

OMEGAnetSM On-Line Service
http://www.omega.com

Internet e-mail
info@omega.com

Servicing North America:
USA: One Omega Drive, Box 4047

Stamford, CT 06907-0047
Tel: (203) 359-1660
e-mail: info@omega.com

FAX: (203) 359-7700

Canada: 976 Berger
Laval (Quebec) H7L 5A1
Tel: (514) 856-6928
e-mail: canada@omega.com

FAX: (514) 856-6886

For immediate technical or application assistance:
USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGASM

Customer Service: 1-800-622-2378 / 1-800-622-BESTSM

Engineering Service: 1-800-872-9436 / 1-800-USA-WHENSM

TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA
Mexico and
Latin America: Tel: (95) 800-TC-OMEGASM

En Espanol: (95) 203-359-7803
FAX: (95) 203-359-7807
e-mail: espanol@omega.com

Servicing Europe:
Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands

Tel: (31) 20 6418405
Toll Free in Benelux: 06 0993344
e-mail: nl@omega.com

FAX: (31) 20 6434643

Czech Republic: ul. Rude armady 1868
733 01 Karvina-Hranice
Tel: 420 (69) 6311899
e-mail:czech@omega.com

FAX: 420 (69) 6311114

France: 9, rue Denis Papin, 78190 Trappes
Tel: (33) 130-621-400
Toll Free in France: 0800-4-06342
e-mail: france@omega.com

FAX: (33) 130-699-120

Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
Tel: 49 (07056) 3017
Toll Free in Germany: 0130 11 21 66
e-mail: germany@omega.com

FAX: 49 (07056) 8540

United Kingdom: 25 Swannington Road,
Broughton Astley, Leicestershire,
LE9 6TU, England
Tel: 44 (1455) 285520
FAX: 44 (1455) 283912

P.O. Box 7, Omega Drive,
Irlam, Manchester,
M44 5EX, England
Tel: 44 (161) 777-6611
FAX: 44 (161) 777-6622

Toll Free in England: 0800-488-488
e-mail: uk@omega.com

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that
apply. OMEGA is constantly pursuing certification of its products to the European New Approach
Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but OMEGA Engineering, Inc. accepts
no liability for any errors it contains, and reserves the right to alter specifications without notice.
WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

Personal488 User's Manual For Windows 95 and Windows NT i

Introduction to this Manual
This manual is the Personal488 User’s Manual for Windows 95 and Windows NT.

The material in this manual discusses PC/IEEE 488 controller interface hardware and their
accompanying 32-bit driver software. This material is divided into the following sections:

• Chapter 1: Personal488 Overview gives a general description of both the interface hardware and
the driver software associated with each of the Personal488 PC/IEEE 488 controller interface
packages discussed in this manual.

• Chapter 2: Personal488/PCI (with PCI488) provides a discussion of the hardware specifications,
and the instructions for the installation of the "plug-&-play" PCI488 interface and its drivers.

• Chapter 3: Personal488/ATpnp (with AT488pnp) provides a discussion of the hardware
specifications, and the instructions for the installation of the "plug-&-play" AT488pnp interface
and its drivers.

• Chapter 4: Personal488/CARD (with CARD488) provides a discussion of the hardware
specifications, and the instructions for the installation of the "plug-&-play" CARD488 interface
and its drivers.

• Chapter 5: Personal488/AT (with AT488) provides a discussion of the hardware specifications,
and the instructions for the installation and configuration of the AT488 interface and its drivers.

• Chapter 6: Personal488 (with GP488B) provides a discussion of the hardware specifications, and
the instructions for the installation and configuration of the GP488B interface and its drivers.

• Chapter 7: Personal488/MM (with GP488B/MM) provides a discussion of the hardware
specifications, and the instructions for the installation and configuration of the GP488B/MM
interface and its drivers.

• Chapter 8: Driver488/W95 & Driver488/WNT gives a more-detailed description of the 32-bit
Windows-based driver software implemented with each of the Personal488 products in this
manual, and includes instructions for the configuration of this software.

• Chapter 9: API Command Reference provides descriptions for the entire API command set
combining both 32-bit versions of Driver488 – Driver488/W95 and Driver488/WNT – and
covering each of the Personal488 products in this manual. The description format of the individual
API commands includes the command syntax, returned response, operating mode, bus states, and
an example program excerpt.

• Chapter 10: Troubleshooting provides a reference for possible solutions to technical problems.
Before calling for technical assistance, refer to this chapter.

• The Appendix provides background information concerning the IEEE 488 bus, the serial bus, and
ASCII controls.

• The Index provides a comprehensive alphabetical listing of the main terms and topics in this
manual. Also, the Abbreviations on the last pages of this manual, provides an overall list of
abbreviations, including acronyms and ASCII control codes, as an additional reference for this
manual and for other related literature.

Since many of the hardware names and boards discussed in this manual appear very similar to each
other, make sure you view the material which corresponds to your specific hardware board. For
example, although the GP488B and GP488B/MM names are very similar, the interface boards are not
identical; some material will apply to only one of these boards.

Information which may have changed since the time of printing will be found in a README.TXT file on
disk, or in an addendum to the manual.

ii Personal488 User's Manual For Windows 95 and Windows NT

- Notes

Personal488 User's Manual For Windows 95 and Windows NT iii

Table of Contents

1 – Personal488 Overview

Hardware Products……1
Personal488/PCI (with PCI488)……1
Personal488/ATpnp (with At488pnp)……1
Personal488/CARD (with CARD488)……1
Personal488/AT (with AT488)……1
Personal488 (with GP488B)……1
Personal488/MM (with GP488B/MM)……1
Hardware Accessories……2

Hardware Connection……2
Software Products……2

Driver488/W95 & Driver488/WNT……2

2 – Personal488/PCI (with PCI488)

Introduction……3
The Package……3
PCI488 Specifications……3
Controller Interface……3

Installing the New Hardware & Hardware
Drivers……4

Updating the Existing Hardware
Drivers……6

3 – Personal488/ATpnp (with AT488pnp)

Introduction……7
The Package……7
AT488pnp Specifications……7
Controller Interface……7

Installing the New Hardware & Hardware
Drivers……8

Updating the Existing Hardware
Drivers……10

4 – Personal488/CARD (with CARD488)

Introduction……11
The Package……11
CARD488 Specifications……11
Controller Interface……11

Installing the New Hardware & Hardware
Drivers……12

Updating the Existing Hardware
Drivers……14

5 – Personal488/AT (with AT488)

Introduction……15
The Package……15
AT488 Specifications……15

Configuring the New Hardware……16
Installing the New Hardware & Hardware

Drivers……20
Updating the Existing Hardware

Drivers……22

6 – Personal488 (with GP488B)

Introduction……23
The Package……23
GP488B Specifications……23

Configuring the New Hardware……24
Installing the New Hardware & Hardware

Drivers……28
Updating the Existing Hardware

Drivers……30
Configuring Other Hardware

Settings……31

7 – Personal488/MM (with GP488B/MM)

Introduction……33
The Package……33
GP488B/MM Specifications……33

Configuring the New Hardware……34
Installing the New Hardware & Hardware

Drivers……38
Updating the Existing Hardware

Drivers……40
Configuring Other Hardware

Settings……40

8 – Driver488/W95 & Driver488/WNT

Introduction……41
Differences from 16-Bit Driver488

Software……41
Programming Support……42
16-Bit Driver488/W95 Compatibility

Layer……42
Configuration Utility……42

Configuring the Driver488 Software
Settings……43

iv Personal488 User's Manual For Windows 95 and Windows NT

9 – API Command Reference

Introduction……47
Abort……48
Arm……49
AutoRemote……50
Buffered……51
BusAddress……52
CheckListener……53
Clear……54
ClearList……55
Close……56
ControlLine……57
DigArm……58
DigArmSetup……59
DigRead……60
DigSetup……61
DigWrite……62
Disarm……63
EnterX……64
Error……66
FindListener……67
Finish……68
GetError……69
GetErrorList……70
Hello……71
KeepDevice……72
Listen……73
Local……74
LocalList……75
Lol……76
MakeDevice……77
MakeNewDevice……78
MyListenAddr……79
MyTalkAddr……80
OnDigEvent……81
OnDigEventVDM……82
OnEvent……83
OnEventVDM……84
OpenName……86
OutputX……87
PassControl……89
PPoll……90
PPollConfig……91
PPollDisable……92
PPollDisableList……93
PPollUnconfig……94

Remote……95
RemoteList……96
RemoveDevice……97
Request……98
Reset……99
Resume……100
SendCmd……101
SendData……102
SendEoi……103
SPoll……104
SPollList……105
Status……106
Stop……108
Talk……109
Term……110
TermQuery……111
TimeOut……112
TimeOutQuery……113
Trigger……114
TriggerList……115
UnListen……116
UnTalk……117
Wait……118

10 – Troubleshooting

Radio Interference Problems……119
IEEE 488 Bus Errors……119
Hardware-Software Conflicts……120
Checking Hardware & Software

Settings……120

A – Appendix

IEEE 488 Bus & Serial Bus……121
IEEE 488 Bus Commands……122
ASCII Codes……123

ASCII Code Summary……123
ASCII Code Details……125

Index……131
Abbreviations……134

Personal488 User's Manual For Windows 95 and Windows NT Personal488 Overview 1

Personal488 Overview 1

Hardware Products……1
Personal488/PCI (with PCI488)……1
Personal488/ATpnp (with At488pnp)……1
Personal488/CARD (with CARD488)……1
Personal488/AT (with AT488)……1
Personal488 (with GP488B)……1
Personal488/MM (with GP488B/MM)……1
Hardware Accessories……2

Hardware Connection……2
Software Products……2

Driver488/W95 & Driver488/WNT……2

Hardware Products
The family of Personal488 PC/IEEE 488 controller interfaces includes the six (6) interfaces which are
discussed in this manual. All of them are IEEE 488.2 compatible and are supported by 32-bit
Driver488 software for Windows 95 and for Windows NT, named Driver488/W95 and
Driver488/WNT respectively. These interfaces are discussed in the following Personal488 packages:

Personal488/PCI (with PCI488)

The PCI488 interface board features plug-and-play and 32-bit PCI local bus compatibility. Provides 1
Mbyte/s data transfer rate. Offers full IEEE 488.2 support. Supported by Windows 95 and Windows
NT drivers. Provides eight (8) channels of general-purpose digital I/O.

Personal488/ATpnp (with AT488pnp)

The AT488pnp interface board features plug-and-play and 16-bit ISA-bus compatibility. Provides 1
Mbyte/s data transfer rate. Offers full IEEE 488.2 support. Supported by Windows 95 and Windows
NT drivers. Provides eight (8) channels of general-purpose digital I/O. CE compliant.

Personal488/CARD (with CARD488)

The CARD488 interface features "hot swapping" PC Card (PCMCIA) compatibility. Provides 1
Mbyte/s data transfer rate. Offers full IEEE 488.2 support. Supported by Windows 95 and Windows
NT drivers.

Personal488/AT (with AT488)

The AT488 interface board features 16-bit ISA-bus compatibility. Provides 1 Mbyte/s data transfer
rate. Offers full IEEE 488.2 support. Supported by Windows 95 and Windows NT drivers. Provides
eleven (11) interrupt lines and seven (7) DMA channels. CE compliant.

Personal488 (with GP488B)

The GP488B interface board features 8-bit ISA-bus compatibility. Provides 330 Kbyte/s data transfer
rate. Offers full IEEE 488.2 support. Supported by Windows 95 and Windows NT drivers. Provides
six (6) interrupt lines and three (3) DMA channels. CE compliant.

Personal488/MM (with GP488B/MM)

The GP488B/MM interface board features a compact PC/104 form-factor. Features 8-bit PC/104 bus
compliance. Provides 330 Kbyte/s data transfer rate. Offers full IEEE 488.2 support. Supported by
Windows 95 & Windows NT drivers. CE compliant.

2 Personal488 Overview Personal488 User's Manual For Windows95 and Windows NT

Hardware Accessories

The available hardware accessories are listed below by part number. Refer to your product catalog for
details.

Connector Cable

• CA-7-3: Shielded IEEE 488 cable, 6 ft.

Controller Device

• IOT7210(P/T): IEEE 488 Controller Chip.

Note: These specifications are subject to change without notice.

Name: IOT7210 IEEE 488 Controller Chip
Compatibility: 100% compatible with the NEC µPD7210 chip; TTL-compatible and CMOS;

8080/85/86-compatible
Power Consumption: 98% less consumption than the NEC µPD7210 chip
Power Supply: 5 V single power supply
Capabilities: Programmable data transfer rate; End-Of-String (EOS) message automatic detection;

automatic command processing and undefined command read capability; DMA-capable; 1-MHz to
8-MHz clock range

Configurations: 40-pin plastic DIP or 44-pin plastic TQFP

Hardware Connection
For successful data acquisition, the Personal488 controller interface must be properly connected to a
data acquisition device. The following diagram depicts an IEEE 488 connection from a Personal488
PC/IEEE 488 controller interface board to a data acquisition master unit.

Software Products

Driver488/W95 & Driver488/WNT

This driver software integrates IEEE 488.2 control into Windows 95 & Windows NT applications.
Supports the PCI488, AT488pnp, CARD488, AT488, GP488B, and GP488B/MM controller interfaces
(discussed above). Provides true multi-tasking device locking. Specifically designed for the 32-bit
Windows environment. Includes interactive control application for exercising instruments.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/PCI (with PCI488) 3

Personal488/PCI (with PCI488) 2

Introduction……3
The Package……3
PCI488 Specifications……3
Controller Interface……3

Installing the New Hardware & Hardware Drivers……4
Updating the Existing Hardware Drivers……6

Introduction

The Package

The Personal488/PCI, including the IEEE 488 interface board and the Driver488 software, is carefully
inspected, both mechanically and electrically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materials in the event shipment back to the factory becomes necessary.

The Personal488/PCI (with PCI488) package includes:

• PCI488 "Plug-&-Play" IEEE 488 Bus Interface PCI Board

• Driver488 Software Disks for Windows 95 or Windows NT (Driver488/W95 or Driver488/WNT)

• Personal488 User’s Manual for Windows 95 and Windows NT

PCI488 Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rate: 32-bit: 1 Mbyte/s (reads and writes)
Dimensions: Half-size board; occupies one PCI slot
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs
Digital I/O Connector: Standard 9-pin female DSUB connector
Power: 500 mA max @ 5 V from PC
Environment: 0 to 70°C, 0 to 95% RH, non-condensing
Digital I/O: Each signal can source 2 mA @ 3.7 V (6 mA @ 3.2 V) and sink 2 mA @ 0.4 V (6 mA @

0.9 V)
Multiple Boards: Up to four PCI488 boards can be installed into one PC

Controller Interface

The PCI488 interface board provides the convenience of plug-and-play installation. The physical
configuration of hardware is not necessary. Instead, after installing your board as described in the
following text, the board is configured automatically.

4 Personal488/PCI (with PCI488) Personal488 User's Manual For Windows95 and Windows NT

Installing the New Hardware & Hardware Drivers
Typical IEEE 488 interface boards are installed into expansion slots inside the PC's system unit.
Typical PCs have the following types of expansion slots

• ISA expansion slots. ISA slots can either be an 8-bit slot with one card-edge receptacle (PC-bus
compatible), or a 16-bit slot with two card-edge receptacles (AT-bus compatible). Eight-bit ISA
boards may be used in either the 8-bit or 16-bit ISA slot, while 16-bit ISA boards may only be
used in the 16-bit ISA slot.

• PCI expansion slots. PCI slots are 32-bit slots, used only by PCI boards.

For technical assistance, see chapter Troubleshooting on page 119 in this manual, or the
troubleshooting section in your PC’s manual. If you are still not sure of the problem, contact the dealer
or manufacturer of your interface board or PC.

Step 1: Installing the PCI488 Interface Board into a PCI Slot

General instructions for installing the board are given since the design of computer cases varies. Refer
to your PC's reference manual whenever in doubt.

1. Turn OFF the power to your computer and any other connected peripheral devices. Follow the
precautions for static electricity discharge.

• Touch a large grounded metal surface to discharge any static electricity build up in your body.

• Avoid any contact with internal parts. Handle cards only by their edges.

• Disconnect the AC power before removing the cover.

2. Unplug all power cords and cables that may interfere from the back of the computer.

3. Remove your computer's cover by removing its mounting screws with a screwdriver. Slide the
cover OFF. If necessary, refer to your PC's manual.

4. Your IEEE 488 controller interface must be installed in a 32-bit PCI-bus expansion slot. Select an
available PCI expansion slot and remove its slot cover by unscrewing the holding screw and sliding
it out. Save this screw for securing the interface after it is installed.

5. To install the IEEE 488 controller interface, carefully align the card edge connector with the PCI
slot on the motherboard, fitting the IEEE 488 port through the rear panel opening. Push the board
down firmly, but gently, until it is well seated.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/PCI (with PCI488) 5

6. Replace the cover slot holding screw to secure the board in place.

7. Replace the computer's cover and screws. Then reconnect all power cords and cables to the back of
the computer. If available, connect your external data acquisition instrument to the IEEE 488 port
connector on the interface.

8. Turn on your PC.

At this point, the hardware installation is complete. Continue to Step 2.

Step 2: Detecting the PCI488 Interface Board in "Add New Hardware"

1. After installing the IEEE 488 controller interface, turn on your computer. Windows will detect the
new hardware and prompt for a Manufacturer’s Disk.

2. Insert the disk labeled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive. Click OK.

3. The hardware will now be recognized and configured by Windows; the "Add New Hardware
Wizard" will auto-assign an available I/O base address, IRQ (Interrupt), and DMA channel.
(Additional PCI488 interfaces may share the same IRQ and DMA values.)

Continue as prompted to load the interface driver, but DO NOT restart Windows. Select No to
NOT shut down and go directly to the Device Manager to verify the presence of the new hardware
device.

At this point, the hardware detection is complete. Continue to Step 3.

Step 3: Verifying the PCI488 Interface Installation & Driver488 Software Settings

1. To confirm proper installation, open the Control Panel window from the Start > Settings menu,
click on the System icon, and select the Device Manager tab. Look for a device type named
"IEEE488.2 Controllers" and below it, verify the presence of the new hardware device.

2. During Driver488 installation, a new Control Panel applet titled "IEEE 488" was installed under the
Control Panel with default settings selected.

To verify or configure the Driver488 software settings for your IEEE 488 interface(s) and IEEE 488
external device(s), see chapter Driver488/W95 & Driver488/WNT on page 41.

3. Restart Windows and once again verify the hardware installation and Driver488 configuration in
Device Manager.

At this point, the hardware and driver verification is complete. Continue to Step 4.

Step 4: Installing the PCI488 Interface Software Support Files

1. Insert the disk titled "IEEE 488 Software Installation Disk, 1 of 2" into the floppy disk drive.

2. To install, you can do one of the following:

• Select Run from the Start Menu, type in A:\SETUP.EXE, then click OK.

• Go to My Computer or Windows Explorer, double-click on the Floppy Drive icon, then double-
click on the Setup icon.

• Or go to the Control Panel from the Start > Settings menu, double-click on the Add/Remove
Programs icon, then click the Install button.

3. The Installation program will step you through various options on installing these software support
files.

Note: These files are NOT required to get the hardware to work properly, but it is recommended
if any software development is desired or Help files are needed.

4. Any or all of the installed software support files may be removed by going to the Control Panel
from the Start > Settings menu, double-clicking on the Add/Remove Programs icon, then selecting
"Personal IEEE 488 v 2.0", and clicking the Add/Remove… button.

At this point, the installation of software support files is complete.

6 Personal488/PCI (with PCI488) Personal488 User's Manual For Windows95 and Windows NT

Updating the Existing Hardware Drivers

Updating the PCI488 Interface Hardware Drivers

1. Insert the disk titled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive.

2. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Look for a device type named "IEEE488.2 Controllers".

3. Highlight the device you want to update under "IEEE488.2 Controllers".

4. Click on the Properties button. Click on the Driver tab.

5. Highlight the driver file named "C:\Windows\System___488.vxd". (For example,
"…\vpci488.vxd".)

6. Click on the Change Driver button.

7. Select the model that you are updating. Click OK.

Note: DO NOT select the Have Disk... button.

