(omega.com
http://www.omega.com
e-mail: info@omega.com

DP3409 SERIES 1/8 DIN Panel Mount Universal Temperature \& Process

Servicing North America:

USA:	One Omega Drive, Box 4047 ISO 9001 Certified	Stamford, CT 06907-0047 Tel: (203) 359-1660 e-mail: info@omega.com 976 Bergar
Canada:	Laval (Quebec) H7L 5A1 Tel: (514) 856-6928 e-mail: info@omega.ca	FAX: (203) 359-7700
	For immediate technical or application assistance:	

USA and Canada:	Sales Service: $1-800-826-6342 / 1-800-\mathrm{TC}^{-O M E G A}{ }^{\mathrm{SM}}$
	Customer Service: $1-800-622-2378 / 1-800-622-$ BEST $^{\text {SM }}$
	Engineering Service: 1-800-872-9436/1-800-USA-WHEN
	TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA

Mexico and
Latin America:

Benelux:

Benelux:	Postbus 8034, 1180 LA Amstelveen, The Netherlands
	Tel: (31) 206418405 FAX: (31) 206434643
	Toll Free in Benelux: 08000993344 e-mail: nl@omega.com
Czech Republic:	ul. Rude armady 1868, 73301 Karvina-Hranice
	Tel: 420 (69) 6311899 FAX: 420 (69) 6311114
	Toll Free: 0800-1-66342 e-mail: czech@omega.com

France:

9, rue Denis Papin, 78190 Trappes
Tel: (33) 130-621-400
FAX: (33) 130-699-120
Toll Free in France: 0800-4-06342
e-mail: france@omega.com
Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
Tel: 49 (07056) 3017 FAX: 49 (07056) 8540
Toll Free in Germany: 0130112166
e-mail: info@omega.de
United Kingdom: One Omega Drive, River Bend Technology Centre
ISO 9002 Certified

Northbank, Irlam, Manchester
M44 5EX, United Kingdom
Tel: 44 (161) 777-6611 FAX: 44 (161) 777-6622
Toll Free in the United Kingdom: 0800-488-488
e-mail: info@omega.co.uk

[^0]
GETTING STARTED

This manual is divided into 5 sections which contain all the information needed to install, configure, set up and operate the instrument. Each section is identified clearly by a symbol as shown below.

Displays and Controls

- Displays and function keys
- LED Indication
- Error Messages

Operator Mode (Level 1)

- Operator menus for:
- Standard Indicator
- Totalizer/Batch Controller
- Maximum/Minimum/Average Indicator

Set Up Mode (Level 2)

- Alarm trip points
- Totalizer functions

Configuration Mode (Levels 3 and 4)

- Accessing the configuration levels
- Level 3
- Hardware assignment and input type
- Alarm types and hysteresis
- Operator functions and totalizer setup
- Digital input and serial communications
- Level 4
- Ranges and passwords

Installation

- Siting
- Mounting
- Electrical connections

CONTENTS

1 DISPLAYS AND FUNCTION KEYS 3
1.1 Introduction 3
1.2 Use of Function Keys 4
1.3 LED Alarms and Indicators 5
1.4 Error Messages 6
2 OPERATOR MODE 7
2.1 Introduction 7
2.2 Operating Page - Standard 8
2.3 Operating Page - Totalizer 9
2.4 Operating Page - Math Functions 11
3 SET UP MODE 13
3.1 Introduction 13
3.2 Set Up Level 14
4 CONFIGURATION MODE 18
4.1 Introduction 18
4.2 Accessing the Configuration Mode 18
4.3 Basic Hardware and Configuration (Level 3) 20
4.3.1 Hardware Assignment and Input Type 20
4.3.2 Alarms 22
4.3.3 Operator Functions and Totalizer Set Up 24
4.3.4 Digital Input and Serial Communications 26
4.4 Ranges and Passwords (Level 4) 28
5 INSTALLATION 31
5.1 Siting 31
5.2 Mounting 33
5.3 Electrical Connections 35
5.4 Relays, Arc Suppression and Outputs 35
5.4.1 Relay Contact Ratings 35
5.4.2 Arc Suppression 35
5.4.3 Logic Output 35
5.4.4 Control or Retransmission Analog Output 35

1 DISPLAYS AND FUNCTION KEYS

i Information.

