

omega.com reamenar
http://www.omega.com e-mail: info@omega.com

DP3410 \& DP3411 SERIES
 Wall Mount Universal Temperature \& Process
 Indicators

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 37 months from date of purchase. OMEGA Warranty adds an additional one (1) month grace period to the normal three (3) year product warranty to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product. If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.
OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.
CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS / INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:

1. Purchase Order number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

1. Purchase Order number to cover the COST of the repair,
2. Model and serial number of the products, and
3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering. OMEGA is a registered trademark of OMEGA ENGINEERING, INC.
© Copyright 1998 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

GETTING STARTED

This manual is divided into 5 sections which contain all the information needed to install, configure, set up and operate the instrument. Each section is identified clearly by a symbol as shown below.

Displays and Controls

- Displays and function keys
- LED Indication
- Error Messages

Operator Mode (Level 1)

- Operator menus for:
- Standard Indicator
- Totalizer/Batch Controller
- Maximum/Minimum/Average Indicator

Set Up Mode (Level 2)

- Alarm trip points
- Totalizer functions

Configuration Mode (Levels 3 and 4)

- Accessing the configuration levels
- Level 3
- Hardware assignment and input type
- Alarm types and hysteresis
- Operator functions and totalizer setup
- Digital input and serial communications
- Level 4
- Ranges and passwords

Installation

- Siting
- Mounting
- Electrical connections

Symbol Identification and Section Contents

CONTENTS

1 DISPLAYS AND FUNCTION KEYS 3
1.1 Introduction 3
1.2 Use of Function Keys 4
1.3 LED Alarms and Indicators 5
1.4 Error Messages 6
2 OPERATOR MODE 7
2.1 Introduction 7
2.2 Operating Page - Standard 8
2.3 Operating Page - Totalizer 9
2.4 Operating Page - Math Functions 11
3 SET UP MODE 13
3.1 Introduction 13
3.2 Set Up Level 14
4 CONFIGURATION MODE 18
4.1 Introduction 18
4.2 Accessing the Configuration Mode 18
4.3 Basic Configuration (Level 3) 20
4.3.1 Hardware Assignment and Input Type 20
4.3.2 Alarms 22
4.3.3 Operator Functions and Totalizer Set Up 26
4.3.4 Digital Input and Serial Communications 28
4.4 Ranges and Passwords (Level 4) 30
5 INSTALLATION 33
5.1 Siting 33
5.2 Mounting 35
5.3 Cable Glands and Conduit Fixings 37
5.3.1 Cable Glands (IEC - 20mm) 37
5.3.2 Conduit Adapters (N. American - 0.5 in.) 37
5.3.3 Cable Glands (N. American - 0.5 in.) 38
5.4 Electrical Connections 39
5.4.1 Relay Contact Ratings 39
5.4.2 Arc Suppression 39
5.4.3 Logic Output 39
5.4.4 Control or Retransmission Analog Output 39

1 DISPLAYS AND FUNCTION KEYS

i Information.
The fold-out page inside on the back cover of this manual shows all the frames in the programming levels. Space is provided on the page for writing the programmed setting or selection for each frame.

1.1 Introduction - Fig. 1.1

The instrument front panel display, function keys and LED indicators are shown in Fig. 1.1.

Function Keys

Parameter Advance

Raise

Lower
\square Multi-function Key

Fig. 1.1 Front Panel Display, Function Keys and Indicators

1.2 Use of Function Keys - Fig. 1.2

A - Raise and Lower Keys

Use to change/set a parameter value...
or...
LEUEL
...move between levels

B - Parameter Advance Key

Use to advance to the next frame within a level...

Note. This key also stores any changes made in the previous frame

C - Multi-function Key

or...

Use to view a parameter setting or selection...
...select individual characters in a frame
Fig. 1.2 Use of Function Keys

1.3 LED Alarms and Indicators

LED Status

All Flashing

- Indicator is in the Configuration Mode - see Section 4.2.

