play operating systems.

File Installation is automated for the Personal Dag/3000 and DagBoard/3000USB Series devices on plug-
and-play operating systems.

Programmer’s Manual 958293 Custom OEM Installation C-3

This page is intentionally blank.

C-4 Custom OEM Installation 958293 Programmer’s Manual

Appendix D dag9513... Commands D

API1 Programming Model for 9513 Counter-Timer Chip Devices D-1
dag9513GetHold D-3
dag9513MultCtrl ... D-4

dag9513SetAlarm ... D-6
dag9513SetCtrMode D-7
dag9513SetHold D-12
dag9513SetLoad D-13
dag9513SetMasterMode D-14

This appendix only applies to product versions that make use of a 9513 counter-timer chip.
The 9513 counter-timer chip devices include the following:

o DagBook/100 Series

o DaqBook/200 Series

o DaqBoard/100 Series

o DaqBoard/200 Series

API Programming Model for 9513 Counter-Timer Chip Devices

Variable Rate, Variable Duty-Cycle Square-Wave Output

This section demonstrates the use of the counter/timer
section of a DaqBook/100/200 or of a

Initialize 9513 master

DagBoard/L00A/200A with the P3 port. After [daqo5i3setiastertode| | oncTedister.
configuring the counter and setting the load and hold

regiSte_rs! the counter is grmed. At this point, program [dage513setctrMode] Configure the counter.
execution continues while the counter outputs the signal.

This example generates a variable rate, variable duty- v

cycle square wave. Functions used include: |dag9513setLoad | Set the load register.

e Vbdag9513SetMasterMode&(handle&,deviceType&
,whichDeviceé&, foutDiv&, cntSource&, complé&, [daqsslasetnold| Set the hold register.
comp2&, tod&)

e Vbdaq9513SetCtrMode&(handleé&,deviceType&,wh .
ichDevice&, ctrNum&,gayeCtrl&, cntEdge&, [aqo513multctr] Load and arm counter 1.
cntSource&, specGate&, reload&, cntRepeat&, »
cntType&, cntDir&, outputCtlé&)

e Vbdaq9513SetHold&(handleé&,
deviceTypeé&,whichDevice&, ctrNumé&, ctrVal%)

e Vbdaq9513SetLoad&(handleé&,deviceType&,which
Device&, ctrNum&, ctrVal%)

e Vbdaq9513MultCtril&(handle&,deviceType&,whic
hDeviceé&, ctrCmd&, ctrlé&, ctr2&, ctr3g&,
ctr4&, ctr5&)

[User program code |

Stop counter?

dag®9513MultCtrl
dag95l3SetMasterMode

v

Disable counter output.

Programmer’s Manual 938295 9513 Counter-Timer Commands D-1

Initialize the 9513 master mode register fout divider: 10, fout source: DcsF2 (100 kHz), comparel: no,
compare 2: no, time of day disabled. This will place a 10 kHz pulse on the oscillator output. The
daq9513SetMasterMode function will initialize the counter/timer section and configure several of its
parameters. This is a system-wide function that affects all 5 counter timers.

Aside from initializing the counter/timer section, this application does not use most of the capabilities of
the daq9513SetMasterMode function. The first two arguments in this function select a clock source for
the fout signal found on connector P3, then select a divider for that signal. F2 in this application is a fixed,
internal frequency source of 100 kHz. Our example divides this fixed frequency by 10 yielding a signal on
fout of 10 kHz.

ret& = VBdaq9513SetMasterMode&(handleé&, DiodtLocal9513&, O, 10, DcsF2&, 0, O,
DtodDisabled&)

The dag9513SetCtrMode function configures an individual counter in the 9513. The first argument
specifies the counter to be configured; the second argument specifies the internal operation of the gate
control. Our application does not use the gate, so it is disabled. The fixed 100 kHz internal clock (F1) is
used as the source. By setting the reload parameter to 1, the counter will use the *load’ register and the
“hold’ register to generate the pulse train. When the counter is armed, the "load’ register value is loaded
then decremented on every edge of the F1 clock. The output signal will be high during this phase. When
the terminal count is reached, the ’hold’ register is loaded then decremented on every edge of the F1 clock.
The output signal is low during this phase. If the reload argument is set to 0, only the *load’ register is
used, always yielding a 50% duty-cycle pulse train. The cntRepeat argument specifies whether the pulse
train should execute once or repeat continuously. The counter interprets the load and load register as either
binary or BCD, depending on the value of the cntType argument. The cntDi r specifies whether the
internal counter should count up or down to reach the terminal count. A value of 5 counted down has the
same effect as a value of 65,530 counted up.

ret& = VBdaq9513SetCtrMode&(handle&, DiodtLocal9513&, 0, 1, DgcNoGating&, 1,
DcsF1&, 0, 1, 1, 0, 0, DocTCToggled&)

Set the load register to 75 and the hold register to 25. This produces a high duty-cycle of 75% and (with
100 total counts to count down) a frequency of 10 kHz.

" Load the load register: 75 low counts & hold register with 25 counts
ret& = VBdaq9513SetLoad&(handle&, DiodtLocal9513, 0, 1, 75)
ret& = VBdaq9513SetHold&(handleé&, DiodtLocal9513, 0, 1, 25)

The dag9513MultCtrl function will arm counter 1.

ret& = VBdaq9513MultCtrl&(handle&, DiodtLocal9513&, O, DmccLoadArm&, 1, O,
0, 0, 0)

Continue the pulse train until user terminates it.

Print "A 10Khz 25% duty cycle square wave is on the counter 1 output.':
Print

MsgBox "Click to halt counter 1 output.', , "Counter 1"

" Halt all output

ret& = VBdaq9513MultCtril&(handle&, DiodtLocal9513&, 0, DmccDisarm&, 1, O,
0, 0, 0)

ret& = VBdaq9513SetMasterMode&(handle&, DiodtLocal9513&, 0, 0O, DcsF2&, 0, O,
DtodDisabled&)

Print "Outputs disabled."

D-2 9513 Counter-Timer 938295 Programmer’s Manual

daq9513GetHold

Also See: daq9513SetCtrMode
Format

dag9513GetHold(handle, deviceType, whichDevice, ctrNum, ctrVval)

Purpose
dag9513GetHold reads the hold register of the specified counter.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which to get the 9513 hold register
deviceType | DaqlODeviceType | Specifies the 9513 device type
whichDevice | DWORD Specifies which 9513
ctrNum DWORD The counter number
ctrval PWORD Variable which stores the value read from the hold register of the
selected counter

Parameter Values

handle: obtained from the daqOpen function.

deviceType: must be set to value DiodtLocal9513

whichDevice: valid value for all current devices is 0

ctrNum: valid values range from 1 to 5

ctrVal : pointer to a varible in which the contents of the hold register will be placed; valid values for the
hold register range from 0 to 65,535

Returns
DerrInvCtrNum Invalid counter
DerrNotCapable No 9513 available
DerrNoError No error
@ For more details on error messages, please refer to the Daq Error Table.

Function Usage

The hold register read by dag9513GetHold is used in event-counting applications to store counter
values accumulated by the daq9513MultCtr1 function. daq9513GetHold can read the hold register
while the count process is running without interrupting the process.

Prototypes

C/C++

dag9513GetHold(DagHandleT handle, DaglODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, PWORD ctrVval);

Visual BASIC

VBdaq9513GetHold&(ByVal handle&, ByVal deviceType&, ByVal whichDeviceé&,
ByVal ctrNum&, ctrVal%)

Program References
None

Programmer’s Manual 938295 9513 Counter-Timer Commands D-3

daq9513MultCtrl

Format

dag9513MultCtri(handle, deviceType, whichDevice, ctrCmd, ctrl, ctr2, ctr3,

ctr4, ctrb)

Purpose

dag9513MultCtrl can arm or disarm specified counters, can save data from the specified counters to
the load and/or hold register, or can load data from the load and/or hold register to the specified counters;

Also See: daq9513SetCtrMode, dag9513SetMasterMode

each parameter can be activated for multiple counters simultaneously.