8. Windows will return you to the Driver tab. Click OK. The hardware drivers will now be updated
from the Driver Disk.

9. Windows will prompt you if you wish to restart the system. Select Yes. Otherwise the hardware
will continue to use the outdated drivers until the next time the system is restarted.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/ATpnp (with AT488pnp) 7

Personal488/ATpnp (with AT488pnp) 3

Introduction……7
The Package……7
AT488pnp Specifications……7
Controller Interface……7

Installing the New Hardware & Hardware Drivers……8
Updating the Existing Hardware Drivers……10

Introduction

The Package

The Personal488/ATpnp, including the IEEE 488 interface board and the Driver488 software, is
carefully inspected, both mechanically and electrically, before shipment. When you receive the
product, unpack all items carefully from the shipping carton and check for any obvious signs of
physical damage that may have occurred during shipment. Report any such damage to the shipping
agent immediately. Remember to retain all shipping materials in the event shipment back to the factory
becomes necessary.

The Personal488/ATpnp (with AT488pnp) package includes:

• AT488pnp "Plug-&-Play" IEEE 488 Bus Interface ISA Board

• Driver488 Software Disks for Windows 95 or Windows NT (Driver488/W95 or Driver488/WNT)

• Personal488 User’s Manual for Windows 95 and Windows NT

AT488pnp Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rates: 16-bit DMA: 1 Mbyte/s (reads), 800 Kbyte/s (writes)
Dimensions: Full-size board, two card edges; occupies one ISA slot
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs
Digital I/O Connector: Standard 9-pin female DSUB connector
Power: 1.0 A max @ 5 V from PC
Environment: 0 to 70°C, 0 to 95% RH, non-condensing
DMA: 16-bit DMA on channels 5, 6, and 7
Interrupts: IRQ 3, 4, 5, 7, 10, 11, 12, or 15
Digital I/O: Each signal can source 2 mA @ 3.7 V (6 mA @ 3.2 V) and sink 2 mA @ 0.4 V (6 mA @

0.9 V)
Multiple Boards: Up to three AT488pnp boards can be installed into one PC

Controller Interface

The AT488pnp interface board provides the convenience of plug-and-play installation. The physical
configuration of hardware is not necessary. Instead, after installing your board as described in the
following text, the board is configured automatically.

8 Personal488/ATpnp (with AT488pnp) Personal488 User's Manual For Windows95 and Windows NT

Installing the New Hardware & Hardware Drivers
Typical IEEE 488 interface boards are installed into expansion slots inside the PC's system unit.
Typical PCs have the following types of expansion slots

• ISA expansion slots. ISA slots can either be an 8-bit slot with one card-edge receptacle (PC-bus
compatible), or a 16-bit slot with two card-edge receptacles (AT-bus compatible). Eight-bit ISA
boards may be used in either the 8-bit or 16-bit ISA slot, while 16-bit ISA boards may only be
used in the 16-bit ISA slot.

• PCI expansion slots. PCI slots are 32-bit slots, used only by PCI boards.

For technical assistance, see chapter Troubleshooting on page 119 in this manual, or the
troubleshooting section in your PC’s manual. If you are still not sure of the problem, contact the dealer
or manufacturer of your interface board or PC.

Step 1: Installing the AT488pnp Interface Board into an ISA Slot

General instructions for installing the board are given since the design of computer cases varies. Refer
to your PC's reference manual whenever in doubt.

1. Turn OFF the power to your computer and any other connected peripheral devices. Follow the
precautions for static electricity discharge.

• Touch a large grounded metal surface to discharge any static electricity build up in your body.

• Avoid any contact with internal parts. Handle cards only by their edges.

• Disconnect the AC power before removing the cover.

2. Unplug all power cords and cables that may interfere from the back of the computer.

3. Remove your computer's cover by removing its mounting screws with a screwdriver. Slide the
cover OFF. If necessary, refer to your PC's manual.

4. Your IEEE 488 controller interface must be installed in a 16-bit ISA-bus expansion slot. Select an
available ISA expansion slot and remove its slot cover by unscrewing the holding screw and sliding
it out. Save this screw for securing the interface after it is installed.

5. To install the IEEE 488 controller interface, carefully align the card edge connector with the ISA
slot on the motherboard, fitting the IEEE 488 port through the rear panel opening. Push the board
down firmly, but gently, until it is well seated.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/ATpnp (with AT488pnp) 9

6. Replace the cover slot holding screw to secure the board in place.

7. Replace the computer's cover and screws. Then reconnect all power cords and cables to the back of
the computer. If available, connect your external data acquisition instrument to the IEEE 488 port
connector on the interface.

8. Turn on your PC.

At this point, the hardware installation is complete. Continue to Step 2.

Step 2: Detecting the AT488pnp Interface Board in "Add New Hardware"

1. After installing the IEEE 488 controller interface, turn on your computer. Windows will detect the
new hardware and prompt for a Manufacturer’s Disk.

2. Insert the disk labeled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive. Click OK.

3. The hardware will now be recognized and configured by Windows; the "Add New Hardware
Wizard" will auto-assign an available I/O base address, IRQ (Interrupt), and DMA channel.
(Additional AT488pnp interfaces may share the same IRQ and DMA values.)

Continue as prompted to load the interface driver, but DO NOT restart Windows. Select No to
NOT shut down and go directly to the Device Manager to verify the presence of the new hardware
device.

At this point, the hardware detection is complete. Continue to Step 3.

Step 3: Verifying the AT488pnp Interface Installation & Driver488 Software Settings

1. To confirm proper installation, open the Control Panel window from the Start > Settings menu,
click on the System icon, and select the Device Manager tab. Look for a device type named
"IEEE488.2 Controllers" and below it, verify the presence of the new hardware device.

2. During Driver488 installation, a new Control Panel applet titled "IEEE 488" was installed under the
Control Panel with default settings selected.

To verify or configure the Driver488 software settings for your IEEE 488 interface(s) and IEEE 488
external device(s), see chapter Driver488/W95 & Driver488/WNT on page 41.

3. Restart Windows and once again verify the hardware installation and Driver488 configuration in
Device Manager.

At this point, the hardware and driver verification is complete. Continue to Step 4.

Step 4: Installing the AT488pnp Interface Software Support Files

1. Insert the disk titled "IEEE 488 Software Installation Disk, 1 of 2" into the floppy disk drive.

2. To install, you can do one of the following:

• Select Run from the Start Menu, type in A:\SETUP.EXE, then click OK.

• Go to My Computer or Windows Explorer, double-click on the Floppy Drive icon, then double-
click on the Setup icon.

• Or go to the Control Panel from the Start > Settings menu, double-click on the Add/Remove
Programs icon, then click the Install button.

3. The Installation program will step you through various options on installing these software support
files.

Note: These files are NOT required to get the hardware to work properly, but it is recommended
if any software development is desired or Help files are needed.

4. Any or all of the installed software support files may be removed by going to the Control Panel
from the Start > Settings menu, double-clicking on the Add/Remove Programs icon, then selecting
"Personal IEEE 488 v 2.0", and clicking the Add/Remove… button.

At this point, the installation of software support files is complete.

10 Personal488/ATpnp (with AT488pnp) Personal488 User's Manual For Windows95 and Windows NT

Updating the Existing Hardware Drivers

Updating the AT488pnp Interface Hardware Drivers

1. Insert the disk titled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive.

2. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Look for a device type named "IEEE488.2 Controllers".

3. Highlight the device you want to update under "IEEE488.2 Controllers".

4. Click on the Properties button. Click on the Driver tab.

5. Highlight the driver file named "C:\Windows\System___488.vxd". (For example,
"…\vpci488.vxd".)

6. Click on the Change Driver button.

7. Select the model that you are updating. Click OK.

Note: DO NOT select the Have Disk... button.

8. Windows will return you to the Driver tab. Click OK. The hardware drivers will now be updated
from the Driver Disk.

9. Windows will prompt you if you wish to restart the system. Select Yes. Otherwise the hardware
will continue to use the outdated drivers until the next time the system is restarted.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/CARD (with CARD488) 11

Personal488/CARD (with CARD488) 4

Introduction……11
The Package……11
CARD488 Specifications……11
Controller Interface……11

Installing the New Hardware & Hardware Drivers……12
Updating the Existing Hardware Drivers……14

Introduction

The Package

The Personal488/CARD, including the IEEE 488 interface PC Card and the Driver488 software, is
carefully inspected, both mechanically and electrically, before shipment. When you receive the
product, unpack all items carefully from the shipping carton and check for any obvious signs of
physical damage that may have occurred during shipment. Report any such damage to the shipping
agent immediately. Remember to retain all shipping materials in the event shipment back to the factory
becomes necessary.

The Personal488/CARD (with CARD488) package includes:

• CARD488 "Plug-&-Play" IEEE 488 Bus Interface PC Card

• Driver488 Software Disks for Windows 95 or Windows NT (Driver488/W95 or Driver488/WNT)

• Personal488 User’s Manual for Windows 95 and Windows NT

CARD488 Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rate: 1 Mbyte/s (reads and writes)
Dimensions: Type II (5 mm) PCMCIA card
Bus Interface: PCMCIA PC Card Standard 2.1
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs via custom cable
Cable: PCMCIA to IEEE 488, CA-137 (included)

Controller Interface

The CARD488 interface PC Card provides the convenience of plug-and-play installation. The physical
configuration of hardware is not necessary. Instead, after installing your PC Card as described in the
following text, the interface is configured automatically.

12 Personal488/CARD (with CARD488) Personal488 User's Manual For Windows95 and Windows NT

Installing the New Hardware & Hardware Drivers
Unlike typical IEEE 488 interface boards which are installed into expansion slots inside the PC’s
system unit, the CARD488 PC Card interface is installed into the PC Card slot of the computer. The
computer does not need to be turned off.

For technical assistance, see chapter Troubleshooting on page 119 in this manual, or the
troubleshooting section in your PC’s manual. If you are still not sure of the problem, contact the dealer
or manufacturer of your interface board or PC.

Step 1: Installing the CARD488 Interface into a PC Card Slot

Refer to your PC's reference manual whenever in doubt.

1. Install the IEEE 488 controller interface into the PC Card slot of the computer. The computer does
not need to be turned off.

Note: It is assumed the user has a properly installed PC Card adapter in the computer.

At this point, the hardware installation is complete. Continue to Step 2.

Step 2: Detecting the CARD488 Interface in "Add New Hardware"

1. After installing the IEEE 488 controller interface, turn on your computer. Windows will detect the
new hardware and prompt for a Manufacturer’s Disk.

2. Insert the disk labeled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive. Click OK.

3. The hardware will now be recognized and configured by Windows; the "Add New Hardware
Wizard" will auto-assign an available I/O base address, IRQ (Interrupt), and DMA channel.
(Additional CARD488 interfaces may share the same IRQ and DMA values.)

Continue as prompted to load the interface driver, but DO NOT restart Windows. Select No to
NOT shut down and go directly to the Device Manager to verify the presence of the new hardware
device.

At this point, the hardware detection is complete. Continue to Step 3.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/CARD (with CARD488) 13

Step 3: Verifying the CARD488 Interface Installation & Driver488 Software Settings

1. To confirm proper installation, open the Control Panel window from the Start > Settings menu,
click on the System icon, and select the Device Manager tab. Look for a device type named
"IEEE488.2 Controllers" and below it, verify the presence of the new hardware device.

2. During Driver488 installation, a new Control Panel applet titled "IEEE 488" was installed under the
Control Panel with default settings selected.

To verify or configure the Driver488 software settings for your IEEE 488 interface(s) and IEEE 488
external device(s), see chapter Driver488/W95 & Driver488/WNT on page 41.

3. Restart Windows and once again verify the hardware installation and Driver488 configuration in
Device Manager.

At this point, the hardware and driver verification is complete. Continue to Step 4.

Step 4: Installing the CARD488 Interface Software Support Files

1. Insert the disk titled "IEEE 488 Software Installation Disk, 1 of 2" into the floppy disk drive.

2. To install, you can do one of the following:

• Select Run from the Start Menu, type in A:\SETUP.EXE, then click OK.

• Go to My Computer or Windows Explorer, double-click on the Floppy Drive icon, then double-
click on the Setup icon.

• Or go to the Control Panel from the Start > Settings menu, double-click on the Add/Remove
Programs icon, then click the Install button.

3. The Installation program will step you through various options on installing these software support
files.

Note: These files are NOT required to get the hardware to work properly, but it is recommended
if any software development is desired or Help files are needed.

4. Any or all of the installed software support files may be removed by going to the Control Panel
from the Start > Settings menu, double-clicking on the Add/Remove Programs icon, then selecting
"Personal IEEE 488 v 2.0", and clicking the Add/Remove… button.

At this point, the installation of software support files is complete.

14 Personal488/CARD (with CARD488) Personal488 User's Manual For Windows95 and Windows NT

Updating the Existing Hardware Drivers

Updating the 32-Bit Personal488/CARD Hardware Drivers

1. Insert the disk titled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive.

2. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Look for a device type named "IEEE488.2 Controllers".

3. Highlight the device you want to update under "IEEE488.2 Controllers".

4. Click on the Properties button. Click on the Driver tab.

5. Highlight the driver file named "C:\Windows\System___488.vxd". (For example,
"…\vpci488.vxd".)

6. Click on the Change Driver button.

7. Select the model that you are updating. Click OK.

Note: DO NOT select the Have Disk... button.

8. Windows will return you to the Driver tab. Click OK. The hardware drivers will now be updated
from the Driver Disk.

9. Windows will prompt you if you wish to restart the system. Select Yes. Otherwise the hardware
will continue to use the outdated drivers until the next time the system is restarted.

Updating the 16-Bit Personal488/CARD Installation

1. If an older 16-bit installation for the Personal488/CARD (with CARD488) was done in
Windows 95/NT, then the following steps must be taken. This older installation is identified by the
device description "IEP-488 Personal488/CARD".

Note: The 32-bit installation, which does not require the following steps, is identified by the
device description “Personal488/CARD”. To update the 32-bit driver, follow the
directions under the previous section Updating the 32-Bit Personal488/CARD Hardware
Drivers.

2. To find this device description "IEP-488 Personal488/CARD", open the Control Panel window
from the Start > Settings menu, click on the System icon, and select the Device Manager tab. (The
CARD488 should already have been installed and inserted in the computer).

3. Remove the CARD488 from the computer.

4. Insert the disk labeled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive.

5. To run the file CLEANCRD.BAT found on the "Driver Disk", you can do one of the following:

• Go to My Computer or Windows Explorer, double-click on the Floppy Drive icon, then double-
click on the CLEANCRD.BAT icon.

• Select the MS-DOS prompt from the Start Menu to open the MS-DOS command window, type
in A:\CLEANCRD.BAT and press the <Enter> key.

6. Once the CLEANCRD.BAT program has finished, re-insert the CARD488 into the computer.

7. Windows will detect the new hardware and prompt for a Manufacturer’s Disk. With the disk
labeled “Driver488 Driver Disk, 1 of 1” still in the floppy disk drive, click OK.

8. The hardware will now be recognized and configured by Windows. To confirm proper installation,
open the Control Panel window from the Start > Settings menu, click on the System icon, and select
the Device Manager tab. Look for a device type named "IEEE488.2 Controllers" with the new
hardware device below it.

9. A new Control Panel applet titled "IEEE 488" will exist under the Control Panel with default
settings installed. Refer to the Help documents on changing these settings.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/AT (with AT488) 15

Personal488/AT (with AT488) 5

Introduction……15
The Package……15
AT488 Specifications……15

Configuring the New Hardware……16
Installing the New Hardware & Hardware Drivers……20
Updating the Existing Hardware Drivers……22

Introduction

The Package

The Personal488/AT, including the IEEE 488 interface board and the Driver488 software, is carefully
inspected, both physically and electronically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materials in the event shipment back to the factory becomes necessary.

The Personal488/AT (with AT488) package includes:

• AT488 IEEE 488 Bus Interface ISA Board

• Driver488 Software Disks for Windows 95 or Windows NT (Driver488/W95 or Driver488/WNT)

• Personal488 User’s Manual for Windows 95 and Windows NT

AT488 Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rates: 16-bit DMA: 1 Mbyte/s (reads), 800 Kbyte/s (writes); 8-bit DMA: 330

Kbyte/s (reads), 220 Kbyte/s (writes)
Dimensions: Full-size board, two card edges; occupies one ISA slot
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs
Power: 1.0 A max @ 5 V from PC
Environment: 0 to 70°C, 0 to 95% RH, non-condensing
DMA: 16-bit DMA on channels 5, 6, and 7; 8-bit DMA on channels 0, 1, 2, and 3 (jumper selectable)
Interrupts: IRQ 2, 3, 4, 5, 6, or 7 (8-bit slot); IRQ 3-7, 9-12, 14, or 15 (16-bit slot)
IEEE 488 I/O Base Address: &H02E1, &H22E1, &H42E1, or &H62E1
Multiple Boards: Up to four AT488 boards can be installed, sharing a single DMA channel and

interrupt line

16 Personal488/AT (with AT488) Personal488 User's Manual For Windows95 and Windows NT

Configuring the New Hardware
The following text will guide you through the setup of your IEEE 488 controller interface. It includes
instructions on how to verify the resource settings of ports in your system, and how to properly
configure the switches/jumpers on your interface board.

To avoid a configuration conflict, you must first verify which I/O addresses, IRQs, and DMAs are
being used by existing ports in your system, prior to configuring and installing the IEEE 488 controller
interface.

Step 1: Verifying/Recording the Current System Settings

The Windows Control Panel enables you to easily determine and configure the I/O addresses, IRQ
setting, and DMA settings in your system for proper operation. Perform the following steps to verify
your system settings.

1. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Under the line "Ports (COM & LPT)", look for a list of used ports.
For each port, highlight the port and click on the Properties button.

2. Properties already being used in the system are displayed under the Resources tab. Values NOT
listed are available.

• For each listed port, record which Input/Output (I/O) address, if any, is being used.

• For each listed port, record which Interrupt Request (IRQ) value, if any, is being used.

• For each listed port, record which Direct Memory Access (DMA) value, if any, is being used.

3. Exit Windows and turn the system OFF.

The I/O base address, IRQ, and DMA settings are switch/jumper selectable via the following locations
on the AT488 interface board: One 2-microswitch DIP switch labelled S1, one 4-microswitch DIP
switch labelled S2, two 14-pin headers labelled DACK and DRQ, and one 22-pin header labelled IRQ.
The DIP switch settings, and the arrangement of the jumpers on the headers set the hardware
configuration.

For the next steps, make sure that the I/O address, IRQ, and DMA, set on the interface board are
different from any existing ports in your system. A conflict results when two I/O addresses, IRQs, or
DMAs are the same. (As the exception, additional AT488 interfaces may share the same IRQ and DMA
values.) If there is a conflict, perform the following steps to select new switch/jumper settings.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/AT (with AT488) 17

Step 2: Configuring the AT488 Interface I/O Base Address

1. The factory default I/O base address is 02E1. If this creates a conflict, reset switch S1 according to
the figure and following table. The register addresses will be automatically relocated at fixed
offsets from the base address.

2. If reset, record the new Input/Output (I/O) address being used.

Selected I/O Base Address Register

02E1 22E1 42E1 62E1

Automatic Offset Addresses Read Register Write Register

02E1 22E1 42E1 62E1 Data In Data Out

06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1

0AE1 2AE1 4AE1 6AE1 Interrupt Status 2 Interrupt Mask 2

0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode

12E1 32E1 52E1 72E1 Address Status Address Mode

16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode

1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1

1EE1 3EE1 5EE1 7EE1 Address 1 End of String

The I/O base address sets the addresses used by the computer to communicate with the IEEE 488
interface hardware on the board. The address is normally specified in hexadecimal and can be 02E1,
22E1, 42E1, or 62E1. The registers of the IOT7210 IEEE 488 controller chip and other auxiliary
registers are then located at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four IEEE 488 interfaces. To do so,
the interface configurations must be arranged to avoid conflict among themselves. No two boards may
have the same I/O address; but they may, and usually should, have the same DMA channel and
interrupt level.

18 Personal488/AT (with AT488) Personal488 User's Manual For Windows95 and Windows NT

Step 3: Configuring the AT488 Interface Interrupt (IRQ)

1. The factory default Interrupt (IRQ) is 7. If this creates a conflict, reset switch S2 and jumper IRQ
according to the figure. The switch and jumper settings must both indicate the same interrupt level
for correct operation with interrupts.

