User's Guide

TX66A / TX67A

Programmable Temperature Transmitter

> http://www.omega.com e-mail: info@omega.com

OMEGAnet® On-Line Service Internation Inte

Internet e-mail info@omega.com

Servicing North America:

USA: One Omega Drive, Box 4047 ISO 9001 Certified Stamford, CT 06907-0047 Tel: (203) 359-1660 FAX: (203) 359-7700

e-mail: info@omega.com

Canada: 976 Bergar

Laval (Quebec) H7L 5A1

Tel: (514) 856-6928 FAX: (514) 856-6886

e-mail: info@omega.ca

For immediate technical or application assistance:

USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGASM

Customer Service: 1-800-622-2378 / 1-800-622-BESTSM Engineering Service: 1-800-872-9436 / 1-800-USA-WHENSM TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA

Mexico and

Latin America: Tel: (95) 800-826-6342 FAX: (95) 203-359-7807

En Español: (95) 203-359-7803 e-mail: espanol@omega.com

Servicing Europe:

Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands

Tel: (31) 20 6418405 FAX: (31) 20 6434643

Toll Free in Benelux: 0800 0993344

e-mail: nl@omega.com

Czech Republic: ul. Rude armady 1868, 733 01 Karvina-Hranice

Tel: 420 (69) 6311899 FAX: 420 (69) 6311114

Toll Free: 0800-1-66342 e-mail: czech@omega.com

France: 9, rue Denis Papin, 78190 Trappes

Tel: (33) 130-621-400 FAX: (33) 130-699-120

Toll Free in France: 0800-4-06342

e-mail: france@omega.com

Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany

Tel: 49 (07056) 3017 FAX: 49 (07056) 8540

Toll Free in Germany: 0130 11 21 66

e-mail: info@omega.de

United Kingdom: One Omega Drive, River Bend Technology Centre

ISO 9002 Certified Northbank, Irlam, Manchester

M44 5EX, England

Tel: 44 (161) 777-6611 FAX: 44 (161) 777-6622 Toll Free in the United Kingdom: 0800-488-488

e-mail: info@omega.co.uk

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	UNPACKING AND INSTALLATION	
	2.1 Unpacking	
	2.2 Mechanical Installation	
	2.21 Weather Proof/Explosion Proof Housing	
	2.22 Mounting	
	2.3 Electrical Installation	
	2.31 Output Terminals	
	2.32 Input Terminals	
3.0	TRANSMITTER OPERATION	
	3.1 In a Hurry?	
	3.11 Factory Configuration	
	3.12 Operation Without a Display	
	3.13 Operation With a Display	
4.0	CONFIGURATION USING THE TWO-LINE DISPLAY	8
	4.1 Entering the Display Mode	
	4.2 Display Mode Configuration	
	4.3 Select Sensor Input	
	4.4 Select Units	
	4.5 Change Zero	
	4.6 Change Full Scale	
	4.7 Select Sensor Fail Safe Detection	
	4.8 Select Fail Safe Reporting	
	4.9 Trim 4.0mA	
	4.10 Trim 20.mA	
	4.11 Trim Display	
	4.12 Select Language	
5.0	CONFIGURATION USING THE ONE-LINE DISPLAY	20
0.0	5.1 Entering the Display Mode	
	5.2 Display Mode Operation	
	5.3 Select Sensor Input	
	5.4 Select Units	
	5.5 Change Zero	
	5.6 Change Full Scale	
	5.7 Select Sensor Fail Safe Detection	
	5.8 Select Fail Safe Reporting	
	5.9 Trim 4.0mA	
	5.10 Trim 20.mA	
	5.11 Trim Display	
6.0	APPLICATIONS INFORMATION	
0.0	6.1 Sensor Fail-Safe Detection	
	6.2 Configuration With an External Source	
	6.3 For Best Measurement Accuracy	
7 0	ACCESSORIES & INFORMATION	
	SPECIFICATIONS	
	WARRANTY / DISCLAIMER	

LIST OF ILLUSTRATIONS

DESCRIPTION	PAGE
Figure 2-1, Output Terminal Connections	
Figure 2-1, Output Terminal ConnectionsFigure 2-2, Input Terminal Connections	4
Figure 3-1, TX60-1A and TX60-2A Local Displays	
Figure 8-1, Intrinsic Safety Approval Drawings	
Figure 8-2, TX60-2A Two Line Display Configuration Flowcha	
Figure 8-3, TX60-1A One Line Display Configuration Flowcha	
IND	EX
DESCRIPTION	PAGE
Configuration Flowcharts	37, 39
Input Terminal Connections	4
Intrinsic Safety Approval Drawings	35,36
LRV and URV, Enter Value	13, 14, 24, 25
Output Terminal Connections	
Output Trim	
Sensor Selection	

1.0 INTRODUCTION

The TX66A / TX67A is a Programmable compatible, isolated, two-wire, transmitter that accommodates any one of eleven types of thermocouples, six types of RTD's, millivolt or ohm inputs. The unit is precision linearized to the measured temperature over the entire usable range of the selected sensor. This transmitter is simple to set up and operates much like high performance analog transmitters.

The TX66A / TX67A also has numerous advanced features that are achieved through the use of digital signal processing and micro-controller technologies. Typical of these features are the precision linearization, the independent zero and full scale settings, digital filtering, etc. Other advanced features, such as the automatic self diagnostics, and the exceptional stability are transparent to the user and are continuously active.

The TX66A / TX67A transmitter can also accept one of two optional plug-in displays. The TX60-1A is an inexpensive, single line display that is intended to give a low-cost, local indication of the measured temperature. The TX60-2A two line display will give a local indication and functions as a very easy-to-use set-up tool. Both displays facilitate local configuration and ranging of the transmitter.

This manual is divided into several sections. After a brief *INTRODUCTION*, the section on *UNPACKING AND INSTALLATION* contains much useful information for the first time installer. The section called *IN A HURRY?* helps get the system operating provided the sensor and transmitter were purchased at the same time and thus most of the set up was completed at the factory. The next two sections explain the method of *CONFIGURATION* using either display. Finally, there is additional *APPLICATION INFORMATION* and the *TECHNICAL SPECIFICATIONS* included in the sections under those headings.

The TX66A / TX67A temperature transmitter does not have any potentiometers or switches to set and there are no user serviceable components inside the transmitter. Opening the enclosure will void the manufacturer's warranty. All reconfiguration, re-ranging and "calibration" can be done in the field using either one of the displays. Any of the communication methods provides reconfiguration and re-ranging capabilities without other external calibration tools.

2.0 UNPACKING AND INSTALLATION

2.1 Unpacking

Remove the Packing List to check off the actual equipment received. If you have any questions on your shipment, please call OMEGA Customer Service. Upon receipt of shipment, inspect the container for any signs of damage in transit. Especially take note of any evidence of rough handling. Report any apparent damage immediately to the shipping agent.

NOTE: The carrier will not honor any claims unless all shipping material is saved for their examination. After examining and removing the contents, save the packing material and carton in the event reshipment is necessary.

2.2 Mechanical Installation

Proper installation of the transmitter will assure highest performance and minimize errors of the measured variable. The transmitter should be mounted in a location that minimizes temperature extremes, vibration and shock. It is important to survey the area to ascertain the best location for installation. Will the location be subjected to flooding? Is the location directly above, below or in proximity to a known high heat source? Does the location make the transmitter unserviceable?

The installation recommendations outlined in this section are provided to act as a guideline only and cannot cover all possible variations. The final installation must be made at the discretion and approval of the user.

2.21 Weather Proof/Explosion Proof Housing

An optional transmitter housing is available. The NEP-TX66A is an explosion resistant housing that accommodates a transmitter when the display option is not required.

Please note that condensation often occurs inside conduit attached to Explosion Proof housings. Care must be taken so that liquid condensation does not accumulate and fill the transmitter housing with liquid. While the transmitter is sealed, we do not recommend operating it immersed in liquid. Conductive liquids across the top of the transmitter will short the input and loop terminals. This installation problem can appear to a control system as a transmitter failure.

2.22 Mounting

The TX66A / TX67A transmitter may be mounted on the end of a sensor, on a bulkhead, panels. Captive 8-32 machine screws are installed on the transmitter to facilitate installation and removal to either a housing bottom plate, DIN-RAIL adapter, or to a mounting panel. These types of mounts provide greater flexibility in installation and removal of the transmitter for service. In locations where extreme temperature variations are encountered, it is strongly recommended that enclosures be provided to maintain a somewhat constant temperature at the transmitter. Heaters or steam tracing should be provided if the ambient temperature variations are extreme.

2.221 DIN Rail / Surface Mounting

The transmitter has two mounting holes through the body of the transmitter. These mounting holes allow the transmitters to be attached to any flat surface by means of two bolts or screws. The transmitter is provided with 8/32 captive screws already installed. The optional TX66-DIN DIN Rail Adapter has threaded holes in its mounting plate for attaching the 8-32 captive screws.

2.222 Head Mounting

When the transmitter is mounted in the optional NEP-TX66A weather-resistant/explosion-resistant housing, this housing can be attached directly to an RTD or thermocouple installed in a thermowell. The housing has two 1/2" female NPT conduit entries. One of these can be used to mount directly onto a 1/2" male NPT extension of sensor. Alternatively, a 1/2" union coupling can be placed between the weather-resistant housing and the temperature sensor.

2.3 ELECTRICAL INSTALLATION

The TX66A / TX67A has two groups of terminals. One terminal group is for the sensor input. The second terminal group is for transmitter output. The terminals labeled "+" and "-" are the 4 to 20mA output terminals. These are normally connected to the corresponding polarity terminals of the power supply of the current loop. Refer to Figure 2-4 for the arrangement of the output terminal connections.