Parameter Summary

Parameter Type Description

handle DagHandleT Handle to the device for which multiple counter commands
will be activated

deviceType DaglODeviceType Specifies the 9513 device type

whichDevice | DWORD Specifies which 9513

ctrCmd Daq9513MultCtrCommand | The counter command

ctrl BOOL A flag that, if True, enables the counter command to be
executed on counter 1; if Fal se, it does nothing to
counter 1

ctr2 BOOL A flag that, if true, enables the counter command to be
executed on counter 2; if Fal se, it does nothing to
counter 2

ctr3 BOOL Aflag that, if True, enables the counter command to be
executed on counter 3; if Fal se, it does nothing to
counter 3

ctr4 BOOL Aflag that, if True, enables the counter command to be
executed on counter 4; if Fal se, it does nothing to
counter 4

ctrb BOOL A flag that, if True, enables the counter command to be
executed on counter 5; if Fal se, it does nothing to
counter 5

Parameter Values

handle: obtained from the dagOpen command
deviceType: must be set to value DiodtLocal9513
whichDevice: valid value for all devices is 0

ctrCmd: see table below

ctrl-ctr5: valid values are either true (= 0) or false (=0).

Parameter Type Definitions

ctrcmd—(Dag9513MultCtrCommand)

Definition Description

DmccArm Enable counters to start

DmcclLoad Load initial counter values from either load or hold register
DmccLoadArm Perform initial loading and enable counting
DmccDisarmSave Disable counters and save counter value

DmccSave Transfer current counter value to hold register
DmccDisarm Halt counting

D-4 9513 Counter-Timer 938295 Programmer’s Manual

Returns

DerrinvCtrCmd Invalid counter command
DerrNotCapable No 9513 available
DerrNoError No error

@ For more details on error messages, please refer to the Daq Error Table.

Prototypes
C/C++

dag9513MultCtri(DagHandleT handle, DaqlODeviceType deviceType, DWORD
whichDevice, Daq9513MultCtrCommand ctrCmd, BOOL ctrl, BOOL ctr2, BOOL
ctr3, BOOL ctr4, BOOL ctr5);

Visual BASIC

VBdaq9513MultCtri&(ByVval handle&, ByVal deviceType&, ByVal whichDeviceg&,
Byval ctrCmd&, ByVal ctrl&, ByVal ctr2&, ByvVal ctr3&, ByVal ctr4&, ByVval
ctr5&)

Program References
9513EX01.CPP, 9513EX01.FRM (VB)

Programmer’s Manual 938295 9513 Counter-Timer Commands D-5

daq9513SetAlarm

Also See: daq9513SetMasterMode
Format

dag9513SetAlarm(handle, deviceType, whichDevice, alarmNum, alarmval);
Purpose
dag9513SetAlarm sets the specified alarm register.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device from which to get 9513 frequency
deviceType DaqlODeviceType Specifies the 9513 device type
whichDevice | DWORD Specifies which 9513
alarmNum DWORD The alarm register number
alarmval DWORD The value to write to the selected alarm register

Parameter Values

handle: obtained from the dagOpen function
deviceType: must be set to value DiodtLocal9513
whichDevice: valid value for all devices is 0
alarmNum: valid values range from 1 to 2

alarmval : valid values range from 0 to 65,535

Returns
DerrInvCtrNum Invalid counter number
DerrNotCapable No 9513 available
DerrNoError No error

@ For more details on error messages, please refer to the Daq Error Table.

Function Usage

The alarm register set by daq9513SetAlarm is only used if the corresponding comparator has been
enabled using the daq9513SetMasterMode function. The alarm register can then be used with the
comparators described in the entry for dag9513SetMasterMode.

Prototypes

C/C++

daq9513SetAlarm(DagHandleT handle, DaqlODeviceType deviceType, DWORD
whichDevice, DWORD alarmNum, DWORD alarmval);

Visual BASIC

VBdaq9513SetAlarm&(ByVal handle&, ByVal deviceType&, ByVal whichDeviceg&,
ByvVal alarmNum&, ByVal alarmValg&)

Program References
None

D-6 9513 Counter-Timer 938295 Programmer’s Manual

daq9513SetCtrMode

Format

dag9513SetCtrMode (handle, deviceType, whichDevice, ctrNum, gateCtrl,
cntEdge, cntSource, specGate, reload, cntRepeat, cntType, cntDir, outputCtrl)

Purpose

Also See: daq9513SetHold,daq9513MultCtrl

dag9513SetCtrMode sets the 9513’s mode register for a specified counter. Setting this register defines
how the specific counter works for a variety of square waves, pulse generation, and event counting.

Parameter Summary

Parameter Type Description

handle DagHandleT H%\:}Iclilgetosgt\e device for which the 9513 counter mode

deviceType DaqlODeviceType Specifies the 9513 device type

whichDevice DWORD Specifies which 9513

ctrNum DWORD The counter number

gateCtrl Daq9513GatingControl | The gating control mode

cntEdge BOOL If true, will count on a rising count edge; if False,
it will count on a falling count edge

cntSource Dag9513CountSource Count source

specGate BOOL If £rue, will enable the special gate; if Fal se, it will
disable the special gate

reload BOOL If €rue, will reload from load or hold registers; if
False, it will reload only from load

cntRepeat BOOL If true, will count repetitively; if False, it will count
once

cntType BOOL If true, will select a BCD count; if False, it wil
select a binary count

cntDir BOOL If true, will count up; if False, it will count down

outputCtrl Daq95130utputControl | Output control mode

Parameter Values

handle: obtained from the dagOpen function

deviceType: must be set to value DiodtLocal9513

whcihDevice: valid value for all devices is 0
ctrNum: valid values range from 1 to 5.

gateCtrl: see table below
cntEdge: valid values are true (= 0) or false (=0)
cntSource: see table below
specGate: valid values are true (= 0) or false (=0)
reload: valid values are true (= 0) or false (=0)
cntRepeat: valid values are true (= 0) or false (=0)
cntType: valid values are true (= 0) or false (=0)
cntDir: valid values are true (= 0) or fFalse (=0)
outputCtrl: see table below

Programmer’s Manual

938295

9513 Counter-Timer Commands

D-7

Parameter Type Definitions

gateCtrl-(Dag9513GatingControl)

Definition Description
DgcNoGating Gating disabled
DgcHighTCNM1 Active level high of TC toggled output of previous (N-1) counter
DgcHighLevelGateNP1 Active level high of gate next (N+1) counter
DgcHighLevelGateNM1 Active level high of gate previous (N-1) counter
DgcHighLevelGateN Active level high of gate of selected (N) counter
DgcLowLevelGateN Active level low of gate of selected (N) counter
DgcHighEdgeGateN Active rising edge of gate of selected (N) counter
DgcLowEdgeGateN Active falling of gate of selected (N) counter

cntSource-(Dag9513CountSource)

Definition Description
DcsTcnM1* TC toggled output of previous (N-1) counter
DcsSrcl Counter 1 input (pin36 of P3)

DcsSrc2 Counter 2 input (pin19 of P3)
DcsSrc3 Counter 3 input (pinl7 of P3)
DcsSrc4 Counter 4 input (pin15 of P3)
DcsSrc5 Counter 5 input (pin13 of P3)
DcsGatel Counter 1 gate (pin37 of P3)
DcsGate2 Counter 2 gate (pin18 of P3)
DcsGate3 Counter 3 gate (pin16 of P3)
DcsGated Counter 4 gate (pin14 of P3)
DcsGate5** Counter 5 gate (pin12 of P3)
DcsF1** Onboard 1 MHz Clock
DcsF2** Onboard 100 kHz Clock
DcsF3** Onboard 10 kHz Clock
DcsF4** Onboard 1 kHz Clock
DcsF5** Onboard 100 Hz Clock

*invalid with dag9513SetMasterMode or daq9513RdFreq

**invalid with daq9513RdFreq

outputCtrl-(Daq95130utputControl)

Definition Description
Doclnactivelow Inactive — Always low
DocHighTermCntPulse High impulse on terminal count
DocTCToggled Toggled on terminal count
DoclnactiveHighlmp Inactive w/ high impedance
DocLowTermCntPulse Low impulse on terminal count

Returns
DerrInvCtrNum Invalid channel
DerrinvGateCtrl Invalid gate
DerrlInvCntSource Invalid source
DerrinvOutputCtrl Invalid output
DerrNotCapable No 9513 available
DerrNoError No error

@ For more details on error messages, please refer to the Daq Error Table.