2. If reset, record the new Interrupt (IRQ) being used.

The AT488 interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. The main board interrupt may be set to IRQ level 3 through 7, 9 through 12, 14, or 15.
Interrupts 10 through 15 are only available in a 16-bit slot on an AT-class machine. Interrupt 9
becomes synonymous with Interrupt 2 when used in a PC/XT bus.

The selected interrupt may be shared among several AT488s in the same PC/AT chassis. The AT488
adheres to the “AT-style” interrupt sharing conventions. When the AT488 requires service, the IRQ
jumper determines which PC interrupt level is triggered. When an interrupt occurs, the interrupting
device must be reset by writing to an I/O address which is different for each interrupt level. The switch
settings determine the I/O address to which the board’s interrupt rearm circuitry responds.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/AT (with AT488) 19

Step 4: Configuring the AT488 Interface DMA Channel

1. The factory default DMA channel is 5. If this creates a conflict, reset jumpers DACK and DRQ
according to the figure. Both the DRQ and DACK jumpers must be set to the desired DMA channel
for proper operation.

2. If reset, record the new DMA channel being used.

Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such
as a digitizing oscilloscope, to or from the PC’s memory. The AT class machine has seven DMA
channels. Channels 0 to 3 (8-bit), 5, 6, and 7 (16-bit) are available only in a 16-bit slot on a PC/AT-
class machine. Channel 2 is usually used by the floppy disk controller, and is unavailable. Channel 3
is often used by the hard disk controller in PCs, XTs, and the PS/2 with the ISA bus, but is usually not
used in ATs. Channels 5 to 7 are 16-bit DMA channels and offer the highest throughput (up to 1
Megabyte per second). Channels 0 to 3 are 8-bit DMA channels and although slower, they offer
compatibility with existing GP488B applications that only made use of 8-bit DMA channels. Under
some rare conditions, it is possible for high-speed transfers on DMA Channel 1 to demand so much of
the available bus bandwidth that simultaneous access of a floppy controller will be starved for data due
to the relative priorities of the two channels.

20 Personal488/AT (with AT488) Personal488 User's Manual For Windows95 and Windows NT

Installing the New Hardware & Hardware Drivers
Typical IEEE 488 interface boards are installed into expansion slots inside the PC's system unit.
Typical PCs have the following types of expansion slots

• ISA expansion slots. ISA slots can either be an 8-bit slot with one card-edge receptacle (PC-bus
compatible), or a 16-bit slot with two card-edge receptacles (AT-bus compatible). Eight-bit ISA
boards may be used in either the 8-bit or 16-bit ISA slot, while 16-bit ISA boards may only be
used in the 16-bit ISA slot.

• PCI expansion slots. PCI slots are 32-bit slots, used only by PCI boards.

For technical assistance, see chapter Troubleshooting on page 119 in this manual, or the
troubleshooting section in your PC’s manual. If you are still not sure of the problem, contact the dealer
or manufacturer of your interface board or PC.

Step 1: Installing the AT488 Interface Board into an ISA Slot

General instructions for installing the board are given since the design of computer cases varies. Refer
to your PC's reference manual whenever in doubt.

1. Turn OFF the power to your computer and any other connected peripheral devices. Follow the
precautions for static electricity discharge.

• Touch a large grounded metal surface to discharge any static electricity build up in your body.

• Avoid any contact with internal parts. Handle cards only by their edges.

• Disconnect the AC power before removing the cover.

2. Unplug all power cords and cables that may interfere from the back of the computer.

3. Remove your computer's cover by removing its mounting screws with a screwdriver. Slide the
cover OFF. If necessary, refer to your PC's manual.

4. Your IEEE 488 controller interface must be installed in a 16-bit ISA-bus expansion slot. Select an
available ISA expansion slot and remove its slot cover by unscrewing the holding screw and sliding
it out. Save this screw for securing the interface after it is installed.

5. To install the IEEE 488 controller interface, carefully align the card edge connector with the ISA
slot on the motherboard, fitting the IEEE 488 port through the rear panel opening. Push the board
down firmly, but gently, until it is well seated.

6. Replace the cover slot holding screw to secure the board in place.

7. Replace the computer's cover and screws. Then reconnect all power cords and cables to the back of
the computer. If available, connect your external data acquisition instrument to the IEEE 488 port
connector on the interface.

8. Turn on your PC.

At this point, the hardware installation is complete. Continue to Step 2.

Step 2: Detecting the AT488 Interface Board in "Add New Hardware"

1. After installing the IEEE 488 controller interface, turn on your computer. Windows will detect the
new hardware and prompt for a Manufacturer’s Disk.

2. Insert the disk labeled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive. Click OK.

3. The hardware will now be recognized by Windows; the "Add New Hardware Wizard" will assign
the available I/O base address, IRQ (Interrupt), and DMA channel, which were configured earlier.
(Additional AT488 interfaces may use the same IRQ and DMA values.)

Continue as prompted to load the interface driver, but DO NOT restart Windows. Select No to
NOT shut down and go directly to the Device Manager to verify the presence of the new hardware
device.

At this point, the hardware detection is complete. Continue to Step 3.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/AT (with AT488) 21

Step 3: Verifying the AT488 Interface Installation & Driver488 Software Settings

1. To confirm proper installation, open the Control Panel window from the Start > Settings menu,
click on the System icon, and select the Device Manager tab. Look for a device type named
"IEEE488.2 Controllers" and below it, verify the presence of the new hardware device.

2. During Driver488 installation, a new Control Panel applet titled "IEEE 488" was installed under the
Control Panel with default settings selected.

To verify or configure the Driver488 software settings for your IEEE 488 interface(s) and IEEE 488
external device(s), see chapter Driver488/W95 & Driver488/WNT on page 41.

• When the I/O base address, IRQ (Interrupt), and DMA channel settings match the jumpered
board, select OK and restart Windows below.

• If any of these settings do not match, manually reset each value. When all of the settings are
correct, select OK and restart Windows below.

3. Restart Windows and once again verify the hardware installation and Driver488 configuration in
Device Manager.

At this point, the hardware and driver verification is complete. Continue to Step 4.

Step 4: Installing the AT488 Interface Software Support Files

1. Insert the disk titled "IEEE 488 Software Installation Disk, 1 of 2" into the floppy disk drive.

2. To install, you can do one of the following:

• Select Run from the Start Menu, type in A:\SETUP.EXE, then click OK.

• Go to My Computer or Windows Explorer, double-click on the Floppy Drive icon, then double-
click on the Setup icon.

• Or go to the Control Panel from the Start > Settings menu, double-click on the Add/Remove
Programs icon, then click the Install button.

3. The Installation program will step you through various options on installing these software support
files.

Note: These files are NOT required to get the hardware to work properly, but it is recommended
if any software development is desired or Help files are needed.

4. Any or all of the installed software support files may be removed by going to the Control Panel
from the Start > Settings menu, double-clicking on the Add/Remove Programs icon, then selecting
"Personal IEEE 488 v 2.0", and clicking the Add/Remove… button.

At this point, the installation of software support files is complete.

22 Personal488/AT (with AT488) Personal488 User's Manual For Windows95 and Windows NT

Updating the Existing Hardware Drivers

Updating the AT488 Interface Hardware Drivers

1. Insert the disk titled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive.

2. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Look for a device type named "IEEE488.2 Controllers".

3. Highlight the device you want to update under "IEEE488.2 Controllers".

4. Click on the Properties button. Click on the Driver tab.

5. Highlight the driver file named "C:\Windows\System___488.vxd". (For example,
"…\vpci488.vxd".)

6. Click on the Change Driver button.

7. Select the model that you are updating. Click OK.

Note: DO NOT select the Have Disk... button.

8. Windows will return you to the Driver tab. Click OK. The hardware drivers will now be updated
from the Driver Disk.

9. Windows will prompt you if you wish to restart the system. Select Yes. Otherwise the hardware
will continue to use the outdated drivers until the next time the system is restarted.

Personal488 User's Manual For Windows 95 and Windows NT Personal488 (with GP488B) 23

Personal488 (with GP488B) 6

Introduction……23
The Package……23
GP488B Specifications……23

Configuring the New Hardware……24
Installing the New Hardware & Hardware Drivers……28
Updating the Existing Hardware Drivers……30
Configuring Other Hardware Settings……31

Introduction

The Package

The Personal488, including the IEEE 488 interface board and the Driver488 software, is carefully
inspected, both mechanically and electrically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materials in the event shipment back to the factory becomes necessary.

The Personal488 (with GP488B) package includes:

• GP488B IEEE 488 Bus Interface ISA Board

• Driver488 Software Disks for Windows 95 or Windows NT (Driver488/W95 or Driver488/WNT)

• Personal488 User’s Manual for Windows 95 and Windows NT

GP488B Specifications

Note: These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rate: 8-bit DMA: 330 Kbyte/s (reads and writes)
Dimensions: Half-size board, one card edge; occupies one ISA slot
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs
Power: 650 mA max @ 5 V from PC
Environment: 0 to 70°C, 0 to 95% RH, non-condensing
DMA: 8-bit DMA on channels 0, 1, 2, and 3 (jumper selectable)
Interrupts: IRQ 2, 3, 4, 5, 6, or 7
IEEE 488 I/O Base Address: &H02E1, &H22E1, &H42E1, or &H62E1
Multiple Boards: Up to four GP488B boards can be installed, sharing a single DMA channel and

interrupt line

24 Personal488 (with GP488B) Personal488 User's Manual For Windows95 and Windows NT

Configuring the New Hardware
The following text will guide you through the setup of your IEEE 488 controller interface. It includes
instructions on how to verify the resource settings of ports in your system, and how to properly
configure the switches/jumpers on your interface board.

To avoid a configuration conflict, you must first verify which I/O addresses, IRQs, and DMAs are
being used by existing ports in your system, prior to configuring and installing the IEEE 488 controller
interface.

Step 1: Verifying/Recording the Current System Settings

The Windows Control Panel enables you to easily determine and configure the I/O addresses, IRQ
setting, and DMA settings in your system for proper operation. Perform the following steps to verify
your system settings.

1. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Under the line "Ports (COM & LPT)", look for a list of used ports.
For each port, highlight the port and click on the Properties button.

2. Properties already being used in the system are displayed under the Resources tab. Values NOT
listed are available.

• For each listed port, record which Input/Output (I/O) address, if any, is being used.

• For each listed port, record which Interrupt Request (IRQ) value, if any, is being used.

• For each listed port, record which Direct Memory Access (DMA) value, if any, is being used.

3. Exit Windows and turn the system OFF.

The I/O base address, IRQ, and DMA settings are switch/jumper selectable via the following locations
on the GP488B interface board: One 8-microswitch DIP switch labelled SW1, two 12-pin headers
labelled J3 and J4, and one 3-pin header labelled J5. The DIP switch settings, and the arrangement of
the jumpers on the headers set the hardware configuration.

For the next steps, make sure that the I/O address, IRQ, and DMA, set on the interface board are
different from any existing ports in your system. A conflict results when two I/O addresses, IRQs, or
DMAs are the same. (As the exception, additional GP488B interfaces may share the same IRQ and
DMA values.) If there is a conflict, perform the following steps to select new switch/jumper settings.

Personal488 User's Manual For Windows 95 and Windows NT Personal488 (with GP488B) 25

Step 2: Configuring the GP488B Interface I/O Base Address

1. The factory default I/O base address is 02E1. If this creates a conflict, reset SW1 microswitches 4
and 5 according to the figure and following table. The register addresses will be automatically
relocated at fixed offsets from the base address.

2. If reset, record the new Input/Output (I/O) address being used.

Selected I/O Base Address Register

02E1 22E1 42E1 62E1

Automatic Offset Addresses Read Register Write Register

02E1 22E1 42E1 62E1 Data In Data Out

06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1

0AE1 2AE1 4AE1 6AE1 Interrupt Status 2 Interrupt Mask 2

0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode

12E1 32E1 52E1 72E1 Address Status Address Mode

16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode

1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1

1EE1 3EE1 5EE1 7EE1 Address 1 End of String

The I/O base address sets the addresses used by the computer to communicate with the IEEE 488
interface hardware on the board. The address is normally specified in hexadecimal and can be 02E1,
22E1, 42E1, or 62E1. The registers of the IOT7210 IEEE 488 controller chip and other auxiliary
registers are then located at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four IEEE 488 interfaces. To do so,
the interface configurations must be arranged to avoid conflict among themselves. No two boards may
have the same I/O address; but they may, and usually should, have the same DMA channel and
interrupt level.

26 Personal488 (with GP488B) Personal488 User's Manual For Windows95 and Windows NT

Step 3: Configuring the GP488B Interface Interrupt (IRQ)

1. The factory default Interrupt (IRQ) is 7. If this creates a conflict, reset SW1 microswitches 1, 2,
and 3, and jumper J4 according to the figure. The switch and jumper settings must both indicate the
same interrupt level for correct operation with interrupts.

2. If reset, record the new Interrupt (IRQ) being used.

The GP488B interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. The level of the interrupt generated is set by J4. The GP488B adheres to the “AT-style”
interrupt sharing conventions. When an interrupt occurs, the interrupting device must be reset by
writing to I/O address 02FX, where X is the interrupt level (from 0 to 7). This interrupt response level
is set by switches 1, 2, and 3 of SW1 which must be set to correspond to the J4 interrupt level setting.

Personal488 User's Manual For Windows 95 and Windows NT Personal488 (with GP488B) 27

Step 4: Configuring the GP488B Interface DMA Channel

1. The factory default DMA channel is 1. If this creates a conflict, reset jumper J3 according to the
figure.

2. If reset, record the new DMA channel being used.

Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such
as a digitizing oscilloscope, to or from the PC’s memory. The PC has four DMA channels, but Channel
0 (Disabled) is used for memory refresh and is not available for peripheral data transfer. Channel 2 is
usually used by the floppy disk controller, and is also unavailable. Channel 3 is often used by the hard
disk controller in PCs, XTs, and the PS/2 with the ISA bus, but is usually not used in ATs. So,
depending on your hardware, DMA Channels 1 and possibly Channel 3 are available. Under some rare
conditions, it is possible for high-speed transfers on DMA Channel 1 to demand so much of the
available bus bandwidth that simultaneous access of a floppy controller will be starved for data due to
the relative priorities of the two channels.

28 Personal488 (with GP488B) Personal488 User's Manual For Windows95 and Windows NT

Installing the New Hardware & Hardware Drivers
Typical IEEE 488 interface boards are installed into expansion slots inside the PC's system unit.
Typical PCs have the following types of expansion slots:

• ISA expansion slots. ISA slots can either be an 8-bit slot with one card-edge receptacle (PC-bus
compatible), or a 16-bit slot with two card-edge receptacles (AT-bus compatible). Eight-bit ISA
boards may be used in either the 8-bit or 16-bit ISA slot, while 16-bit ISA boards may only be
used in the 16-bit ISA slot.

• PCI expansion slots. PCI slots are 32-bit slots, used only by PCI boards.

For technical assistance, see chapter Troubleshooting on page 119 in this manual, or the
troubleshooting section in your PC’s manual. If you are still not sure of the problem, contact the dealer
or manufacturer of your interface board or PC.

Step 1: Installing the GP488B Interface Board into an ISA Slot

General instructions for installing the board are given since the design of computer cases varies. Refer
to your PC's reference manual whenever in doubt.

1. Turn OFF the power to your computer and any other connected peripheral devices. Follow the
precautions for static electricity discharge.

• Touch a large grounded metal surface to discharge any static electricity build up in your body.

• Avoid any contact with internal parts. Handle cards only by their edges.

• Disconnect the AC power before removing the cover.

2. Unplug all power cords and cables that may interfere from the back of the computer.

3. Remove your computer's cover by removing its mounting screws with a screwdriver. Slide the
cover OFF. If necessary, refer to your PC's manual.

4. Your IEEE 488 controller interface must be installed in an 8-bit ISA-bus expansion slot. Select an
available ISA expansion slot and remove its slot cover by unscrewing the holding screw and sliding
it out. Save this screw for securing the interface after it is installed.

5. To install the IEEE 488 controller interface, carefully align the card edge connector with the ISA
slot on the motherboard, fitting the IEEE 488 port through the rear panel opening. Push the board
down firmly, but gently, until it is well seated.

6. Replace the cover slot holding screw to secure the board in place.

7. Replace the computer's cover and screws. Then reconnect all power cords and cables to the back of
the computer. If available, connect your external data acquisition instrument to the IEEE 488 port
connector on the interface.

8. Turn on your PC.

At this point, the hardware installation is complete. Continue to Step 2.

Step 2: Detecting the GP488B Interface Board in "Add New Hardware"

1. After installing the IEEE 488 controller interface, turn on your computer. Windows will detect the
new hardware and prompt for a Manufacturer’s Disk.

2. Insert the disk labeled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive. Click OK.

3. The hardware will now be recognized by Windows; the "Add New Hardware Wizard" will assign
the available I/O base address, IRQ (Interrupt), and DMA channel, which were configured earlier.
(Additional GP488B interfaces may use the same IRQ and DMA values.)

Continue as prompted to load the interface driver, but DO NOT restart Windows. Select No to
NOT shut down and go directly to the Device Manager to verify the presence of the new hardware
device.

At this point, the hardware detection is complete. Continue to Step 3.

Personal488 User's Manual For Windows 95 and Windows NT Personal488 (with GP488B) 29

Step 3: Verifying the GP488B Interface Installation & Driver488 Software Settings

1. To confirm proper installation, open the Control Panel window from the Start > Settings menu,
click on the System icon, and select the Device Manager tab. Look for a device type named
"IEEE488.2 Controllers" and below it, verify the presence of the new hardware device.

2. During Driver488 installation, a new Control Panel applet titled "IEEE 488" was installed under the
Control Panel with default settings selected.

To verify or configure the Driver488 software settings for your IEEE 488 interface(s) and IEEE 488
external device(s), see chapter Driver488/W95 & Driver488/WNT on page 41.

• When the I/O base address, IRQ (Interrupt), and DMA channel settings match the jumpered
board, select OK and restart Windows below.

• If any of these settings do not match, manually reset each value. When all of the settings are
correct, select OK and restart Windows below.

3. Restart Windows and once again verify the hardware installation and Driver488 configuration in
Device Manager.

At this point, the hardware and driver verification is complete. Continue to Step 4.

Step 4: Installing the GP488B Interface Software Support Files

1. Insert the disk titled "IEEE 488 Software Installation Disk, 1 of 2" into the floppy disk drive.

2. To install, you can do one of the following:

• Select Run from the Start Menu, type in A:\SETUP.EXE, then click OK.

• Go to My Computer or Windows Explorer, double-click on the Floppy Drive icon, then double-
click on the Setup icon.

• Or go to the Control Panel from the Start > Settings menu, double-click on the Add/Remove
Programs icon, then click the Install button.

3. The Installation program will step you through various options on installing these software support
files.

Note: These files are NOT required to get the hardware to work properly, but it is recommended
if any software development is desired or Help files are needed.

4. Any or all of the installed software support files may be removed by going to the Control Panel
from the Start > Settings menu, double-clicking on the Add/Remove Programs icon, then selecting
"Personal IEEE 488 v 2.0", and clicking the Add/Remove… button.

At this point, the installation of software support files is complete.

30 Personal488 (with GP488B) Personal488 User's Manual For Windows95 and Windows NT

Updating the Existing Hardware Drivers

Updating the GP488B Interface Hardware Drivers

1. Insert the disk titled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive.

2. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Look for a device type named "IEEE488.2 Controllers".

3. Highlight the device you want to update under "IEEE488.2 Controllers".

4. Click on the Properties button. Click on the Driver tab.

5. Highlight the driver file named "C:\Windows\System___488.vxd". (For example,
"…\vpci488.vxd".)

6. Click on the Change Driver button.

7. Select the model that you are updating. Click OK.

Note: DO NOT select the Have Disk... button.

8. Windows will return you to the Driver tab. Click OK. The hardware drivers will now be updated
from the Driver Disk.

9. Windows will prompt you if you wish to restart the system. Select Yes. Otherwise the hardware
will continue to use the outdated drivers until the next time the system is restarted.