Terminals labeled "1,2,3 and 4" are used in various connections to accommodate the different sensor inputs. Refer to Figure 2-5 for the arrangement of the input terminal connections.

NOTE

For Intrinsically Safe Applications, please refer to the Intrinsic Safety Control Drawings included in this manual on page

2.31 Output Terminals

The output terminals, labeled "+" and "-", are generally connected to a power supply having a nominal 24 Volt DC voltage and capable of supplying 23mA for the TX66A / TX67A. The "+" and "-" terminals of the transmitter are connected to the corresponding polarity terminals of the power supply.

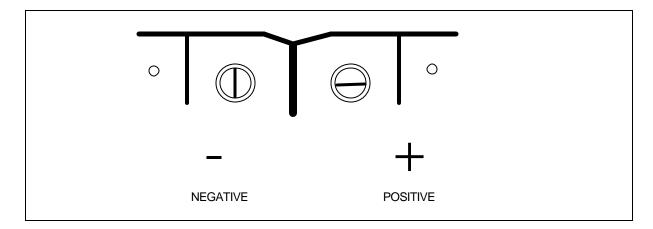


Figure 2-4 Output Terminal Connections

A load resistor, typically 250 ohms, may be connected in series with either terminal of the transmitter. For Digital communications, 250 ohms must be connected in the loop. The maximum series resistance in the circuit (including wiring lead resistance) can be calculated using the formula:

The following chart gives maximum series resistance:

Max. Series Resistance, Rs	Supply Voltage, Vs
1300 ohms	42.0 Volts
520 ohms	24.0 Volts
417 ohms	21.6 Volts
250 ohms	18.0 Volts
0 ohms	12.0 Volts

2.32 Input Terminals

See Figure 2-5 for sensor input connections. Be certain to include the proper jumpers for thermocouple sensors and for two or three wire RTD inputs. Any sensor other than the four-wire RTD requires at least one external jumper. A jumper is supplied with the unit and is attached to terminals 3 and 4.

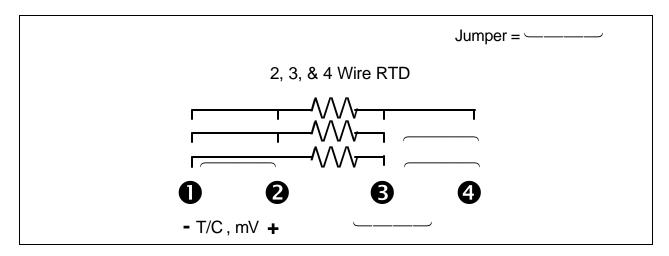


Figure 2-5 Input Terminal Connections

2.321 Millivolt and Thermocouple Input

Apply signal to terminals 1 and 2. Terminal 1 is the negative and Terminal 2 is the positive. Terminals 3 and 4 must be jumpered together for proper operation as well as to prevent any build-up of electrostatic charge on these terminals which could affect the transmitter readings.

2.322 Two-Wire RTD Input

Apply signal to terminals 1 and 3. Jumpers must be installed on terminals 1 and 2 as well as on 3 and 4 for proper operation and to prevent any build-up of electrostatic charge on these terminals which could affect the transmitter readings.

2.323 Three-Wire RTD Input

Apply the common legs from the RTD (generally the same color RTD leads) to terminals 1 and 2. Apply the other signal lead to terminal 3. Terminals 3 and 4 must be jumpered together for proper operation and to prevent any build-up of electrostatic charge on these terminals which could affect the transmitter readings.

2.324 Four-Wire RTD Input

Apply one set of the common legs from the RTD (generally the same color RTD leads) to terminals 1 and 2. Apply the other signal lead pair to terminals 3 and 4. No jumpers should be used for a 4 wire RTD input.

3.0 TRANSMITTER OPERATION

3.1 In a hurry?

When in a hurry, this short set of instructions and references will help get the transmitter running.

3.11 Factory Configuration

Input = Type J Thermocouple
Output = Analog

Output = Analog 4.00mA = 40°F 20.00mA = 200°F

Sensor Fail-safe = 23.00mA (High)

On special request the factory will set the transmitter to any desired configuration. Special configurations are identified on a tag attached to the unit.

3.12 Operation Without a Display

If the unit was ordered with the standard factory configuration, the sensor required is a Type J thermocouple. The packing slip and a tag on the unit will indicate if the unit was set up to any other customer requested special configuration. If there is a need to change the configuration of the transmitter, or to re-range it, use either the TX60-1A or TX60-2A Display / Keyboards and refer to the procedures described in SECTIONS 4 (for TX60-2A) or 5 (for TX60-1A).

NOTE: Even when "In a Hurry", the use of an appropriate power supply is important. A 24V DC supply having a current handling capacity of at least 0.1A is commonly used. Always use a DC (direct current) supply, or suitable size battery. **Never connect the transmitter directly to 115VAC.**

With the power supply off, connect the + side of the power supply to the + terminal of the transmitter. Connect the - side of the power supply to the - terminal of the transmitter. Optionally a resistor, typically 250 ohms may be added in series with either lead.

Connect a Type J thermocouple to the transmitter input. Thermocouple high (+) (input terminal 2) Thermocouple low (-) (input terminal 1) Jumper terminals 3 & 4 together

Unlike conventional electrical wiring, **on a J thermocouple the red lead is negative**. This should be checked and verified with the particular sensor to be used.

To connect other sensors to the input refer to Section 2.32 for the proper sensor connections.

The output can be monitored by connecting a milliameter in series with either of the two output terminals, or by connecting a high impedance voltmeter across the optional 250 ohm resistor. Now turn on the power supply. In about 5 seconds the TX66A / TX67A loop current will settle to its normal value in the range of 4 to 20mA, unless the input terminals are open, in which case the output current will be 23.00mA. Note that for a Type J thermocouple, if 4mA = 40 °F and 20mA = 200°F, each additional 10 °F increases the current by 1.0mA.

3.13 Operation With a Display

If the transmitter was ordered with either display option, it will have a small local LCD display module (with two integral buttons) plugged in to the top of the unit. Either display option can be ordered already installed on the TX66A / TX67A transmitter. Alternately, either display can be ordered and field installed at any time.

Having the display option as part of the transmitter does not affect its operation in the analog mode and the description of the previous section applies. However, the display option does provide some very useful local indication of the measured temperature and other diagnostic functions. Figure 3.1 indicates the arrangement of the display screen.

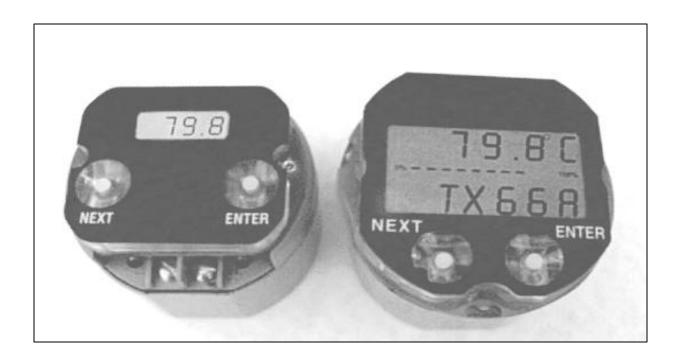


Figure 3-1 Appearance of the Local Displays, TX60-2A and TX60-1A

In operation, the TX60-1A and TX60-2A displays both give the process temperature. The TX60-2A provides some additional information. The TX60-1A displays the process temperature and a minus sign if applicable. The temperature is displayed with a floating decimal point. For measured temperatures over 999.9° no decimal point will be displayed. Otherwise, the TX60-1A will show one tenth degree increments. Unlike the more capable TX60-2A display, the TX60-1A does not show the units of measurement "°C", "°F", "°R", or "°K". If it is necessary to display the temperature units on the TX60-1A, note by hand or apply a separate label on the face of the display.

The TX60-2A has more display capabilities. With the TX60-2A, the top display row shows the process temperature, the units of measurement, "oC", "oF", "oR", or "oK" and a minus sign if applicable. The mid portion is an analog bar graph display showing the % of range based on the ZERO and FULL SCALE setting of the transmitter. When power is applied the leftmost segment of the bar graph, the 0% and the 100% become energized momentarily. If the measured temperature is below what the ZERO is set to (below LRV), then the left arrow is energized. If the measured temperature is above the FULL SCALE setting (above URV), then the right arrow becomes energized. The bottom portion of the TX60-2A display is capable of displaying an alphanumeric message up to 7 characters long. In normal operation this row shows a label, which is factory set to display "TX66A / TX67A". Note that this display label can be programmed at the factory to any desired message or tag up to 7 characters.

Note that the process temperature displayed on the TX60-1A and TX60-2A is the actual temperature as measured by the transmitter, it is not affected by the analog output range settings. This is particularly useful in startup or operation where the measured temperature is temporarily outside the normal operating range.

When the unit is first turned on, the display will show the measured temperature. It is frequently the case that no sensor is connected when the transmitter is first turned on. In this case, the display will show a sensor failure. In the event of a sensor or transmitter failure, the indication on the TX60-1A display changes to read:

The words "FAIL" and "SAFE" will alternate in the display window to let you know that a failure condition has occurred.

In the event of a sensor or transmitter failure, the indication on the bottom line of the TX60-2A display also changes to

The words "FAIL" and "SAFE" will alternate in the display window to let you know that a failure condition has occurred. The Percent of Output Bar Graph will indicate the output level of the transmitter. If the transmitter Failsafe Report value is set to "Fail High" (23mA), the display will be as shown, at over 100% of output. If the Failsafe Report is set to "Fail Low" (3.8mA), the Percent of Output Bar Graph would indicate the output level at under 0% of output. See sections 4.8 or 5.8 for further information on setting Failsafe Reporting.

Once the proper sensor is connected the fault message on the display should clear and the transmitter output should go to the proper value.