The fold-out page inside on the back cover of this manual shows all the frames in the programming levels. Space is provided on the page for writing the programmed setting or selection for each frame.

1.1 Introduction - Fig. 1.1

The instrument front panel display, function keys and LED indicators are shown in Fig. 1.1.

Fig. 1.1 Front Panel Display, Function Keys and Indicators

1.2 Use of Function Keys - Fig. 1.2

A - Raise and Lower Keys

Use to change/set a parameter value...
LEUEL

...move between levels

B - Parameter Advance Key

Note. This key also stores any changes made in the previous frame

C - Multi-function Key

Use to view a parameter setting or selection...
or...

...select individual characters in a frame

Fig. 1.2 Use of Function Keys

1.3 LED Alarms and Indicators

LED Status

All Flashing

- Indicator is in the Configuration Mode - see Section 4.2.

A1, A2 and A3

- Flash when Alarm is active (off when inactive).
- Lit constantly when Alarm 1 is an active latched alarm which has been acknowledged

Fig. 1.3 LED Alarms and Indicators

1.4 Error Messages

Display	Error/Action	To Clear Display
	Calibration error Turn power off and on again (if the error persists, contact the Supplier).	Press the

2 OPERATOR MODE

2.1 Introduction

Operator Mode (Level 1) is the normal day-to-day mode of the instrument.
Frames displayed in Level 1 are determined by the indicator functions which are selected during configuration of the instrument - see Section 4.

*

Note. Only the operating frames relevant to the configured functions are displayed in Operator Mode.

The three indicator functions are:

- Standard Indicator - page 8
- Indicator with Totalization \quad page 9
- Indicator with Max./Min./Average - page 11

2.2 Operating Page - Standard (Level 1)

Process Variable

Normally displayed in engineering units.
 Un-R[H. - alarm unacknowledged R[H. - acknowledged

-1 Only displayed if there is an active latch alarm.

2.3 Operating Page - Totalizer (Level 1)

These frames are only displayed if the totalizer function is enabled in the configuration level - see Section 4.3.3

Global Alarm Acknowledge (latch alarms only)
\square
∇
$4 \Pi-R[\mu$ - alarm unacknowledged
$R[H$ - acknowledged

Continued on next page.
-1 Totalizer stop/go and reset from these frames can be disabled - see Section 4.3.3.

A digital input can also be used to start/stop or reset the totalizer - see Section 4.3.4

... 2 OPERATOR MODE

2.3 Operating Page - Totalizer (Level 1)

-1 The predetermined value should be greater than the preset value when the totalizer is counting up and lower than the preset value when the totalizer is counting down.
-2 Only displayed if enabled in the configuration level - see Section 4.3.3.

2.4 Operating Page - Max./Min./Average Functions (Level 1)

* Note. It is possible to have totalizer and math functions together.

-1 This frame can be disabled - see Section 4.3.3.
The average value is reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4.

The reset function in this frame can be disabled - see Section 4.3.3.

... 2 OPERATOR MODE

...2.4 Operating Page - Math Functions (Level 1)

-1 This frame can be disabled - see Section 4.3.3.
The average value is reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4.

The reset function in this frame can be disabled - see Section 4.3.3.

3 SET UP MODE

3.1 Introduction

To access the Setup Level (Level 2), the correct password must be entered in the security code frame ($\operatorname{Lod} E$) in Level 1 - see Fig. 3.1.