D-8 9513 Counter-Timer

938295

Programmer’s Manual

Function Usage
Input/Output Parameters

The gate control (gateCtr1) parameter dictates how the counter will use its gate input (P3 pins 37, 18,
16, 14 and 12) or another counter’s gate input. Possible settings are as follows:

o If the gate is disabled using the DgcNoGating definition, it will be ignored and the counter will run as
long as it is armed.

o Ifalevel gate control is selected (using the DgcHighLevelGateNPI, DgcHighLevelGateNMI,
DgcHighLevelGateN, or DgcLowlLeve lGateN definitions), the counter will operate only while
armed and the selected high or low level is applied to the gate.

o If an edge-sensitive gate control is selected using the DgcHighEdgeGate or DgcHighEdgeGateN
definitions, the counter will operate after a rising or falling edge is detected on the gate input.

Most gate control modes select gate N (gate of the selected counter) or gate inputs of the previous (N-1)
and next (N+1) counters. Thus, counter 3 could use the gate input of counter 2 by selecting N-1, counter 4
by selecting N+1, or its own gate input by selecting N. Counter 1 and counter 5 are considered adjacent
when selecting gate input N+1 or N-1. The final gate control mode allows the TC-toggled output (see the
following description of the output control parameter) of the previous counter (N-1) to be the gate. The
selected counter will operate only when the previous counter’s TC-toggled output is high.

The output control (outputCtrl) parameter controls the state of the counter output (P3 pins 35, 34, 33,
32, 31). There are 2 inactive and 3 active output modes. If inactive, the output can be driven to low
impedance, or increased to high impedance. The active modes are all associated with the terminal count
(TC) which is the moment in time when the counter reaches 0. This can happen by counting above 65,535
in binary count mode (9,999 in BCD count mode) or counting down below 1. The output can be either
driven high during the TC and low otherwise, driven low during the TC and high otherwise, or toggled
every time a TC occurs. The TC-toggled mode is used to generate variable duty-cycle square waves.

Counter Parameters

The count source (cntSource) parameter selects the source used as input to the specified counter. The
count source can be any one of the following:

e the counter inputs--Srcl to Src5 (P3 pins 36, 19, 17, 15 or 13)

e the counter gates--Gatel to Gate5 (P3 pins 37, 18, 17, 16 or 14)
e aninternal frequency--F1 to F5

e the TC-toggled output of the previous counter (N-1)

The internal frequencies are divide-by-10 divisions of the onboard oscillator which is by default 1 MHz,
but can be jumpered to 10 MHz. The sources F1 through F5 correspond to the frequencies 1 MHz, 100
kHz, 10 kHz, 1 kHz and 100 Hz. The TC-toggled output of the previous counter can be used as a source—
allowing counters to be cascaded without external connections.

The cntEdge, cntDir, cntType, cntRepeat, reload, and specGate parameters all take boolean
value types. For the follwoing discussions, if any of these parameters has a non-zero value, it is understood
to be true; if a parameter has a value of zero, it is understood to be False.

The count edge (cntEdge) parameter selects whether the counter will count when it receives a rising or
falling edge on its count source (see the count source parameter description above).When set to true, a
rising count edge will be used; if the value of cntEdge is Fal se, and falling count edge will be used.

The count direction (cntDir) parameter selects whether the counter will count up or down. If cntDir is
set to true, the count will go up; if the value of cntDir is False, the count will go down. The counter
is normally configured for down counting when generating a pulse or square wave. The load register
would be set to a positive value that would descent in decrements to zero, defining the duration or width of
the waveform. In event counting, the counter would initially be set to zero and configured to count up

(in this case, the hold register would contain the number of events received).

Programmer’s Manual 938295 9513 Counter-Timer Commands D-9

The count type (cntType) parameter selects either binary or binary-coded decimal (BCD) counting. A
value of true for this parameter selects a BCD count, while a value of false will select a binary count.
Binary format accepts a 16-bit number ranging from 0 to 65,535. BCD format accepts four 8-bit numbers
representing 0 to 9, ranging from 0 to 9,999. In this format, each of the 8-bit numbers represents a
placeholder in a base-10 system—for instance, if the thousands bit is 2, the hundreds bit is 5, the tens bit is
7, and the ones bit is 9, then the value of the four bits together is 2,579.

The count repeat (cntRepeat) parameter causes the counter to re-arm after TC occurs if true, and does
not re-arm the counter after TC if false. Applications such as software re-triggerable 1-shots would
disable the repeat flag so the 1-shot occurs only after the counter arm command is sent. Other applications
(such as rate generators, square waves and hardware re-triggerable 1-shots) would enable the count repeat
so that the counter will run until disarmed.

The reload (reload), special gate(specGate)and gate control (gateCtr1)parameters can be used
together to configure the counter. Using these three commands, the counter can be configured in one of
four ways:

o If the reload parameter is set to False, then the counter will only use the contents of the load register for
counting.

o If the reload parameter is true and the special gate parameter is false, then the counter will alternate
between registers.

e If both the reload and the special gate parameters are true, and the gate control parameter is inactive, then
the counter will use the hold register for counting if the counter’s gate is high, or to use the load register if
the gate is low.

o If both the reload and the special gate parameters are true, and the gate control parameter is active, then
the operation is dependent on the gateCtr 1 parameter value.

The chart below summarizes the various configurations of counter mode operation.

Counter Mode Operating Summary

Counter Mode A

Special Gate (CM7) 0
Reload Source (CM6) 0
0

N

X

Repetition (CM5)

Gate Control (CM15-CM-13);
N=no gating; L=level; E=edge

Count to TC once, then disarm

Count to TC twice, then disarm X[X| X X

Count to TC repeatedly without
disarming

Gate input does not gate counter
input

Count only during active gate level X X X X X X

Start count on active gate edge and
stop count on next TC

Start count on active gate edge and
stop count on second TC

No hardware re-triggering X[X| X| X| X| X| X| X| X]| X| X]| X X X

Reload counter from Load Register
onTC

Reload counter on each TC,
alternating reload source between X| X| X| X| X| X
Load and Hold Registers

Transfer Load Register into counter
on each TC that gate is LOW,
transfer Hold Register into X X
counter on each TC that gate is
HIGH

On active gate edge transfer
counter into Hold Register and
then reload counter from Load
Register