Both LCD displays take full advantage of the precision of these transmitters. The digital display of measurement does not include the small D/A error otherwise present in the analog output. It provides highly accurate local indication of the measurement, local fault diagnostics, and transmitter identification. The LCD continues to display the measured temperature even if it is beyond the zero and full scale limits set for the analog output. The value of this display as a set-up, calibration and reconfiguration tool may even be greater, as will be seen in later chapters.

If you should desire to change the sensor input or to re-range or reconfigure the transmitter, please refer to Sections 4 or 5 of this manual, which show you how to set-up the transmitter with the TX60-1Aor TX60-2A displays.

4.0 CONFIGURATION USING THE TX60-2A, TWO-LINE DISPLAY

To configure a transmitter using the **DISPLAY MODE**, either the TX60-1A or TX60-2A local LCD display is required. These displays are available as an option and can be plugged into the top of the TX66A / TX67A transmitter. The transmitter can also be purchased with these options already installed. These inexpensive options make the reconfiguration, or re-ranging of the transmitter very simple and easy to follow. Without the use of a calibrator, or any other tools, the transmitter can be set up for a different sensor, or the new range limits can be set much like one would set the time on a digital watch.

In the event that the TX60-1A or TX60-2A Display / Keyboard are not purchased at the same time as the transmitter, the one piece display design allows for easy field installation by simply plugging the TX60-1A or TX60-2A into the top of the transmitter.

4.1 Entering the Display Mode

To start the **DISPLAY Mode**, first connect the transmitter to an appropriate DC power supply. Typically a 24VDC supply is connected with the + side of the power supply connected to the transmitter's output "-" terminal. A series resistor in the loop is optional. A sensor may be connected to the transmitter's input terminals, but this is not required for setting up the transmitter.

With the standard factory set-up and no sensor connected, the TX60-2A display will give the following indication:

The transmitter is alternating the words FAIL SAFE, since no sensor is connected, and the analog output is indicating greater than 100%, loop current at 23.00mA, which is the standard Failsafe report condition. Please note that the display / keyboards can be plugged into the transmitter while the transmitter is powered up. There is no need to disconnect power before plugging the TX60-1A or TX60-2A into the TX66A / TX67A.

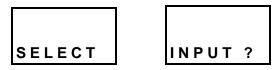
Press the key marked **N**EXT. The display starts to alternate asking if the user wishes to return to the Operate Mode?

To activate the **N**ext and **E**nter keys, a slow, deliberate push of the key is required. This prevents any casual, inadvertent activation of the transmitter into one of the configuration modes.

The answer would be "No", therefore, press the **Next** key. This will enter you into the **DISPLAY Mode** configuration menu. If you wish to answer a question "Yes", press the **Enter** KEY. A flow chart summarizing the operation of the **DISPLAY Mode** appears at the end of this manual.

Note that when more than seven characters are required to describe a function, the display keeps sequencing through two or more screens or may use common abbreviations. In this manual, the sequencing of the display is indicated by placing the two or more parts of the message adjacently. With some functions, the TX60-2A display indicates a numeric value and unit of measurement on the top line of the display in addition to the message on the lower display line.

4.2 Display Mode Configuration


The **DISPLAY Mode** will allow the user to do the following:

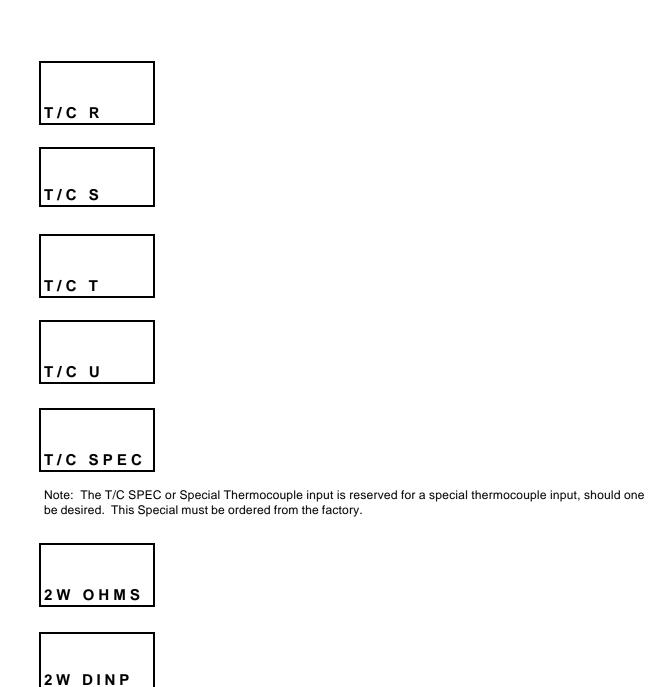
- Select a Sensor Input (Select Input)
- Select a desired temperature unit, such as °F (Select Units)
- Change the 4mA Lower Range Value (CHANGE ZERO)
- Change the 20mA Full Scale Value (CHANGE FULL SCALE)
- Change the Sensor Fail Safe detection (Select Sensor Fail Safe)
- Change the Fail Safe reporting (Select Fail Safe Report)
- Trim the 4.0mA output current (TRIM 4 MA)
- Trim the 20.0mA output current (TRIM 20 MA)
- Trim the display value (TRIM DISPLAY)

Each of these functions is presented in sequence on the LCD display. If the indicated function need not be performed, press **N**EXT, and the next function is displayed on the screen. To perform any function press the **ENTER** key. This will cause additional screens to be displayed which enable you to perform the function. These are described in detail below and summarized on the TX60-2A Two-Line Display / Keyboard Flowchart found in the rear of this manual.

4.3 Select a Sensor Input

The **Select Sensor** is the first function in the sequence. Virtually any thermocouple, RTD or millivolt input can be selected. The display will read as follows to indicate this position on the menu:

If the sensor is set correctly, press **Next** and skip to Section 4.4 of this manual; otherwise press **Enter**. After pressing the **Enter** key, the display will change to:


Indicating that the transmitter is set to a Type J thermocouple input. If this is the desired sensor, then press **ENTER**, otherwise press **NEXT** repeatedly to sequence through the available sensors. Each time **NEXT** is pressed, the next available sensor selection is displayed.

Press the **Next** key to go the next sensor

Press the **Next** key to continue through the different sensor selections

T/C L

Note: This is the 100Ω Platinum DIN Curve with $\alpha = 0.00385$.

2W SAMP

Note: This is the 100 Ω SAMA Platinum Curve, known variously as the SAMA RC21-4 or SAMA PR-279. Constants are 98.13 Ω @ 0°C, α =0.003923.

2W SPEC

Note: The 2W SPEC or Special 2 wire RTD input is reserved for a special RTD input, should one be desired. Any special 2-wire RTD curve must be ordered from the factory.

3W OHMS

3W DINP

Note: This is the 100 Ω Platinum DIN Curve with α = 0.00385.

3W SAMP

Note: This is the 100 Ω SAMA Platinum Curve, known variously as the SAMA RC21-4 or SAMA PR-279. Constants are 98.13 Ω @ 0°C, α =0.003923.

3W SPEC

Note: The 3W SPEC or Special 3 wire RTD input is reserved for a special RTD input, should one be desired. Any special 3-wire RTD curve must be ordered from the factory.

4W OHMS

4W DINP

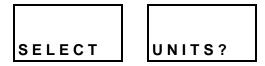
Note: This is the 100Ω Platinum DIN Curve with $\alpha = 0.00385$. This sensor will give superior measurement results in most real-world situations where the measured temperature is under 1,000°F.

4W SAMP

Note: This is the 100 Ω SAMA Platinum Curve, known variously as the SAMA RC21-4 or SAMA PR-279. Constants are 98.13 Ω @ 0°C, α =0.003923.

Note: The 4W SPEC or Special 4 wire RTD input is reserved for a special RTD input, should one be desired. Any special 4-wire RTD must be ordered from the factory.

Note: The HHTONLY is for a Hand-Held set-up. This is used for Factory set-up only.



Pressing Next key again returns you to the J thermocouple selection. Repeated pressing of Next key will again cycle you through the input selection submenu. You can stop at any one of the thermocouple, RTD or mV selections by pressing the Enter key. This action changes the transmitter mode to that sensor. If no sensor change is desired, then, without sequencing through the various sensor options, but just pressing the Enter key will allow one to confirm the sensor selection and leave it unchanged. Assume that the sensor is left as T/C J. After pressing Enter the display will return to the main menu entry of Select Input. Pressing the Next key then takes the transmitter to the next main menu selection.

4.4 Select Units

If the selected sensor is a thermocouple or RTD, the next menu entry is **SELECT UNITS**.

Pressing the ENTER key displays the current units

By repeatedly pressing the **N**EXT key, the display will sequence through the following screens:

These correspond to K=Kelvin, R=Rankine, C=Celsius and F=Fahrenheit. Stopping the selection at any one of these units and then pressing **Enter** will set the transmitter to the corresponding new units. For the purposes of this example the units of measure can be left at DEG F by pressing **Enter**. Advancing the menu selection with the **Next** key lets you change the zero.

4.5 Change Zero

The display will then alternate between the following screens to indicate that one may now change the zero, or 4mA output point. The numeric value seen on the upper portion of the screen is the Zero value of the transmitter. One can now change this Zero, or Lower Range Value, (LRV), totally independent of the Full Scale, or Upper Range Value, (URV), without the use of any calibrators or external sensor inputs.

40.0°F C H A N G E 40.0°F ZERO ?