Personal488 User's Manual For Windows 95 and Windows NT Personal488 (with GP488B) 31

Configuring Other Hardware Settings

Configuring the GP488B Interface Wait State

The GP488B is fast enough to be compatible with virtually every PC/XT/AT-compatible computer on
the market. Even if the computer is very fast, the processor is normally slowed to 8 MHz or below
when accessing the I/O channel. If the I/O channel runs faster than 8 MHz, it may be faster than the
GP488B board. If you suspect this is a problem, the computer can be made to wait for the GP488B by
enabling wait states. Increasing the number of wait states slows down access to the GP488B board, but
the overall performance degradation is usually only a few percent.

Configuring the GP488B Interface Internal Clock

The IEEE 488 bus interface circuitry requires a master clock. This clock is normally connected to an
on-board 8 MHz clock oscillator. However, some compatible IEEE 488 interface boards connect this
clock to the PC’s own clock signal. Using the PC clock to drive the IEEE 488 bus clock is not
recommended because the PC clock frequency depends on the model of computer. A standard PC has
a 4.77 MHz clock, while an AT might have a 6 MHz or 8 MHz clock. Other manufacturers’ computers
may have almost any frequency clock. If you are using a software package designed for an interface
board (that derived its clock from the PC clock) and you need to do the same to use GP488B with that
particular software, the clock source can be changed. However, the clock frequency must never be
greater than 8 MHz, and clock frequency must be correctly entered in the Driver488 software.

32 Personal488 (with GP488B) Personal488 User's Manual For Windows95 and Windows NT

- Notes

Personal488 User's Manual For Windows 95 and Windows NT Personal488/MM (with GP488B/MM) 33

Personal488/MM (with GP488B/MM) 7

Introduction……33
The Package……33
GP488B/MM Specifications……33

Configuring the New Hardware……34
Installing the New Hardware & Hardware Drivers……38
Updating the Existing Hardware Drivers……40
Configuring Other Hardware Settings……40

Introduction

The Package

The Personal488/MM, including the IEEE 488 interface board and the Driver488 software, is carefully
inspected, both mechanically and electrically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materials in the event shipment back to the factory becomes necessary.

The Personal488/MM (with GP488B/MM) package includes:

• GP488B/MM IEEE 488 Bus Interface PC/104 Board

• Driver488 Software Disks for Windows 95 or Windows NT (Driver488/W95 or Driver488/WNT)

• Personal488 User’s Manual for Windows 95 and Windows NT

GP488B/MM Specifications

Note: (1) GP488B/MM is only compatible with the Ampro PC/104. (2) Only GP488B/MM
Revision B is discussed in this manual. (3) Microswitches 6, 7, and 8 on switch SW1 do not
have a function on this board. (4) These specifications are subject to change without notice.

IEEE 488 Controller Device: IOT7210
Maximum Transfer Rate: 8-bit DMA: 330 Kbyte/s (reads and writes)
Connector: 26-pin header ribbon cable to IEEE 488 standard connector
Power: 650 mA @ 5 V from PC
Environment: 0 to 70°C; 0 to 95% RH, non-condensing
DMA: 8-bit DMA on channels 0, 1, 2., and 3 (jumper selectable)
Interrupts: IRQ 2, 3, 4, 5, 6, or 7
IEEE 488 Base I/O Addresses: &H02E1, &H22E1, &H42E1, or &H62E1

34 Personal488/MM (with GP488B/MM) Personal488 User's Manual For Windows95 and Windows NT

Configuring the New Hardware
The following text will guide you through the setup of your IEEE 488 controller interface. It includes
instructions on how to verify the resource settings of ports in your system, and how to properly
configure the switches/jumpers on your interface board.

To avoid a configuration conflict, you must first verify which I/O addresses, IRQs, and DMAs are
being used by existing ports in your system, prior to configuring and installing the IEEE 488 controller
interface.

Step 1: Verifying/Recording the Current System Settings

The Windows Control Panel enables you to easily determine and configure the I/O addresses, IRQ
setting, and DMA settings in your system for proper operation. Perform the following steps to verify
your system settings.

1. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Under the line "Ports (COM & LPT)", look for a list of used ports.
For each port, highlight the port and click on the Properties button.

2. Properties already being used in the system are displayed under the Resources tab. Values NOT
listed are available.

• For each listed port, record which Input/Output (I/O) address, if any, is being used.

• For each listed port, record which Interrupt Request (IRQ) value, if any, is being used.

• For each listed port, record which Direct Memory Access (DMA) value, if any, is being used.

3. Exit Windows and turn the system OFF.

Note: (1) GP488B/MM is only compatible with the Ampro PC/104. (2) Only GP488B/MM
Revision B is discussed in this manual. (3) Microswitches 6, 7, and 8 on switch SW1 do not
have a function on this board.

There is only one revision level of the GP488B/MM board which is currently supported by 32-bit
Driver488 software, Revision B. Consequently, only GP488B/MM Revision B is discussed in this
manual.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/MM (with GP488B/MM) 35

The I/O base address, IRQ, and DMA settings are switch/jumper selectable via the following locations
on the GP488B/MM interface board: One 8-microswitch DIP switch labelled SW1, two 12-pin headers
labelled JP2 and JP3, and one 3-pin header labelled JP1. The DIP switch settings, and the arrangement
of the jumpers on the headers set the hardware configuration.

For the next steps, make sure that the I/O address, IRQ, and DMA, set on the interface board are
different from any existing ports in your system. A conflict results when two I/O addresses, IRQs, or
DMAs are the same. (As the exception, additional GP488B interfaces may share the same IRQ and
DMA values.) If there is a conflict, perform the following steps to select new switch/jumper settings.

Step 2: Configuring the GP488B/MM Interface I/O Base Address

1. The factory default I/O base address is 02E1. If this creates a conflict, reset SW1 microswitches 4
and 5 according to the figure and following table. The register addresses will be automatically
relocated at fixed offsets from the base address.

2. If reset, record the new Input/Output (I/O) address being used.

Selected I/O Base Address Register

02E1 22E1 42E1 62E1

Automatic Offset Addresses Read Register Write Register

02E1 22E1 42E1 62E1 Data In Data Out

06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1

0AE1 2AE1 4AE1 6AE1 Interrupt Status Interrupt Mask 2

0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode

12E1 32E1 52E1 72E1 Address Status Address Mode

16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode

1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1

1EE1 3EE1 5EE1 7EE1 Address 1 End of String

The I/O base address sets the addresses used by the computer to communicate with the IEEE 488
interface hardware on the board. The address is normally specified in hexadecimal and can be 02E1,
22E1, 42E1, or 62E1. The registers of the IOT7210 IEEE 488 controller chip and other auxiliary
registers are then located at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four IEEE 488 interfaces. To do so,
the board configurations must be arranged to avoid conflict among themselves. No two boards may
have the same I/O address; but they may, and usually should, have the same DMA channel and
interrupt level.

36 Personal488/MM (with GP488B/MM) Personal488 User's Manual For Windows95 and Windows NT

Step 3: Configuring the GP488B/MM Interface Interrupt (IRQ)

1. The factory default Interrupt (IRQ) is 7. If this creates a conflict, reset SW1 microswitches 1, 2,
and 3, and jumper JP3 according to the figure. The switch and jumper settings must both indicate
the same interrupt level for correct operation with interrupts.

2. If reset, record the new Interrupt (IRQ) being used.

The GP488B/MM Revision B interface board may be set to interrupt the PC on the occurrence of
certain hardware conditions. The level of the interrupt generated is set by JP3. The GP488B/MM
interface board adheres to the “AT-style” interrupt sharing conventions. When an interrupt occurs, the
interrupting device must be reset by writing to I/O address 02FX, where X is the interrupt level (from 0
to 7). This interrupt response level is set by switches 1, 2, and 3 of SW1 which must be set to
correspond to the JP3 interrupt level setting.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/MM (with GP488B/MM) 37

Step 4: Configuring the GP488B/MM Interface DMA Channel

1. The factory default DMA channel is 1. If this creates a conflict, reset jumper JP2 according to the
figure.

2. If reset, record the new DMA channel being used.

Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such
as a digitizing oscilloscope, to or from the PC’s memory. The factory default selection is DMA
Channel 1. Notice that jumper JP2 is used to select the DMA channel.

Check your computer documentation to ensure the selected DMA channel is not being used by another
device. The GP488B/MM board has circuitry which allows for more than one GP488B/MM board to
share the same channel. Most computers use DMA Channel 2 for floppy disk drives, making that
channel unavailable.

38 Personal488/MM (with GP488B/MM) Personal488 User's Manual For Windows95 and Windows NT

Installing the New Hardware & Hardware Drivers
Unlike typical IEEE 488 interface boards which are installed into expansion slots inside the PC’s
system unit, the GP488B/MM Mini-Module interface board is installed into the Ampro PC/104 board
by using its “stack-through” connector.

For technical assistance, see chapter Troubleshooting on page 119 in this manual, or the
troubleshooting section in your PC’s manual. If you are still not sure of the problem, contact the dealer
or manufacturer of your interface board or PC.

Step 1: Installing the GP488B/MM Interface Board onto the PC/104 Board

1. Turn OFF the power to your computer and any other connected peripheral devices. Follow the
precautions for static electricity discharge.

• Touch a large grounded metal surface to discharge any static electricity build up in your body.

• Avoid any contact with internal parts. Handle cards only by their edges.

• Disconnect the AC power before removing the cover.

2. Unplug all power cords and cables that may interfere from the back of the computer.

3. Remove your computer's cover by removing its mounting screws with a screwdriver. Slide the
cover OFF. If necessary, refer to your PC's manual.

4. Locate the bus expansion connector on the Ampro PC/104 board. This connector is a 64-socket
header consisting of two rows of 32 sockets. Then locate the “stack-through” bus expansion
connector on your GP488B/MM. This connector has a similar 64-socket header on the front with
64 pins extending from the back of the header.

5. Lining up the screw and/or spacer locations, insert the 64-pin connector of the GP488B/MM
carefully into the 64-socket header on the Ampro PC/104 board.

6. With the board firmly in place, secure the GP488B/MM using the appropriate screws and/or
spacers.

7. Replace the computer's cover and screws. Then reconnect all power cords and cables to the back of
the computer. If available, connect your external data acquisition instrument to the IEEE 488 port
connector on the interface.

8. Turn on your PC.

At this point, the hardware installation is complete. Continue to Step 2.

Step 2: Detecting the GP488B/MM Interface Board in "Add New Hardware"

1. After installing the IEEE 488 controller interface, turn on your computer. Windows will detect the
new hardware and prompt for a Manufacturer’s Disk.

2. Insert the disk labeled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive. Click OK.

3. The hardware will now be recognized by Windows; the "Add New Hardware Wizard" will assign
the available I/O base address, IRQ (Interrupt), and DMA channel, which were configured earlier.
(Additional GP488B/MM interfaces may use the same IRQ and DMA values.)

Continue as prompted to load the interface driver, but DO NOT restart Windows. Select No to
NOT shut down and go directly to the Device Manager to verify the presence of the new hardware
device.

At this point, the hardware detection is complete. Continue to Step 3.

Personal488 User's Manual For Windows 95 and Windows NT Personal488/MM (with GP488B/MM) 39

Step 3: Verifying the GP488B/MM Interface Installation & Driver488 Software Settings

1. To confirm proper installation, open the Control Panel window from the Start > Settings menu,
click on the System icon, and select the Device Manager tab. Look for a device type named
"IEEE488.2 Controllers" and below it, verify the presence of the new hardware device.

2. During Driver488 installation, a new Control Panel applet titled "IEEE 488" was installed under the
Control Panel with default settings selected.

To verify or configure the Driver488 software settings for your IEEE 488 interface(s) and IEEE 488
external device(s), see chapter Driver488/W95 & Driver488/WNT on page 41.

• When the I/O base address, IRQ (Interrupt), and DMA channel settings match the jumpered
board, select OK and restart Windows below.

• If any of these settings do not match, manually reset each value. When all of the settings are
correct, select OK and restart Windows below.

3. Restart Windows and once again verify the hardware installation and Driver488 configuration in
Device Manager.

At this point, the hardware and driver verification is complete. Continue to Step 4.

Step 4: Installing the GP488B Interface Software Support Files

1. Insert the disk titled "IEEE 488 Software Installation Disk, 1 of 2" into the floppy disk drive.

2. To install, you can do one of the following:

• Select Run from the Start Menu, type in A:\SETUP.EXE, then click OK.

• Go to My Computer or Windows Explorer, double-click on the Floppy Drive icon, then double-
click on the Setup icon.

• Or go to the Control Panel from the Start > Settings menu, double-click on the Add/Remove
Programs icon, then click the Install button.

3. The Installation program will step you through various options on installing these software support
files.

Note: These files are NOT required to get the hardware to work properly, but it is recommended
if any software development is desired or Help files are needed.

4. Any or all of the installed software support files may be removed by going to the Control Panel
from the Start > Settings menu, double-clicking on the Add/Remove Programs icon, then selecting
"Personal IEEE 488 v 2.0", and clicking the Add/Remove… button.

At this point, the installation of software support files is complete.

40 Personal488/MM (with GP488B/MM) Personal488 User's Manual For Windows95 and Windows NT

Updating the Existing Hardware Drivers

Updating the GP488B/MM Interface Hardware Drivers

1. Insert the disk titled "Driver488 Driver Disk, 1 of 1" into the floppy disk drive.

2. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Look for a device type named "IEEE488.2 Controllers".

3. Highlight the device you want to update under "IEEE488.2 Controllers".

4. Click on the Properties button. Click on the Driver tab.

5. Highlight the driver file named "C:\Windows\System___488.vxd". (For example,
"…\vpci488.vxd".)

6. Click on the Change Driver button.

7. Select the model that you are updating. Click OK.

Note: DO NOT select the Have Disk... button.

8. Windows will return you to the Driver tab. Click OK. The hardware drivers will now be updated
from the Driver Disk.

9. Windows will prompt you if you wish to restart the system. Select Yes. Otherwise the hardware
will continue to use the outdated drivers until the next time the system is restarted.

Configuring Other Hardware Settings

Configuring the GP488B/MM Interface Internal Clock

The IEEE 488 bus interface circuitry requires a master clock. This clock is normally connected to an
on-board 8 MHz clock oscillator. However, some compatible IEEE 488 interface boards connect this
clock to the PC’s own clock signal. Using the PC clock to drive the IEEE 488 bus clock is not
recommended because the PC clock frequency depends on the model of computer. A standard PC has
a 4.77 MHz clock, while an AT might have a 6 MHz or 8 MHz clock. Other manufacturers’ computers
may have almost any frequency clock. If you are using a software package designed for an interface
board (that derived its clock from the PC clock) and you need to do the same to use GP488B/MM with
that particular software, the clock source can be changed. However, the clock frequency must never be
greater than 8 MHz, and clock frequency must be correctly entered in the Driver488 software.

Personal488 User's Manual For Windows 95 and Windows NT Driver488/W95 & Driver488/WNT 41

Driver488/W95 & Driver488/WNT 8

Introduction……41
Differences from 16-Bit Driver488 Software……41
Programming Support……42
16-Bit Driver488/W95 Compatibility Layer……42
Configuration Utility……42

Configuring the Driver488 Software Settings……43

Introduction

Differences from 16-Bit Driver488 Software

The following list provides the general differences between 32-bit Driver488 software (for Windows
95 and Windows NT), and 16-bit Driver488 software (for Windows 3.X). With the 32-bit driver:

• There is no RS-232 serial support.

• The function Hello now returns two lines of ID: One for the Dynamic Link Library (DLL) and
one for the device driver.

• The library function prototypes have changed to reflect standard Windows types.

• The include file has been renamed to: IOTIEEE.H

The following outline provides the specific differences in API command functions, between 32-bit
Driver488 software, and 16-bit Driver488 software. With the 32-bit driver:

Obsolete Functions

The parameters that these functions set are now set by a provided Windows Control Panel
configuration utility:

• ClockFrequency

• DmaChannel

• IntLevel

• IOAddress

• LightPen

• SysController

New Functions

These are functions not previously supported:

• MakeNewDevice

• OnEventVDM (Console mode applications)

• TermQuery

• TimeOutQuery

Enhanced Functions

These are updated functions:

• ControlLine

• Hello

• KeepDevice

42 Driver488/W95 & Driver488/WNT Personal488 User's Manual For Windows95 and Windows NT

Programming Support

Driver488/W95 and Driver488/WNT both provide language interfaces for Microsoft C, Visual Basic,
Borland C++, and Borland Delphi. These 32-bit drivers make IEEE events in your C or C++
applications conform to Windows’ standard event handling scheme, passing IEEE events such as bus
errors and SRQs to Windows as standard messages. This assures consistent handling of IEEE and user
events.

When building your programs with Microsoft C to use the IEEE 488 interface, be sure to “include” the
IOTIEEE.H file in your source and be sure to link the IOTSLPIB.LIB export library with your
program.

16-Bit Driver488/W95 Compatibility Layer

Unlike Driver488/WNT, Driver488/W95 supports backward compatibility for applications written in
the 16-bit environment of the Driver488/W31 (formerly named Driver488/WIN) product. Support is
provided through a Dynamic Link Library, DRVR488.DLL, and various language-specific header files
which will allow the recompilation of 16-bit applications.

Differences from 16-Bit Driver488 Software

Although Driver488/W95 supports asynchronous Enter and Output operations, its 16-bit
compatibility layer for Windows 3.X does not support asynchronous Enter and Output operations.
The asynchronous flag is ignored and the Enter or Output operation is treated as a synchronous
operation.

The OnEvent feature is not supported by the Windows 3.X compatibility layer. A call to OnEvent
will return an error and the error value will be set to an obsolete value.

Existing 16-bit programs will run with Driver488/W95 without any re-compilation or re-linking. Since
the compatibility layer DLL has the same name as the Windows 3.X driver DLL, existing programs
written for Driver488/W31 (or Driver488/WIN) will automatically link to the compatibility layer and
through it, link to Driver488/W95.

To use the 16-bit compatibility, the DRVR488.DLL must be copied into your system directory or to the
location of a previously installed 16-bit DRVR488.DLL for Windows 3.X.

Configuration Utility

The configuration utility is accessed from the Windows Control Panel. This utility allows you to
configure Driver488/W95 or Driver488/WNT, as well as any user-specified IEEE 488 External
Devices.

Interfaces

The minimum requirement for configuring your system is to make certain that your IEEE 488.2
interface board is selected under Device Type. The default settings in all of the other fields match those
of the interface as shipped from the factory. If you are unsure of a setting, it is recommended that you
leave it as it is.

External Devices

Each external device requires a handle or “call” to communicate with Driver488. An external device
handle is a means of maintaining a record of its three configurable items:

• IEEE 488 bus address

• IEEE 488 bus terminators

• Time out period.

Any communication with the external device uses these three items. All external devices have either a
default value or a user-supplied value for the different fields. All of the fields can be changed by
Driver488 commands during program execution.

Personal488 User's Manual For Windows 95 and Windows NT Driver488/W95 & Driver488/WNT 43

Configuring the Driver488 Software Settings
Note: The following configuration information is software oriented. It is assumed that you have

already successfully performed the necessary hardware and hardware driver installations, as
provided in the appropriate hardware chapter of this manual.

Step 1: Opening the Configuration Utility

1. Open the Windows Control Panel from the Start > Settings menu.

2. Double-click on the IEEE 488 Driver icon. The IEEE 488 Interface Properties dialog box will
appear.

3. Select the Interfaces and Devices tab to display a list of the four available IEEE 488 interfaces:
IEEE0, IEEE1, IEEE2, and IEEE3.

4. At this point, you have the option of configuring an interface or configuring an external device.

Step 2: Configuring the IEEE 488 Interface

IEEE 488 Interface Properties Dialog Box
Interfaces and Devices Tab

Interface Dialog Box

1. From the Interfaces and Devices tab of the IEEE 488 Interface Properties dialog box, click on the
appropriate interface name to highlight the interface to be configured.

2. Select the Properties button. The Interface dialog box will appear.

3. Fill in the appropriate configuration parameters.

• Driver: This field is automatically assigned. It shows the interface that has been chosen for
configuration.

• Interface Name: This field is a descriptive instrument name which is automatically assigned
by the driver. It is a duplication of the driver interface.

• Primary Address: This field is the setting for the IEEE bus address of the board. It will be
checked against all the instruments on the bus for conflicts. It must be a valid IEEE bus
address between 0 and 30. The Secondary Address field is not supported.