A1, A2 and A3

- Flash when Alarm is active (off when inactive).
- Lit constantly when Alarm 1 is an active latched alarm which has been acknowledged

Fig. 1.3 LED Alarms and Indicators
．．． 1 DISPLAYS AND FUNCTION KEYS

1．4 Error Messages

Display	Error／Action	To Clear Display
ERLEr	Calibration error Turn power off and on again（if the error persists contact the Service Organization）．	Press the \triangle key
EFEr	Configuration error The configuration and／or set up data for the instrument is corrupted．Turn power off and on again（if error persists，check configuration／set up settings）．	Press the \triangle key
日ロ Err	A to D Converter fault The analog to digital converter is not communicating correctly．	Turn mains power off and on again．If the error persists， contact the Supplier．
-9991	Process variable over／under range	Restore valid input
ORTロローr	Option board error Communications to the option board have failed．	Contact the Supplier

2 OPERATOR MODE

2.1 Introduction

Operator Mode (Level 1) is the normal day-to-day mode of the instrument.
Frames displayed in Level 1 are determined by the indicator functions which are selected during configuration of the instrument - see Section 4.

Note. Only the operating frames relevant to the configured functions are displayed in Operator Mode.

The three indicator functions are:

- Standard Indicator - page 8
- Indicator with Totalization \quad page 9
- Indicator with Max./Min./Average - page 11

2.2 Operating Page - Standard (Level 1)

-1 Only displayed if there is an active latch alarm.

2.3 Operating Page - Totalizer (Level 1)

These frames are only displayed if the totalizer function is enabled in the configuration level - see Section 4.3.3

To reset the totalizer, select $r 5 t-5$, then press the * key.

Continued on next page.
-1 Totalizer stop/go and reset from these frames can be disabled - see Section 4.3.3.
A digital input can also be used to start/stop or reset the totalizer - see Section 4.3.4

...2.3 Operating Page - Totalizer (Level 1)

-1 The predetermined value should be greater than the preset value when the totalizer is counting up and lower than the preset value when the totalizer is counting down.
-2 Only displayed if enabled in the configuration level - see Section 4.3.3.

2.4 Operating Page - Max./Min./Average Functions (Level 1)

* Note. It is possible to display totalizer and math functions together.

-1 This frame can be disabled - see Section 4.3.3.
The reset function in this frame can be disabled - see Section 4.3.3.
The average value is reset automatically on power-up, and can also be reset from a digital input - see Section 4.3.4.

...2.4 Operating Page - Math Functions (Level 1)

To reset the maximum value, select $r 5 t-5$ then press the * key.

To reset the minimum value, select $r 5 t-y$ then press the * key.

- 1 This frame can be disabled - see Section 4.3.3.

The reset function in this frame can be disabled - see Section 4.3.3.
The average value is reset automatically on power-up, and can also be reset from a digital input - see Section 4.3.4.

3 SET UP MODE

3.1 Introduction

To access the Set Up Level (Level 2) the correct set up or configuration level password must be entered in the security password frame ($\operatorname{Cod} E$) in Level 1 - see Sections 2.2 to 2.4.

Fig. 3.1 Accessing the Set Up Level (Level 2)

3.2 Set Up Level (Level 2)

Continued on next page.
-1 Not displayed if the alarm is disabled ('NONE' selected) - see Section 4.3.2.
-2 Only displayed if custom alarm hysteresis is selected - see Section 4.3.2 Not displayed if 'Rate' Alarm type is selected.

...3.2 Set Up Level (Level 2)

To reset the maximum value, select $r 5 t-5$, then press the ${ }^{*}$ key.

Setting to $t-50$ starts the totalizer counting towards the predetermined value. Setting to $t-5 t 0 P$ holds the totalizer at its present value.

5EC.E0t

Continued on next page
-1 Not displayed if the alarm is disabled ('NONE' selected) - see Section 4.3.2
-2 Only displayed if custom alarm hysteresis is selected - see Section 4.3.2 Not displayed if 'Rate' Alarm type is selected.
-3 Only displayed if enabled in the Configuration Level - see Section 4.3.3
-4 A digital input can also be used to reset the batch total.

...3.2 Set Up Level (Level 2)

4
999999: $\frac{\Delta}{\square}$ [000000 to 999999]
8140.5
 Continued on next page.
-1 Only displayed if enabled in the Configuration Level - see Section 4.3.3.
-2 The preset value must be lower than the predetermined value when counting up, and greater than the predetermined value when counting down.

...3.2 Set Up Level (Level 2)

To reset, select $r 5 t-5$ then press the ${ }^{*}$ key.