To change the ZERO, press ENTER. The display changes to read:

0040.0°F PLUS ?

indicating that the existing zero is set to "plus" 0040.00°F. The question mark "?" indicates a question asking if this value is to remain positive (PLUS?). By repeatedly pressing the **Next** key the display will alternate:

-0040.0°F MINUS ? 0040.0°F PLUS ? After deciding whether the ZERO value, LRV, is to remain positive (PLUS), press the **ENTER** key. In this example assume it is to remain positive. The display changes to read:

*0*040.0°F THOUSN?

and the leftmost digit position will start blinking (shown here in italics) asking if the thousands position needs to be changed. To change the thousands position, start pressing the **N**ext key and the leftmost digit will increment through 1 2 3 4 5 6 7 8 9 0. Stop pressing the **N**ext key at the desired numeral, then press **E**NTER to accept the selection. If the numeral selected before pressing **E**NTER was 0, then the display would change to read:

0*0*40.0°F HUNDRD?

and the second digit from the left will start blinking (shown here in italics) asking if the hundreds position needs to be changed. As before, to change the number in this digit position repeatedly press the **N**EXT key until the desired numeral is reached. Then press **E**NTER to go to the next lower significant digit position. Each time the **N**EXT key cycles through the ten choices for that digit position and the **E**NTER key enters the selected number. The digit position being changed is the one that is blinking. The legend on the display will change successively to read:

00*4*0.0°F TENS?

004*0*.0°F ONES?

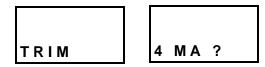
0040.0°F TENTHS?

After the tenth's digit position has also been changed to the desired value, the next pressing of the ENTER key returns the transmitter to the alternating display of Change Zero. Since changing of the zero has just been completed, press the Next key to proceed to the next menu selection, Change Full Scale.

4.6 Change Full Scale

200.0°F C H A N G E 200.0°F FULL 200.0°F SCALE ?

To change the full scale value press **ENTER**. The procedure for selecting Plus or Minus is identical to that described for changing the Zero. Similarly, the procedure for changing each of the digit positions is identical to that described for changing the Zero. Once the steps of changing the Full Scale have been completed and the **ENTER** key is pressed at the end of the procedure, the display returns to **Change Full Scale**. Press **Next** for the next function **Select Sensor Fall Safe Detection**.


4.7 Se

OFF?

LOW?

7 Select Sensor Fa	il-Safe Detection			
SELECT	SENSOR	FAIL	SAFE ?	
is displayed. It is re	ecommended that one tu	irns off the Sensor fa	R. The present status of the S e hilsafe System when using the T ecting the transmitter to the act	X66A / TX67A
O N				
OFF				
	to the Select Sensor Fa		ENTER key will change to the ne ssing the N EXT key will bring up	
Select Fail-Safe R	eporting			
SELECT	FAIL	SAFE	REPORT?	
may be a sensor fai	lure or a transmitter failu	re. In any event, the	oop to indicate a failure condition user may select to drive the lose "LO" selection or to turn the fu	op to 23.0mA,
HIGH?				
птоп:				

4.9 Trim 4.0mA

This allows trimming of the 4.00mA output current.

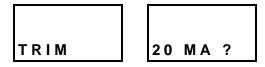

Note: This function is only for the purpose of adjusting the 4.00mA limit of the transmitter loop current to be exactly 4.00mA according to the plant's local standard. This is **NOT** for the purpose of ranging the transmitter!

If trimming the 4.00mA limit is still desired then press **ENTER**. The transmitter will now output a milliamp current equal to its internally set 4mA. This 4mA value should be read on an external meter and compared to a local standard. It is advisable to use a very good voltmeter to make these comparisons. It is very possible that the transmitter will be more accurate than a great many voltmeters. In this case, trimming will make the transmitter less accurate rather than more accurate!

Once trimming the 4.00mA value has been selected, the display will alternate as follows:

By pressing the **NEXT** key the display then alternates:

When it is decided whether to raise or lower the output current, then press **ENTER** and the display changes to one of the following depending on whether the raise or lower function has been selected.



Now every time the **Next** key is pressed, the display blinks, and the 4.0mA output limit decreases (-), or increases (+). The decrease or increase is in approximately 3.5 micro ampere increments.

Note: The 4.00mA limit is factory calibrated to a precision standard. Using the Output Trim function voids the NIST traceability of calibration. Do not arbitrarily trim the output unless a qualified and accurate local standard is available to measure the adjusted 4.00mA output! Also note that the 4.0mA limit should not be trimmed by more than about ± 50 mA, or transmitter operation may be impaired.

Once the desired trim is reached, pressing **Enter** will return to one of the corresponding **Trim 4mA** screen. At this point one may still go back and do further trimming of the 4.0mA limit by pressing the **Enter** key, or pressing the **Next** key changes to the next function.

4.10 Trim 20.0 mA

Trimming of the 20.0mA current limit is done in exactly the same manner as was described for trimming the 4.0mA point. The same precautions apply. After completing the trim 20.0mA pressing the **Next** key brings up the display trim.

4.11 Trim Display

The display trim allows the display to be trimmed by a desired offset amount. The transmitter display will display its value based upon its internal standards. It is often desirable to alter this display to make it agree with another external instrument at a critical measurement point. If this is desirable, the display can be trimmed. The display trim operates as a zero shift. It shifts the display readings by the same amount at every point. Multiple point corrections up to 22 points are possible from the factory.

Note: If a multiple point calibration curve is entered by the factory, the TRIM DISPLAY function will not appear as a menu option in DISPLAY MODE.

You can enter a single point offset to the display. Be certain before making a display trim correction that you have made good electrical connections to the transmitter and the sensor. In the 2 or 3 wire RTD input, or thermocouple input modes, it is possible to produce an error of a few degrees with a fraction of an ohm in any one of the connections. Please be careful when tightening down the input connections. These can be easily broken if alot of torque is applied. The idea is to make a good electrical connection without breaking the connections. When you press the **ENTER** key the display changes to:

0.0F T R I M 0.0F DISPLY?

You can now enter an offset to the display. Suppose that the display reads 530°F, at a time when an external device that you want to agree with reads 525°F. You would then want to enter a -5°F offset in the display trim. This is done exactly the same way as setting the zero and full-scale values.

The numeric value seen on the upper portion of the screen is the existing Display Trim Value. Normally this is set to zero. One can now change this Offset totally independent of the Zero, or Lower Range Value, (LRV) or the Full Scale, or Upper Range Value, (URV), without the use of any calibrators or external sensor inputs. To change the display offset, press **Enter**. The display changes to:

0.0°F PLUS ?

indicating that the existing OFFSET is set to "plus" 0000.0°F. The question mark "?" indicates a question asking if this value is to remain positive (PLUS?). By repeatedly pressing the **Next** key the display will alternate

-0000.0°F MINUS ? 0000.0°F PLUS ?

After deciding whether the OFFSET VALUE is to become negative (MINUS), press the **ENTER** key. In this example the offset is assumed to be negative and a minus sign will be carried through this example. The display then changes to read:

-*0*000.0°F THOUSN?

The leftmost digit position will start blinking (shown here in italics) asking if the thousands position needs to be changed. To change the thousands position, start pressing the **N**EXT key and the leftmost digit will increment through 1 2 3 4 5 6 7 8 9 0. Stop pressing the **N**EXT key at the desired numeral, then press **E**NTER to accept the selection. If the numeral selected before pressing **E**NTER was 0, then the display would change to

-0*0*00.0°F HUNDRD? and the second digit from the left will start blinking (shown here in italics) asking if the hundreds position needs to be changed. As before, to change the number in this digit position repeatedly press the **N**ext key until the desired numeral is reached. Then press **E**NTER to go to the next lower significant digit position. Each time the **N**ext key cycles through the ten choices for that digit position and the **E**NTER key enters the selected number. The digit position being changed is the one that is blinking. The legend on the display will change successively to:

-00*0*0.0°F TENS?

-000*0*.0°F ONES?

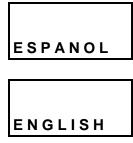
-0005.0°F TENTHS?

After the tenths digit position has also been changed to the desired value, the next pressing of the ENTER key returns the transmitter to the alternating display of TRIM DISPLAY. Since changing of the offset value has just been completed, press the Next key to proceed to the next menu selection. Note, if trimming the transmitter to external devices is desirable, it may be necessary to trim the 4 and 20mA output after setting the display offset. After completing the trim display function, pressing the Next key brings up Select Language.

4.12 Select Language

The Select Language function allows the user to configure the transmitter in any of four different languages. English, German, French and Spanish language menu options are available. When you press the **ENTER** key the display changes to:

ENGLISH


indicating that the current language setting is for English. By pressing the Next key the display changes to

read:

By repeatedly pressing the $\bf N$ ext key, the display will sequence through the following screens:

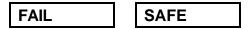
FRENCH

After deciding which language you would like the transmitter to be set for, press the **ENTER** key. The display then changes to read:

If all of the set-up and re-ranging operations have been satisfactorily completed, then pressing **ENTER** will return the transmitter to the normal operate mode. Pressing the **NEXT** key at this point will return the display to the first screen in the sequence, Select INPUT.

Note again, that whenever the transmitter is in the display set-up mode, if no activation of the pushbuttons occur for approximately 2½ minutes, the transmitter returns to the operate mode. One can also return to the operate mode at any point while in the **DISPLAY Mode** by removing power from the transmitter for about 10 seconds, then reapplying power.

5.0 CONFIGURATION USING THE TX60-1A, ONE-LINE DISPLAY


To configure a transmitter using the **Display Mode**, either the TX60-1A or TX60-2A local LCD display is required. These displays are available as an option and can be plugged into the top of the TX66A / TX67A transmitter. The transmitter can also be purchased with these options already installed. These inexpensive options make the reconfiguration, or re-ranging of the transmitter very simple and easy to follow. Without the use of a calibrator, or any other tools, the transmitter can be set up for a different sensor, or the new range limits can be set much like one would set the time on a digital watch.

In the event that the TX60-1A or TX60-2A Display / Keyboard are not purchased at the same time as the transmitter, the one piece display design allows for easy field installation by simply plugging the TX60-1Aor TX60-2A into the top of the transmitter.

5.1 Entering the Display Mode

To start the **DISPLAY Mode**, first connect the transmitter to an appropriate DC power supply. Typically a 24VDC supply is connected with the "+" side of the power supply connected to the transmitter's output "+" terminal and the "-" side of the power supply connected to the transmitter's output "-" terminal. A series resistor in the loop is optional. A sensor may be connected to the transmitter's input terminals, but this is not required for setting up the transmitter.

With the standard factory set-up and no sensor connected, the TX60-1A display will give the following indication:

The transmitter is indicating a fault. This would be the proper indication, since there is no sensor connected. The analog output would indicate greater than 100% (loop current at 23.00mA), which is the standard over range condition. If the proper sensor were connected to the transmitter, the display would indicate the sensor's temperature. Please note that the display / keyboards can be plugged into the transmitter while the transmitter is powered up. There is no need to disconnect power before plugging the TX60-1A or TX60-2A into the TX66A / TX67A.

Press the key marked **Next** to begin scrolling through the DISPLAY MODE menus.

9900

The **9900** code corresponds to the **Return to Operate Mode** function. At this point, assuming one does not want to return to the operate mode, the answer should be no, therefore, press the key marked **N**ext. Pressing the key marked **E**NTER at this point will return the transmitter to the operate mode.

5.2 Display Mode Operation

The one-line, TX60-1A display will allow the user to do the following in a manner similar to the two-line display.

- Select a Sensor Input (SELECT INPUT)
- Select a desired temperature unit, such as °F or °C (Select Units)
- Change the 4mA Lower Range Value (CHANGE ZERO)
- Change the 20mA Full Scale Value (Change Full Scale)
- Change the Sensor Fail Safe detection (Select Sensor Fail SAFE)
- Change the Fail Safe reporting (Select Fail Safe Report)
- Trim the 4.0mA output current (TRIM 4 MA)
- Trim the 20.0mA output current (TRIM 20 MA)
- Trim the display value (TRIM DISPLAY)

Each of these functions is presented with a code in a prescribed sequence on the LCD display. If the indicated function need not be performed, press **N**EXT, and the next function will be displayed on the screen. To perform any function press the **Enter** key. This will cause additional screens to be displayed which enable you to perform the function. These are described in detail below and summarized in the TX60-1A One-Line Display / Keyboard Flowchart found at the rear of this manual.

5.3 Select a Sensor Input

The **Select Input** is the first function in the sequence. Virtually any thermocouple, RTD or millivolt input can be selected. The display will read as follows to indicate this position on the menu:

9000

The factory default sensor input is a J thermocouple. If the sensor does not require changing, then press **Next**, and skip to Section 5.4 of this manual; otherwise press **Enter**. After pressing the **Enter** key, the display will change to:

9004

Indicating that the transmitter is set to a Type J thermocouple input. If this is the desired sensor, then press **ENTER**, otherwise press **NEXT** repeatedly to sequence through the available sensors. Each time **NEXT** is pressed, the next available sensor selection is displayed.

9004

The 9004 Code corresponds to a J thermocouple.

9005

The 9005 Code corresponds to a K thermocouple.

9006

The 9006 Code corresponds to an L thermocouple.

9007

The 9007 Code corresponds to an N thermocouple.

9008

The 9008 code corresponds to an R thermocouple.

9009

The 9009 code corresponds to an S thermocouple.

9010

The 9010 code corresponds to a T thermocouple.

9011

The 9011 code corresponds to a U thermocouple.

9012

Note: The 9012, T/C SPEC or Special Thermocouple input is reserved for a special thermocouple input, should one be desired. This special curve must be ordered from the factory.

9013

The 9013 code corresponds to a 2-wire ohm input.

9014

The 9014 code corresponds to a 2-wire 100 Ω DIN curve platinum RTD with an α = 0.00385.

9015

The 9015 code is the 2-wire 100 Ω SAMA Platinum Curve, known variously as the SAMA RC21-4 or SAMA PR-279.

9016

The 9016 code is reserved for a Special 2 wire RTD, should one be desired. Any special 2-wire RTD curve must be ordered from the factory.

9017

The 9017 code is for 3-wire Ohms.

9018

The 9018 code is for a 3-wire 100 Ω DIN curve RTD with α = 0.00385. This is the most commonly used RTD in industrial applications.

9019

The 9019 code is the 3-wire 100 Ω SAMA Platinum Curve, known variously as the SAMA RC21-4 or SAMA PR-279.

9020

The 9020 code for the Special 3 wire RTD input is reserved for a special RTD input, should one be desired. Any special 3-wire RTD curve must be ordered from the factory.

9021

The 9021 code is for a 4 wire Ohm input.

9022

The 9022 code is for a 4-wire 100 Ω DIN curve Platinum RTD with α = 0.00385. This sensor will give superior measurement results in most real-world situations where the measured temperature is under 1,000°F.

9023

The 9023 code is the 4-wire 100Ω SAMA Platinum Curve, known variously as the SAMA RC21-4 or SAMA PR-279.

9024

Note, the 9024 code is for Special 4 wire RTD input is reserved for a special RTD input, should one be desired. Any special 4-wire RTD curve must be ordered from the factory.

9025

The 9025 code corresponds to a millivolt input.

9026

The 9026 code corresponds to an input known as the "HHTONLY". This is reserved for a Hand-Held set-up at the factory only.

At this point, the menus recycle to the top and begin with the first sensor input.

9001

The 9001 code corresponds to a B type thermocouple.

9002

The 9002 code corresponds to a C type thermocouple.

9003

The 9003 code corresponds to an E type thermocouple.

You can stop at any one of the thermocouple, RTD or mV selections by pressing the **Enter** key. This action changes the transmitter mode to that sensor. If no sensor change is desired, then, without sequencing through the various sensor options, but just pressing the **Enter** key will allow one to confirm the sensor selection and leave it unchanged. Assume that the sensor is left as T/C J. After pressing **Enter** the display will return to the main menu entry of Select Input. Pressing the **Next** key then takes the transmitter to the next main menu selection.

5.4 Select Units

If the selected sensor is a thermocouple or RTD, the next menu entry is **Select Units**. You will not see this selection if an ohms or mV input selection is made.

9100

The code **9100** corresponds to the **Select Units** entry in the main menu. Pressing the **Enter** key takes you to this section of the menu. This screen indicates that the transmitter is currently set to degrees F. Pressing the **Next** key, the display will sequence through the following screens:

9133

The 9133 code corresponds to units of Degrees Fahrenheit.

9134

The 9134 code corresponds to units of Degrees Rankine.

9135

The 9135 code corresponds to units of Degrees Kelvin.

9132

The 9132 code corresponds to units of Degrees Centigrade.

Stopping the selection process on the TX60-1A display at any one of these units and then pressing **Enter** will set the transmitter to the corresponding new units. For the purposes of this example the units of measure can be left at DEG F by pressing **Enter**. Pressing the **N**EXT key will bring you to the next section of the menu, changing the Zero.

5.5 Change Zero (Lower Range Value)

The display will then read as follows to indicate that one may now change the zero, or 4mA output point.

9200

The code **9200** indicates that one can now change this Zero, or Lower Range Value (LRV), totally independent of the Full Scale, or Upper Range Value, (URV), without the use of any calibrators or external sensor inputs. To change the zero, press **Enter**. The display changes to:

9201

The 9201 code indicates that a positive, or "plus", number is selected for the 4 mA (LRV) output point. By repeatedly pressing the **N**EXT key the display will alternate:

9202

9201

The 9202 code corresponds to a negative number to be selected for the 4mA output point. After deciding whether the Zero value, or LRV, is to remain positive (PLUS), press the **Enter** key. In this example assume it is to remain positive. The display changes to read:

0040

and the leftmost digit position will start blinking (shown here in italics) asking if the thousands position needs to be changed. To change the thousands position, start pressing the **Next** key and the leftmost digit will increment through 1 2 3 4 5 6 7 8 9 0. Stop pressing the **Next** key at any of the numerals desired, then press **Enter** to accept the selection. If the numeral selected before pressing **Enter** was 0, then the display would change to read:

The second digit from the left will start blinking (shown here in italics) asking if the hundreds position needs to be changed. As before, to change the number in this digit position repeatedly press the **N**ext key until the desired numeral is reached. Then press **E**NTER to go to the next lower significant digit position. Each time the **N**ext key cycles through the ten choices for that digit position and the **E**NTER key enters the selected number. The digit position being changed is the one that is blinking. The legend on the display will change successively to read:

00*4*0

004*O*

After the one's digit position has also been changed to the desired value, the next pressing of the ENTER key returns the transmitter to the alternating display of Change Zero. Since changing of the zero has just been completed, press the Next key to proceed to the next menu selection, Change Full Scale.

5.6 Change Full Scale (Upper Range Value)

9300

The code **9300** corresponds to selection **Change Full Scale**, or Upper Range Value (URV). To change the full scale value press **Enter**. The procedure for selecting Plus or Minus is identical to that described for changing the Zero, with the code 9301 corresponding to a positive (+) number and the code 9302 corresponding to a negative (-) number. The procedure for changing each of the digit positions is identical to that described for changing the Zero. Once the steps of changing the Full Scale have been completed and the **Enter** key is pressed at the end of the procedure, the display returns to **Change Full Scale**. Press **Next** for the next function **Select Sensor Fail Safe Detection**.

5.7 Select Sensor Fail Safe Detection

9400

The code **9400** corresponds to selecting the Sensor Fail-Safe detection. If one desires to change the **Sensor Fail Safe** detection then press **Enter**. The present status of the Sensor Fail-safe is displayed. It is recommended that one turns off the Sensor fail-safe when using the TX66A / TX67A with an input simulator. It should then be turned on when reconnecting the transmitter to the actual sensor.