• Timeout (ms): The time out period is the amount of time that data transfers wait before
assuming that the device does not transfer data. If the time out period elapses while waiting to
transfer data, an error signal occurs. This field is the default timeout for any bus request or
action, measured in milliseconds. If no timeout is desired, the value may be set to zero.

• Port Address: This field is the I/O base address.

44 Driver488/W95 & Driver488/WNT Personal488 User's Manual For Windows95 and Windows NT

• Interrupt: This field is the hardware interrupt level (IRQ). IRQ is not an option; it is a
requirement. Valid settings for the interrupt levels of specific boards, are provided in the chart.

• DMA: A DMA channel can be specified for use. If DMA is to be used, select a channel as per
the hardware setting. If no DMA is to be used, select NONE. Valid settings for the DMA
channels of specific boards, are provided in the chart.

Board Interrupt Levels DMA Channels
GP488B levels 2-7 1, 2, 3 or none

GP488B/MM levels 2-7 1, 2, 3 or none
AT488 levels 3-7, 9-12, or 14-15 1, 2, 3, 5, 6, 7 or none

• System Controller (Check Box): The IEEE 488 interface board is configured as a System
Controller or Peripheral by clicking on the System Controller toggle check box. The interface
board is configured as a System Controller if a “check mark” is present in the check box. The
System Controller has ultimate control of the IEEE 488 bus and therefore has the ability of
asserting the Interface Clear (IFC) and Remote Enable (REN) signals. Each IEEE 488 bus can
have only one System Controller. If the board is configured as a Peripheral, it can obtain
control of the IEEE 488 bus from the Active Controller. Once control status is achieved, the
peripheral board may take control of the bus and carry out its assignments. Upon completion
of its tasks, control will be relinquished to the System Controller or another computer.

• Input & Output Terminators (Bus Termination): The IEEE488 bus terminators specify the
characters and/or EOI signal that is to be appended to data that is sent to the external device, or
mark the end of data that is received from the external device.

Step 3: Configuring the IEEE 488 External Device

IEEE 488 Interface Properties Dialog Box
Interfaces and Devices Tab

Device Dialog Box

Personal488 User's Manual For Windows 95 and Windows NT Driver488/W95 & Driver488/WNT 45

1. From the Interfaces and Devices tab of the IEEE 488 Interface Properties dialog box, click on the
“+” node symbol located just to the left of the desired interface. A list of external devices
associated with that interface will display.

2. At this point, you have the option of using one of the provided device names (such as Dev1) or
creating a new one.

• To use one of the provided device names, click to highlight the desired external device, and
select the Properties button. The Device dialog box will appear.

• Otherwise, to create a new user-specified device name, click on the Add Device button. A
Device dialog box will appear much like the one shown above. The only difference is that all
of the configuration fields are blank and must be user-specified. Provide a Name for the
external device.

3. Fill in the appropriate configuration parameters.

• Name: This field specifies the type of device represented by the IEEE device name selected.
External Device names are user-defined names which are used to convey the configuration
information about each device from the initialization file to the application program. External
device names consist of 1 to 32 characters, and the first character must be a letter. The
remaining characters may be letters, numbers, or underscores (“_”). External device names are
case insensitive; upper and lower case letters are equivalent. ADC is the same device as adc.
Each external device must have a name to identify its configuration. The name can then be
used to obtain a handle to that device which will be used by all of the Driver488 commands.

• Primary & Secondary Addresses: These fields specify the IEEE 488 bus primary and
secondary addresses of the external device. They will be checked against all the instruments on
the bus for conflicts. The IEEE488 bus primary address ranges from 0 to 30, and the optional
secondary address ranges from 0 to 31.

• Timeout (ms): The time out period is the amount of time that data transfers wait before
assuming that the device does not transfer data. If the time out period elapses while waiting to
transfer data, an error signal occurs. This field is the default timeout for any bus request or
action, measured in milliseconds. If no timeout is desired, the value may be set to zero.

• Input & Output Terminators: The IEEE 488 bus terminators specify the characters and/or EOI
signal that is to be appended to data that is sent to the external device, or mark the end of data
that is received from the external device.

Because secondary addresses and bus terminators are specified by each handle, it may be useful to
have several different external devices defined for a single IEEE 488 bus device. For example,
separate device handles would be used to communicate with different secondary addresses within a
device. Also, different device handles might be used for communication of command and status
strings (terminated by carriage return CR, line feed LF), and for communication of binary data
(terminated by EOI).

46 Driver488/W95 & Driver488/WNT Personal488 User's Manual For Windows95 and Windows NT

- Notes

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 47

API Command Reference 9

Introduction……47
Abort……48
Arm……49
AutoRemote……50
Buffered……51
BusAddress……52
CheckListener……53
Clear……54
ClearList……55
Close……56
ControlLine……57
DigArm……58
DigArmSetup……59
DigRead……60
DigSetup……61
DigWrite……62
Disarm……63
EnterX……64
Error……66
FindListener……67
Finish……68
GetError……69
GetErrorList……70
Hello……71
KeepDevice……72
Listen……73
Local……74
LocalList……75
Lol……76
MakeDevice……77
MakeNewDevice……78
MyListenAddr……79
MyTalkAddr……80
OnDigEvent……81

OnDigEventVDM……82
OnEvent……83
OnEventVDM……84
OpenName……86
OutputX……87
PassControl……89
PPoll……90
PPollConfig……91
PPollDisable……92
PPollDisableList……93
PPollUnconfig……94
Remote……95
RemoteList……96
RemoveDevice……97
Request……98
Reset……99
Resume……100
SendCmd……101
SendData……102
SendEoi……103
SPoll……104
SPollList……105
Status……106
Stop……108
Talk……109
Term……110
TermQuery……111
TimeOut……112
TimeOutQuery……113
Trigger……114
TriggerList……115
UnListen……116
UnTalk……117
Wait……118

Introduction
This chapter contains the API command reference for Driver488/W95 and Driver488/WNT, using the
C language. The following 67 commands are presented in alphabetical order for ease of use.

48 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Abort
Syntax INT WINAPI Abort(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to an external device, the Abort command will act on the
hardware interface to which the external device is attached.

Returns -1 if error

Mode SC or *SC•CA
Bus States IFC, *IFC (if SC)

ATN•MTA (if *SC••CA)

Example errorflag = Abort(ieee);

See Also MyTalkAddr, Talk, UnTalk

As the System Controller (SC), whether Driver488 is the Active Controller or not, the Abort command
causes the Interface Clear (IFC) bus management line to be asserted for at least 500 microseconds. By
asserting IFC, Driver488 regains control of the bus even if one of the devices has locked it up during a
data transfer. Asserting IFC also makes Driver488 the Active Controller. If a Non System Controller
was the Active Controller, it is forced to relinquish control to Driver488. Abort forces all IEEE 488
device interfaces into a quiescent state.

If Driver488 is a Non System Controller in the Active Controller state (*SC••CA), it asserts Attention
(ATN), which stops any bus transactions, and then sends its My Talk Address (MTA) to “Untalk” any
other Talkers on the bus. It does not (and cannot) assert IFC.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 49

Arm
Syntax INT WINAPI Arm(DevHandleT devHandle, ArmCondT condition);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to an external device, the Arm command acts on the hardware
interface to which the external device is attached.

condition is one of the following: acError, acSRQ, acPeripheral,
acController, acTrigger, acClear, acTalk, acListen, acIdle,

acByteIn, acByteOut, or acChange.
Returns -1 if DevHandleT is an illegal device or interface

otherwise, the current state of the event trigger flag

Mode Any

Bus States None

Example errorflag = Arm(ieee, acSRQ|acTrigger|acChange);

See Also Disarm, OnEvent

The Arm command allows Driver488 to signal to the user-specified function when one or more of the
specified conditions occurs. Arm sets a flag for each implementation of the conditions which are user-
indicated. Arm conditions may be combined using the bitwise OR operator.

The following Arm conditions are supported:

Condition Description

acSRQ The Service Request bus line is asserted.

acPeripheral An addressed status change has occurred and the interface is a Peripheral.

acController An addressed status change has occurred and the interface is an Active Controller.

acTrigger The interface has received a device Trigger command.

acClear The interface has received a device Clear command.

acTalk An addressed status change has occurred and the interface is a Talker.

acListen An addressed status change has occurred and the interface is a Listener.

acIdle An addressed status change has occurred and the interface is neither Talker nor Listener.

acByteIn The interface has received a data byte.

acByteOut The interface has been configured to output a data byte.

acError A Driver488 error has occurred.

acChange The interface has changed its addressed status. Its Controller/Peripheral or
Talker/Listener/Idle states of the interface have changed.

50 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

AutoRemote
Syntax INT WINAPI AutoRemote(DevHandleT devHandle, BOOL flag);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to an external device, the AutoRemote command acts on the
hardware interface to which the external device is attached.

flag may be either OFF or ON

Returns -1 if DevHandleT is an illegal device or interface

otherwise, the previous state is returned

Mode SC

Bus States None

Example errorcode = AutoRemote(ieee,ON);

See Also Local, Remote, EnterX, OutputX

The AutoRemote command enables or disables the automatic assertion of the Remote Enable (REN)
line by Output. When AutoRemote is enabled, Output automatically asserts REN before transferring
any data. When AutoRemote is disabled, there is no change to the REN line. AutoRemote is on by
default.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 51

Buffered
Driver488/W95 only

Syntax LONG WINAPI Buffered(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to an external device, the Buffered command acts on the
hardware interface to which the external device is attached.

Returns -1 if error

otherwise long integer from 0 to 1,048,575(220-1)

Mode Any

Bus States None

Example result = Buffered(ieee);
printf(“%ld bytes were received.”,result);

See Also EnterX, OutputX

The Buffered command returns the number of characters transferred by the latest Enter, Output,
SendData, or SendEoi command. If an asynchronous transfer is in progress, the result is the number
of characters that have been transferred at the moment the command is issued. This command is most
often used after a counted Enter, EnterN, EnterNMore, etc., to determine if the full number of
characters was received, or if the transfer terminated upon detection of term. It is also used to find out
how many characters have currently been sent during an asynchronous DMA transfer.

52 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

BusAddress
Syntax INT WINAPI BusAddress (DevHandleT devHandle, BYTE primary,

BYTE secondary);

devHandle refers to either an IEEE 488 hardware interface or an external device.

primary is the IEEE 488 bus primary address of the specified device.

secondary is the IEEE 488 bus secondary address of the specified device. If the
specified device is an IEEE 488 hardware interface, this value must be -1 since there
are no secondary addresses for the IEEE 488 hardware interface. For no secondary
address, a -1 must be specified.

Returns -1 if error

Mode Any

Bus States None

Example errorcode = BusAddress(dmm,14,0);

See Also MakeDevice

The BusAddress command sets the IEEE 488 bus address of the IEEE 488 hardware interface or an
external device. Every IEEE 488 bus device has an address that must be unique within any single
IEEE 488 bus system. The default IEEE 488 bus address for Driver488 is 21, but this may be changed
if it conflicts with some other device.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 53

CheckListener
Syntax INT WINAPI CheckListener(DevHandleT devHandle, BYTE primary,

BYTE secondary);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to an external device, the CheckListener command acts on
the hardware interface to which the external device is attached.

primary is the primary bus address to check for a Listener (00 to 30)

secondary is the secondary bus address to check for a Listener (00 to 31). For no
secondary address, a -1 must be specified

Returns -1 if error

otherwise it returns a 1 if a listener was found at the specified address, or a 0 if a listener
was not found at the specified address.

Mode CA

Bus States ATN••UNL, LAG, (check for NDAC asserted)

Example result = CheckListener(ieee,15,4);
if (result == 1)
{
printf(“Device found at specified address.\n”);
}
if (result == 0)
{
printf(“Device not found at specified address.\n”);
}

See Also FindListener, BusAddress

The CheckListener command checks for the existence of a device on the IEEE 488 bus at the
specified address.

54 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Clear
Syntax INT WINAPI Clear(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware interface or an external device. If
devHandle refers to a hardware interface, then a Device Clear (DCL) is sent. If
devHandle refers to an external device, a Selected Device Clear (SDC) is sent.

Returns -1 if error

Mode CA

Bus States ATN••DCL (all devices)

ATN••UNL, MTA, LAG, SDC (selected device)

Examples errorcode = Clear(ieee); Sends the Device Clear (DCL) command to the
IEEE interface board.

errorcode = Clear(wave); Sends the Selected Device Clear (SDC) command
to the WAVE device.

errorcode = Clear(dmm); Sends the Selected Device Clear (SDC) command
to the DMM device.

See Also Reset, ClearList

The Clear command causes the Device Clear (DCL) bus command to be issued to an interface or a
Selected Device Clear (SDC) command to be issued to an external device. IEEE 488 bus devices that
receive a Device Clear or Selected Device Clear command normally reset to their power-on state.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 55

ClearList
Syntax INT WINAPI ClearList(DevHandlePT dhList);

dhList is a pointer to a list of device handles that refer to external devices. If a hardware
interface is in the list, DCL is sent instead of SDC.

Returns -1 if error

Mode CA

Bus States ATN••DCL (all devices)

ATN••UNL, MTA, LAG, SDC (selected device)

Example deviceList[0] = wave;
deviceList[1] = scope;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = ClearList(deviceList);

Sends the Selected Device Clear
(SDC) command to a list of
devices.

See Also Clear, Reset

The ClearList command causes the Selected Device Clear (SDC) command to be issued to a list of
external devices. IEEE 488 bus devices that receive a Selected Device Clear command normally reset
to their power-on state.

56 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Close
Syntax INT WINAPI Close(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device.

Returns -1 if error

Mode Any

Bus States Completion of any pending I/O activities

Example errorcode = Close(wave);

See Also OpenName, MakeDevice, Wait

The Close command waits for I/O to complete, flushes any buffers associated with the device that is
being closed, and then invalidates the handle associated with the device.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 57

ControlLine
Syntax INT WINAPI ControlLine(DevHandleT devHandle);

ControlLine returns a bit mapped number.

devHandle refers to the I/O adapter. If devHandle refers to an external device, the
ControlLine command acts on the hardware interface to which the external device
is attached.

Response -1 if error

otherwise, a bit map of the current state of the IEEE 488 interface. Under 32-bit Driver488
software, serial interfaces are no longer supported.

Mode Any

Bus States None

Example result = ControlLine(ieee);
printf(“The response is %X\n”,result);

See Also TimeOut

The ControlLine command may be used only on IEEE 488 devices. Under 32-bit Driver488
software, serial interfaces are no longer supported. This command returns the status of the IEEE 488
bus control lines as an 8-bit unsigned value (bits 2 and 1 are reserved for future use), as shown below:

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

EOI SRQ NRFD NDAC DAV ATN 0 0

58 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

DigArm
AT488pnp and PCI488 only

Syntax INT WINAPI DigArm(DevHandleT devHandle, BOOL bArm);

devHandle refers to an interface handle.

bArm refers to a value that arms or disarms event generation. TRUE = Arm, FALSE =
Disarm.

Returns -1 if neither nibble is set for input, or other error

Mode Any

Bus States None

Example DigArm(devHandle, TRUE); Arms digital input event generation.

See Also DigArmSetup, DigSetup, OnDigEvent, OnDigEventVDM

The DigArm command arms or disarms the event-generation due to a digital I/O port match condition.
The caller should configure the digital I/O port, the event-callback mechanism, and the match condition
prior to arming the event generation. The following code snippet illustrates this sequence:

DigSetup(devHandle, FALSE, FALSE); // Configure both nibbles for input.
OnDigEventVDM(devHandle, MyFunc, 0); // On event, call function MyFunc.
DigArmSetup(devHandle, 0x0A5); // Trigger when inputs equals 0xA5.
DigArm(devHandle, TRUE); // Enable event generation.

Event generation is automatically disarmed when an event is triggered. The event generation
configuration, however, remains intact, so event generation can be re-armed just by calling DigArm.
The other steps shown in the above code snippet do not need to be repeated unless the event
configuration is to be changed.

Event generation may be disarmed (bArm = FALSE) at any time.

Note: This function does not configure the digital I/O port for input. The caller must use DigSetup
to configure the port for input before performing arming event generation. If neither nibble is
configured for input the function returns -1 and sets the error code to IOT_BAD_VALUE2.

Note: Event generation may be re-armed from within the event handler to provide continuous
detection of match condition events. However, this is not guaranteed to catch every event if
the digital input values are rapidly changing.

Note: Any digital I/O port bits configured for output are treated as “don’t care” bits for the purposes
of event generation. In other words, it is valid to arm an event when only one nibble of the
port is configured for input. In this case, the other nibble is ignored when detecting the match
condition.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 59

DigArmSetup
AT488pnp and PCI488 only

Syntax INT WINAPI DigArmSetup(DevHandleT devHandle, BYTE
byMatchValue);

devHandle refers to an interface handle.

byMatchValue refers to a value that is compared against the digital I/O inputs

Returns -1 if error

Mode Any

Bus States None

Example DigArmSetup(devHandle, 0xA5); Sets the match value to 0xA5.

See Also DigArm, DigSetup

The DigArmSetup command sets the match condition value. This value will be compared against the
digital I/O port inputs to detect when an event occurs. The event must be armed (via DigArm) for
event notification to take place.

The comparison operation depends on the current digital port configuration. If both nibbles are
configured for input, then the match value is compared to the entire byte value of the digital port. If
only one of the nibbles is configured for input, then the value is compared against just that nibble. If no
nibbles are configured for input, then the match value is ignored. The DigArm function will not allow
event generation to be armed unless at least one of the nibbles is configured for input.

60 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

DigRead
AT488pnp and PCI488 only

Syntax INT WINAPI DigRead(DevHandleT devHandle);

devHandle refers to an interface handle.

Returns -1 if no part of the port is configured for input, or other error

otherwise, integer between 0 and 255 if the entire digital I/O port is configured for input; or
integer between 0 and 15 if only one nibble (either low or high) is configured for input

Mode Any

Bus States None

Example int i = DigRead(devHandle); Returns the current value of the digital I/O
port per the current configuration.

See Also DigSetup, DigWrite

The DigRead command reads the current value of the digital IO port per the input/output configuration
of the port. If the entire port is configured for input, a value between 0 and 255 is returned. If either
the upper or lower nibble is configured for input, and the other for output, a value between 0 and 15 is
returned.

Note: This function does not configure the digital I/O port for input. The caller must use DigSetup
to configure the port for input before performing any reads. If neither nibble is configured for
input the function returns -1 and sets the error code to IOT_BAD_VALUE2.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 61

DigSetup
AT488pnp and PCI488 only

Syntax INT WINAPI DigSetup(DevHandleT devHandle, BOOL bLowOut, BOOL
bHighOut);

devHandle refers to an interface handle.

bLowOut refers to the lower nibble setup. TRUE = output, FALSE = input.

bHighOut refers to the upper nibble setup. TRUE = output, FALSE = input.

Returns -1 if error

Mode Any

Bus States None

Examples DigSetup(devHandle, TRUE , TRUE); All 8 bits output.

DigSetup(devHandle, FALSE, TRUE); Lower 4 bits input, upper 4 output.

DigSetup(devHandle, TRUE , FALSE); Lower 4 bits output, upper 4 input.

DigSetup(devHandle, FALSE, FALSE); All 8 bits input.

See Also DigRead, DigWrite

The DigSetup command configures the digital I/O port for input and output on a per-nibble basis.
Each of the two nibbles can be set for input or output. All combinations are supported. Once
DigSetup is called, the configuration of the digital I/O port does not change until the next call to
DigSetup. The port may be read and written many times without affecting the port setup.

Note: The digital I/O port must be configured every time the driver is opened. The configuration is
not stored between sessions.

62 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

DigWrite
AT488pnp and PCI488 only

Syntax INT WINAPI DigWrite(DevHandleT devHandle, BYTE byDigData);

devHandle refers to an interface handle.

byDigData refers to a value to write to the digital output port, where the integer range is
between 0 and 255 if the entire digital I/O port is configured for output, or between 0
and 15 if only one nibble (either low or high) is configured for output.

Returns -1 if no part of the digital I/O port is configured for output.

Mode Any

Bus States None

Example DigRead(devHandle, 0x0A); Writes the given value to the digital I/O port per
the current configuration.