To reset, select r 5t-3 then press the * key.

To reset, select $r 5 t-5$ then press the ${ }^{*}$ key.

Offset Adjustment

An offset can be applied to the process variable input to enable spot calibration or the removal of system errors.

-1 The average value is reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4.
-2 The maximum and minimum values are reset automatically on power-up and can also be reset from a digital input - see Section 4.3.4. 4 CONFIGURATION MODE

4.1 Introduction

The Configuration Mode comprises two levels (3 and 4) as shown in Fig. 4.2.
Configuration Level 3 is divided into four frames. For most simple applications it is only necessary to set up the parameters in the first frame.

Note.

When in the configuration level:

- All the LED indicators flash.
- All relays and logic outputs are turned off.
- The analog output reverts to $0 \%(4 \mathrm{~mA})$ output level.

4.2 Accessing the Configuration Mode - Fig. 4.1

The Configuration Mode is accessed by entering the correct password in Level 1 (see Sections 2.2 to 2.4). The configuration password is set up in Level 4.

Fig. 4.1 Accessing the Configuration Level (Levels 3 and 4)
... 4 CONFIGURATION MODE

4.3 Basic Configuration (Level 3) - Fig. 4.3

4.3.1 Hardware Assignment and Input Type

Level 3

* Note. To select this frame from anywhere in this level, press and hold the \square key for a few seconds.

'ABCD' Settings

The first character (A, B, C or D) identifies the parameter to be changed. The current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.3.
$B=$ Hardware configuration
$b=$ Input type and range
C = Temperature units
$\square=$ No. of decimal points

Continued on page 22.

i] Information.

Count High Calculation

Convert flow rate into units/sec $=\frac{\text { actual engineering flow rate }}{\text { flow range time units (in seconds) }}$
Count High $=\frac{\text { units } / \mathrm{sec}}{\text { counter factor }}$ resultant must be >0.001 and <99.999 pps.
Counter factor is the engineering value of the least significant digit shown on the totalizer display - see Section 4.3.3.

Totalizer Count Pulse

The totalizer count pulse is on for a preset time of 250 ms and off for a minimum of 250 ms .

\section*{| 8 | $1 H$ | A - Hardware Configuration |
| :--- | :--- | :--- |}

Supply Hz		Relay 1 Source	Relay 2 Source	Relay 3* Source	Logic O/P Source	Analog O/P Source
50	60					
i	8	Alarm 1	Alarm 2	Alarm 3	TCP**	PV
2	b	Alarm 1	Alarm 2	Alarm 3	TWP**	PV
3	c	TCP**	Alarm 1	Alarm 2	TWP**	PV
4	0.	TWP**	Alarm 1	Alarm 2	TCP**	PV
5	E	Alarm 1	Alarm 2	Alarm 3	TCP**	PV Average
		Custom	Custom	Custom	Custom	Custom

TCP $=$ Totalizer Count Pulse \quad TWP $=$ Totalizer Wrap Pulse \quad PV $=$ Process Variable

* Not available if MODBUS option fitted.
** Pulse energizes assigned relay
B IH:CO
B IH:CO
B - Input Type and Range Configuration

Display		Display	
b	T/C Type B	1	0 to 20 mA
E	T/C Type E	2	4 to 20 mA
\lrcorner	T/C Type J	3	0 to 5 V
μ	T/C Type K	4	1 to 5 V
n	T/C Type N	6	0 to 50 mV
r	T/C Type R	7	4 to 20 mA (square root linearizer)
5	T/C Type S	U	Custom Configuration
t	T/C Type T		
P	PT100 RTD		

Display	Temperature Units
ζ	Degrees C*
F	Degrees F*
\square	No temperature units

* Temperature inputs only

D - Process Variable Display Decimal Places

Display	
0	xxxx
i	$\mathrm{xxx} \cdot \mathrm{x}$
2	$\mathrm{xx} \cdot \mathrm{xx}$
3	$x \cdot x x x$
4	$x \cdot x x x x$

Fig. 4.3 Hardware Configuration and Input/Output Ranges

4.3.2 Alarms - Figs. 4.4, 4.5 and 4.6

*

Note. All relays are de-energized in the alarm state.