Zz |~|olo|o
r |~|o|lo|lm
m |~|o|o|m
z |olr|o|e
r |o|r|o|x
m |o|r|lo|—
=1
r |r|r|lo|lx
m |~|~|o|r
z |o|o|r|z
Z |~|ol+|T
- |[rlo|rlo
m |[~|ol~|xD
Z |o|k|~|n
r |o|r|r|4
m |o|r|+|c
Z |[r|rr|<
e
m [, |~|Xx

x| — |o|o|o|m
x| m |o|lo|o|o
x| m |o|lo|r|z
x| m |olo|~|o

On active gate edge transfer
counter into Hold Register, but X
counting continues

D-10 9513 Counter-Timer 938295 Programmer’s Manual

Prototypes
C/C++

dag9513SetCtrMode(DagHandleT handle, DaqglODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, Daq9513GatingControl gateCtrl, BOOL cntEdge,
Daq9513CountSource cntSource, BOOL specGate, BOOL reload, BOOL cntRepeat,
BOOL cntType, BOOL cntDir, Dag95130utputControl outputCtrl);

Visual BASIC

VBdaq9513SetCtrMode&(ByVal handle&, ByVal deviceType&, ByVal whichDeviceé&,
ByVal ctrNum&, ByVal gateCtrlé&, ByVal cntEdge&, ByVal cntSourceé&, ByVval

specGate&, ByVal reload&, ByVal cntRepeaté&, ByVal cntType&, ByvVal cntDirg&,
ByVal outputCtril&)

Program References
DAQEX.FRM (VB)

Programmer’s Manual 938295 9513 Counter-Timer Commands D-11

daq9513SetHold

Also See: daq9513SetCtrMode, dag9513SetMasterMode

Format
dag9513SetHold (handle, deviceType, whichDevice, ctrNum, ctrVval)

Purpose
dag9513SetHold outputs a value to the hold register of the specified counter.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device to set the 9513 hold register
deviceType Daqgl0DeviceType Specifies the 9513 device type
whichDevice DWORD Specifies which 9513
ctrNum DWORD The counter number
ctrval WORD Variable which stores the value read from the hold
register of the selected counter

Parameter Values

handle: obtained from the dagOpen function

deviceType: must be set to value DiodtLocal9513

whichDevice: valid value for all current devices is 0

ctrNum: valid values range from 1 to 5

crtVal : pointer to a variable from which the hold register will be set. Valid values for the hold register

range from 0 to 65,535
Returns
DerrInvCtrNum Invalid channel
DerrinvGateCtrl Invalid gate

DerrlnvCntSource Invalid source
DerrinvOutputCtrl Invalid output
DerrNotCapable No 9513 available
DerrNoError No error

@ For more details on error messages, please refer to the Daq Error Table.

Function Usage

The hold register can be used to set the counter’s initial value using the daq9513MulltCtrl function.
Please see the daq9513SetMasterMode and daq9513SetCtrMode function entries for a
description of various uses for the hold register.

Prototypes

C/C++

daq9513SetHold(DagHandleT handle, DaglODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, WORD ctrVval);

Visual BASIC

VBdaq9513SetHold&(ByVal handle&, ByVal deviceType&, ByVal whichDeviceé&,
ByVal ctrNum&, ByVal ctrVal%)

Program References
9513EX01.CPP, 9513EX01.FRM (VB)

D-12 9513 Counter-Timer 938295 Programmer’s Manual

daq9513SetLoad

Also See: daq9513SetCtrMode, dag9513SetMasterMode
Format

dag9513SetLoad (handle, deviceType, whichDevice, ctrNum, ctrVval)

Purpose
dag9513SetLoad outputs a value to the load register of the specified counter.

Parameter Summary

Parameter Type Description
handle DagHandleT Handle to the device to set the 9513 load register
deviceType Daqgl0ODeviceType Specifies the 9513 device type
whichDevice DWORD Specifies which 9513
ctrNum DWORD The counter number
ctrval WORD Variable which stores the value read from the load
register of the selected counter

Parameter Values

handle: obtained from the dagOpen function

deviceType: must be set to value DiodtLocal9513

whichDevice: valid value for all devices is 0

ctrNum: valid values range from 1 to 5

ctrVal: pointer to a variable from which the load register will be set. Valid values for the load register

range from 0 to 65,535
Returns
DerriInvCtrNum Invalid channel
DerrinvTod Invalid time of day mode
DerrinvDiv Invalid divisor
DerrNotCapable No 9513 available
DerrNoError No error

@ For more details on error messages, please refer to the Daq Error Table.

Function Usage

The load register can be used to set the counter’s initial value using the daq9513MultCtrl. Please see
the dag9513SetMasterMode and daq9513SetCtrMode function entries for a description of
various uses for the load register.

Prototypes

C/C++

dag9513SetLoad(DagHandleT handle, DaqglODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, WORD ctrVval);

Visual BASIC

Vbdaq9513SetLoad&(ByVal handle&, ByVal deviceType&, ByVal whichDeviceé&,
Byval ctrNumé&, ByVal ctrVal%)

Program References
9513EX01.CPP, 9513EX01.FRM (VB)

Programmer’s Manual 938295 9513 Counter-Timer Commands D-13

daq9513SetMasterMode

Also See: daq9513SetLoad, daq9513MultCtrl, daq9513GetHold, daq9513SetCtrMode

Format

dag9513SetMasterMode (handle, deviceType, whichDevice, foutDiv,
cntSource, compl, comp2, tod)

Purpose

dag9513SetMasterMode is used to set the counter’s master mode register, which is used to configure
the frequency output pin (P3 pin 30), the comparators of counter 1 and 2, and the time-of-day operation of

the 9513 chip.

Parameter Summary

Parameter Type Description

handle DaqgHandleT Handle to the device in which to set the 9513 master
mode

deviceType DaqlODeviceType Specifies the 9513 device type

whichDevice DWORD Specifies which 9513

foutDiv DWORD The frequency output (fout) divider

cntSource Dag9513CountSource The frequency output (fout) source

compl BOOL A flag that, if True, will enable the compare 1
operation; if Fal se, it will be disabled

comp2 BOOL A flag that, if €true, will enable the compare 2
operation; if Fal se, it will be disabled

tod Dagq9513TimeOfDay The time-of-day mode

Parameter Values

handle: obtained from the dagOpen function
deviceType: must be set to value DiodtLocal9513
whichDevice: valid value for all devices is 0
FoutDiv: valid values range from 1 to 16; 0 selects divider of 16
cntSource:see table below
compl: valid values are either true (= 0) and False (=0)
comp2: valid values are either true (= 0) and false (=0)

tod: see table below

D-14 9513 Counter-Timer

938295

Programmer’s Manual

Parameter Type Definitions

cntSource-(Dag9513CountSource)
Definition Description
DcsTcnM1* TC toggled output of previous (N-1) counter
DcsSrcl Counter 1 input (pin36 of P3)
DcsSrc2 Counter 2 input (pin19 of P3)
DcsSrc3 Counter 3 input (pinl7 of P3)
DcsSrc4 Counter 4 input (pin15 of P3)
DcsSrc5 Counter 5 input (pin13 of P3)
DcsGatel Counter 1 gate (pin37 of P3)
DcsGate2 Counter 2 gate (pin18 of P3)
DcsGate3 Counter 3 gate (pin16 of P3)
DcsGate4 Counter 4 gate (pin14 of P3)
DcsGate5 Counter 5 gate (pin12 of P3)
DcsF1 Onboard 1 MHz Clock
DcsF2 Onboard 100 kHz Clock
DcsF3 Onboard 10 kHz Clock
DcsF4 Onboard 1 kHz Clock
DcsF5 Onboard 100 Hz Clock
*invalid with dag9513SetMasterMode
tod-(Dagq9513TimeOfDay)
Definition Description
DtodDisabled Time of day function is not used
DtodDivideBy5 A 50Hz signal is being applied to pin 36 of P3 to generate time of day input
DtodDivideBy6 A 60Hz signal is being applied to pin 36 of P3 to generate time of day input
DtodDivideBy10 A 100Hz signal is being applied to pin 36 of P3 to generate time of day input
Returns

DerrlInvCntSource Invalid source

DerrinvTod Invalid time of day mode

DerrInvDiv Invalid divisor

DerrNotCapable No 9513 available

DerrNoError No error

@ For more details on error messages refer to the Daq Error Table. The table precedes Appendix A.