See Also DigSetup, DigRead

The DigWrite command writes the given value to the digital I/O port per the input/output
configuration of the port. If the entire port is configured for output, then the data value with a range
from 0 to 255 is written to the port. If either the upper or lower nibble is configured for input, and the
other for output, then the data value is truncated to the range from 0 to 15 and it is written to the
appropriate nibble per the current configuration.

Note: This function does not configure the digital I/O port for output. The caller must use
DigSetup to configure the port before performing any reads or writes. If neither nibble is
configured for output the function returns -1 and sets the error code to IOT_BAD_VALUE2.

Note: Outputs do not persist after an interface is closed. At that time, all digital I/O lines are
configured for input.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 63

Disarm
Syntax INT WINAPI Disarm(DevHandleT devHandle, ArmCondT condition);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, then the Disarm command acts on the hardware interface
to which the external device is attached.

condition specifies which of the conditions are no longer to be monitored. If condition is
0, then all conditions are Disarmed.

Returns -1 if error

otherwise, the current bit map of the event condition mask.

Mode Any

Bus States None

Examples errorcode=Disarm(ieee,acTalk|acListen|acChange);

errorcode=Disarm(ieee,0);

See Also Arm, OnEvent

The Disarm command prevents Driver488 from invoking an event handler and interrupting the PC,
even when the specified condition occurs. Your program can still check for the condition by using the
Status command. If the Disarm command is invoked without specifying any conditions, then all
conditions are disabled. The Arm command may be used to re-enable interrupt detection.

64 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

EnterX
Syntax LONG WINAPI EnterX(DevHandleT devHandle, LPBYTE data,DWORD

count,BOOL forceAddr,TermT*term,BOOL async,LPDWORD
compStat);

devHandle refers to either an IEEE 488 interface or an external device.

data is a pointer to the buffer into which the data is read.

count is the number of characters to read.

forceAddr is used to specify whether the addressing control bytes are to be issued for
each EnterX command.

term is a pointer to a terminator structure that is used to set up the input terminators. If
term is set to 0, the default terminator is used.

async is a flag that allows asynchronous data transfer. Note that this asynchronous flag is
ignored in Driver488/WNT.

compStat is a pointer to an integer containing completion status information.

Returns -1 if error

otherwise, the actual count of bytes transferred. The memory buffer pointed to by the data
parameter is filled in with the information read from the device. Note that the actual
count does not include terminating characters if term characters are specified by the
term in function. In addition, term characters are not returned but are discarded.

Mode CA

Bus States With interface handle: *ATN, data

With external device handle: ATN••UNL, MLA, TAG, *ATN, data
Example term.EOI = TRUE;

term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = ‘\r’;
bytecount=EnterX(timer,data,1024,0,&term,1,&stat);

See Also OutputX, Term, Buffered

Note: The asynchronous flag async is ignored in Driver488/WNT.

The EnterX command reads data from the I/O adapter. If an external device is specified, then
Driver488 is addressed to Listen, and that device is addressed to Talk. If an interface is specified, then
Driver488 must already be configured to receive data and the external device must be configured to
Talk, either as a result of an immediately preceding EnterX command or as a result of one of the Send
commands. EnterX terminates reception on either the specified count of bytes transferred, or the
specified or default terminator being detected. Terminator characters, if any, are stripped from the
received data before the EnterX command returns to the calling application.

The forceAddr flag is used to specify whether the addressing control bytes are to be issued for each
EnterX command. If the device handle refers to an I/O adapter, then forceAddr has no effect and
command bytes are not sent. For an external device, if forceAddr is TRUE then Driver488 always
sends the UNL, MLA, and TAG command bytes. If forceAddr is FALSE, then Driver488 compares the
current device with the previous device that used that interface adapter board for an EnterX command.
If they are the same, then no command bytes are sent. If they are different, then EnterX acts as if the
forceAddr flag were TRUE and sends the command bytes. The forceAddr flag is usually set TRUE
for the first transfer of data from a device, and then set FALSE for additional transfers from the same
block of data from that device.

Additional Enter Functions

Driver488 provides additional Enter routines that are short-form versions of the EnterX function.
The following Enter functions are already defined in your header file.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 65

Enter
Syntax LONG WINAPI Enter(DevHandleT devHandle, LPBYTE data)

Remarks Enter is equivalent to the following call to EnterX:

EnterX(devHandle,data,sizeof(data),1,0L,0,0L);

The Enter function passes the device handle and a pointer to the data buffer to the EnterX function.
It determines the size of the data buffer that you provided, and passes that value as the count
parameter. It specifies forceAddr is TRUE, causing Driver488 to re-address the device. The default
terminators are chosen by specifying a 0 as the term parameter. Asynchronous transfer is turned off by
sending 0 for the async parameter, and the completion status value is ignored by sending 0 for the
compStat parameter.

EnterN
Syntax LONG WINAPI EnterN(DevHandleT devHandle,LPBYTE data,int

count)

Remarks EnterN is equivalent to the following call to EnterX:

EnterX(devHandle,data,count,1,0L,0,0L);

The EnterN function passes the device handle, the pointer to the data buffer, and the size of the data
buffer to the EnterX function. It specifies forceAddr is TRUE, causing Driver488 to re-address the
device. The default terminators are chosen by specifying a 0 pointer as the term parameter.
Asynchronous transfer is turned off by sending 0 for the async parameter, and the completion status
value is ignored by sending 0 for the compStat parameter.

EnterMore
Syntax LONG WINAPI EnterMore(DevHandleT devHandle,LPBYTE data)

Remarks EnterMore is equivalent to the following call to EnterX:

EnterX(devHandle,data,sizeof(data),0,0L,0,0L);

The EnterMore function passes the device handle and the pointer to the data buffer to the EnterX
function. It determines the size of the data buffer that you provided, and passes that value as the count
parameter. It specifies forceAddr is FALSE, therefore Driver488 does not address the device if it is
the same device as previously used. The default terminators are chosen by specifying a 0 as the term
parameter. Asynchronous transfer is turned off by sending 0 for the async parameter, and the
completion status value is ignored by sending 0 for the compStat parameter.

EnterNMore
Syntax LONG WINAPI EnterNMore(DevHandleT devHandle,LPBYTE data,int

count);

Remarks EnterNMore is equivalent to the following call to EnterX:

EnterX(devHandle,data,count,0,0L,0,0L);

The EnterNMore function passes the device handle, the pointer to the data buffer, and the size of the
data buffer to the EnterX function. It specifies forceAddr is FALSE; therefore, Driver488 does not
address the device if it is the same device as previously used. The default terminators are chosen by
specifying a 0 as the term parameter. Asynchronous transfer is turned off by sending 0 for the async
parameter, and the completion status value is ignored by sending 0 for the compStat parameter.

66 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Error
Syntax INT WINAPI Error(DevHandleT devHandle, BOOL display);

devHandle refers to either an IEEE 488 interface or an external device.

display indicates whether the error message display should be ON or OFF.

Returns -1 if error

Mode Any

Bus States None

Example errorcode = Error(ieee, OFF);

See Also OnEvent, GetError, GetErrorList, Status

The Error command enables or disables automatic on-screen display of Driver488 error messages.
Specifying ON enables the error message display, while specifying OFF disables the error message
display. Error ON is the default condition.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 67

FindListeners
Syntax INT WINAPI FindListeners(DevHandleT devHandle, BYTE primary,

LPWORD listener, DWORD limit);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, then the FindListeners command acts on the
hardware interface to which the external device is attached.

primary is the primary IEEE 488 bus address to check.

listener is a pointer to a list that contains all Listeners found on the specified interface
board. You must allocate enough memory to accommodate all of the possible Listeners
up to the limit that he specified.

limit is the maximum number of Listeners to be entered into the Listener list.

Returns -1 if error

otherwise, the number of Listeners found on the interface

Mode Any

Bus States ATN••MTA, UNL, LAG
Example WORD listeners[5];

errorcode = FindListeners(ieee,10,listeners,5);

See Also CheckListener, BusAddress, Status

The FindListeners command finds all of the devices configured to Listen at the specified primary
address on the IEEE 488 bus. The command first identifies the primary address to check and returns
the number of Listeners found and their addresses. Then, it fills the user-supplied array with the
addresses of the Listeners found. The number of Listeners found is the value returned by the function.
The returned values include the secondary address in the upper byte, and the primary address in the
lower byte. If there is no secondary address, then the upper byte is set to 255; hence, a device with
only a primary address of 16 and no secondary address is represented as 0xFF10 or -240 decimal.

68 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Finish
Driver488/W95 only

Syntax INT WINAPI Finish(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, the Finish command acts on the hardware interface to
which the external device is attached.

Returns -1 if error

Mode CA

Bus States ATN

Example errorcode = Finish(ieee);

See Also Resume, PassControl

The Finish command asserts Attention (ATN) and releases any pending holdoffs after a Resume
function is called with the monitor flag set.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 69

GetError
Syntax ErrorCodeT WINAPI GetError(DevHandleT devHandle, LPSTR

errText);

devHandle refers to either the IEEE 488 interface or the external device that has the
associated error.

errText is the string that will contain the error message. If errText is non-null, the
string must contain at least 247 bytes.

Returns -1 if error

otherwise, it returns the error code number associated with the error for the specified device.

Mode Any

Bus States None

Example errnum = GetError(ieee,errText);
printf(“Error number:%d;%s \n”errnum,errText);

See Also Error, GetErrorList, Status

The GetError command is user-called after another function returns an error indication. The device
handle sent to the function that returned the error indication is sent to GetError as its devHandle
parameter. GetError finds the error associated with that device and returns the error code associated
with that error. If a non-null error text pointer is passed, GetError also fills in up to 247 bytes in the
string. The application must ensure that sufficient space is available.

70 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

GetErrorList
Syntax ErrorCodeT WINAPI GetErrorList(DevHandlePT dhList, LPSTR

errText, DevHandlePT errHandle);

dhList is a pointer to a list of external devices that was returned from a function, due to an
error associated with one of the external devices in the list.

errText is the text string that contains the error message. You must ensure that the string
length is at least 247 bytes.

errHandle is a pointer to the device handle that caused the error.

Returns -1 if error

otherwise, it returns the error number associated with the given list of devices.

Mode Any

Bus States None

Example char errText[329];
int errHandle;
int errnum;
result = ClearList(list);
if (result == -1) {
 errnum=GetErrorList(list,errText,&errHandle);
 printf(“Error %d;%s,at handle %d\n”, errnum, errText,
 errHandle);
}

See Also Error, GetError, Status

The GetErrorList command is user-called, after another function identifying a list of device handles,
returns an error indication. The device handle list sent to the function that returned the error indication,
is sent to GetErrorList. GetErrorList finds the device which returned the error indication,
returning the handle through errHandle, and returns the error code associated with that error. If a
non-null error text pointer is passed, GetError also fills in up to 247 bytes in the string. The
application must ensure that sufficient space is available.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 71

Hello
Syntax INT WINAPI Hello(DevHandleT devHandle, LPSTR message);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, the Hello command acts on the hardware interface to
which the external device is attached.

message is a character pointer that contains the returned message.

Returns -1 if error

otherwise, the version of the Dynamic Link Library (DLL) and the version of the device driver.
The returned byte count will never exceed 247 bytes.

Mode Any

Bus States None

Example char message[247];
result = Hello(ieee,message);
printf(“%s\n”,message);

See Also Status, OpenName, GetError

The Hello command is used to verify communication with Driver488, and to read the software
revision number. If a non-null string pointer is passed, Hello fills in up to 247 bytes in the string. The
application must ensure that sufficient space is available. When the command is sent, Driver488
returns a string similar to the following:

Driver488 Revision X.X (C)199X ...

where X is the appropriate revision or year number.

72 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

KeepDevice
Syntax INT WINAPI KeepDevice(DevHandleT devHandle);

devHandle refers to an external device.

Returns -1 if error

Mode Any

Bus States None

Example errorcode = KeepDevice(scope);

See Also MakeDevice, MakeNewDevice, RemoveDevice, OpenName

Note: KeepDevice will update an existing device or will create a new device in the Registry. This
update feature is new and useful. For example, if you wish to change the bus address of the
device and make it a permanent change.

The KeepDevice command changes the indicated temporary Driver488 device to a permanent device,
visible to all applications. Permanent Driver488 devices are not removed when Driver488 is closed.
Driver488 devices are created by MakeDevice and are initially temporary. Unless KeepDevice is
used, all temporary Driver488 devices are forgotten when Driver488 is closed. The only way to
remove the permanent device once it has been made permanent by the KeepDevice command, is to
use the RemoveDevice command.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 73

Listen
Syntax INT WINAPI Listen(DevHandleT devHandle, BYTE pri, BYTE sec);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, the Listen command acts on the associated interface.

pri and sec specify the primary and secondary addresses of the device which is to be
addressed to listen.

Returns -1 if error

Mode CA

Bus States ATN, LAG

Example errorcode = Listen (ieee, 12, -1);

See Also Talk, SendCmd, SendData, SendEoi, FindListener

The Listen command addresses an external device to Listen.

74 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Local
Syntax INT WINAPI Local(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device.

Returns -1 if error

Mode SC

Bus States *REN

Examples errorcode = Local(ieee); To unassert the Remote Enable (REN) line, the
IEEE 488 interface is specified.

errorcode = Local(wave); To send the Go To Local (GTL) command, an
external device is specified.

See Also LocalList, Remote, AutoRemote

In the System Controller mode, the Local command issued to an interface device, causes Driver488 to
unassert the Remote Enable (REN) line. This causes devices on the bus to return to manual operation.
A Local command addressed to an external device, places the device in the local mode via the Go To
Local (GTL) bus command.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 75

LocalList
Syntax INT WINAPI LocalList(DevHandlePT dhList);

dhList refers to a pointer to a list of external devices.

Returns -1 if error

Mode CA

Bus States ATN••UNL, MTA, LAG,GTL
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = LocalList(deviceList);

Sends the Go To Local (GTO) bus
command to a list of external
devices.

See Also Local, Remote, RemoteList, AutoRemote

In the System Controller mode, the LocalList command issued to an interface device, causes
Driver488 to unassert the Remote Enable (REN) line. This causes devices on the bus to return to
manual operation. A LocalList command addressed to an external device, places the device in the
local mode via the Go To Local (GTL) bus command.

76 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Lol
Syntax INT WINAPI Lol(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, the Lol command acts on the hardware interface to which
the external device is attached.

Returns -1 if error

Mode CA

Bus States ATN••LLO
Example errorcode = Lol(ieee);

See Also Local, LocalList, Remote, RemoteList

The Lol command causes Driver488 to issue an IEEE 488 LocalLockout (LLO) bus command. Bus
devices that support this command are thereby inhibited from being controlled manually from their
front panels.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 77

MakeDevice
Syntax INT WINAPI MakeDevice(DevHandleT devHandle, LPSTR name);

devHandle refers to an existing external device.

name is the device name of the device that is to be made and takes the configuration of the
device given by devHandle.

Returns -1 if error

otherwise, the DevHandleT of the new device. Note that the new device is an exact copy
(except for the name) of the specified device as it currently sets in memory and not in
the Registry.

Mode Any

Bus State None

Example dmm = MakeDevice(scope,"DMM");
BusAddress(dmm,16,-1);

Create a device named DMM, attached to
the same I/O adapter as scope and
set its IEEE 488 bus address to 16.

See Also MakeNewDevice, KeepDevice, RemoveDevice, OpenName, Close

The MakeDevice command creates a new temporary Driver488 device that is an identical copy of an
already existing Driver488 external device. The new device is attached to the same I/O adapter of the
existing device and has the same bus address, terminators, timeouts, and other characteristics. The
newly created device is temporary and is removed when Driver488 is closed. KeepDevice may be
used to make the device permanent. To change the default values assigned to the device, it is necessary
to call the appropriate configuration functions such as BusAddress, IOAddress, and TimeOut.

78 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

MakeNewDevice
Syntax DevHandleT WINAPI MakeNewDevice(LPSTR iName, LPSTR aName,BYTE

primary,BYTE secondary,TermPT In,TermPT Out,DWORD tOut);

devHandle refers to the new external device.

iName is the user name of the interface on which the device is to be created.

aName is the user name of the device.

primary and secondary are the secondary and primary bus addresses to be specified.
For no secondary address, a -1 must be specified.

In and Out are pointers to terminator structures specified to set up the respective input and
output terminators of the device.

tOut is the timeout parameter to be specified.

Returns -1 if error

otherwise, the DevHandleT of the new device, based on the parameters specified.

Mode Any

Bus State None

Example DevHandleT anotherDevice;
anotherDevice =

MakeNewDevice(“IEEE0”,
“Scope”,13,-1,NULL,
NULL,10000);

Specifies parameters for: Pointer to the interface,
pointer to the device name, primary and
secondary addresses, pointers to the term
In and Out structures, and timeout in
milliseconds.

See Also MakeDevice, KeepDevice, RemoveDevice, OpenName, Close

This is a new function in Driver488/W95 and in Driver488/WNT. This function is similar to the
MakeDevice function except that MakeNewDevice will create a new device based on the parameters
specified, instead of simply cloning an existing device.

The MakeNewDevice command does not save the parameters of the newly created device in the system
registry. To keep the device, it is necessary to call the KeepDevice function.

Note: The MakeNewDevice command will only create, not save, a new device. Interface
descriptions are created and maintained by the configuration utility and the IEEE 488
configuration applet in the Windows Control Panel.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 79

MyListenAddr
Syntax INT WINAPI MyListenAddr (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the MyListenAddr command acts on the associated interface.

Returns -1 if error

Mode CA

Bus States ATN, MLA

Example errorcode = MyListenAddr (ieee);

See Also MyTalkAddr, Talk, Listen, SendCmd

The MyListenAddr command addresses the interface to Listen.

80 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

MyTalkAddr
Syntax INT WINAPI MyTalkAddr (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the MyTalkAddr command acts on the associated interface.

Returns -1 if error

Mode CA

Bus States ATN, MTA

Example errorcode = MyTalkAddr (ieee);

See Also MyListenAddr, Listen, SendCmd

The MyTalkAddr command addresses the interface to Talk.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 81

OnDigEvent
AT488pnp and PCI488 only

Syntax INT WINAPI OnDigEvent(DevHandleT devHandle, HWND hwnd,
OpaqueP lParam);

devHandle refers to an interface handle.

hwnd is the window handle to receive event notification.

lParam value will be passed in the notification message.

Returns -1 if error

Mode Any

Bus States None

Example OnDigEvent(devHandle,
TRUE, 0x10L);

Sets the event notification to be via a window message
to the specified window handle. The value 0x10
will be passed with the message.

See Also DigArm, OnDigEventVDM, OnEvent

The OnDigEvent command sets the handle of a window to receive a notification message when a
digital match event is triggered. This function uses the same mechanism as the OnEvent command.
For details, see the description of OnEvent.

Note: This function sets the event generation mechanism to be a window notification message,
replacing any previously defined event notification mechanism. Only one event notification
mechanism can be used at one time.

82 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

OnDigEventVDM
AT488pnp and PCI488 only

Syntax INT WINAPI OnDigEventVDM(DevHandleT devHandle, DigEventFuncT
func, OpaqueP lParam);

devHandle refers to an interface handle.

func is a user-defined function to be called when the digital match event is triggered.

lParam value will be passed in the notification message.

Returns -1 if error

Mode Any

Bus States None

Example OnDigEventVDM(devHandle,
MyFunc, 0x10L);

Sets the event notification to be via a function call to
the specified callback function. The value
0x10 will be passed to the function.

See Also DigArm, OnDigEventVDM, OnEventVDM

The OnDigEventVDM command sets the address of a “C”-style (__stdcall) function to be called
when a digital match event occurs. This function uses a similar mechanism as the OnEventVDM
command. The prototype of the callback function for OnDigEventVDM is:

void DigEventFunc(DevHandleT devHandle, LPARAM lParam)

The lParam value which is passed to OnDigEventVDM is passed on to the callback function when the
event occurs. For details, see the description of OnEventVDM.

Note: This function sets the event generation mechanism to be a callback function, replacing any
previously defined event notification mechanism. Only one event notification mechanism can
be used at one time.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 83

OnEvent
Syntax INT WINAPI OnEvent(DevHandleT devHandle, HWND hWnd, OpaqueP

lParam);

devHandle refers to either an interface or an external device.

hWnd is the window handle to receive the event notification.

lParam value will be passed in the notification message.