'EFGH' Settings

The first character ($\mathrm{E}, \mathrm{F}, \mathrm{G}$ or H) identifies the parameter to be changed. The current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.4.

$$
\begin{aligned}
& E=\text { Alarm } 1 \text { type } \\
& F=A \text { Alarm } 2 \text { type } \\
& G=A \text { Alarm } 3 \text { type } \\
& H=\text { Alarm hysteresis }
\end{aligned}
$$

Continued on page 26.

Display	
0	None
1	High Process
2	Low Process
3	High Latch
4	Low Latch
5	Fast Rate
5	Slow Rate

Display	
0	None
i	High Process
2	Low Process
3	High Latch
4	Low Latch
5	Fast Rate
5	Slow Rate

Display	
0	None
i	High Process
2	Low Process
3	High Latch
4	Low Latch
5	Fast Rate
5	Slow Rate

Fig. 4.4 Alarm Set Up

...4.3.2 Alarms - Figs. 4.4, 4.5 and 4.6

\% Engineering Range

i Information. The example above shows a fast rate alarm with a trip value of 10% of the engineering span per hour on an engineering range of 0.0 to 100.0. The time taken to detect whether an alarm condition is present or has cleared is calculated as follows:

$$
\mathrm{t}=10.81+{ }_{\text {trip value }(10 \% \text { eng. span per hour })}^{1800}
$$

$\mathrm{t}=191$ seconds
Fig. 4.6 Rate Alarm Action
... 4 CONFIGURATION MODE

4.3.3 Operator Functions and Totalizer Set Up - Fig. 4.7

'JKLN' Settings

The first character (J, K, L or N) identifies the parameter to be changed. The current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.7.

」 = Totalizer set-up
$\mu=$ No. of decimal places for totalizer
$L=$ Operator level frame enable
$n=$ Operator level functions enable/disable

Continued on page 28.

K - Totalizer Display Decimal Places

Display	
0	Off
i	Count Up, Wrap Off
2	Count Up, Wrap On
3	Count Down, Wrap Off
4	Count Down, Wrap On

Display	
0	xxxxxx
i	xxxxx.x
2	xxxx.xx
3	xxx.xxx
4	xx.xxxx
5	x.xxxxx

Display	Max/Min Values Displayed	Average Value Displayed	Preset/Predetermined Values Displayed
0	No	No	No
1	Yes	No	No
2	Yes	Yes	No
3	No	Yes	Yes
4	No	No	Yes
5	Yes	No	Yes
5	Yes	Yes	Yes

This frame determines which frames appear in the operating page (Level 1)
\square
$0 \quad 1707$
N - Operator Level Math Function \& Totalizer Control Enable

Display	Totalizer Stop/Go	Totalizer Reset	Max./Min./Average
0	No	No	No
1	Yes	No	No
2	No	Yes	No
3	Yes	No	Yes
4	No	Yes	Yes
5	Yes	Yes	Yes

This frame determines which functions the operator can control
Fig. 4.7 Totalizer Set Up and Operator Functions

4.3.4 Digital Input and Serial Communications - Figs. 4.8 and 4.9

'PRST' Settings

The first character ($\mathrm{P}, \mathrm{R}, \mathrm{S}$ or T) identifies the parameter to be changed and the current setting is indicated by a flashing letter. Parameter options are shown in Fig. 4.9.
$P=$ Digital input function
$r=$ Analog input filter
$5=$ Serial communications configuration
$t=$ Serial communications parity

Continued on page 30.

Digital input options 1, 2, 3 and 5 are edge-triggered to enable the front panel keys to change the function when the digital input is operational.

Fig. 4.8 Digital Function Configuration

P 0000 P - Digital Input Function

Display	
0	None
i	Totalizer Reset
2	Totalizer Stop/Go
3	Average, Max/Min Reset
4	Front Panel Lockout
5	Alarm Acknowledge

$\begin{array}{lll}50000 & \begin{array}{l}\text { S - Serial Communication } \\ \text { Configuration }\end{array}\end{array}$

Display	Baud Rate, 2/4 Wire
0	Off
1	2400,2 -Wire
2	2400,4 -Wire
3	9600, -Wire
4	9600,4 -Wire

Display	
0	0 seconds
i	1 second
2	2 seconds
5	5 seconds
8	10 seconds
6	20 seconds
C	40 seconds
0.	60 seconds

| r 0000 | - Analog Input Filter |
| :--- | :--- | :--- |

$t 0000$
T-Serial Communication Parity

Display	
0	None
i	Odd
2	Even

Note. Settings for options P, S and T are only available if the appropriate option board is fitted.