9401

The code 9401 indicates that the sensor fail-safe detection is turned on.

9402

The code 9402 indicates that the sensor fail-safe detection is turned off. When the desired fail-safe condition is displayed, pressing the **Enter** key will change to the new setting and the screen returns to the **Select Sensor Fail Safe** display, code 9400. Pressing the **Next** key will then bring up the **Fail Safe Report** selection screen.

5.8 Select Fail Safe Reporting

The code **9500** indicates the main menu entry for setting the transmitter **FAIL-SAFE REPORT**. Pressing the **ENTER** key will bring up the following code:

9501

The code 9501 corresponds to instructing the transmitter to output 3.6mA under a fail-safe condition. Pressing the **Enter** key at this point sets the fail-safe **LOW**. Pressing the **Next** key brings up the following screen:

9502

The code 9502 corresponds to instructing the transmitter to output 23.0mA under a fail-safe condition. Pressing the **ENTER** key at this point sets the fail-safe **HIGH**. Pressing the **NEXT** key brings up the following screen:

9503

The code 9503 corresponds to instructing the transmitter to not report a fail-safe condition. Pressing the **ENTER** key at this point turns off this reporting. Pressing the **NEXT** key brings up the next function, **TRIM 4 MA**.

5.9 Trim 4.0mA

The code **9600** indicates the main menu entry for performing an **4 MA OUTPUT TRIM**. Pressing the **ENTER** key will bring up the following code.

9600

This function will trim the 4.00mA output current of the transmitter.

Note: The 4.00mA limit is factory calibrated to a precision standard. Using the Output Trim function voids the NIST traceability of calibration. Do not arbitrarily trim the output unless a qualified and accurate local standard is available to measure the adjusted 4.00mA output! Also note that the 4.0mA limit should not be trimmed by more than about ± 50 mA, or transmitter operation may be impaired.

If trimming the 4.00mA limit is still desired then press **ENTER**. The transmitter will now output a milliamp current equal to its internally set 4mA. This 4mA value should be read on an external meter and compared to the plant standard. It is advisable to use a very good voltmeter to make these comparisons. It is very possible that the transmitter will be more accurate than a great many voltmeters. In this case, trimming will make the transmitter less accurate rather than more accurate!

Once trimming the 4.00mA value has been selected, the display will show:

9601

The code 9601 corresponds to selecting the function to raise mA output.

Pressing the **NEXT** key the display then shows:

9602

The code 9602 corresponds to selecting the function to lower the mA output. Comparing the transmitter output to the external device will allow you to decide whether to raise or lower the milliamp value. When it is decided whether to raise or lower the output current, then press **Enter** and the display changes to one of the following depending on whether the raise or lower function has been selected.

9610

9620

(raises output)

(lowers output)

The ∞ de 9610 confirms that you are in the Raise 4mA output trim function. Each time the **N**ext key is pressed, the display blinks, and the 4.0mA output limit increases (+). The increase is in approximately 3.5 micro-ampere increments. The code 9620 confirms that you are in the Lower 4mA output trim. Each time the **N**ext key is pressed, the display blinks, and the 4.0mA output limit decreases (). The decrease is in approximately 3.5 micro-ampere increments.

Note: The 4.00mA limit is factory calibrated to a precision standard. Using the Output Trim function voids the NIST traceability of calibration. Do not arbitrarily trim the output unless a qualified and accurate local standard is available to measure the adjusted 4.00mA output! Also note that the 4.0mA limit should not be trimmed by more than about ± 50 mA, or transmitter operation may be impaired.

Once the desired trim is reached, pressing **Enter** will return to the corresponding TRIM 4MA screen. At this point one may still go back and do further trimming of the 4.0mA limit by pressing the **Enter** key, pressing the **Next** key changes to the next function.

5.10 Trim 20mA

The code **9700** indicates the main menu entry for setting the performing a **20MA OUTPUT TRIM**. Pressing the **ENTER** key will bring up the following code:

9700

This function will trim the 20.00mA output current of the transmitter.

Trimming of the 20.0mA current limit is done in exactly the same manner as was described for trimming the 4.0mA point. Similarly the same precautions apply. The code 9701 corresponds to selecting the function to raising the mA output. The code 9702 corresponds to selecting the function to lower the mA output. The code 9710 confirms raising the 20mA output by approximately 3.5 micro-ampere increments with each push of the Next key. The code 9720 confirms lowering the 20mA output by approximately 3.5 micro-ampere increments with each push of the Next key. After completing the trim 20.0mA pressing the Next key brings up the TRIM DISPLAY menu.

5.11 Trim Display

The display trim allows the display to be trimmed to a desired point. The transmitter's TX60-1A or TX60-2A display will show its value based upon the transmitter's current settings. It is often desirable to alter the display to make it agree with another instrument at a critical measurement point. If this is desirable, the display can be trimmed. The display trim operates as a zero shift and shifts the display readings by the same amount at every point. Multiple point corrections up to 22 points are available from the factory.

Note: If a multiple point calibration curve is entered by the factory, the TRIM DISPLAY function will not appear as a menu option in DISPLAY MODE.

You can enter a single point offset to the display. Be certain before making a display trim correction that you have made good electrical connections to the transmitter and the sensor. In the 2 or 3 wire RTD input, or thermocouple input modes, it is possible to produce an error of a few degrees with a fraction of an ohm in any one of the connections. Please be careful when tightening down the input connections. These can be easily broken if alot of torque is applied. The idea is to make a good electrical connection without breaking the connections.

The display trim allows you to enter an offset correction. For example, suppose that the display reads 530°F, at a time when an external device that you want to agree with reads 525°F. You would then want to enter a -5°F offset in the display trim. This is done exactly the same way as setting the zero and full-scale values. Pressing the **Next** key at this point advances the menus and the display will now read:

The 9800 code corresponds to the display trim.

One can set the display trim offset by pressing the **ENTER** key. The display changes to:

The 9801 code indicates that a "plus" number is selected for the display offset. By repeatedly pressing the **Next** key the display will alternate:

9801 9802

the 9802 code corresponds to a negative number to be selected for the display trim point. After deciding whether the display trim value is to remain positive (PLUS), or negative (MINUS) press the **ENTER** key. In this example assume it is to be a negative offset. The display changes to:

- *0*00

and the leftmost digit position will start blinking (shown here in italics) asking if the hundreds position needs to be changed. To change the hundreds position, start pressing the **N**EXT key and the leftmost digit will increment through 1 2 3 4 5 6 7 8 9 0. Stop pressing the **N**EXT key at the desired numeral, then press **E**NTER to accept the selection. If the numeral selected before pressing **E**NTER was 0, then the display would change to:

- 0*0*0

and the second digit from the left will start blinking (shown here in italics) asking if the tens position needs to be changed. Pressing the **ENTER** key will fix the tens digit and display the ones digit:

- 00*0*

In this example, we want to enter a -5 degree offset, so we want to cycle the "ones" digit. As before, to change the number in this digit position repeatedly press the **Next** key until the desired numeral is reached. Then press **Enter** to go to the next lower significant digit position. Each time the **Next** key cycles through the ten choices for that digit position and the **Enter** key enters the selected number. The digit position being changed is the one that is blinking. The legend on the display will change successively to:

- 00*5*

After the ones digit position has been changed to the desired value, the next pressing of the Enter key returns the transmitter to the 9800 code. Note that since the TX60-1A will only display in whole degrees, the display trim is limited to whole degrees. If greater display precision is required, the two-line TX60-2A display will give you precision to the tenths of degrees. Since changing of the zero has just been completed, press the Next key to proceed to the next menu selection, RETURN TO OPERATE MODE.

9900

If all of the set-up and re-ranging operations have been satisfactorily completed, then pressing **ENTER** will return the transmitter to the normal operate mode. Pressing the **NEXT** key at this point will return the display to the first screen in the sequence, **Select Input** which corresponds to the code 9000.

Note again, that whenever the transmitter is in the display set-up mode, if no activation of the keyboard occurs for approximately 2½ minutes, the transmitter returns to the operate mode. One can also return to the operate mode at any point in the **DISPLAY MODE** by removing power from the transmitter for about 10 seconds and then reapplying power.

6.0 APPLICATIONS INFORMATION

6.1 SENSOR FAIL-SAFE DETECTION

The TX66A / TX67A detects a sensor failure condition by making various measurements across its sensor input terminals. As a result of these measurements, the unit can detect an open thermocouple or open RTD condition. In addition, the TX66A / TX67A can detect if an RTD is short circuited, or if any of its terminal wires (2, 3, or 4-wire RTD's) are open. Any one of these conditions will cause a "FAIL-SAFE" report indication.

In the process of performing these sensor failure checks, the unit periodically passes small pulses of current through the sensor and its connecting wires. The transmitter measures the resulting voltage drop. One of the conditions resulting in a FAIL-SAFE reporting condition is if this voltage drop exceeds 180mV.

In the case of an RTD, the fail-safe detection is part of the normal excitation for the RTD and therefore both the temperature measurement and some of the sensor fail-safe detection routines are done simultaneously. In the case of a thermocouple, during the temperature measurement cycle, there is no open sensor test current in the thermocouple. Thermocouple open circuit is detected by making a second measurement with the test current through the thermocouple.

This method of testing for sensor failure has the following advantages:

- 1) In the case of thermocouples, there is no steady current through the sensor during measurement and therefore accuracy is not degraded.
- 2) During open sensor detection, the test current is sufficiently high that even if there is some leakage resistance between the sensor leads, an open sensor will be positively detected.

There are certain precautions to be observed when using this method of sensor failure detection. If the lead wire resistance is too great, then a false FAIL-SAFE report could be generated. The maximum lead wire resistance is dependent on the type of sensor being used and the maximum temperature expected to be measured. The maximum lead resistance for an RTD is 50Ω in any one lead. For a thermocouple, the maximum allowable resistance is $1,000\Omega$ for a non-grounded junction Thermocouple and $10~\Omega$ for a grounded junction Thermocouple.

6.2 CONFIGURATION WITH AN EXTERNAL SOURCE

With an external source, the basic procedure is to set the external source to the value you require for 4mA or 20mA. Next, read the transmitter value on the TX60-1A or TX60-2A display. Record these values. Then follow the display set-up procedure to set the 4mA and 20mA values to the values that you recorded with the external source.

When attempting to calibrate or check the calibration of the TX66A / TX67A transmitter with an external thermocouple or RTD calibrator, it is generally advisable to disable the "SENSOR FAIL-SAFE" feature. The open sensor test periodically injects about $5\mu A$ of current into the input terminals, the millivolts generated by the calibration source is periodically disturbed and depending on the characteristics of the external calibration source used, erroneous voltages may be applied to the transmitter. The "SENSOR FAIL-SAFE" can be disabled by turning it off in the configuration menus (Sections 4.7 & 5.7). After the calibration has been completed, this function can be re-enabled.

6.21 Thermocouple Input

Setting the ZERO and FULL SCALE with a thermocouple sensor requires some added steps because of the automatic cold-junction compensation. Thermocouple tables are normally available for a reference junction at the ice point of water. These table entries must be adjusted for the actual cold-junction temperature. In the case of the TX66A / TX67A transmitter, the cold-junction is measured with an internal calibrated thermometer.

It is generally good practice to operate the transmitter for 30 minutes or more prior to calibration to allow it to reach thermal equilibrium.

6.211 Calibration Using a Millivolt Source

The procedure starts with the selection of the thermocouple type. Then determine the temperature of the thermocouple terminals on top of the transmitter. This can be done by measuring with a thermometer the temperature of the thermocouple terminals on the transmitter. Or one can assume that the terminals are approximately at room temperature and then determine the room temperature.

Next, locate the appropriate table of temperature versus mV for the selected thermocouple.

Find the table entry corresponding to the terminal block temperature, (mV @ TB°C)

Calculate the mV to be applied as follows:

(mV applied for LRV) = (mV @ LRV Table°C) -(mV @ TB°C)

Applying the millivolts (mV applied) to the transmitter and record the temperature displayed on the TX60-1A or TX60-2A display for the ZERO (LRV) or 4mA value. Then record the FULL SCALE (URV) using a similar procedure. These recorded values will then be set into the transmitter as the zero and full-scale values using the display set-up procedure.

6.211 Calibration Using a Thermocouple Calibrator

Some of the thermocouple calibrators available on the market provide a means of measuring the temperature of the terminal block and automatically apply the corrected mV to the transmitter. This procedure is rather simple. However, there can be an appreciable difference between the temperature of the simulator and the transmitter terminals. With some thermocouple types, this error could be amplified 5 to 10 fold, resulting in large measurement errors. Use caution so as not to introduce these possible errors.

6.3 FOR BEST MEASUREMENT ACCURACY

The TX66A / TX67A transmitter is a stable instrument, precision calibrated at the factory for any measurement range the user may select. However, the automatic cold-junction compensation requires certain precautions to obtain best accuracy when used with a thermocouple sensor.

The cold-junction compensation operates by attempting to measure accurately the temperature of the thermocouple terminals on top of the instrument. If these terminals are exposed to thermal radiation or convection, the cold-junction compensation will introduce an error. With certain types of thermocouples and temperature measurement ranges, the sensitivity of the cold-junction is greater than the sensitivity of the measurement couple. Under those conditions, a one degree error in the cold-junction temperature that the transmitter senses can result in a greater than one degree temperature measurement error.

For best measurement accuracy with thermocouple sensors, it is advisable to shield the top terminals by placing the transmitter into a housing or enclosure, such as the model NEP-TX66A. In addition, sufficient time should be allowed for the housing and the transmitter to reach equilibrium temperature in a given operating environment before best accuracy is reached.

For best accuracy with any sensor, or in the millivolt mode, it is advisable to allow the transmitter to operate with the desired fixed input signal for a period of 30 seconds before the reading is taken. The transmitter periodically measures certain internal references. These internal measurements and the external signal undergo digital averaging and the full accuracy of the instrument is only achieved after several readings have been averaged.

When using an RTD sensor, a four-wire connection is generally recommended. With a three-wire RTD the TX66A / TX67A makes two separate measurements before calculating the temperature, whereas, only a single measurement is required when using a four-wire RTD. Conceptually, a better accuracy is possible using a single measurement as compared with calculating the difference of two separate measurements.

7.0 ACCESSORIES & INFORMATION

Other accessories available from Omega are:

TX60-1A One-line Local Display
TX60-2A Two-line Local Display
TX66-DIN DIN Rail Mounting Adapter

NEP-TX66A Explosion Proof Housing (No Display Option*)

A variety of signal conditioners, thermocouples, RTD sensors and thermowells are also available.

^{*} The TX60-1A or TX60-2A can be used for setup and configuration for transmitters installed in NEP-TX66A housings, but cannot be installed permanently. The NEP-TX66A will not close properly with either of these displays installed.

8.0 SPECIFICATIONS

THERMOCOUPLE SENSORS:

NIST Types B, C, E, J, K, N, R, S, & T; DIN Types L & U

RTD Resistance Sensors:

100 Ω Pt DIN curve (α = 0.00385) 2, 3 or 4 Wire 100 Ω Pt SAMA RC21-4 curve (α =0.003923) 2, 3 or 4 Wire

Consult factory for the RTD choices below:

100 Ω Ni DIN curve	2, 3 or 4 Wire
120 Ω Ni MINCO curve	2, 3 or 4 Wire
10 Ω Cu curve	2, 3 or 4 Wire
Ni SAMA	2, 3 or 4 Wire

MILLIVOLT INPUT RANGE: -15 to 115mVDC

THERMOCOUPLE AND RTD LINEARIZATION: Linearization with temperature conforms to NIST & DIN curves within ±0.05°C.

OUTPUT: Analog, Two wire 4 to 20mA

OUTPUT RANGING ADJUSTMENTS:

Analog Zero } {100% of sensor range, non-interacting

Full Scale } {Normal or reverse acting

MINIMUM OUTPUT RANGE: None

OUTPUT RESOLUTION: Analog, 3.6μA

TRANSMITTER ACCURACY:

 $\pm\,0.05\%$ of the millivolt or ohm equivalent reading, or the accuracy from the table below, whichever is greater; plus the effect of cold junction measurement error or $\pm\,0.5^{\circ}\text{C}$ ($\pm0.9^{\circ}\text{F}$), if using a thermocouple sensor; plus $\pm\,0.05\%$ of span.

Sensor Type		Accuracy
E, J, K, L, N, T	T/C's	± 0.3°C (± 0.5°F)
B, C, R, S, U mV	T/C's	± 0.8°C (± 1.5°F) ± 0.01 mV
100Ω Pt RTD		± 0.14°C (± 0.25°F)
100Ω Pt SAMA		± 0.14°C (± 0.25°F)
Ohms		± 0.06 Ohm

Accuracy includes repeatability, hysteresis, load and ambient temperature. For a detailed analysis refer to Accutech Technical Application Note #203.

TRANSMITTER REPEATABILITY: One half of accuracy.

REFERENCE CONDITION ACCURACY:

Equal to transmitter repeatability, when set-up under reference conditions to an external source. The transmitter is then referenced to the prevailing conditions and transmitter accuracy at this reference condition will include repeatability, linearity, and hysteresis effects. If using a thermocouple add 0.05°F for reference condition accuracy cold junction effect. Reference condition accuracy is comparable in scope to the accuracy generally specified for analog based transmitters and is consistent with the ANSI/ISAS51.1-1979 definition of "Accuracy".

SPECIFICATIONS (CONTINUED)

DYNAMIC RESPONSE:

Turn On Time: Less than 5 seconds after power up

Ambient Temperature Gradient: Automatic compensation to

20°C/Hour Change

Update Time: 0.15 Seconds

Response to Step Input: 0.25 Seconds, Typical

COLD JUNCTION COMPENSATION:

Self-correction to ±0.5°C

OPERATING TEMPERATURE RANGE:

 -40° F to +185°F (-40°C to +85°C) Electronics -4° F to +158°F (-20°C to +70°C) Display

STORAGE TEMPERATURE RANGE:

-58°F to +185°F (-50°C to +85°C)

AMBIENT TEMPERATURE STABILITY: Self-correcting over the operating temperature range. Refer to Accutech Application Note #203 for full discussion.

LONG TERM STABILITY: Less than 0.05% of reading plus ±3.6µA per year.

AUTOMATIC DIAGNOSTICS: Every 3 seconds the TX66A transmitter performs self-checks for zero, span, cold-junction temperature, open T/C, open RTD element, shorted RTD element, each open RTD lead and transmitter malfunction.

FAILSAFE: User settable from 3.6mA to 23.0mA, or OFF

INTERCHANGEABILITY: All units interchangeable without field calibration.

EMI/RFI IMMUNITY: Less than 0.5% of reading (SAMA PMC 33.1c test method) 20KHz to 1000MHz, 10 V/meter.

ISOLATION: 250 VAC rms or 800VDC **COMMON MODE REJECTION:** 120dB

REVERSE POLARITY PROTECTION:

42 VDC applied with either polarity

POWER AND LOAD:

Supply voltage (no load resistance); 12 to 42 VDC (30 VDC for I/S version)

Supply voltage (with load resistance); Vsupply=(12)+(Rload in Kohm) x (23mA) Supply Voltage Effect: < +/-0.005% of Span per Volt

WEIGHT: 4 oz. Electronics only

STANDARD CONFIGURATION:

Factory configured for Type J thermocouple, 40°F=4.0mA, 200°F=20mA, with HI failsafes. Special configurations are available to suit your requirements. See Price List.

