Chapter
1 Introduction1
1.1 Introduction ..... 1
1.2 Front Panel Description ..... 2
1.3 Rear Panel Description ..... 3
2 Installation and Operation ..... 4
2.1 M ounting Instructions ..... 4
2.2 Power Connections ..... 5
2.3 Input C onnections ..... 6
2.4 Standard 0 utput C onnections ..... 7
2.5 Relay 0 utput $C$ onnections ..... 8
2.6 Verifying Analog 0 utputs ..... 9
2.7 Analog 0 utput C onnections ..... 10
3 System Configuration ..... 10
3.1 Introduction ..... 10
3.2 C alibration M enu, Frequency Inputs ..... 12
3.3 C alibration M enu, Analog Inputs ..... 12
$3.4 \quad 2$ Relay 0 perations ..... 15
3.5 C alibration M enu, 2 Relay ..... 16
3.6 C alibration $M$ enu, A nalog $O$ utputs ..... 17
3.7 View -0 nly M enus ..... 18
4 Technical Support ..... 19
4.1 Accessing Intermal 0 ptions ..... 19
4.2 AC Power Configurations ..... 19
4.3 Installing Input/ O utput 0 ptions ..... 20
4.4 Option Cards and Accessories ..... 21
4.5 Input C ard C onfiguration ..... 22
4.6 O utput C ard C onfiguration ..... 23
4.7 Troubleshooting ..... 23
Specifications ..... 24
Warranty ..... 27
Page Table ofContents

# Important safety information 



Danger: Avoid electric shock. Do not connect
power when the instrument cover is partially or
completely removed.

## Unpacking and Inspection

Your flow controller package includes the following items:

- OMEGA FPM -9010A Flow Controller
- Two stainless steel mounting brackets
- M ounting Instructions w/ self-a dhesive template
- Panel gasket


### 1.1 Introduction

Your new OMEGA FPM -9010A Flow Controller has been specifically designed for liquid flow rate measurement in process pipes. The controller's compact 1/ 4 DIN enclosure (front) is N EM A 4X/ IP65 rated and ideal for installing into instrumentation panels with limited space.

M odular "plug-in" input/ output option cards allow you to customize your flow controller to your flow system's requirements. The controller's unique "slide-out" chassis design makes option installation fast and simple. Smart self-configuring microprocessor based circuitry automatically inventories installed options during power-up, allowing you to upgrade your system in seconds without the need for additional equipment.

The unit's front panel features a highly visible 4.5 - digit (seven segment) and 8 -digit (alpha-numeric) liquid crystal display with adjustable contrast. Active flow rate, accumulation, and alarm relay information is quickly accessed at a glance. During calibration the user is prompted with clear step-by-step instructions on the units front panel display.

The OMEGA FPM -9010A Flow Controller also accepts other analog inputs, such as
4 to 20 mA or 0 to 5 VDC , etc.

## Chapter 1

## Introduction

### 1.2 Front Panel Description



## Item 11:

Remove front bezel to change unit tags under clear overlay window. The unit tags are a tached to the rear cover of the manual.

| Item | Function |
| :---: | :---: |
| 1. Relay Annunciators: | Indicate activation status of optional output "alarm" relays 1 \& 2 |
| 2. $L C D$ Display: | Shows flow, calibration, accumulation, and relay activation status information |
| 3. | A) Accesses one of three calibration menus: CAL, RELAY, OUT B) Enables a calibration parameter for modification C) Restores a calibration parameter to it's original value during calibration |
| 4. enter | A) Stores a calibration value into memory after modification B) Used to display a vailable input/ output options during normal operation. |
| 5. CAL | A) Accesses the CAL "view -only" menu <br> B) Used in conjunction with MOD key to access the main CAL menu |
| 6. RELAY | A) Accesses the RELAY "view-only" menu B) Used in conjunction with M O D key to access the RELAY calibration menu |
| 7. output | A) Accesses the O UTPUT "view-only" menu B) Used in conjunction with M O D key to access the 0 UTPUT calibration menu |
| 8. | Decreases the value of a selected calibration digit |
| 9. | Increases the value of a selected calibration digit |
| 10. 4 | A) Returns the unit to normal operation mode B) Selects a digit for modification during calibration |
| 11. Unit Tags | M ost engineering units and blanks available for custom applications (included). User selected and installed for specific applications. |