Function Usage

All daq9513SetMasterMode parameters default to zero after daqOpen.

Configuring the Frequency Output Pin and Comparators

The frequency output source (cntSource) parameter selects what signal will be output on the frequency output
(fout) pin. The fout source can be any one of the following:

e the counter inputs--Srcl to Src5 (P3 pins 36, 19, 17, 15 or 13)
e the counter gates--Gatel to Gate5 (P3 pins 37, 18, 17, 16 or 14)
e aninternal frequency--F1 to F5

The sources F1 through F5 correspond to the frequencies 1 MHz, 100 kHz, 10 kHz, 1 kHz and 100 Hz.
The fout divider will divide the selected source by 1 to 16 before outputting the signal on the fout pin.

The 2 comparator flags (compl and comp2) control the comparators associated with counters 1 and 2. If
a comparator is set to true, the value in the corresponding alarm register (set with the
dag9513SetAlarm function) will be compared with the value in the counter. The output of the
corresponding counter will become true when the value in the counter reaches the value in the alarm
register; the output remains true until the counter value changes. The polarity of the output depends on
the output control (set with the

Programmer’s Manual 938295 9513 Counter-Timer Commands D-15

dag9513SetCtrMode function). When either the output control is high, the terminal count pulsed, or
the terminal count toggled, then the output will be high while the comparator is true. When the output
control is low and terminal count pulsed, the output will be low while the comparator is true.

Using the Time-Of-Day Parameter

Counter 2

C15|C14|C13|C12]C11|C10[CO[C8|C7 |C6|C5[(C4|C3|C2(C1]|CO

< &) 3 P (5)) |

- Hours N Minutes d

Counter 1

C15|C14{C13|C12JIC11[C10|C9| CB| C7 |CB[(C5|C4|C3 (C2|C1]|CO
®) © L. © . |

b Seconds ~ 1/10Sec. = = +5 6, 10

Time-of-Day Configuration

The time-of-day (tod) parameter is used to enable or disable the time-of-day operation. The time-of-day
operation is a special mode which causes counters 1 and 2 to turn over at counts that generate 24-hour time-of-day
accumulations. A 10 Hz clock source is needed to drive the time-of-day clock. Therefore, if a 100 Hz, 60 Hz or 50
Hz signal is applied to the input of counter 1 (P3 pin 36), the appropriate divide-by mode (DtodDivideBy10,
DtodDivideBy6 and DtodDivideByb5, respectively) must be activated. So, if a 60 Hz signal is being used, the
tod parameter must be set to divide by 6 (DtodDivideBy®6). The resolution of the time-of-day operation is 0.1
seconds. The hold registers of counters 1 and 2 will hold the 24-hour time.

The following steps must be performed to use the time-of-day operation:

1. Set the master mode register as described above.

2. For general-purpose time keeping, configure counter 1 using daq9513SetCtrMode with the following
parameters: no gating, count on rising edge, special gating disabled, reload from hold only, count repetitively,

BCD counting and count up. The count source can be any of the available sources. The output control does not
affect time-of-day operation.

3. Set the mode of counter 2 with the same settings as counter 1, except that the count source should be TC toggled
of the previous (N-1) counter. This allows internal concatenation of counter 1 to counter 2.

4. Set the load registers of counter 1 and 2 to zero, using the daq9513SetLoad function.

5. Initialize the current 24-hour time-of-day by setting the load registers of counters 1 and 2, using the format
shown in the figure above (again using daq9513SetLoad).

6. Repeat step 4.

D-16 9513 Counter-Timer 938295 Programmer’s Manual

Prototypes

C/C++

dag9513SetMasterMode(DagHandleT handle, DaqlODeviceType deviceType, DWORD
whichDevice, DWORD foutDiv, Dagq9513CountSource cntSource, BOOL compl, BOOL
comp2, Daq9513TimeOfDay tod);

Visual BASIC

VBdag9513SetMasterMode&(ByVal handle&, ByVal deviceType&, ByVal
whichDeviceé&, Byval foutDiv&, ByvVal cntSourceé&, ByvVal compl&, Byval
comp2&, Byval tod&)

Program References
9513EX01.CPP, 9513EX01.FRM

Programmer’s Manual 938295 9513 Counter-Timer Commands D-17

This page is intentionally blank.

D-18 9513 Counter-Timer 938295 Programmer’s Manual

Glossary

This list of terms is intended to give a brief background on some of the terms used throughout the Daq Programmers Manual.
These definitions should prove a highly informative primer for those unfamiliar with the data acquisition terminology.

8255
Refers to Intel 8255 chip. This chip (or emulation of the chip) is used in Daq products for P2 Digital 1/O support.

9513
Refers to the Texas Instruments 9513 chip. This chip is used by DagBook/100 Series, DaqBook/200 Series, and
ISA-type DagBoard products for Counter/Timer operations.

A/D
AJD refers to an “analog-to-digital” converter. A/D’s convert a voltage over a specific range to a digitized reading.
The value of the digitized reading depends upon the resolution of the A/D device. Most A/D devices have resolution
of 12 or 16 bits. The range over which the conversion is performed depends upon the gain and polarity selected.

A/D Resolution
With 12-bit A/D’s, the significant values of the converted reading can range from 0 to 4,095 over the specified
voltage range. With 16-bit A/D’s, the significant values of the converted reading can range from 0 to 65,535 over
the specified voltage range.

A/D Data Representation
At times, the presentation of A/D values may differ, depending on the device or the current mode of the device. For
instance, a 12-bit reading may be normalized to a 16-bit ranging from 0 to 65,535, where the 4 least significant bits
are not relevant to the actual value of the reading. Also, a reading may be signed if the range specified is a bipolar
voltage, where the digitized reading will range from —32,768 to +32,767 rather than from 0 to 65,535.

Acquisition
An acquisition is the collection of analog, digital or counter input based upon a common input synchronization
event. The common synchronization event can be an internal time-base generated by an on-board clock, or it can be
an external signal. The start event (also referred to as the trigger event”) for an acquisition may take one of several
forms—triggers can be based on input channel values, external events, or programmatically defined events.
Likewise, the end of an acquisition (also referred to as the “stop event”) may be based on similar criteria.

Acquisition Frequency
The rate at which an acquisition takes place, measured in terms of frequency (Hz).

Acquisition Period
The rate at which an acquisition takes place, measured in terms of period (nanoseconds).

Acquisition Rate
The rate (in frequency or period) at which channel scans are to be taken, if using an internal clock source for the
acquisition.

ADC acquisition
See Acquisition.

Analog
A signal of varying voltage or current that communicates data (compare with Digital).

API (Application Program Interface)
The interface program within the Daq system’s driver that includes function calls specific to Daq hardware and can
be used with user-written programs (several languages supported)

Arm
An action that enables a device to detect the trigger/start event specified.

Programmer’s Manual 986896 Glossary G-1

Array
A collection of quantities [of the same data type] that are located in contiguous memory.

Asynchronous
Describes an event or action that is not temporally related to other events or actions. Normally, this describes an
event or action that uses no synchronization method (such as an external or internal clock) to coordinate the event or
action with other events or actions.

BCD (Binary Coded Decimal)
Refers to a data format where each byte represents a digit from 0 to 9. This is used mostly in reference to the
counter mode selection for the 9513 chip. If used, 4 bytes are available, each byte representing a digit between 0
and 9 multiplied by subsequent powers of 10, from 0 to 3. Thus, the range for this number would be from 0 to 9,999
(dec).

Bit Mask
A collection of bits (usually 8 to 32-bits long) that is used to configure devices, channels or operations. A bit mask
can also represents the state of certain operations, and events detected by the device. In a bit mask, each bit has
special meaning that can be interpreted using the bit mask enumerations located in each specific programming
language’s API header files.

BOOL
A 32-bit Boolean (4 bytes) quantity that can take on either true (= 0) or false (= 0) values. This parameter type
should be passed by value according to the dictates of the programming language used.

Boolean
A value that indicates a binary state of either true (see true) or false (see false).

Buffer (circular)
A buffer that will continue the reading or writing operation upon reaching the end of the buffer by starting again at
the beginning of the buffer. This style of buffer is normally useful when there is not enough memory available to
hold the entire acquisition input or waveform/pattern output data.

Buffer (linear)
A buffer that will terminate the reading or writing operation upon reaching the end of the buffer. Once the end of
the buffer has been reached, no more data may be read from or written to the buffer. This style of buffer is normally
useful when there is enough memory available to hold the entire acquisition input or waveform/pattern output data.

Buffer Position
The current position of the read or write operation of the buffer. If the buffer is being used to hold acquisition input
data, then this position refers to the write (or head) position within the buffer at which the driver will store the next
available data block. If the buffer is being used to buffer waveform/pattern output data, then this position refers to
the read (or tail) position within the buffer from which the driver will retrieve the next available data block.

Channel
In reference to Daq products, a channel refers to a single input, or output entity. In a broader sense, an input channel
is a signal path between the transducer at the point of measurement and the data acquisition system. A channel can
go through various stages (buffers, multiplexers, or signal conditioning amplifiers and filters). Input channels are
periodically sampled for readings. An output channel from a device can be digital or analog. Outputs can vary (as
dictated by a program) in response to an input channel signal.

Channel Scan Configuration
See Channel Scan Group.

Channel Scan Group
A list of input channel configurations that fully define each individual channel’s configuration for a particular data
acquisition operation.

Glossary 986896 Programmer’s Manual

CJC (Cold Junction Compensation) Channel
A Cold Junction Compensation channel is used to correct Cold Junction offset during temperature correction when
using thermocouple channels.

CTR (Counter) channel
A16-bit or cascaded 32-bit counter input channel on a device.

Command
A DagX APl command. Commands are accessible through the DagX API support files.

Comparator
A device that can compare an input value to a specified programmed value. Often used in reference to 9513 counter
operations.

D/A
A digital-to-analog converter. D/A’s convert digital values (binary bits) into analog signals, manifested as a voltage
output. The voltage level generated depends upon the voltage range of D/A converter, the resolution of the D/A
converter, and the digital value passed to the D/A converter. Most D/A devices have resolution of 12 or 16 bits.

D/A Data Representation
At times, the presentation of digital values may differ according to the device, or the current mode of the device.
For instance, a 12-bit digital quantity may be normalized to a 16-bit digital quantity ranging from 0 to 65,535, where
only the 12 most significant bits are passed to the D/A. Also, a digital value may be signed if the device has been
placed into a signed data format mode. If this is the case, then the voltage generated may correspond to a signed
digital integer value ranging from —32,768 to +32,767 rather than 0 to 65,535.

D/A Resolution
With 12-bit D/A’s, the digital value passed to the D/A can range from 0 to 4,095 where each bit in the digital value
is equal to the D/A’s voltage range divided by 4,095. With 16-bit D/A’s, the digital values passed to the D/A can
range from 0 to 65,535 where each bit in the digital value is equal to D/A’s voltage range divided by 65,536.

DAC (D/A Converter) Channel
A channel that corresponds to a D/A on the device or expansion module.

Daqg*
Any hardware device supported by the DagX API. These devices include: DagBooks, DagBoards (ISA-type),
Daq PC Cards, TempBooks, WaveBooks, DagBoard/2000 Series boards, and cPCI DagBoard/2000c Series boards.

Data type
The format of the parameters being passed into the API function/command.

Device
Specifies main unit devices, such as DagBooks, DagBoards, WaveBooks, TempBooks and Daq PC Cards.

Differential Mode (DE)
Differential mode measures a voltage between 2 signal lines for a single channel (compare with Single-Ended
Mode).

Digital
A digital signal is one of discrete value, in contrast to a varying signal. Combinations of binary digits (Os and 1s)
represent digital data.

DIO channel
A digital input or output channel.

Programmer’s Manual 986896 Glossary G-3

Disarm
An action that disables the ability of the device to detect the trigger/start event specified. If the trigger/event has
already occurred, the disarm action will stop the current operation.

DOUBLE
A 64-bit double precision (8 bytes) floating point number. This parameter type should be passed by value according
to the dictates of the programming language used.

DWORD
A 32-bit unsigned integer (4 bytes) quantity that can range from 0 to 4,294,967,295. This parameter type should be
passed by value according to the dictates of the programming language used.

External clock
The external clock is a device that uses pulses to drive synchronized input or output operations. The pulses originate
in a foreign device, such as a machine, to which the external clock is connected.

Falling/Negative edge
Describes an event in which an input signal has exceeded or reached a particular level with a negative slope. This
normally refers to a trigger or start event, or the manner in which a counter detects an event that should be counted.

False
The “false” value of a Boolean data type (= 0). Also See True and Boolean.

Flag
See Bit Mask.

FIFO (First In, First Out)
A mechanism for buffering input or output data on the device. This mechanism alleviates possible loss of data when
transmitting clocked or synchronous data due to inherent system latencies in either the PC or controlling application.

FLOAT
A 32-bit single precision (4 bytes) floating point number. This parameter type should be passed by value according
to the dictates of the programming language used.

Frequency Output (fout)
The output frequency programmed for a particular timer output channel. The frequency represents the rate at which
the timer generates an output pulse.

Function
Normally, this refers to a DagX APl command. The command or function is accessible through the DagX API
support files.

Gain
The degree to which an input signal is amplified (or attenuated) to allow greater accuracy and resolution; can be
expressed as x n (where n is some integer), or £dB. In terms of programming, most device channels can have their
gain value programmed. Gain codes are provided in the API for each device gain applicable.

Handle
An integer that represents the device when the device is being accessed, after the device session has been opened.
The handle to the device may be obtained via the dagOpen command.

Hardware Trigger
A trigger event that is detected on the device. Usually, these triggers take the form of an analog level or TTL level
signal. These types of triggers normally result in lower trigger detection latencies, but are not as flexible as software
trigger events.

G-4 Glossary 986896 Programmer’s Manual

Hold Register
Represents the hold register of the 9513.

Input Sample
The data for a single input channel that is part of a scanned channel acquisition.

Internal clock
The internal clock resides in the acquisition device and can be set (programmed) through software.
The pulse from the internal clock is used to drive synchronized input or output operations.

Linearization
Some transducers produce a voltage in linear proportion to the condition measured. Other transducers (e.g.,
thermocouples) have a nonlinear response. Converting nonlinear signals into accurate readings requires software to
calibrate several points in the range used, and then interpolate values between these points.

Load Register
Represents the load register of the 9513.

LONG
A 32-bit signed integer (4 bytes) quantity that can range from -2,147,483,648 to +2,147,483,647. This parameter
type should be passed by value according to the dictates of the programming language used.

LPSTR
A pointer to a character string. This parameter type should be passed by reference according to the dictates of the
programming language used. This parameter is normally a pointer to a device name or other ASCII string value.

Multiplexer (MUX)
A device that collects signals from several inputs and outputs them on a single channel.