Fig. 3.1 Accessing the Set Up Level (Level 2)

... 3 SET UP MODE

3.2 Set Up Level (Level 2)

Level 2

* Note. To select this frame from anywhere in this level, press the key for a few seconds.

Alarm 1 Trip Point

Alarm type:

R i.h $P=$ High process alarm
Q $1.2 P=$ Low process alarm
B i.HL = Latched high process alarm
B i.L L = Latched low process alarm

\section*{| \square | [In engineering units] |
| :--- | :--- |
| $\boldsymbol{\nabla}$ | |}

Alarm 1 Hysteresis Value

- 1 i. H55 ${ }^{2}$

-1 Not displayed if the alarm is disabled ('NONE' selected) - see Section 4.3.2.
-2 Only displayed if custom alarm hysteresis is selected - see Section 4.3.2

...3.2 Set Up Level (Level 2)

-1 Not displayed if the alarm is disabled ('NONE' selected) - see Section 4.3.2
-2 Only displayed if custom alarm hysteresis is selected - see Section 4.3.2
-3 Only displayed if enabled in the configuration level - see Section 4.3.3
-4 A digital input can also be used to reset the batch total.

...3.2 Set Up Level (Level 2)

999999: $\frac{\Delta}{\boxed{\nabla}}$ [000000 to 999999]

9140.5

Continued on next page.
-1 Only displayed if enabled in the configuration level - see Section 4.3.3.
-2 The preset value must be lower than the predetermined value when counting up, and greater than the predetermined value when counting down.

...3.2 Set Up Level (Level 2)

-1 The average value is reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4.
-2 The maximum and minimum values are reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4.

4 CONFIGURATION MODE

4.1 Introduction

The Configuration Mode comprises two levels (3 and 4) as shown in Fig. 4.2.
Configuration Level 3 is divided into four frames. For most simple applications, it is only necessary to set up the parameters in the first frame.

Note.

When in the configuration level:

- All the LED indicators flash.
- All relays and logic outputs are turned off.
- The analog output reverts to $0 \%(4 \mathrm{~mA})$ output level.

4.2 Accessing the Configuration Mode - Fig. 4.1

To access the Configuration Mode, set the security switch to the 'Configure' position (Levels 1 and 2 cannot be accessed from this setting). When the configuration parameters are programmed, reset the security switch to the 'Normal' position and the operating page is displayed automatically .

Fig. 4.2 Configuration Levels

4.3 Basic Hardware and Configuration (Level 3) - Fig. 4.3

4.3.1 Hardware Assignment and Input Type

Level 3

* Note. To select this frame from anywhere in this level, press the key for a few seconds.

$$
\begin{aligned}
& \text { 'ABCD' Settings } \\
& \text { The first character (A, B, C or D) identifies the } \\
& \text { parameter to be changed. The current setting is } \\
& \text { indicated by a flashing letter. Parameter options are } \\
& \text { shown in Fig. 4.3. } \\
& \qquad \begin{array}{l}
B=\text { Hardware configuration } \\
b=\text { Input type and range } \\
C=\text { Temperature units } \\
\square=\text { No. of decimal points }
\end{array}
\end{aligned}
$$

* Note. The temperature ranges default to their maximum values when the input type is changed.

Continued on page 22.

Information.

Count High Calculation

Convert flow rate into units/sec $=\frac{\text { actual engineering flow rate }}{\text { flow range time units (in seconds) }}$
Count High $=\frac{\text { units } / \mathrm{sec}}{\text { counter factor }}$ resultant must be >0.001 and <99.999 pps.
Counter factor is the engineering value of the least significant digit shown on the totalizer display - see Section 4.3.3.

Totalizer Count Pulse

The totalizer count pulse is on for a preset time of 250 ms and off for a minimum of 250 ms .