### 1.3 Rear Panel Description



## Chapter 2

## Installation and <br> Operation

### 2.1 Mounting Instructions

The OMEGA FPM -9010A Flow Controller's $1 / 4$ DIN enclosure is specifically designed for panel mounting. Adjustable mounting brackets allow mounting in panels up to 1 in . ( 25 mm ) thick. An adhesive template and instructions are included to insure proper installation.

For outdoor and/ or stand alone installations the splash-proof N EM A 4X/ IP65 back cover kit is recommended (ordered separately).

Figure 1
External dimensions


### 2.2 Power Connections

## AC Power Connections



## Instructions

1. Jumper selectable for 90 to 132 OR 180 to 264 VAC operation. Confirm AC power configuration before applying power. See section 4.2 pg\# 19
2. *A direct or low impedance AC ground (earth ground) M UST be used for proper operation.
3. To reduce the possibility of noise interference, $A C$ power lines must be isolated from signal lines.

Figure 2
AC power wiring


Danger: Avoid electric shock. Do not connect power when the instrument cover is partially or completely removed.

DC power is recommended when ground fault interrupt devices (G FI's) a re used.

## DC Power Connections


$N$ ote: $A C$ / DC power can be connected simultaneously, using DC power as an uninterrupted power source.

* A direct or low impedance earth ground M UST be used for optimum performance.

Figure 3
DC power wiring

### 2.3 Input Connections

Four input sources are accepted:

Note: See section 4.4
for a listing of available input cards.

## A. Non-isolated Frequency Inputs

Frequency (non-iso) card: Accepts non-isolated, 0 to 10 kHz @ $0.2 \mathrm{Vp}-\mathrm{p}$ minimum sine or square wave signal inputs. This card requires dip switch configuration prior to operation.

## B. Isolated Frequency Inputs

Frequency (iso) card: Accepts isolated, 0 to 10 kHz @ $0.5 \mathrm{Vp}-\mathrm{p}$ minimum sine or square wave signal inputs. No configuration required.

## C. Analog Inputs

Two a nalog input cards are offered:

- Analog (iso) current, 4 to $20 / 0$ to 20 mA
- Analog (iso) voltage, 0 to $5 / 0$ to 10 VDC Input ranges are softw are selectable, requiring no internal configuration.

Figure 4
Input W iring

To reduce the possibility of noise interference, separate input lines from AC power lines.


### 2.4 Standard Output Connections

## Standard Outputs

An open collector counter pulse output (CN T) and a sensor pulse output (PLS) are included with your unit.

The counter pulse output (synchronous w/ totalizer) emits an open collector 150 ms pulse with a maximum current sinking capacity of 50 mA @ 30 VDC, and is ideal for driving an external counter or accumulator. An external DC power supply and current limiting resistor are required for operation.

The sensor pulse output (PLS) emits a standard TTL frequency output in phase with the sensor input and can be used to drive 0 M EGA instruments (except 0 M EG A FPM -5800) and other TTL compatible devices.


Figure 5
Sensor pulse output (PLS)/ counter output (CN T) wiring

To reduce the possibility of noise interference, separate output lines from AC power lines.

### 2.5 Relay Output Connections

The 2 -Relay option provides two relays for external device control. Each relay's contacts are rated for 5 A maximum. Both N 0 and N C contacts may be used individually or simulta neously as shown.

## Figure 6

2-Relay wiring

Device A is powered during normal operation. Power is discontinued when relay is energized. Device B is not powered during normal operation. Power is applied after relay is energized.