Returns -1 if error

Mode Any

Bus States None

Example ieee = OpenName (“ieee”);
OnEvent (ieee, hWnd, (OpaqueP) 12345678L);
Arm (ieee, acSRQ | acError);
break;

See Also OnEventVDM, Arm, Disarm

The OnEvent command causes the event handling mechanism to issue a message upon occurrence of
an Armed event. The message will have a type of WM_IEEE488EVENT, whose value is retrieved via:

RegisterWindowMessage ((LPSTR) “WM_IEEE488EVENT”);

The associated wParam is an event mask indicating which Armed event(s) caused the notification, and
the lParam is the value passed to OnEvent. Note that although there is a macro for
WM_IEEE488EVENT in the header file for each language, this macro resolves to a function call and
therefore cannot be used as a case label. The preferred implementation is to include a default case in
the message handling case statement and directly compare the message ID with WM_IEEE488EVENT.
The following is a full example of a program using the OnEvent function:

LONG FAR WINAPI export
WndProc(HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam);
{
HANDLE
ieee;
switch (iMessage)

{
case WM_CREATE:

ieee = OpenName (“ieee”);
OnEvent (ieee, hWnd, (OpaqueP) 12345678L);
Arm (ieee, acSRQ | acError);
break;

default:
if (iMessage == WM_IEEE488EVENT) {

char buff [80];
wsprintf (buff, “Condition = %04X,
Param = %081X”,wParam, lParam);
MessageBox (hWnd, (LPSTR) buff,
(LPSTR) “Event Noted”, MB OK);
return TRUE;

}
}

}

84 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

OnEventVDM
Syntax INT WINAPI OnEventVDM(DevHandleT devHandle, EventFuncT func);

devHandle refers to either an interface or an external device.

func is a user-specified interrupt-handler function that is to perform some user-defined
function, when one of the Armed conditions occur.

Returns -1 if error

Mode Any

Bus States None

Example Arm(ieee0, acSRQ);
OnEventVDM(ieee0, srqHandler);

Arms SRQ detection and sets up SRQ
function handler

See Also OnEvent, Arm, Disarm

This function is new in Driver488/W95 and in Driver488/WNT. The OnEventVDM (VDM refers to
Virtual DOS Machine) allows a call back to a user-specified function in a console mode application.
The following is a full example of a console mode program using the OnEventVDM function:

#include <windows.h>
#include <stdio.h>
#include “iotieee.h”

// For debugging
#define qsk(v,x) (v=x, printf(#x “returned %d/n”, v))

void
srqHandler(DevHandlerT devHandle, UINT mask)
{

LONG xfered;
printf(“\007\n\nEVENT-FUNCTION on %d mask 0x%04x\n”,
devHandle, mask);
qsk(xfered, Spoll(devHandle));
printf(“\n\n”);

}

void
main(void)
{

LONG result, xfered;
int ioStatus, x;
DevHandleT ieee0, wave14, wave16;
TermT myTerm;
UCHAR buffer[500];

printf(“\n\nSRQTEST program PID %d\n”,GetCurrentProcessId ());
qsk(ieee0, OpenName(“ieee0”));
qsk(wave14, OpenName(“Wave14”));
qsk(wave16, OpenName(“Wave16”));
qsk(result, Abort(wave14));
qsk(result, Abort(wave16));
qsk(x, Hello(ieee0, buffer));
printf(“\n%s\n\n”, buffer);
myTerm.EOI = 1;
myTerm.nChar = 0;
myTerm.termChar[0] = ‘\r’;
myTerm.termChar[1] = ‘\n’;

// Arm SRQ detection and set up SRQ function handler
qsk(x, Arm(ieee0, acSRQ));
qsk(x, OnEventVDM(ieee0, srqHandler));

// Tell the Wave to assert SRQ in 3 seconds
qsk(xfered,Output(wave16,“t3000x”,6L,1,0,&myTerm,0,&ioStatus));
printf(“Completion code: 0x%04x\n”, ioStatus);

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 85

// Normally, your program would be off doing other work, for
// this example we will just hold here for a short time.
For(result = 0; result 30000; result++) {

printf(“Result is %06d\r”, result);
}
printf(“\n\n”);

qsk(xfered, Spoll(wave16));
qsk(x, Close(wave14));
qsk(x, Close(wave16));
qsk(x, Close(ieee0));

}

86 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

OpenName
Syntax DevHandleT WINAPI OpenName(LPSTR name);

name is the name of an interface or external device.

Returns -1 if error

otherwise, the device handle associated with the given name

Mode Any

Bus State None

Examples dmm = OpenName(“DMM”); Opens the external device DMM

dmm = OpenName(“IEEE:DMM”); Specifies the interface to which the external
device is connected

See Also MakeDevice, Close

The OpenName command opens the specified interface or external device and returns a device handle
for use in accessing that device.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 87

OutputX
Syntax LONG WINAPI OutputX(DevHandleT devHandle, LPBYTE data, DWORD

count, BOOL last, BOOL forceAddr, TermT *terminator, BOOL
async, LPDWORD compStat);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the OutputX command acts on the hardware interface to which the
external device is attached.

data is a string of bytes to send.

count is the number of bytes to send.

last is a flag that forces the device output terminator to be sent with the data.

forceAddr is used to specify whether the addressing control bytes are to be issued for
each OutputX command.

terminator is a pointer to a terminator structure that is used to set up the input
terminators. If terminator is set to 0, the default terminator is used.

async is a flag that allows asynchronous data transfer. Note that this asynchronous flag is
ignored in Driver488/WNT.

compStat is a pointer to an integer containing completion status information.

Returns -1 if error

otherwise, the number of characters transferred

Mode CA

Bus States With interface handle: REN (if SC and AutoRemote), *ATN, ATN

With external device handle: REN (if SC and AutoRemote), ATN••MTA, UNL,
LAG, *ATN, ATN

Example term.EOI = TRUE;
term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = ‘\r’;
data = “U0X”;
count = strlen(data);
bytecnt=Output(timer,data,count,1,0,&term,0,&stat);

See Also EnterX, Term, TimeOut, Buffered

Note: The asynchronous flag async is ignored in Driver488/WNT.

The OutputX command sends data to an interface or external device. The Remote Enable (REN) line is
first asserted if Driver488 is the System Controller and AutoRemote is enabled. Then, if a device
address (with optional secondary address) is specified, Driver488 is addressed to Talk and the specified
device is addressed to Listen. If no address is specified, then Driver488 must already be configured to
send data, either as a result of a preceding OutputX command, or as the result of a Send command.
Terminators are automatically appended to the output data as specified.

The forceAddr flag is used to specify whether the addressing control bytes are to be issued for each
OutputX command. If the device handle refers to an interface, forceAddr has no effect and
command bytes are not sent. If the device handle refers to an external device and forceAddr is TRUE,
Driver488 addresses the interface to Talk and the external device to Listen. If forceAddr is FALSE,
Driver488 compares the current device with the most recently addressed device on that interface. If the
addressing information is the same, no command bytes are sent. If they are different, OutputX acts as
if the forceAddr flag were TRUE and sends the addressing information.

The terminator is a pointer to a terminator structure that is used to set up the input terminators. This
pointer may be a null pointer, requesting use of the default terminators for the device, or it may point to
a terminator structure requesting no terminators. The async is a flag that allows asynchronous data
transfer. If this flag is TRUE, the OutputX command returns to the caller as soon as the data transfer is
underway. FALSE indicates that the OutputX command should not return until the transfer is
complete. The compStat is a pointer to an integer containing completion status information. A null
pointer indicates that completion status is not requested. In the case of an asynchronous transfer, this
pointer must remain valid until the transfer is complete.

88 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Additional Output Functions

Driver488 provides additional Output functions that are short-form versions of the OutputX function.
The following Output functions are already defined in your header file.

Output
Syntax LONG WINAPI Output(DevHandleT devHandle,LPBYTE data);

Remarks Output is equivalent to the following call to OutputX:

OutputX(devHandle,data,strlen(data),1,1,0L,0,0L);

The Output function passes the device handle and a pointer to the data buffer to the OutputX
function. It determines the size of the data buffer that you provided, and passes that value as the count
parameter. It specifies that the forceAddr flag is set TRUE, which causes Driver488 to address the
device if an external device is specified. The default terminators are chosen by specifying a 0 pointer
as the terminator parameter. Synchronous transmission is specified by sending 0 for the async
parameter, and the completion status value is ignored by sending a 0 for the compStat pointer.

OutputN
Syntax LONG WINAPI OutputN(DevHandleT devHandle,LPBYTE data,DWORD

count);

Remarks OutputN is equivalent to the following call to OutputX:

OutputX(devHandle,data,count,0,1,0L,0,0L);

The OutputN function passes the device handle and a pointer to the data buffer to the OutputX
function. It specifies that the forceAddr flag is set TRUE, which causes Driver488 to address the
device if an external device is specified. The default terminators are chosen by specifying a 0 pointer
as the terminator parameter. Synchronous transmission is specified by sending 0 for the async
parameter, and the completion status value is ignored by sending a 0 for the compStat pointer.

OutputMore
Syntax LONG WINAPI OutputMore(DevHandleT devHandle, LPBYTE data);

Remarks OutputMore is equivalent to the following call to OutputX:

OutputX(devHandle,data,strlen(data),1,0,0L,0,0L);

The OutputMore function passes the device handle and a pointer to the data buffer to the OutputX
function. It determines the size of the data buffer that you provided, and passes that value as the count
parameter. It specifies that the forceAddr flag is set FALSE, so Driver488 does not re-address the
device if it is the same device as that previously used. The default terminators are chosen by specifying
a 0 pointer as the terminator parameter. Synchronous transmission is specified by sending 0 for the
async parameter, and the completion status value is ignored by sending a 0 pointer for the compStat
pointer.

OutputNMore
Syntax LONG WINAPI OutputNMore (DevHandleT devHandle, LPBYTE data,

DWORD count);

Remarks OutputNMore is equivalent to the following call to OutputX:

OutputX(devHandle,data,0,0,0L,0,0L);

The OutputNMore function passes the device handle and a pointer to the data buffer to the OutputX
function. It specifies that the forceAddr flag is set FALSE, so Driver488 does not re-address the
device if it is the same device as that previously used. The default terminators are chosen by specifying
a 0 pointer as the terminator parameter. Synchronous transmission is specified by sending 0 for the
async parameter, and the completion status value is ignored by sending a 0 pointer for the compStat
pointer.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 89

PassControl
Syntax INT WINAPI PassControl(DevHandleT devHandle);

devHandle refers to an external device to which control is passed.

Returns -1 if error

Mode CA

Bus States ATN••UNL, MLA, TAG, UNL, TCT, *ATN
Example errorcode = PassControl(scope);

See Also Abort, Reset, SendCmd

The PassControl command allows Driver488 to give control to another controller on the bus. After
passing control, Driver488 enters the Peripheral mode. If Driver488 was the System Controller, then it
remains the System Controller, but it is no longer the Active Controller. The Controller now has
command of the bus until it passes control to another device or back to Driver488. The System
Controller can regain control of the bus at any time by issuing an Abort command.

90 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

PPoll
Syntax INT WINAPI PPoll(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, then the PPoll command acts on the hardware interface to which the
external device is attached.

Returns -1 if error

otherwise, a number in the range 0 to 255

Mode CA

Bus States ATN••EOI, *EOI
Example errorcode = PPoll(ieee);

See Also PPollConfig, PPollUnconfig, PPollDisable, SPoll

The PPoll (Parallel Poll) command is used to request status information from many bus devices
simultaneously. If a device requires service then it responds to a Parallel Poll by asserting one of the
eight IEEE 488 bus data lines (DIO1 through DIO8, with DIO1 being the least significant). In this
manner, up to eight devices may simultaneously be polled by the controller. More than one device can
share any particular DIO line. In this case, it is necessary to perform further Serial Polling (SPoll) to
determine which device actually requires service.

Parallel Polling is often used upon detection of a Service Request (SRQ), though it may also be
performed periodically by the controller. In either case, PPoll responds with a number from 0 to 255
corresponding to the eight binary DIO lines. Not every device supports Parallel Polling. Refer to the
manufacturer’s documentation for each bus device to determine if PPoll capabilities are supported.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 91

PPollConfig
Syntax INT WINAPI PPollConfig(DevHandleT devHandle,BYTE ppresponse);

devHandle refers to either an interface or an external device to configure for the Parallel
Poll.

ppresponse is the decimal equivalent of the four binary bits S, P2, P1, and P0 where S is
the Sense bit, and P2, P1, and P0 assign the DIO bus data line used for the response.

Returns -1 if error

Mode CA

Bus States ATN••UNL, MTA, LAG, PPC
Example errorcode =

PPollConfig
(dmm,0x0D);

Configure device DMM to assert DIO6 when it desires service (ist
= 1) and it is Parallel Polled (0x0D = &H0D = 1101 binary;
S=1, P2=1, P1=0, P0=1; 101 binary = 5 decimal = DIO6).

See Also PPoll, PPollUnconfig, PPollDisable

The PPollConfig command configures the Parallel Poll response of a specified bus device. Not all
devices support Parallel Polling and, among those that do, not all support the software control of their
Parallel Poll response. Some devices are configured by internal switches.

The Parallel Poll response is set by a four-bit binary number response: S, P2, P1, and P0. The most
significant bit of response is the Sense (S) bit. The Sense bit is used to determine when the device will
assert its Parallel Poll response. Each bus device has an internal individual status (ist). The Parallel
Poll response is asserted when this ist equals the Sense bit value S. The ist is normally a logic 1
when the device requires attention, so the S bit should normally also be a logic 1. If the S bit is 0, then
the device asserts its Parallel Poll response when its ist is a logic 0. That is, it does not require
attention. However, the meaning of ist can vary between devices, so refer to your IEEE 488 bus
device documentation. The remaining 3 bits of response: P2, P1, and P0, specify which DIO bus data
line is asserted by the device in response to a Parallel Poll. These bits form a binary number with a
decimal value from 0 through 7, specifying data lines DIO1 through DIO8, respectively.

92 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

PPollDisable
Syntax INT WINAPI PPollDisable(DevHandleT devHandle);

devHandle is either an interface or an external device that is to have its Parallel Poll
response disabled.

Returns -1 if error

Mode CA

Bus States ATN••UNL, MTA, LAG, PPC, PPD
Example errorcode = PPollDisable(dmm); Disables Parallel Poll of device DMM.

See Also PPoll, PPollConfig, PPollUnconfig

The PPollDisable command disables the Parallel Poll response of a selected bus device.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 93

PPollDisableList
Syntax INT WINAPI PPollDisableList(DevHandlePT dhList);

dhList is a pointer to a list of external devices that are to have their Parallel Poll response
disabled.

Returns -1 if error

Mode CA

Bus States ATN••UNL, MTA, LAG, PPC, PPD
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = PPollDisableList(deviceList);

See Also PPoll, PPollConfig, PPollUnconfig

The PPollDisableList command disables the Parallel Poll response of selected bus devices.

94 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

PPollUnconfig
Syntax INT WINAPI PPollUnconfig(DevHandleT devHandle);

devHandle refers to a hardware interface. If devHandle refers to an external device,
then the PPollUnconfig command acts on the hardware interface to which the
external device is attached.

Returns -1 if error

Mode CA

Bus States ATN••PPU
Example errorcode = PPollUnconfig(ieee);

See Also PPoll, PPollConfig, PPollDisable

The PPollUnconfig command disables the Parallel Poll response of all bus devices.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 95

Remote
Syntax INT WINAPI Remote(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
interface, then the Remote Enable (REN) line is asserted. If devHandle refers to an
external device, then that device is addressed to Listen and placed into the Remote
state.

Returns -1 if error

Mode SC

Bus States With interface: REN

With external device: REN, ATN••UNL, MTA, LAG
Examples errorcode = Remote(ieee); Asserts the REN bus line

errorcode = Remote(scope); Asserts the REN bus line and addresses the
scope device specified to Listen, to place it
in the Remote state

See Also Local, LocalList, RemoteList

The Remote command asserts the Remote Enable (REN) bus management line. If an external device is
specified, then Remote will also address that device to Listen, placing it in the Remote state.

96 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

RemoteList
Syntax INT WINAPI RemoteList(DevHandlePT dhList);

dhList is a pointer to a list of devices.

Returns -1 if error

Mode SC••CA
Bus States REN, ATN••UNL, MTA, LAG
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = RemoteList(deviceList);

Asserts the REN bus line and
addresses a list of specified
devices to Listen, to place
these specified devices in the
Remote state.

See Also Remote, Local, LocalList

The RemoteList command asserts the Remote Enable (REN) bus management line. If external
devices are specified, then RemoteList will also address those devices to Listen, placing them in the
Remote state.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 97

RemoveDevice
Syntax INT WINAPI RemoveDevice(DevHandleT devHandle);

devHandle specifies an interface or an external device to remove.

Returns -1 if error

Mode Any

Bus States None

Example errorcode = RemoveDevice(dmm);

See Also MakeDevice, KeepDevice

The RemoveDevice command removes the specific temporary or permanent Driver488 device that
was created with either the MakeDevice command or the startup configuration. This command also
removes a device that was made permanent through a KeepDevice command.

98 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Request
Syntax INT WINAPI Request(DevHandleT devHandle, BYTE spstatus);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the Request command acts on the hardware interface to which the
external device is attached.

spstatus is the Service Request status in the range 0 to 255.

Returns -1 if error

Mode *CA

Bus States SRQ (if rsv is set)

*SRQ (if rsv is not set)

Examples errorcode = Request(ieee,0); Clears SRQ and Serial Poll Response.

errorcode =
Request(ieee,64+2+4);

Generates an SRQ (decimal 64) with DIO2
(decimal 2) and DIO3 (decimal 4) set in
the Serial Poll Response.

See Also Status, ControlLine

In Peripheral mode, Driver488 is able to request service from the Active Controller by asserting the
Service Request (SRQ) bus signal. The Request command sets or clears the Serial Poll status
(including Service Request) of Driver488. Request takes a numeric argument in the decimal range
0 to 255 (hex range &H0 to &HFF) that is used to set the Serial Poll status. When Driver488 is Serial
Polled by the Controller, it returns this byte on the DIO data lines.

The data lines are numbered DIO8 through DIO1. DIO8 is the most significant line and corresponds to
a decimal value of 128 (hex &H80). DIO7 is the next most significant line and corresponds to a
decimal value of 64 (hex &H40). DIO7 has a special meaning: It is the Request for Service (rsv) bit. If
rsv is set, then Driver488 asserts the Service Request (SRQ) bus signal. If DIO7 is clear (a logic 0),
then Driver488 does not assert SRQ. When Driver488 is Serial Polled, all eight bits of the Serial Poll
status are returned to the Controller. The rsv bit is cleared when Driver488 is Serial Polled by the
Controller. This causes Driver488 to stop asserting SRQ.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 99

Reset
Syntax INT WINAPI Reset(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the Reset command acts on the hardware interface to which the
external device is attached.

Returns -1 if error

Mode Any

Bus States None

Example errorcode=Reset(ieee);

See Also Abort, Term, TimeOut

The Reset command provides a warm start of the interface. It is equivalent to issuing the following
command process, including clearing all error conditions:

1. Stop.
2. Disarm.
3. Reset hardware (resets to Peripheral if not System Controller).
4. Abort (if System Controller).
5. Error ON.
6. Local.
7. Request 0 (if Peripheral).
8. Clear Change, Trigger, and Clear status.
9. Reset I/O adapter settings to installed values (BusAddress, TimeOut, IntLevel and

DmaChannel).

100 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Resume
Driver488/W95 only

Syntax INT WINAPI Resume(DevHandleT devHandle, BOOL monitor);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, then the Resume command acts on the hardware interface to which
the external device is attached.

monitor is a flag that when it is ON, Driver488 monitors the data.

Returns -1 if error

Mode CA

Bus States *ATN

Examples errorcode = Resume(ieee,OFF); Do not go into monitoring mode.

errorcode = Resume(ieee,ON);
errorcode = Finish(ieee);

Go into monitoring mode.

See Also Finish

The Resume command unasserts the Attention (ATN) bus signal. Attention is normally kept asserted by
Driver488, but it must be unasserted to allow transfers to take place between two peripheral devices. In
this case, Driver488 sends the appropriate Talk and Listen addresses, and then must unassert Attention
with the Resume command.