9	$1 H$	- Hardware Configuration

$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$		Relay 1 Source	Relay $\mathbf{2}^{*}$ Source	Relay 3* Source	Logic 0/P Source	Analog O/P Source
1	A	Alarm 1	Alarm 2	Alarm 3	TCP**	PV
2	b	Alarm 1	Alarm 2	Alarm 3	TWP**	PV
3	c	TCP**	Alarm 1	Alarm 2	TWP**	PV
4	D	TWP**	Alarm 1	Alarm 2	TCP**	PV
5	E	Alarm 1	Alarm 2	Alarm 3	TCP**	PV Average
		Custom	Custom	Custom	Custom	Custom

TCP = Totalizer Count Pulse TWP = Totalizer Wrap Pulse PV = Process Variable

* Only available if the appropriate option board is fitted.
** Pulse energizes assigned relay

\section*{| b | B - Input Type and Range Configuration |
| :--- | :--- | :--- |}

Display		Display	
b	T/C Type B	1	0 to 20 mA
E	T/C Type E	2	4 to 20 mA
J	T/C Type J	3	0 to 5 V
K	T/C Type K	4	1 to 5 V
n	T/C Type N	6	0 to 50 mV
r	T/C Type R	7	4 to 20 mA (square root lineariser)
S	T/C Type D	U	Custom Configuration
t	T/C Type T		
P	PT100 RTD		

$\left[\begin{array}{lll}{\left[\begin{array}{lll}{[15}\end{array}\right.} \\ \hline\end{array}\right.$

Display	Temperature Units
C	Degrees C*
F	Degrees F*
0	No temperature units

* Temperature inputs only

Display	
0	$x x x x$
1	$x x x . x$
2	$x x . x x$
3	$x . x x x$
4	$x . x x x x$

Fig. 4.3 Hardware Configuration and Input/Output Ranges

4.3.2 Alarms - Figs. 4.4 and 4.5

Note. Relays assigned to alarms are de-energized in the alarm state.

'EFGH' Settings

The first character (E, F, G or H) identifies the parameter to be changed. The current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.5.

$$
\begin{aligned}
E & =\text { Alarm } 1 \text { type } \\
F & =\text { Alarm } 2 \text { type } \\
G & =\text { Alarm } 3 \text { type } \\
H & =\text { Alarm hysteresis }
\end{aligned}
$$

Continued on page 24.

Fig. 4.4 Alarm Action

E $0000{ }^{\text {E-Alarm } 1 \text { Type }}$

Display	
0	None
1	High Process
2	Low Process
3	High Latch
4	Low Latch

Display	
0	None
1	High Process
2	Low Process
3	High Latch
4	Low Latch

| G - Alarm 3 Type |
| ---: | :--- | :--- | :--- | :--- | :--- |

Display	
0	None
1	High Process
2	Low Process
3	High Latch
4	Low Latch

h 0000 H - Alarm Hysteresis

Display	
0	None
1	0.1%
2	0.2%
3	0.5%
4	1.0%
5	2.0%
6	5.0%
U	Custom

* Note. When custom alarm hysteresis is selected, the alarm hysteresis values are set individually in the Set Up Level - see Section 3.2

Fig. 4.5 Alarm Set Up

4.3.3 Operator Functions and Totalizer Set Up - Fig. 4.6

'JKLN' Settings
The first character ($\mathrm{J}, \mathrm{K}, \mathrm{L}$ or N) identifies the parameter to be changed. The current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.6.

」 = Totalizer set-up
$\mu=$ No. of decimal places for totalizer
$L=$ Operator level frame enable
$n=$ Operator level functions enable/disable

Continued on page 26.