To reduce the possibility of noise interference, separate AC relay lines from input/ output lines.


### 2.6 Verifying Analog Outputs

Installed a nalog output options can be configured to either of the unit's rear analog outp ut terminals: ANL1 or ANL2. Configuration is determined by which sockets the options are installed. Options installed in option socket \#1 are configured to the rear AN L1 terminals, options installed in socket \#2 are configured to the rear AN L2 terminals (see section 4.3).

Prior to connection, determine which options are configured to terminals ANL1 and ANL2 as follows:

1. Apply power to unit.
2. Press: ENER; available input/ output options are individually prompted on the display.
3. Record option configurations for AN L1 and AN L2 in the spaces provided. This information is necessary for wiring analog outputs in the next section.

| ANL1 = |
| :--- |
| (i.e. 4 to 20 mA ) |
| ANL2 $=$ <br> (i.e. $N /$ A $)$ |

## Option Record

N ote: The unit displays $N / A$ for unavailable options.

### 2.7 Analog 0 utput Connections

0 to 20/4 to 20 mA isolated or non-isolated output as well as 0 to $5 / 0$ to 10 VDC isolated or
Figure 7
Analog output wiring non-isolated outputs are available. See section 4.4 for a list of available output cards.


* The 4 to 20 mA option is jumper configurable for 0 to 20 mA operation. Refer to section 4.6

Note: The maximum loop impedance for the 4 to $20 \mathrm{~mA} / 0$ to 20 mA output is $425 \Omega$. The minimum load impedance for the 0 to $5 \mathrm{~V} / 0$ to 10 V output is $1 \mathrm{k} \Omega(1000 \Omega)$. To reduce the possibility of noise interference, separate output lines from AC power/ relay lines.

## Chapter 3

## System Configuration

### 3.1 Introduction

All the functions which can be modified are contained in three menus:

The CAL (calibrate) menu contains those functions which pertain to the input signal and how it is interp reted by the instrument (i.e. K-factor, totalizer reset). The CAL menu also provides access to the security code and display contrast features.

The RELAY menu contains all the functions necessary to control any output relays, such as relay
setpoint, hysteresis etc.
The 0 UTPUT menu provides access to the functions which define and control all analog output signals, i.e. 4 to $20 \mathrm{~mA}, 0$ to 5 VDC etc.

## CAL Menu cal <br> (frequency)

- K-factor
- K-factor decimal
- Upper display timebase
- Totalizer reset
- Totalizer multiplier
- Display averaging
- Display decimal
- C ontrast adjust
- Security code


## (Analog)

- Range selection
- M inimum flow rate
- Maximum flow rate
- Totalizer reset
- Totalizer multiplier
- Display averaging
- Display decimal
- C ontrast adjust


## RELAY Menu <br> rear

(LO / HI)

- Relay 1 LO / HI
- Relay 1 setpoint
- Relay 1 hysteresis
- Relay 2 LO/ HI
- Relay 2 setpoint
- Relay 2 hysteresis
(Pulse)
- Relay 1 Pulse
- Relay 1 pulse flow unit setting
- Relay 2 Pulse
- Relay 2 pulse flow unit setting


## O UTPUT Menu <br> OUTPUT

- M inimum flow rate
- M aximum flow rate
- Low outputadjust
- High output adjust

Note: A security function is provided which allows the user to "lock out" the calibration menus, restricting access to calibration settings. See Figure 14.

All menus are loop type menus which repeat until
 pressed.

## All menus operate using a standard sequence:

1. Press: $\square$ to enable calibration sequence.
2. Enter security code (when active) using:
 ; press:

ENTER
3. Select menu: $\square$
$\square$ ourput; press menu key to select item.
4. Press: $\qquad$ to enable modifying item.
5. Alter item using:
 press: $\square$ to save entry.
6. Press corresponding menu key to advance to next menu item.
7. Repeat steps $4-6$ for each menu item. Exit menu by pressing:


## Legend

## $\square=$ Press Keypad



## K-factor Setting


"1" is displayed only when previously selected.
"1 " flashes when deselected.