Fig. 4.9 Digital Function and Serial Communications Configuration

4.4 Ranges and Passwords (Level 4)

-1 The engineering range high and low values are automatically set to the maximum allowed value when thermocouple or RTD is selected in the Configuration Level - see Section 4.3.1. This value can be modified if required.

...4.4 Ranges and Passwords (Level 4)

Continued on next page...

- 1 The retransmission range high and low values are automatically set to the maximum allowed value when thermocouple or RTD is selected in the configuration level - see Section 4.3.1. This value can be modified if required.

...4.4 Ranges and Passwords (Level 4)

-1 Only displayed if enabled in the configuration level - see Section 4.3.3.
-2 Only available if the appropriate option board is fitted.

EC Directive 89/336/EEC

In order to meet the requirements of the EC Directive 89/336/EEC for EMC regulations, this product must not be used in a non-industrial environment.

5.1 Siting - Figs 5.1 and 5.2

At Eye Level

Avoid Vibration

Fig 5.1 Siting - General Requirements

...5.1 Siting - Figs 5.1 and 5.2

Temperature Limits

Environmental Limits

Use Screened Cable

Note. If it is not possible to avoid strong electrical and magnetic fields, screened cables within earthed/grounded metal conduit must be used.

Fig 5.2 Environmental Requirements

5.2 Mounting - Figs. 5.3 and 5.4

The instrument is designed for wall-mounting or pipe-mounting (see Fig. 5.4). The pipe-mounting kit is suitable for both vertical and horizontal pipes. Overall dimensions are shown in Fig. 5.3.

Fig. 5.3 Overall Dimensions

...5.2 Mounting - Figs. 5.3 and 5.4

Position 'U' bolts on pipe
Position plates over 'U' bolts

Pipe-mounting

(4) Secure transmitter to mounting plate

Fig. 5.4 Mounting Details

5.3 Cable Glands and Conduit Fixings

5.3.1 Cable Glands

 (IEC - 20mm) - Fig. 5.5

Fig. 5.5 Cable Gland (Supplied as Standard)

5.3.2 Conduit Adaptors

(N. American - 0.5 in.) - Fig. 5.6

- Rigid conduit must NOT be fitted to the Indicator.
- Indicator adapters must incorporate a face seal.
- Torque settings for the hubs and outer nuts on the specified adaptors is 20ft.lbs minimum, 25 ft .lbs. maximum.

Alternative
Face Seal
Face Seal

Seal

Note. Fittings may vary for different makes.

Fig. 5.6 Conduit Adaptors (Not Supplied)

5.3.3 Cable Glands (N. American - 0.5 in.) - Fig. 5.7

Warning.

- Indicator glands must be fitted with a face seal.
- Torque settings (hubs only) - 20ft. lbs minimum, 25 ft . lbs. maximum.
- Outer nuts - hand tight plus a half turn only.

i Information.

When fitting cable glands to the Indicator, start with an outer gland and also temporarily fit a gland at the opposite end, to aid location of the transmitter gland plate. Fit and tighten glands consecutively from initial gland.

Fig. 5.7 Cable Glands (Not Supplied)

5.4 Electrical Connections -

Figs. 5.8 and 5.9

Warning. Before making any connections, ensure that the instrument power supply, any powered control circuits and high common mode voltages are switched off.

Note. The analog output and the logic output share a common positive and can be used at the same time.

5.4.1 Relay Contact Ratings

Relay contacts are rated at:
$115 / 230 \mathrm{~V}$ a.c. at 5 A (noninductive)

250V d.c. 25 W max.

5.4.2 Arc Suppression - Fig. 5.8

Arc suppression components are fitted to relays 2 and 3 only. If relay 1 is required to switch inductive loads, the arc suppression component supplied must be fitted across the contacts used.