- 10000 J - Totalizer Set Up

Display	
0	Off
1	Count Up, Wrap Off
2	Count Up, Wrap On
3	Count Down, Wrap Off
4	Count Down, Wrap On

H. 0000

K - Totalizer Display Decimal Places

Display	
0	xxxxxx
1	xxxxx.x
2	xxxx.xx
3	xxx.xxx
4	xx.xxxx
5	x.xxxxx

10000
 L - Operator Level Frame Enable

Display	Max/Min Values Displayed	Average Value Displayed	Preset/Predetermined Values Displayed
0	No	No	No
1	Yes	No	No
2	Yes	Yes	No
3	No	Yes	Yes
4	No	No	Yes
5	Yes	No	Yes
6	Yes	Yes	Yes

This frame determines which frames appear in the operating page (Level 1)
\square N - Operator Level Math Function \& Totalizer Control Enable

Display	Totalizer Stop/Go	Totalizer Reset	Max./Min./Average
0	No	No	No
1	Yes	No	No
2	No	Yes	No
3	Yes	No	Yes
4	No	Yes	Yes
5	Yes	Yes	Yes

This frame determines which functions the operator can control
Fig. 4.6 Totalizer Set Up and Operator Functions

. 4 CONFIGURATION MODE

4.3.4 Digital Input and Serial Communications - Figs. 4.7 and 4.8

'PRST' Settings

The first character ($\mathrm{P}, \mathrm{R}, \mathrm{S}$ or T) identifies the parameter to be changed and the current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.8.
$P=$ Digital input function
$r=$ Analog input filter
$5=$ Serial communications configuration
$t=$ Serial communications parity

* Note. For custom settings contact the local distributor.

Continued on page 28.

3 Average Max/Min Reset
Information.
Digital input options 1, 2, 3 and 5 are edge-triggered to enable the front panel keys to change the function when the digital input is operational.

Fig. 4.7 Digital Function Configuration

Display	
0	None
1	Totalizer Reset
2	Totalizer Stop/Go
3	Average, Max/Min Reset
4	Front Panel Lockout
5	Alarm Acknowledge

Display	
0	0 seconds
1	1 second
2	2 seconds
5	5 seconds
A	10 seconds
B	20 seconds
C	40 seconds
D	60 seconds

50000

S - Serial Communication Configuration

10000
 T-Serial Communication Parity

Display	
0	None
1	Odd
2	Even

Display	Baud Rate, 2/4 Wire
0	Off
1	2400,2 Wire
2	2400,4 Wire
3	9600,2 Wire
4	9600,4 Wire

Note. Settings for options P, S and T are only available if the appropriate option board is fitted.

Fig. 4.8 Digital Function and Serial Communications Configurations

4.4 Ranges and Passwords (Level 4)

-1 The engineering range high and low values are automatically set to the maximum allowed value when thermocouple or RTD is selected in the configuration level - see Section 4.3.1. This value can be modified if required.

...4.4 Ranges and Passwords (Level 4)

-1 The retransmission range high and low values are automatically set to the maximum allowed value when thermocouple or RTD is selected in the configuration level - see Section 4.3.1. This value can be modified if required.

. 4 CONFIGURATION MODE

...4.4 Ranges and Passwords (Level 4)

-1 Only displayed if enabled in the configuration level - see Section 4.3.3.
-2 Only available if the appropriate option board is fitted.

5.1 Siting - Figs. 5.1 and 5.2

Close to Sensor

At Eye Level

Avoid Vibration

Fig. 5.1 Siting - General Requirements

... 5 INSTALLATION

...5.1 Siting - Figs. 5.1 and 5.2

Temperature Limits

Humidity Limits

0 to 90% RH

Environmental Limits

IP65/NEMA-3

(front panel)
IP20 (rear)

Use Screened Cable

Fig. 5.2 Environmental Requirements

5.2 Mounting - Figs. 5.3 and 5.4

The instrument is designed for panel mounting (see Fig. 5.4). Overall dimensions are shown in Fig. 5.3.

Dimensions in inches (mm)

Fig. 5.3 Overall Dimensions

... 5 INSTALLATION

...5.2 Mounting - Figs. 5.3 and 5.4

Fig. 5.4 Mounting Details

EC Directive 89/336/EEC

In order to meet the requirements of the EC Directive 89/336/EEC for EMC regulations, this product must not be used in a nonindustrial environment.