## Table 1

Select upper display timebase:
1 = flow displayed in seconds
2 = flow displayed in minutes
3 = flow displayed in hours 4 = flow displayed in days

Note: Accumulator not a ffected by timebase.

4 to 20 mA option illustrated
Note: The unit's software recognizes which input card/ configuration is inserted, therefore displaying the corresponding calibration value.

### 3.2 Calibration Menu, Frequency Inputs



### 3.3 Calibration Menu, Analog Inputs




## Exiting Menu

M enu will repeat until
 is pressed.


### 3.4 2-Relay 0 perations

The 2 -Relay option allows you to configure individual setpoints, LO or HI operation, and hysteresis values for two independent on/ off relays.

- Relay Setpoints: Setpoints represent the flow rate at which each relay is energized.
- Relay Hysteresis: Hysteresis values directly effect the LO and HI relay modes, specifying how far the flow will rise above (LO Relay M ode) or fall below (HI Relay M ode) each relay's setpoint prior to deenergizing the relay. The main purpose for hysteresis is to eliminate relay "chatter", caused by a flow hovering around a relay's setpoint. Hys-teresis values are programmed in direct flow units and must be less than the corresponding relay setpoint. Hysteresis only applies when exiting an alarm condition.
- LO Relay O peration: In LO operation, the relay is energized when the flow drops below the set-point, and is deenergized when the flow rises above the setpoint plus hysteresis. See Figure 8.
- HI Relay 0 peration: In HI operation, the relay is energized when the flow rises above the setpoint and is deenergized when the flow falls be-low the setpoint plus hysteresis. See Figure 9.
- Pulse Relay Setting: Setting relay 1 or 2 to the Pulse operation mode means the relay will be cycled (energized) for a 150 ms period each time a user specified quantity is measured.

Figure 8
LO relay operation mode


Figure 9
HI relay operation mode


### 3.5 Calibration Menu, 2-Relay

Note: Displayed decimal position set by CAL menu $K$-factor

## Exiting Menu

M enu will repeat until
 pressed.


### 3.6 Calibration Menu, Analog Outputs



## Exiting Menu

$M$ enu will repeat until $\begin{gathered}\text { foow } \\ 4\end{gathered}$ is pressed.

4 to $20 / 0$ to 20 mA (iso/ non-iso) options illustrated

*Note: Press: | Fow |
| :---: |
| 4 | to quickly access the minimum or maximum current output signal Press: $\Delta \boldsymbol{\nabla}$ to fine tune the current output signal

## Figure 10

The min. and max. current adjustment steps require an external a mmeter for monitoring the current output.


Note: The view-only menus are designed for viewing only and DO NOTpermit access for calibration of any kind. M enus will vary depending upon installed options.

### 3.7 View-Only Menus

Three "view -only" menus (CAL, RELAY, and 0 UTPUT) are a vailable during normal operation. Each view only menu provides the operator a means of brow sing through calibration settings without disturbing system calibration and/ or the flow process. W hen used in conjunction with the security feature, the view only menus allow an operator access to limited calibration information on the front display, excluding the ability to change system parameters without the supervisor's approval and personal security code.