Parameter
An element of the function, or of the command prototype, that is passed into the function.

PBOOL
A pointer to a 32-bit Boolean (4 bytes) quantity or an array of 32-bit Boolean quantities that take on false (= 0) or
true(= 0) values. This parameter type should be passed by reference according to the dictates of the programming
language used.

PDOUBLE
A pointer to a 64-bit double precision (8 bytes) floating point number or an array of 64-bit double precision floating
point numbers. This parameter type should be passed by reference according to the dictates of the programming
language used.

PDWORD
A pointer to a 32-bit unsigned integer (4 bytes) or an array of 32-bit unsigned integer quantities that can range from
0 to 4,294,967,295. This parameter type should be passed by reference according to the dictates of the programming
language used.

PFLOAT
A pointer to a 32-bit single precision (4 bytes) floating point number or an array of 32-bit single-precision floating
point numbers. This parameter type should be passed by reference according to the dictates of the programming
language used.

PLONG
A pointer to a 32-bit signed integer (4 bytes) or an array of 32-bit signed integer quantities that range
from: -2,147,483,648 to 2,147,483,647. This parameter type should be passed by reference according to the dictates
of the programming language used.

Programmer’s Manual 986896 Glossary G-5

Pointer
The address of the value [or variable quantity] in memory, rather than the actual value or variable itself.

Post-trigger
The data [or state of an acquisition] after the occurrence of the trigger event. If referencing data, the post-trigger
data was the data collected after or during the occurrence of the trigger event. If referencing the acquisition state,
then the device has been triggered.

Pre-trigger
The data or state of an acquisition before the occurrence of the trigger event. If referencing data, the pre-trigger data
was the data collected before the trigger event occurred. If referencing the acquisition state, then the device has
currently not been triggered.

PSHORT
A pointer to a 16-bit signed integer (2 bytes) or array of 16-bit signed integer quantities, ranging from
—-32,768 to +32,768. This parameter type should be passed by reference according to the dictates of the
programming language used.

PWORD
A pointer to a 16-bit unsigned integer (2 bytes) or array of 16-bit unsigned integer quantities, ranging
from 0 to 65,535. This parameter type should be passed by reference according to the dictates of the programming
language used.

Rising/Positive Edge
An event in which an input signal has reached [or exceeded] a particular level with a positive slope. This normally
refers to a trigger or start event, or the manner in which a counter detects an event that should be counted.

RTD (Resistance Temperature Detector)
An RTD is a 3 or 4 wire transducer that uses resistance to produce 3 voltage inputs that can then be converted to a
temperature, using known transfer functions in software. Both 3 and 4 wire configurations may be used. For
programming, this term generally refers to a channel (using a DBK9) that has an RTD connected to it.

RTD (Resistance Temperature Detector) channel
Describes an RTD channel on a DBK9 temperature expansion module.

Sample
The value of a signal on an input or output channel at an instant in time.

Scan
Either the channels that are configured for acquisition (see Channel Scan Group), or the data retrieved during the
acquisition for a single channel scan group.

Sequencer
A programmable device that manages input channels and channel-specific settings for devices that multiplex their
input channels (MUX).

SHORT
A 16-bit signed integer (2 bytes) quantity that can range from —32,768 to +32,768. This parameter type should be
passed by value according to the dictates of the programming language used.

Simultaneous Sample and Hold (SSH)
An operation that gathers samples from multiple channels at the same instant and holds these values until all are
sequentially converted to digital values.

Single-Ended Mode (SE)
The single-ended mode measures a voltage between a signal line and a common reference that may be shared with
other channels (compare with Differential Mode).

G-6 Glossary 986896 Programmer’s Manual

Software Trigger
A trigger event that is detected in the DagX driver-software. These types of triggers normally result in higher
trigger detection latencies but are much more flexible than hardware trigger events.

Stop Event
An event that terminates the acquisition of post-trigger data. This event, when satisfied, will cause the device to
stop collecting post-trigger data.

T/C (Thermocouple)
A thermocouple is a transducer that produces a voltage relative to temperature at the junction of two dissimilar
metals. Various types of thermocouples are available, each having characteristics particular to certain temperature
ranges. For programming, this term generally refers to a channel that has a thermocouple connected to it.

T/C (Thermocouple) Channel
A thermocouple channel on a temperature measurement module or temperature expansion card.

Transistor-Transistor Logic (TTL)
Transistor-Transistor Logic (TTL) is a circuit in which a multiple-emitter transistor has replaced the multiple diode
cluster (of the diode-transistor logic circuit); typically used to communicate logic signals at 5 V.

Trigger/Start Event
An event that initiates the acquisition of post-trigger data. This event, when satisfied, will cause the device to begin
to collect post-trigger data.

Unipolar
A range of analog signals that is always zero or positive (e.g., 0 to 10 V). Evaluating a signal in the right range
(unipolar or bipolar) allows greater resolution by using the full-range of the corresponding digital value. Also see
bipolar.

Update Block
The data for all output channels that are part of a waveform/pattern output operation.

Update Clock
A pulse from an internal or external source that causes all waveform/pattern output channels to be updated
synchronously.

Update Rate/Frequency
The rate at which update blocks should be presented to the outputs when using an internal clock source for the
waveform/pattern output operation.

Update Sample
The data for just one output channel that is part of a waveform/pattern output operation.

Waveform/pattern output
A clocked, synchronous output operation [from PC memory or disk file] to one or more valid DAC or Digital
Output channels. D/A and digital output data are output synchronously from the device’s built-in output FIFO,
which is fed from PC memory or disk file. Output updates are presented synchronously to each of the output ports
based upon an external or internal clock pulse.

WORD
A 16-bit unsigned integer (2 bytes) quantity that can range from 0 to 65,535. This parameter type should be passed
by value according to the dictates of the programming language used.

Programmer’s Manual 986896 Glossary G-7

Note

G-8 Glossary 986896 Programmer’s Manual

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a
period of 13 months from date of purchase. OMEGA’'s WARRANTY adds an additional one (1) month
grace period to the normal one (1) year product warranty to cover handling and shipping time. This
ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service
Department will issue an Authorized Return (AR) number immediately upon phone or written request.
Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no
charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser,
including but not limited to mishandling, improper interfacing, operation outside of design limits,
improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of
having been tampered with or shows evidence of having been damaged as a result of excessive corrosion;
or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating
conditions outside of OMEGA's control. Components in which wear is not warranted, include but are not
limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However,
ONMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any
damages that result from the use of its products in accordance with information provided by
OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the
company will be as specified and free of defects. OVMIEGA MAKES NO OTHER WARRANTIES OR
REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF
TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF
LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of
OMEGA with respect to this order, whether based on contract, warranty, negligence,
indemnification, strict liability or otherwise, shall not exceed the purchase price of the
component upon which liability is based. In no event shall OMEGA be liable for
consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic
Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical
applications or used on humans. Should any Product(s) be used in or with any nuclear installation or
activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility
as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify
OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the
Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE
RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN
(AR) NUMBER FROM OMEGA’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID
PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return
package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent
breakage in transit.

FOR WARRANTY RETURNS, please have the FOR NON-WARRANTY REPAIRS, consult OMEGA
following information available BEFORE for current repair charges. Have the following
contacting OMEGA: information available BEFORE contacting OMEGA:
1. Purchase Order number under which the product| 1. Purchase Order number to cover the COST
was PURCHASED, of the repair,
2. Model and serial number of the product under 2. Model and serial number of the product, and
warranty, and 3. Repair instructions and/or specific problems
3. Repair instructions and/or specific problems relative to the product.
relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords
our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2005 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the
prior written consent of OMEGA ENGINEERING, INC.