5.3 Electrical Connections -

 Figs. 5.5 and 5.6Warning. Before making any connections, ensure that the power supply, any powered control circuits and high common mode voltages are switched off.

*

Note. If it is not possible to avoid strong electrical and magnetic fields, screened cables within earthed/grounded metal conduit must be used.

5.4 Relays, Arc Suppression and Outputs

5.4.1 Relay Contact Ratings

Relay contacts are rated at:
$115 / 230 \mathrm{~V}$ AC at 5A (non-inductive) 250V DC 25W max.

5.4.2 Arc Suppression - Fig. 5.5

Arc suppression components are fitted to relays 2 and 3 only. If relay 1 is required to switch inductive loads, the arc suppression component supplied must be fitted across the contacts used.

5.4.3 Logic Output

18 V DC at 20 mA
Min load 900Ω
Isolated from Analog Input (not isolated from Retransmission Output). Dielectric strength 500 V d.c. for 1 minute.

5.4.4 Control or Retransmission Analog Output

Max. load 15 V (750Ω at 20 mA)
Isolated from Analog Input (not isolated from Logic Oouput).
Dielectric strength - 500V d.c. for 1 minute.

Fig. 5.5 Fitting Arc Suppression Components

... 5 INSTALLATION

* Note 1. The Analog Output and Logic Output use a common positive terminal, capable of driving both outputs simultaneously.
*

Note 2. Fit arc suppression components if switching inductive loads.

Fig. 5.6 Electrical Connections

CUSTOMER CONFIGURATION LOG

CUSTOMER SETUP LOG

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of $\mathbf{3 7}$ months from date of purchase. OMEGA Warranty adds an additional one (1) month grace period to the normal three (3) year product warranty to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product. If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

> OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER Ianguage, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS / INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:

1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of the products, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.
OMEGA is a registered trademark of OMEGA ENGINEERING, INC.
© Copyright 1998 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

TEMPERATURE

\square Thermocouple, RTD \& Thermistor Probes, Connectors, Panels \& Assemblies
\square Wire: Thermocouple, RTD \& Thermistor
\square Calibrators \& Ice Point References
\square Recorders, Controllers \& Process Monitors
\square Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

(7 Transducers \& Strain Gauges
\square Load Cells \& Pressure Gauges
\square Displacement Transducers
■ Instrumentation \& Accessories

FLOW/ LEVEL

\square Rotameters, Gas Mass Flowmeters \& Flow Computers
Air Velocity Indicators
\square Turbine/Paddlewheel Systems
\square Totalizers \& Batch Controllers

pH/ CONDUCTIVITY

$\square \mathrm{pH}$ Electrodes, Testers \& Accessories
\square Benchtop/Laboratory Meters
\square Controllers, Calibrators, Simulators \& Pumps
\square Industrial pH \& Conductivity Equipment

DATA ACQUISITION

(Data Acquisition \& Engineering Software
\square Communications-Based Acquisition Systems
\square Plug-in Cards for Apple, IBM \& Compatibles
\square Datalogging Systems
\square Recorders, Printers \& Plotters

HEATERS

\square Heating Cable
\square Cartridge \& Strip Heaters
\square Immersion \& Band Heaters
■ Flexible Heaters
$\boxed{\square}$ Laboratory Heaters

ENVIRONMENTAL

MONITORING AND CONTROL

■ Metering \& Control Instrumentation
\square Refractometers
\square Pumps \& Tubing
\square Air, Soil \& Water Monitors
\square Industrial Water \& Wastewater Treatment
■ pH, Conductivity \& Dissolved Oxygen Instruments

[^0]: It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply.
 OMEGA is constantly pursuing certification of its products to the European New Approach Directives.
 OMEGA will add the CE mark to every appropriate device upon certification.
 The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.
 WARNING: These products are not designed for use in, and should not be used for, patient-connected applications.