Access each of the three view only menus by pressing the corresponding menu key. After entering each of the three view only menus, each calibration parameter is sequentially displayed on the main and lower displays by successively pressing its corresponding menu key as follows:
Ma in (CAL) view-only menu: Frequency (iso/ non-iso) input option illustrated

### 4.1 Accessing Internal Options

1. Remove bezel (1) by placing a coin in the notch (2), twist coin to remove the bezel from the instrument casing. See Figure 11
2. Loosen the four front bracket screws (3), then loosen the center "jack-screw " (4). See Figure 12
3. Slide the electronics assembly (5) from the instrument casing. See Figure 13
4. Lift upper retainer with adhesive gasket to install/ remove plug-in cards. Be sure plug-in cards are properly seated in slots before reassembling instrument. See Figure 13

Figure 11


Figure 12


Figure 13


### 4.2 AC Power Configurations

Two AC power options are possible; 90 to 132 VAC, or 180 to 264 VAC. Each power option is selectable via internal jumpers on the main $p \mathrm{C}$ board. See Figure 14

Figure 14
Main PC Board


### 4.3 Installing Input/ Output Options

Input/ output option cards are "keyed" for proper insertion into four sockets. Sockets are located on the unit's main PC board and are clearly marked. See Figure 14 and table below:

Socket Labeled

| Input C ard | Dedicated for input cards |
| :--- | :--- |
| 0 utput C ard \#1 | Accepts all analog output cards |
| 0 utput C ard \#2 | Accepts all analog output cards |
| 0 utput C ard \#3 | Dedicated for the 2-Relay output card. |

### 4.4 Option Cards and Accessories

| Part Number | Input Cards |
| :---: | :---: |
| FPM -9011A (requires configuration) See section 4.5 | Frequency Input (non-isolated) |
| FPM -9012A (configuration not required) | Frequency Input (isolated) |
| FPM -9013A | 4 to $20 / 0$ to 20 mA input (isolated) |
| FPM -9014A | 0 to 5/ 0 to 10 VDC input (isolated) |
| Part Number | Output Cards |
| PHO R-9 0-M A-N (requires configuration) See section 4.6 | 4 to $20 / 0$ to 20 mA (non-isolated) |
| PHO R-9 $0-5 \mathrm{~V}-\mathrm{N}$ | 0 to 5 VDC (non-isolated) |
| PHO R-9 0-1 OV-N | 0 to 10 VDC (non-isolated) |
| PHO R-9 0-M A-I (requires configuration) See section 4.6 | 4 to 20/0 to 20 mA (isolated) |
| PHO R-9 $0-5 \mathrm{~V}-1$ | 0 to 5 VDC (isolated) |
| PHO R-9 0-10V-I | 0 to 10 VDC (isolated) |
| PH 0 R-9 0-R2 | 2 -Relay card |
| Part Number | Accessories |
| PHO R-9AP | OMEGA mounting adapter plate |
| PHO R-9 RC | N EM A 4X/ IP65 back cover |
| $3-9010.650$ | Assorted engineering labels |
| $3-9000.392$ | C onduit connector kit for N EM A 4X back cover (includes 3 connectors) |


| Part Number | Spare Parts |
| :--- | :--- |
| $3-9000.525-1$ | Front bezel |
| $3-9000.575$ | Panel mounting gasket |
| $3-9000.560$ | Mounting C lamp |
| $2400-0404$ | Front cover screw s (4 each) |
| $3-9000.570$ | Fuse, 1/4 A @ 250 VAC (fast blow) |
| PH0 R-9 FUSE |  |

Figure 15
Frequency (non-iso) input card dip sw itch settings

### 4.5 Input Card Configuration

The non-isolated Frequency Input C ard requires dip sw itch configuration prior to operation. See Figure 15

| 01 | Omega Dip | Dip switch settings |  |
| :---: | :---: | :---: | :---: |
|  | Sensor | 1234 | Function |
|  | FP-5 40 | 1011 | 5 VDC power to sensor |
|  | FP-2 502 |  | with pull down resistor |
|  | FP-5 300, FP-5 100 <br> TLL inputs | 0 1111* | No power to sensor with pulldown resistor |
|  | $\begin{aligned} & \text { FP-5 } 2000 \\ & \text { FP-6 } 0000 \end{aligned}$ | 1110 | No power to sensor with no pulldown resistor |
|  | FP-5060 Series FP-5 070 -PV Series FP-5 600 Series | S 1001 | 5 VDC power to sensor with pull up resistor |
| Frequency Input Card | FP-2 540 Series FM G 2550 Series |  |  |
|  |  | *Dip sw | h factory configured for the |

### 4.6 Output Card Configuration

Each 4 to $20 / 0$ to 20 mA (iso or non-iso) output card contains jumper selections for it's operation range.