5.4.3 Logic Output

18 V d.c. at 20 mA
Min. load 900Ω
Isolation 500 V from input (not isolated from retransmission output)

5.4.4 Retransmission

 Analog OutputMax. load 15 V (750Ω at 20 mA)
Isolation 500V from input (not isolated from logic output)

Fig. 5.8 Fitting Arc Suppression Components

* Fit 100Ω resistor supplied
** Fit arc suppression components

Fig. 5.9 Electrical Connections

Instrument Serial Number: \qquad

omega.com

ת=OMEGA.

OMEGAnet ${ }^{\circledR}$ On-Line Service http://www.omega.com

Internet e-mail info@omega.com

Servicing North America:

USA:
ISO 9001 Certified

Canada:

One Omega Drive, Box 4047
Stamford, CT 06907-0047
Tel: (203) 359-1660 FAX: (203) 359-7700
e-mail: info@omega.com
976 Bergar Laval (Quebec) H7L 5A1
Tel: (514) 856-6928
FAX: (514) 856-6886

For immediate technical or application assistance:

USA and Canada:	Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA ${ }^{\text {SM }}$
	Customer Service: 1-800-622-2378 / 1-800-622-BEST
	Engineering Service: 1-800-872-9436/1-800-USA-WHEN
	TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA

Mexico and
Latin America:
Tel: (95) 800-826-6342
En Español: (95) 203-359-7803
FAX: (95) 203-359-7807
e-mail: espanol@omega.com

Servicing Europe:

| Benelux: | Postbus 8034, 1180 LA Amstelveen, The Netherlands

 Tel: (31) 20 6418405

 Toll Free in Benelux: 0800 0993344
 e-mail: nl@omega.com |
| :--- | :--- | :--- |
| | FAX: (31) 206434643 |

France: \quad| 9, rue Denis Papin, 78190 Trappes | |
| :--- | :--- |
| | Tel: (33) 130-621-400 FAX: (33) 130-699-120 |

Toll Free in France: 0800-4-06342
e-mail: france@omega.com
Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
Tel: 49 (07056) 3017 FAX: 49 (07056) 8540
Toll Free in Germany: 0130112166
e-mail: info@omega.de
United Kingdom: One Omega Drive, River Bend Technology Centre
ISO 9002 Certified

Northbank, Irlam, Manchester
M44 5EX, United Kingdom
Tel: 44 (161) 777-6611
FAX: 44 (161) 777-6622
Toll Free in the United Kingdom: 0800-488-488
e-mail: info@omega.co.uk

[^0]
Where Do I Find Everything I Need for Process Measurement and Control? OMEGA. . .Of Course!

TEMPERATURE

\checkmark Thermocouple, RTD \& Thermistor Probes, Connectors, Panels \& Assemblies
\checkmark Wire: Thermocouple, RTD \& Thermistor
\checkmark Calibrators \& Ice Point References
\checkmark Recorders, Controllers \& Process Monitors
Infrared Pyrometers
PRESSURE, STRAIN AND FORCE
\square Transducers \& Strain Gauges
\square Load Cells \& Pressure Gauges
Displacement Transducers
Instrumentation \& Accessories
FLOW/ LEVEL
\checkmark Rotameters, Gas Mass Flowmeters \& Flow Computers
Air Velocity Indicators
Turbine/Paddlewheel Systems
Totalizers \& Batch Controllers
pH/ CONDUCTIVITY
pH Electrodes, Testers \& Accessories
Benchtop/Laboratory Meters

- Controllers, Calibrators, Simulators \& Pumps

Industrial pH \& Conductivity Equipment
DATA ACQUISITION
Data Acquisition \& Engineering Software
Communications-Based Acquisition Systems
Plug-in Cards for Apple, IBM \& Compatibles
Datalogging Systems
Recorders, Printers \& Plotters
HEATERS
\checkmark Heating Cable
Cartridge \& Strip Heaters
Immersion \& Band Heaters
Flexible Heaters
Laboratory Heaters

ENVIRONMENTAL

MONITORING AND CONTROL
M Metering \& Control Instrumentation
Refractometers
Pumps \& Tubing
\square Air, Soil \& Water Monitors
\checkmark Industrial Water \& Wastewater Treatment
pH , Conductivity \& Dissolved Oxygen Instruments

[^0]: It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.
 The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.
 WARNING: These products are not designed for use in, and should not be used for, patient-connected applications.