Where Do | Find Everything | Need for
Process Measurement and Control?
OMEGA...Of Course!

Shop online at omega.com
TEMPERATURE

¥ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
(¥ Wire: Thermocouple, RTD & Thermistor

[F Calibrators & Ice Point References

¥ Recorders, Controllers & Process Monitors

(¥ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
¥ Transducers & Strain Gages

¥ Load Cells & Pressure Gages

¥ Displacement Transducers

[+ Instrumentation & Accessories

FLOW/LEVEL

¥ Rotameters, Gas Mass Flowmeters & Flow Computers
¥ Air Velocity Indicators

¥ Turbine/Paddlewheel Systems

[Totalizers & Batch Controllers

pH/CONDUCTIVITY

¥ pH Electrodes, Testers & Accessories

(¥ Benchtop/Laboratory Meters

¥ Controllers, Calibrators, Simulators & Pumps
¥ Industrial pH & Conductivity Equipment

DATA ACQUISITION

(¥ Data Acquisition & Engineering Software

[Communications-Based Acquisition Systems
[Plug-in Cards for Apple, IBM & Compatibles
(¥ Datalogging Systems

[F Recorders, Printers & Plotters

HEATERS

(¥ Heating Cable

[Cartridge & Strip Heaters
[Immersion & Band Heaters
(¥ Flexible Heaters

(¥ Laboratory Heaters

ENVIRONMENTAL
MONITORING AND CONTROL

¥ Metering & Control Instrumentation

(¥ Refractometers

(¥ Pumps & Tubing

¥ Air, Soil & Water Monitors

¥ Industrial Water & Wastewater Treatment

¥ pH, Conductivity & Dissolved Oxygen Instruments

M3827/0406

	Programmer's Manual
	Contact Information
	How to Use this Manual
	Table of Contents
	Chapter 01 Introduction
	Chapter 02 API-ModelsGeneral
	Data Acquisition Environment
	Models

	Chapter 03 MultipleBoards
	Overview
	Asynchronous Operation of Multiple Devices
	Synchronous Operation of Multiple Devices

	Chapter 04_1 Daq API Command Reference
	Chapter 04_2 daqAdcArm to daqAutoZeroCompensate
	daqAdcArm
	daqAdcBufferRotate
	daqAdcCalcTrig
	daqAdcDisarm
	daqAdcExpSetBank
	daqAdcGetFreq
	daqAdcGetScan
	daqAdcRd
	daqAdcRdN
	daqAdcRdScan
	daqAdcRdScanN
	daqAdcSetAcq
	daqAdcSetClockSource
	daqAdcSetDataFormat
	daqAdcSetDiskFile
	daqAdcSetFreq
	daqAdcSetMux
	daqAdcSetRate
	daqAdcSetScan
	daqAdcSetSetpoints
	daqAdcSetTrig
	daqAdcSetTrigEnhanced
	daqAdcSoftTrig
	daqAdcTransferBufData
	daqAdcTransferGetStat
	daqAdcTransferSetBuffer
	daqAdcTransferStart
	daqAdcTransferStop
	daqAutoZeroCompensate

	Chapter 04_3 daqCalClearCalTable to daqCvtTCSetupConvertF
	daqCalClearCalTable
	daqCalConvert
	daqCalGetCalEquation
	daqCalGetConstants
	daqCalPerformSelfCal
	daqCalSaveCalTable
	daqCalSaveConstants
	daqCalSelectCalTable
	daqCalSelectInputSignal
	daqCalSetCalEquation
	daqCalSetCalPoints
	daqCalSetConstants
	daqCalSetup
	daqCalSetupConvert
	daqClose
	daqCreateDevice
	daqCvtChannelType
	daqCvtHardwareType
	daqCvtLinearConvert
	daqCvtLinearSetup
	daqCvtLinearSetupConvert
	daqCvtRawDataFormat
	daqCvtRtdConvert
	daqCvtRtdSetup
	daqCvtRtdSetupConvert
	daqCvtSetAdcRange
	daqCvtTCConvert and daqCvTCConvertF
	daqCvtTCSetup
	daqCvtTCSetupConvert and daqCvtTCSetupConvertF

	Chapter 04_4 daqDacSetOutputMode to daqDacWtMany
	daqDacSetOutputMode
	daqDacTransferGetStat
	daqDacTransferStart
	daqDacTransferStop
	daqDacWaveArm
	daqDacWaveDisarm
	daqDacWaveGetFreq
	daqDacWaveSetBuffer
	daqDacWaveSetClockSource
	daqDacWaveSetDiskFile
	daqDacWaveSetFreq
	daqDacWaveSetMode
	daqDacWaveSetTrig
	daqDacWaveSetUserWave
	daqDacWaveSoftTrig
	daqDacWt
	daqDacWtMany

	Chapter 04_5 daqDefaultErrorHandler to daqSetErrorHandler
	daqDefaultErrorHandler
	daqDeleteDevice
	daqFormatError
	daqGetChannelType
	daqGetDeviceCount
	daqGetDeviceInfo
	daqGetDeviceInventory
	daqGetDeviceList
	daqGetDeviceProperties
	daqGetDriverVersion
	daqGetHardwareInfo
	daqGetHardwareType
	daqGetInfo
	daqGetLastError
	daqIOGet8255Conf
	daqIORead
	daqIOReadBit
	daqIOWrite
	daqIOWriteBit
	daqOnline
	daqOpen
	daqProcessError
	daqReadCalFile
	daqSetDefaultErrorHandler
	daqSetErrorHandler

	Chapter 04_6 DaqSetOption to daqZeroSetupConvert
	daqSetOption
	daqSetTimeout
	daqSetTriggerEvent
	daqTest
	daqWaitForEvent
	daqWaitForEvents
	daqZeroConvert
	daqZeroSetup
	daqZeroSetupConvert

	ERROR CODES
	Appendix A - Removed
	Appendix B - Borland
	Appendix C - Custom OEM Installation
	Part 1 – USB Devices Operating under Windows 2000 or XP
	Part 2 – Non-USB Devices Operating under Windows . . .

	Appendix D -9513
	daq9513GetHold
	Format
	Purpose
	Parameter Summary
	Parameter Values
	Returns
	Function Usage
	Prototypes
	C/C++
	Visual BASIC

	Program References
	daq9513MultCtrl
	Format
	Purpose
	Parameter Summary
	Parameter Values
	Parameter Type Definitions
	Returns
	Prototypes
	C/C++
	Visual BASIC

	Program References
	daq9513SetAlarm
	Format
	Purpose
	Parameter Summary
	Parameter Values
	Returns
	Function Usage
	Prototypes
	C/C++
	Visual BASIC

	Program References
	daq9513SetCtrMode
	Format
	Purpose
	Parameter Summary
	Parameter Values
	Parameter Type Definitions
	Returns
	Function Usage
	Input/Output Parameters
	Counter Parameters

	Prototypes
	C/C++
	Visual BASIC

	Program References
	daq9513SetHold
	Format
	Purpose
	Parameter Summary
	Parameter Values
	Returns
	Function Usage
	Prototypes
	C/C++
	Visual BASIC

	Program References
	daq9513SetLoad
	Format
	Purpose
	Parameter Summary
	Parameter Values
	Returns
	Function Usage
	Prototypes
	C/C++
	Visual BASIC

	Program References
	daq9513SetMasterMode
	Format
	Purpose
	Parameter Summary
	Parameter Values
	Parameter Type Definitions
	Returns
	Function Usage
	Configuring the Frequency Output Pin and Comparators
	Using the Time-Of-Day Parameter

	Prototypes
	C/C++
	Visual BASIC

	Program References

	Glossary
	Warranty/Disclaimer
	Return Requests/Inquiries
	Where Do I Find . . .?