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient-connected applications.

9.0 WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 13 months from date of purchase. OMEGA Warranty adds an additional one (1) month grace period to the normal one (1) year product warranty to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY / DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS / INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS,

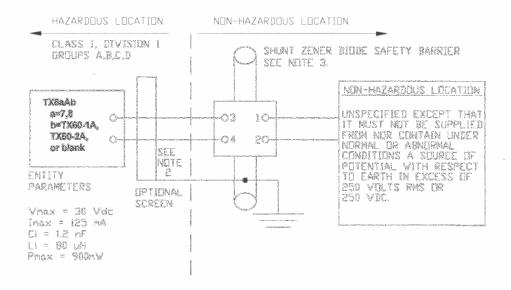
please have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number under which the product was PURCHASED,
- 2. Model and serial number of the product under warranty, and
- 3. Repair instructions and/or specific problems relative to the product

FOR <u>NON-WARRANTY</u> REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number to cover the COST of the repair,
- 2. Model and serial number of the product, and
- 3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.


OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 1999 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

	ECO HISTORY						
REV	REV DATE BY CHK'D DESCRIPTION			\neg			
1-)	4/17/98	GF		Initial Release Em/CSA	\neg		
					\neg		

TX6aAb (a=7,8; b=TX60-1A, TX60-2A, or blank)

FACTORY MUTUAL AND CANADIAN STANDARDS ASSOCIATION APPROVED INTRINSICALLY SAFE INSTALLATION CONTROL DRAWING

MOTES:

- 1) THE ELECTRICAL CIRCUIT IN THE HAZARDOUS AREA MUST BE CAPABLE OF WITHSTANDING AN A.C. TEST VOLTAGE OF 500 VOLTS R.M.S. TO EARTH OR FRAME OF THE APPARATUS FOR ONE MINUTE.
- 2) CABLE CAPACITANCE AND INDUCTANCE PLUS THE LS. APPARATUS UNPROTECTED CAPACITANCE (CI) AND INDUCTANCE (LI) MUST NOT EXCEED THE ALLOWED CAPACITANCE (CI) AND INDUCTANCE (LI) INDICATED ON THE ASSOCIATED APPARATUS.

Other By: GTC	476749			kispiise losio azoili Ave. Ik			
(1972) (1972)	D	TTTLE	Onega	Finksa	and S	Control	Dawing
[2073]- [2073]-	N/ATire	3080	Size A	0022 (34	7,47	1 3: 2

Figure 8-1
Intrinsic Safety Drawings

				ECO HISTORY
REV	DATE	BY	CHK'D	DESCRIPTION

3) ANY POSITIVE POLARITY SHUNT ZENER DIODE SAFETY BARRIER APPROVED BY FMRC OR CSA FOR GROUPS A,B,C,D,E,F AND G WHOSE OUTPUT PARAMETERS ARE:

Voc or Vt \leq 30 Vdc isc or it \leq 125 mA Ca \geq Ci + C cable La \geq Li + L cable

- 4) THE INSTALLATION INCLUDING THE BARRIER EARTHING ARRANGEMENTS MUST COMPLY WITH THE INSTALLATION REQUIREMENTS OF THE COUNTRY OF USE, i.e. ANSI/ISA RP12.6 (INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS (CLASSIFIED) LOCATIONS) AND THE NATIONAL ELECTRICAL CODE, ANSI/INFPA 70 OR CANADIAN ELECTRICAL CODE PART 1. INSTALLATION MUST BE IN ACCORDANCE WITH THE MANUFACTURER'S GUIDELINES.
- 5) TEMP. CODE T4 AT MAXIMUM AMBIENT TEMPERATURE OF 85° C T8 AT MAXIMUM AMBIENT TEMPERATURE OF 40° C
- 6) DUST-TIGHT CONDUIT SEAL MUST BE USED WHEN INSTALLED IN CLASS II AND III ENVIRONMENTS.

NO REVISIONS WITHOUT PRIOR FACTORY MUTUAL OR CANADIAN STANDARDS ASSOCIATION APPROVAL.

Committee of the Commit	Drawn By: GJG	41 1/95	Adaptive Instruments Corporation 15 Bonazolli Ave. Hudson, MA 01749 U.S.A.		
Dec. of Control	CHK'D By:	Date: 4/17/98	TITLE: Omega FM/CSA IS Control Drawing		
and a second of the second of	Released By:	Date: 4/17/94	Scale Size Drawing NO Rev. SHEET A 6022 634 A 2 of 2		

Figure 8-1
Intrinsic Safety Drawings

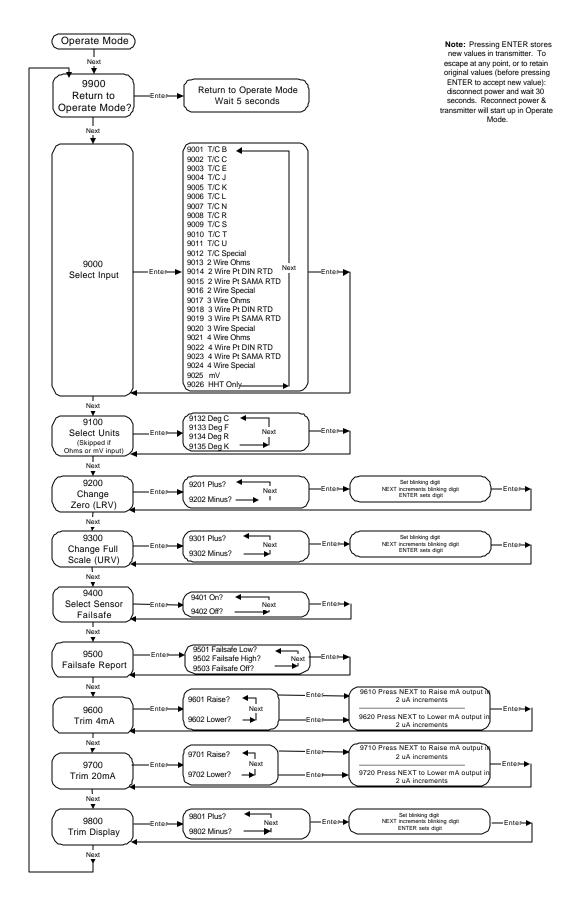


Figure 8-2
TX60-1A Configuration Flowchart

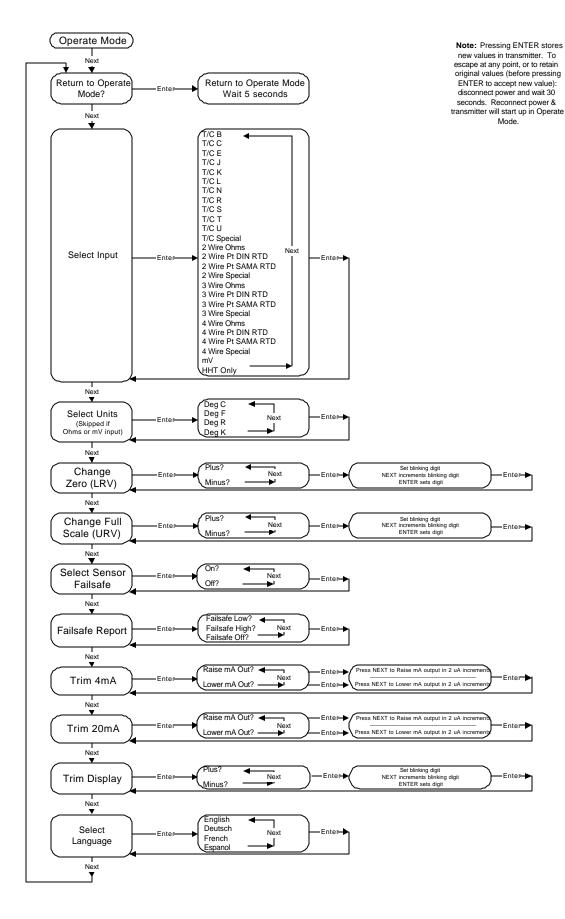


Figure 8-3 TX60-2A Configuration Flowchart

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

TEMPERATURE

- ☑ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- $\ oxdot$ Wire: Thermocouple, RTD & Thermistor
- ☑ Calibrators & Ice Point References
- ☑ Recorders, Controllers & Process Monitors
- ☑ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

- $\ oxdot$ Transducers & Strain Gauges
- ☑ Load Cells & Pressure Gauges
- ☑ Displacement Transducers
- ☑ Instrumentation & Accessories

FLOW/LEVEL

- ☑ Rotameters, Gas Mass Flowmeters & Flow Computers
- ☑ Air Velocity Indicators
- ☑ Turbine/Paddlewheel Systems
- ☑ Totalizers & Batch Controllers

pH/CONDUCTIVITY

- ☑ pH Electrodes, Testers & Accessories
- ☑ Benchtop/Laboratory Meters
- ☑ Controllers, Calibrators, Simulators & Pumps
- ☑ Industrial pH & Conductivity Equipment

DATA ACQUISITION

- ☑ Data Acquisition & Engineering Software
- ☑ Communications-Based Acquisition Systems
- ☑ Plug-in Cards for Apple, IBM & Compatibles
- ☑ Datalogging Systems
- ☑ Recorders, Printers & Plotters

HEATERS

- **☑** Heating Cable
- ☑ Cartridge & Strip Heaters
- ☑ Immersion & Band Heaters
- ☑ Flexible Heaters
- ☑ Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL

- ☑ Metering & Control Instrumentation
- **☑** Refractometers
- ☑ Pumps & Tubing
- ☑ Air, Soil & Water Monitors
- ☑ Industrial Water & Wastewater Treatment
- ☑ pH, Conductivity & Dissolved Oxygen Instruments