- Placing the blue jumper in the "A" position configures the card for 4 to 20 mA operation.
- Placing the blue jumper in the "B" position configures the card for 0 to 20 mA operation.


### 4.7 Troubleshooting

Error codes will be shown on the display after an abnormal occurrence, such as large amounts of electromagnetic interference or a large voltage transient on the AC power line occur.

Displayed error codes represent corrupted setup data in the internal memory which must be reentered by the operator. See Figure 17.

Figure 16
4 to $20 / 0$ to 20 mA output cards


Figure 17
Displayed error codes


## Specifications

Power Requirements
17 to 30 VDC @ 0.5 A max. and/ or90 to 132 VAC @ 50 to 60 Hz or180 to 264 VAC @ 50 to 60 Hz
0 perating Temperature
0 to $55^{\circ} \mathrm{C}$ (32 to $130{ }^{\circ} \mathrm{F}$ )
Relative Humidity
$95 \%$ R.H. max., non-condensing
Enclosure
Materials: ABS plastic
Rating: N EMA 4X/ IP65 front
N EM A 4XI IP65 rear cover (optional)
Dimensions: $3.5 \times 3.5 \times 6.0 \mathrm{in}$./
88 X $88 \times 165 \mathrm{~mm}$
Memory Backup
N on-volatile RAM
Liquid Crystal Display
4.5 digits, 12.7 mm ( 0.5 in .) height (upper)
8 digits, 7.6 mm ( 0.3 in .) height (low er)
2 alarm annunciators
Accuracy: $0-5 \mathrm{kHz}$ input, $0.05 \%$ of reading
Display Averaging
Programmable from 2 to 10 seconds
N oise Immunity
Exceeds IEC 801-2, level 3, IEC 801-3, level 2
Input Signal
Frequency (iso or non-iso):
Frequency range: 0 to 10 kHz
K-factor range: . 0001 to 19999 .M inimum signal a mplitude:N on-iso freq input: $0.2 \mathrm{Vp}-\mathrm{p}$(continued)

Isolated freq input: $0.5 \mathrm{Vp}-\mathrm{p}$
Isolation: 500 VDC to earth ground

## Flow Current and Voltage (iso):

Input range: 4 to 20 mA or 0 to 20 mA
0 to 5 VDC or 0 to 10 VDC
Isolation: 500 VDC isolation to earth ground

## Output Signals

Sensor Pulse Output
TLL compatible synchronous with sensor input M ax. current sink: 20 mA
M ax. current source: 10 mA

## Counter Pulse 0 utput

0 pen collector transistor synchronous w ith to ta lizer Max. current sink: 50 mA @ 30 VDC max.

## 2-Relay

O utputs: Two SPDT contact outputs: 5 A @ 250
VAC or 30 VDC resistive load max. current

## Analog $\mathbf{4}$ to $\mathbf{2 0}$ or $\mathbf{0}$ to $\mathbf{2 0 ~ m A}$

Response time: 2.5 s max. for $100 \%$ change
M aximum loop resistance: $425 \Omega$
Isolation: 500 VDC to earth ground
Accuracy: $\pm 0.5 \%$ of full scale

## Analog 0 to 5 or 0 to 10 VDC

Response time: 2.5 s max. for $100 \%$ change
M aximum loop resistance: $1 \mathrm{k} \Omega(1000 \Omega)$
Isolation: 500 VDC to earth ground (optional)
Accuracy: $\pm 0.5 \%$ of full scale

N otes:

