Table of Contents

Part 1 Introduction
1.1 General 3
1.2 Sensor Features 3
1.3 Sensor Specifications 4
1.4 Important Notes 5

Part 2 Installation
2.1 General 6
2.2 Electrical 8

Part 3 Maintenance and Troubleshooting
3.1 Cleaning the Sensor 10
3.2 Replacing the Saltbridge 11
3.3 Troubleshooting 12

Diagrams and Illustrations

Figure 1-1	ORE-45P Sensor Dimensions	5
Figure 2-1	Integral Mount to ORTX-45 Monitor/Analyzer	6
Figure 2-2	ORE-45P Sensor Styles	7
Figure 2-3	Cable Description	8
Figure 2-4	Wiring Diagram, ORE-45P Sensor and ORTX-45 Monitor/Analyzer	9
Figure 3-1	Replacing the Saltbridge and Reference Buffer	11
Part 1 - Introduction

1.1 General

The Model ORE-45P ORP Sensor measures the oxidation/reduction potential (also known as REDOX) of aqueous solutions in industrial and municipal process applications. It is designed to perform in the harshest of environments, including applications that poison conventional ORP sensors. All seals are dual o-ring using multiple sealing materials. The sensor is designed for use with the Omega ORTX-45 Monitor/Analyzer.

1.2 Sensor Features

- A high volume, dual junction saltbridge is utilized to maximize the in-service lifetime of the sensor. The annular junction provides a large surface area to minimize the chance of fouling. Large electrolyte volume and dual reference junctions minimize contamination of the reference solution. Saltbridge is replaceable.

- The reference element of the sensor is a glass pH electrode immersed in a reference buffer solution. This glass reference system greatly increases the range of sensor applications.

- An integral preamplifier is encapsulated in the body of the sensor. This creates a low impedance signal output which ensures stable readings in noisy environments and increases the maximum possible distance between sensor and analyzer to 3,000 feet (914 meters).

- System diagnostics warn the user in the event of electrode breakage, loss of sensor seal integrity or integral temperature element failure.

- Pt1000 RTD. The temperature element used in this sensor is highly accurate and provides a highly linear output.
1.3 Sensor Specifications, ORE-45P

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Range</td>
<td>-1000 to +2000 mV</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.2 mV</td>
</tr>
<tr>
<td>Stability</td>
<td>2 mV pH per 24 hours, non-cumulative</td>
</tr>
<tr>
<td>Wetted Materials</td>
<td>PEEK, ceramic, titanium, glass, Viton, platinum or gold, EDPM (316 stainless steel with 316SS body option)</td>
</tr>
<tr>
<td>Temperature Compensation</td>
<td>Pt1000 RTD</td>
</tr>
<tr>
<td>Sensor Cable</td>
<td>6 Conductor (5 are used) plus 2 shields, 15 feet (4.6 meters) length standard</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-5 to 95 °C (23 to 203 °F)</td>
</tr>
<tr>
<td>Pressure Range</td>
<td>0 to 100 psig</td>
</tr>
<tr>
<td>Maximum Flow Rate</td>
<td>10 feet (3 meters) per second</td>
</tr>
<tr>
<td>Max. Sensor-Analyzer Distance</td>
<td>3,000 feet (914 meters)</td>
</tr>
<tr>
<td>Mounting options</td>
<td>1” NPT convertible, 1¼” insertion, 1½” or 2” sanitary style</td>
</tr>
<tr>
<td>Weight</td>
<td>1 lb. (0.45 kg)</td>
</tr>
</tbody>
</table>

Notes:

1. The type of hardware used to mount the sensor may limit the maximum temperature and pressure ratings. Please consult the hardware manufacturer’s specifications to obtain the relevant temperature and pressure rating information.

2. The maximum flow rate specification is lower for process solutions with low ionic conductivity or high suspended solids concentration. High flow rates in low ionic conductivity processes may cause a measurement error due to static electrical discharge.
Part 1 - Introduction

1.3 Sensor Specifications

Inches (mm)

Figure 1-1 ORE-45P Sensor Dimensions (standard, convertible-style)

1.4 Important Notes

1. The ORE-45P process electrode contains glass and can break if not handled properly. Should the electrode ever break, USE CAUTION when handling the sensor to avoid serious cuts.

2. The electrode must be wetted at all times to ensure proper functionality. ORE-45P sensors are shipped with a fluid-filled cap over the electrode to enable immediate use (remove cap before installing, save for storage and shipping). Electrodes that have dried out for any reason should be hydrated for 24 hours to restore full functionality.

3. Hydrofluoric acid (HF) will dissolve conventional glass electrodes. Please contact the factory when the process application involves this or any other questionable substance.

4. A platinum measuring electrode is standard. However, DO NOT use platinum electrode in process applications containing cadmium (Cd), nickel (Ni), tin (Sn), or zinc (Zn). A gold electrode is available for these applications (contact factory for details).

5. Likewise, DO NOT use gold electrode in process applications containing cyanide (CN⁻).
Part 2 - Installation

2.1 General

The ORE-45P Sensor is designed for industrial and municipal process applications. Mounting options include flow-through, submersion, insertion (special hardware required), or integral mount to the Omega ORTX-45 ORP Monitor/Analyzer (see Figures 2-1 and 2-2). The sensor’s built-in preamp allows sensor-to-analyzer distances of up to 3,000 feet (914 meters). However, to ensure ease of calibration, install the transmitter as close as possible to the sensor.

The sensor should be mounted vertically (electrode face down) whenever possible. When mounting on an angle, make sure sensor is at least 10° above horizontal. Do not mount sensor completely on its side or upside down.

Do NOT use a sealant (e.g., pipe dope) when mounting the insertion or convertible style sensor. Use industrial/plumber pipe tape when needed.

Calibrate the sensor before placing it into the process. See Model ORTX-45 Monitor/Analyzer Instruction Manual for detailed calibration instructions.

Inches (mm)

4.00 (101.6) WIRE LENGTH

1.00 (25.4) CABLE LENGTH

6.00 (152.4)

Note: Integral Mount suitable for loop-powered version ONLY

Figure 2-1 Integral Mount to ORTX-45 Monitor/Analyzer
Figure 2-2 ORE-45P Sensor Styles

<table>
<thead>
<tr>
<th>SENSOR SIZE</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2"</td>
<td>2.75 (70.0)</td>
<td>1.98 (50.4)</td>
</tr>
<tr>
<td>2"</td>
<td>3.50 (99.9)</td>
<td>2.50 (63.5)</td>
</tr>
</tbody>
</table>
2.2 Electrical

The Model ORE-45P has a built-in preamplifier and comes standard with 15 feet of 6 conductor (only 5 are used) double shielded cable. The cable is permanently attached to the sensor, and a PEEK cordgrip is used to seal around the cable. Nevertheless, the cable should always be kept as clean and dry as possible.

DANGER: DO NOT connect sensor cable to power lines. Serious injury may result.

Take care to route sensor cable away from AC power lines, adjustable frequency drives, motors, or other noisy electrical signal lines. Do not run signal lines in the same conduit as AC power lines. Run signal cable in dedicated metal conduit if possible. For optimum electrical noise protection, run an earth ground wire to the ground terminal in the transmitter.

Refer to Figure 2-3 Cable Description and Figure 2-4 Wiring Diagram for illustrative details on electrical installation.

![Cable Description, Model ORE-45P](image)

Note: Only Omega’s custom 6-wire shielded interconnect cable must be used when connecting the Model ORE-45P sensor to the analyzer. This high-performance, double shielded, polyethylene jacketed cable is specially designed to provide the proper signal shielding for the sensor used in this system. No substitutions can be made. Substituted cables may cause problems with system performance.
Notes: 1. Voltage between Terminals 9 and 10 MUST be between 16 and 35 VDC.
 2. Earth ground into Terminal 12 is optional. This connection can greatly improve stability in electrically noisy environments.

Figure 2-4 Wiring Diagram, ORE-45P Sensor and ORTX-45 Monitor/Analyzer
3.1 Cleaning the Sensor

Keep the sensor as clean as possible for optimum measurement accuracy - this includes both the saltbridge and the measuring electrode. Frequency of cleaning depends upon the process solution.

1. Carefully wipe the measuring end of the sensor with a clean soft cloth. Then rinse with clean, warm water - use distilled or de-ionized water if possible. This should remove most contaminate buildup.

2. Prepare a mild solution of soap and warm water. Use a non-abrasive detergent (such as dishwashing liquid).

NOTES: DO NOT use a soap containing any oils (such as lanolin). Oils can coat the electrode and harm sensor performance.

3. Soak the sensor for several minutes in the soap solution.

4. Use a small, extra-soft bristle brush (such as a mushroom brush) to thoroughly clean the electrode and saltbridge surfaces. If surface deposits are not completely removed after performing this step, use a dilute acid to dissolve the deposits. After soaking, rinse the sensor thoroughly with clean, warm water. Placing the sensor in pH 7 buffer for about 10 minutes will help to neutralize any remaining acid.

NOTE: DO NOT soak the sensor in dilute acid solution for more than 5 minutes. This will help to prevent the acid from being absorbed into the saltbridge.

WARNING: ACIDS ARE HAZARDOUS. Always wear eye and skin protection when handling. Follow all Material Safety Data Sheet recommendations. A hazardous chemical reaction can be created when certain acids come in contact with process chemicals. Make this determination before cleaning with any acid, regardless of concentration.
3.2 Replacing the Saltbridge

1. Hold the sensor with the process electrode pointing up. Place a cloth or towel around the saltbridge. Turn the saltbridge counterclockwise (by hand) to loosen and remove the saltbridge. Do NOT use pliers.

2. Pour out the old reference buffer by inverting the sensor (process electrode pointing down). If the reference buffer does not run out, gently shake or tap the sensor.

3. Rinse the reference chamber of the sensor with de-ionized water. Fill the reference chamber of the sensor with fresh Reference Cell Buffer. The chamber holds 6 to 7 mL of solution. MAKE SURE that 6 to 7 mL is used when refilling. The chamber should be FULL.

 NOTE: The Reference Buffer Solution, 7.0 pH included with the saltbridge is NOT typical pH 7 buffer, it is a special “high-capacity” buffer developed to ensure the highest possible stability of the reference portion of the pH measurement. No substitutions should be made.

4. Inspect the new saltbridge to verify that there are 2 o-rings inside the threaded section of the saltbridge.

5. Place the new saltbridge over the ground assembly of the sensor. Place a cloth or towel around the saltbridge and hand-tighten the saltbridge by turning it clockwise.

Figure 3-1 Replacing the Saltbridge and Reference Buffer
3.3 Troubleshooting

The first step in resolving any measurement problem is to determine whether the trouble lies in the sensor or the transmitter. Since measurement problems can often be traced to a dirty sensor electrode and/or saltbridge, cleaning the sensor using the method outlined in Section 3.1 should always be the first step in any troubleshooting.

If the sensor cannot be calibrated after cleaning, replace the saltbridge and reference cell buffer 7 pH as outlined in Section 3.2.

If the sensor still cannot be calibrated, perform the following test. A multimeter and two millivolt solutions, at least 100 mV away from each other, will be needed.

1. With transmitter power on and sensor connected, place the multimeter’s positive (+) lead on the white position of the transmitter terminal strip and the negative (-) lead on the black position. The multimeter should read between –4.2 and –6.5 VDC.

2. Disconnect the sensor’s red, green, yellow, and white wires from the transmitter or junction box. Re-check Step 1.

3. Place the sensor in the first millivolt solution. As in calibration, allow the temperatures of the sensor and buffer to equilibrate at room temperature (approximately 25 ºC).
Part 3 - Maintenance and Troubleshooting

3.3 Troubleshooting

4. Verify that the sensor's temperature element (Pt1000 RTD) is functioning properly by measuring the resistance between the sensor's yellow and black wires. The nominal resistance value at 25 ºC is 1097 ohms. Use the following table as a guide to the approximate resistance value:

<table>
<thead>
<tr>
<th>ºC</th>
<th>RTD Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1078</td>
</tr>
<tr>
<td>25</td>
<td>1097</td>
</tr>
<tr>
<td>30</td>
<td>1117</td>
</tr>
<tr>
<td>35</td>
<td>1136</td>
</tr>
</tbody>
</table>

5. Reconnect the yellow and white wires.

6. Connect the multimeter's positive (+) lead to the red wire and its negative (-) lead to the green wire. With the sensor in the first millivolt solution at approximately 20-30 ºC, measure the DC millivolts. The multimeter should display the value of the millivolt solution within +100 mV and −100 mV. If it does not, replace reference cell buffer and saltbridge (see Section 3.2) and re-test.

7. With the multimeter connected as in Step 5, rinse the sensor with clean water and place it in the second millivolt solution. Allow the temperatures to equilibrate as before. Check this solution as in Step 6.