If monitor is specified, Driver488 monitors the handshaking process but does not participate in it.
Driver488 takes control synchronously when the last terminator or EOI is encountered. At that point,
the transfer of data stops. The Finish command must be called to assert Attention and release any
pending holdoffs to be ready for the next action.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 101

SendCmd
Syntax INT WINAPI SendCmd(DevHandleT devHandle, LPBYTE commands,

DWORD len);

devHandle refers to an interface handle.

commands points to a string of command bytes to be sent.

len is the length of the command string.

Response None

Mode CA

Bus States User-defined

Example char command[] = “U?0";
errorcode = SendCmd(ieee, &command, sizeof command);

See Also SendData, SendEoi

The SendCmd command sends a specified string of bytes with Attention (ATN) asserted, causing the
data to be interpreted as IEEE 488 command bytes.

102 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

SendData
Syntax INT WINAPI SendData(DevHandleT devHandle, LPBYTE data, DWORD

len);

devHandle refers to an interface handle.

data points to a string of data bytes to be sent.

len is the length of the data string.

Response None

Mode Any

Bus States User-defined

Example char data[] = “W0X”;
errorcode = SendData(ieee, data, strlen (data));

See Also SendCmd, SendEoi

The SendData command provides byte-by-byte control of data transfers and gives greater flexibility
than the other commands. This command can specify exactly which operations Driver488 executes.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 103

SendEoi
Syntax INT WINAPI SendEoi(DevHandleT devHandle, LPBYTE data, DWORD

len);

devHandle refers to an interface handle.

data points to a string of data bytes to be sent.

len is the length of the data string.

Response None

Mode Any

Bus States User-defined

Example char data[] = “W0X”;
errorcode = SendEoi(ieee, data, strlen (data));

See Also SendCmd, SendData

The SendEoi command provides byte-by-byte control of data transfers and gives greater flexibility
than the other commands. This command can specify exactly which operations Driver488 executes.
Driver488 asserts EOI during the transfer of the final byte.

104 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

SPoll
Syntax INT WINAPI SPoll(DevHandleT devHandle);

devHandle refers to either an interface or a specific external device.

Returns -1 if error

otherwise, 0 or 64 (hardware interface) in the range 0 to 255 (external device)

Mode Any

Bus States ATN••UNL, MLA, UNT, TAG, SPE, *ATN, ATN••SPD, UNT
Examples errorcode = SPoll(ieee); Returns the internal SRQ status

errorcode = SPoll(dmm); Returns the Serial Poll response of the specified
device

See Also SPollList, PPoll

In Active Controller mode, the SPoll (Serial Poll) command performs a Serial Poll of the bus device
specified and responds with a number from 0 to 255 representing the decimal equivalent of the eight-
bit device response. If rsv (DIO7, decimal value 64) is set, then that device is signaling that it requires
service. The meanings of the other bits are device-specific.

Serial Polls are normally performed in response to assertion of the Service Request (SRQ) bus signal by
some bus device. In Active Controller mode, with the interface device specified, the SPoll command
returns the internal SRQ status. If the internal SRQ status is set, it usually indicates that the SRQ line is
asserted. Driver488 then returns a 64. If it is not set, indicating that SRQ is not asserted, then
Driver488 returns a 0. With an external device specified, SPoll returns the Serial Poll status of the
specified external device.

In Peripheral mode, the SPoll command is issued only to the interface, and returns the Serial Poll
status. If rsv (DIO7, decimal value 64) is set, then Driver488 has not been Serial Polled since the
issuing last Request command. The rsv is reset whenever Driver488 is Serial Polled by the
Controller.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 105

SPollList
Syntax INT WINAPI SPollList(DevHandlePT dhList, LPBYTE result, BYTE

flag);

dhList is a pointer to a list of external devices.

result is an array that is filled in with the Serial Poll results of the corresponding external
devices.

flag refers to either ALL, WHILE_SRQ, or UNTIL_RSV.

Returns -1 if error

Mode *CA

Bus States ATN••UNL, MLA, TAG, SPE, *ATN, ATN••SPD, UNT
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
result = SPollList(deviceList,

resultList, ALL);

Returns the Serial Poll response for a list of
device handles.

See Also SPoll, PPoll

In Active Controller mode, the SPollList (Serial Poll) command performs a Serial Poll of the bus
devices specified and responds with a number from 0 to 255 (representing the decimal equivalent of
the eight-bit device response) for each device on the list. If rsv (DIO7, decimal value 64) is set, then
that device is signaling that it requires service. The meanings of the other bits are device-specific.

Serial Polls are normally performed in response to assertion of the Service Request (SRQ) bus signal by
some bus device. In Active Controller mode with the interface device specified, the SPollList
command returns the internal SRQ status for each device. If the internal SRQ status is set, it usually
indicates that the SRQ line is asserted. Driver488 then returns a 64. If it is not set, indicating that SRQ
is not asserted, then Driver488 returns a 0. With an external device specified, SPollList returns the
Serial Poll status of the specified external device.

In Peripheral mode, the SPollList command is issued only to the interface and returns the Serial Poll
status. If rsv (DIO7, decimal value 64) is set, then Driver488 has not been Serial Polled since the last
Request command was issued. The rsv is reset whenever Driver488 is Serial Polled by the
Controller.

The untilflag refers to either ALL, WHILE_SRQ, or UNTIL_RSV. If ALL is chosen, all the devices are
Serial Polled and their results placed into the result array. If untilflag is WHILE_SRQ, Driver488
Serial Polls the devices until the SRQ bus signal becomes unasserted, and the results are put into the
result array. If untilflag is UNTIL_RSV, Driver488 Serial Polls the devices until the first device
whose rsv bit is set, is found and the results are put into the result array.

106 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Status
Syntax INT WINAPI Status(DevHandleT devHandle, IeeeStatusPT result);

devHandle refers to either an IEEE 488 interface or an external device. If devHandle
refers to an external device, Status acts on the hardware interface to which the
external device is attached.

result is a pointer to a Status structure.

Returns -1 if error

Mode Any

Bus States None

Example result = Status(ieee,&StatusResult);
if (statusResult.transfer == TRUE) {
printf(“We have a transfer in progress\n”);
} else {
printf(“There is no transfer in progress\n”);
}

See Also GetError, SPoll

The Status command returns various items detailing the current state of Driver488. They are
returned in a data structure, based on the following table:

Status Item Flag Values and Description
Controller Active .CA TRUE: Active Controller, FALSE: Not CA.

System Controller .SC TRUE: System Controller, FALSE: Not SC.

Primary Bus Address .Primaddr 0 to 30: Two-digit decimal number.

Secondary Bus Address .Secaddr 0 to 31: Two-digit decimal number, or -1 if no address.

Address Change .addrChange TRUE: Address change has occured, FALSE: Not so.

Talker .talker TRUE: Talker, FALSE: Not Talker.

Listener .listener TRUE: Listener, FALSE: Not Listener.

ByteIn .bytein TRUE: Byte in, ready to read, FALSE: Not so.

ByteOut .byteout TRUE: Byte out, ready to output, FALSE: Not so.

Service Request .SRQ TRUE: SRQ is asserted, FALSE: SRQ is not asserted.

Triggered .triggered TRUE: Trigger command received, FALSE: Not so.

Cleared .cleared TRUE: Clear command received, FALSE: Not so.

Transfer in Progress .transfer TRUE: Transfer in progress, FALSE: Not so.

These Status items are more-fully described in the following paragraphs:

• The Controller Active flag (.CA) is true if Driver488 is the Active Controller. If Driver488 is not
the System Controller, then it is initially a Peripheral and it becomes a controller when Driver488
receives control from the Active Controller.

• The System Controller flag (.SC) is true if Driver488 is the System Controller. The System
Controller mode may be configured during installation or by using the SysController command.

• The Primary Bus Address (.Primaddr) is the IEEE 488 bus device primary address assigned to
Driver488 or the specified device. This will be an integer from 0 to 30. The Secondary Bus
Address (.Secaddr) is the IEEE 488 bus device secondary address assigned to the specified
device. This will be either -1 to indicate no secondary address, or an integer from 0 to 31. Note
that the interface device can never have a secondary address.

• The Address Change indicator (.addrChange) is set whenever Driver488 become a Talker,
Listener, or the Active Controller, or when it becomes no longer a Talker, Listener, or the Active
Controller. It is reset when Status is read. The Talker (.talker) and Listener (.listener)
flags reflect the current Talker/Listener state of Driver488. As a Peripheral, Driver488 can check
this status to see if it has been addressed to Talk or addressed to Listen by the Active Controller.
In this way, the desired direction of data transfer can be determined.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 107

• The ByteIn (.byteIn) indicator is set when the I/O adapter has received a byte that can be read by
an Enter command. The ByteOut (.byteOut) indicator is set when the I/O adapter is ready to
output data. The Service Request field (.SRQ), as an active controller, reflects the IEEE 488 bus
SRQ line signal. As a peripheral, this status reflects the rsv bit that can be set by the Request
command and is cleared when the Driver488 is Serial Polled. For more details, refer to the SPoll
command in this chapter.

• The Triggered (.triggered) and Cleared (.cleared) indicators are set when, as a Peripheral,
Driver488 is triggered or cleared. These two indicators are cleared when Status is read. The
Triggered and Cleared indicators are not updated while asynchronous transfers are in progress.
The Transfer in Progress (.transfer) indicator signifies an asynchronous transfer in progress.

108 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Stop
Driver488/W95 only

Syntax INT WINAPI Stop(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the Stop command acts on the hardware interface to which the
external device is attached.

Returns -1 if error

Mode Any

Bus States ATN (Controller)

None (Peripheral)

Example errorcode = Stop(ieee);

See Also EnterX, OutputX, Buffered

The Stop command halts any asynchronous transfer that may be in progress. If the transfer has
completed already, then Stop has no effect. The actual number of characters transferred is available
from the Buffered command.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 109

Talk
Syntax INT WINAPI Talk(DevHandleT devHandle, BYTE pri, BYTE sec);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the Talk command acts on the associated interface.

pri and sec specify the primary and secondary addresses of the device which is to be
addressed to Talk.

Returns -1 if error

Mode CA

Bus States ATN, TAG

Example errorcode = Talk (ieee, 12, -1);

See Also Listen, SendCmd

The Talk command addresses an external device to Talk.

110 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Term
Syntax INT WINAPI Term(DevHandleT devHandle, TermT *terminator,

DWORD TermType);

devHandle refers to either an interface or an external device.

terminator is a pointer to the terminator structure.

TermType can be either TERMIN, TERMOUT, or TERMIN+TERMOUT, specifying whether
input, output, or both are being set.

Returns -1 if error

Mode Any

Bus States None

Example term.EOI = TRUE;
term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = 13;
errorcode = Term(ieee,&term,TERMIN);

See Also TermQuery, EnterX, OutputX, Status

The Term command sets the end-of-line (EOL) terminators for input from, and output to, I/O adapter
devices. These terminators are sent at the end of output data and expected at the end of input data, in
the manner of CR LF as used with printer data.

During output, Term appends the bus output terminator to the data before sending it to the I/O adapter
device. Conversely, when Driver488 receives the bus input terminator, it recognizes the end of a
transfer and returns the data to the calling application. The terminators never appear in the data
transferred to or from the calling application. The default terminators for both input and output are set
by the startup configuration and are normally CR LF EOI, which is appropriate for most bus devices.

End-Or-Identify (EOI) has a different meaning when it is specified for input than when it is specified
for output. During input, EOI specifies that input is terminated on detection of the EOI bus signal,
regardless of which characters have been received. During output, EOI specifies that the EOI bus
signal is to be asserted during the last byte transferred.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 111

TermQuery
Syntax INT TermQuery(DevHandleT devHandle, TermT *terminator, INT

TermType);

devHandle refers to either an interface or an external device.

terminator is a pointer to the terminator structure.

TermType can be either TERMIN, TERMOUT, or TERMIN+TERMOUT, specifying whether
input, output, or both are being set.

Returns -1 if error

Mode Any

Bus States None

Example None provided.

See Also Term, EnterX, OutputX, Status

This is a new function in Driver488/W95. The TermQuery function queries the terminators setting.
Terminators are defined by the TermT structure.

112 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

TimeOut
Syntax INT WINAPI TimeOut(DevHandleT devHandle, DWORD millisec);

devHandle refers to either an IEEE 488 interface or an external device.

millisec is a numeric value given in milliseconds.

Returns -1 if error

Mode Any

Bus States None

Example errorcode = TimeOut(ieee,100); Sets the timeout value to 100 msec.

See Also TimeOutQuery, Reset

The TimeOut command sets the number of milliseconds that Driver488 waits for a transfer before
declaring a time out error. Driver488 checks for timeout errors on every byte it transfers, except in the
case of asynchronous transfers. While the first byte of an asynchronous transfer is checked for time
out, subsequent bytes are not. Your program must check for timely completion of an asynchronous
transfer.

Time out checking may be suppressed by specifying a time out value of zero seconds, which specifies
an infinite timeout. The default time out is specified in the startup configuration, normally 10 seconds.
The time out interval may be specified to the nearest 0.001 seconds (1 millisecond). However, due to
the limitations of the computer, the actual interval is always a multiple of 55 milliseconds and there is
an uncertainty of 55 msec in the actual interval. Time out intervals from 1 to 110 milliseconds are
rounded to 110 milliseconds. Larger intervals are rounded to the nearest multiple of 55 msec (e.g.
165, 220, 275 msec, etc.).

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 113

TimeOutQuery
Syntax INT WINAPI TimeOutQuery(DevHandleT devHandle,DWORD millisec);

devHandle refers to either an IEEE 488 interface or an external device.

millisec is a numeric value given in milliseconds.

Returns -1 if error

Mode Any

Bus States None

Example None provided.

See Also TimeOut, Reset

This is a new function in Driver488/W95. The TimeOutQuery function queries the time out setting,
given in milliseconds.

114 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Trigger
Syntax INT WINAPI Trigger(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device.

Returns -1 if error

Mode CA

Bus States With interface handle: ATN••GET

With external device handle: ATN••UNL, MTA, LAG, GET
Examples errorcode =

Trigger(ieee);
Issues a Group Execute Trigger (GET) bus command to those

devices that are already in the Listen state as the result of
a previous Output or Send command

errorcode =
Trigger(dmm);

Issues a Group Execute Trigger (GET) bus command to the
device specified

See Also TriggerList, Status, SendCmd

The Trigger command issues a Group Execute Trigger (GET) bus command to the specified device.
If no interface devices are specified, then the GET only affects those devices that are already in the
Listen state as a result of a previous Output or Send command.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 115

TriggerList
Syntax INT WINAPI TriggerList(DevHandlePT dhList);

dhList is a pointer to a list of external devices.

Returns -1 if error

Mode CA

Bus States ATN••UNL, MTA, LAG, GET
Example deviceList[0] = wave;

deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = TriggerList(deviceList);

Issues a Group Execute Trigger
(GET) bus command to a
list of specified devices.

See Also Trigger, SendCmd, Status

The TriggerList command issues a Group Execute Trigger (GET) bus command to the specified
devices. If no interface devices are specified, then the GET affects those devices that are already in the
Listen state as a result of a previous Output or Send command.

116 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

UnListen
Syntax INT WINAPI UnListen (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the UnListen command acts on the associated interface.

Returns -1 if error

Mode CA

Bus States ATN, UNL

Example errorcode = UnListen (ieee);

See Also Listen, UnTalk, SendCmd, Status

The UnListen command unaddresses an external device that was addressed to Listen.

Personal488 User's Manual For Windows 95 and Windows NT API Command Reference 117

UnTalk
Syntax INT WINAPI UnTalk (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle refers to an
external device, the UnTalk command acts on the associated interface.

Returns -1 if error

Mode CA

Bus States ATN, UNT

Example errorcode = UnTalk (ieee);

See Also Talk, UnListen, SendCmd, Status

The UnTalk command unaddresses an external device that was addressed to Talk.

118 API Command Reference Personal488 User's Manual For Windows95 and Windows NT

Wait
Driver488/W95 only

Syntax INT WINAPI Wait(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle is an
external device, the Wait command acts on the hardware interface to which the
external device is attached.

Returns -1 if error

Mode Any

Bus States Determined by previous Enter or Output command

Example errorcode = Wait(ieee);

See Also EnterX, OutputX, Buffered, Status

The Wait command causes Driver488 to wait until any asynchronous transfer has completed before
returning to your program. It can be used to guarantee that the data has actually been received before
beginning to process it, or that it has been sent before overwriting the buffer. It is especially useful
with the Enter command, when a terminator has been specified. In that case, the amount that is
actually received is unknown, and so your program must check with Driver488 to determine when the
transfer is done. Time out checking, if enabled, is performed while Waiting.

Personal488 User's Manual For Windows 95 and Windows NT Troubleshooting 119

Troubleshooting 10

Radio Interference Problems……119
IEEE 488 Bus Errors……119
Hardware-Software Conflicts……120
Checking Hardware & Software Settings……120

Radio Interference Problems
Personal488 hardware systems generate, use and can radiate radio frequency energy, and if not
installed and not used correctly, may cause harmful interference to radio communications. However,
there is no guarantee that interference will not occur in a particular installation. If this equipment does
cause harmful interference to radio or television reception, which can be determined by turning the
equipment off and on, you the user are encouraged to try to correct the interference by one or more of
the following measures:

• Antenna Adjustment: Reorient or relocate the receiving antenna.

• Spatial Separation: Increase the separation between the equipment and receiver.

• Circuit Separation: Connect the equipment to an outlet on a circuit different from that to which
the receiver is connected.

Otherwise, consult the dealer of an experienced radio/television technician for help.

IEEE 488 Bus Errors
• Connections: Check to make sure that all of the that IEEE 488 bus cables are securely fastened to

their respective terminals, and that the IEEE 488 Standard has been met.

• Primary Addresses: Check to make sure that all of the IEEE 488 bus primary addresses each has a
unique value between 0 and 30. No two interface boards or external devices should have the same
primary address within any single IEEE 488 bus system. The default IEEE 488 bus primary
address is 21, but this may be changed if it conflicts with some other device.

• Timeouts: Check to make sure that the time out period is preferred over setting IEEE 488 bus
terminators. If the time out period elapses while waiting to transfer data or while waiting for
unspecified terminators, a time out error occurs.

• Bus Terminators: Check to make sure that the IEEE 488 bus terminators sent by the device and
the IEEE 488 bus terminators expected by the software driver, match up. Typically, these
terminators are carriage return (CR) and line feed (LF), followed by an End-Or-Identify (EOI).

For more information on the configuration of Driver488 software settings for IEEE 488 interfaces and
external devices, see chapter Driver488/W95 & Driver488/WNT on page 41.

Note: If you make any changes to the configuration parameters – such as the Primary Address,
Timeout, and Bus Terminator – you must restart the device driver for the changes to take
effect. For Driver488/W95, close all applications using the interface board and restart your
programs. For Driver488/WNT, you can use the following commands to restart your device
driver: net stop drvr488 and net start drvr488.

120 Troubleshooting Personal488 User's Manual For Windows95 and Windows NT

Hardware-Software Conflicts
Note: If your Personal488 package includes a plug-and-play interface – such as the Personal488/PCI

(with PCI488), Personal488/ATpnp (with AT488pnp), or Personal488/CARD (with
CARD488) packages – disregard the list below.

• I/O Base Address: Check to make sure that the I/O base address selected through the
configuration utility of Driver488, matches the interrupt setting configured through the appropriate
DIP switch on your IEEE 488 interface.

• Interrupt Setting: Check to make sure that the interrupt setting selected through the configuration
utility of Driver488, matches the interrupt setting configured through the appropriate jumper(s) and
DIP switch(es) on your IEEE 488 interface.

• Direct Memory Access (DMA) Setting: Check to make sure that the DMA setting selected
through the configuration utility of Driver488, matches the DMA setting configured through the
appropriate jumper(s) on your IEEE 488 interface.

Checking Hardware & Software Settings

Checking the Interface Board Settings

Note: If your Personal488 package includes a plug-and-play interface – such as the Personal488/PCI
(with PCI488), Personal488/ATpnp (with AT488pnp), or Personal488/CARD (with
CARD488) packages – disregard the list below.

Remove the interface board from the computer, and refer to the appropriate Personal488 chapter in this
manual, which corresponds to your Personal488 package.

Checking the Driver488/W95 Software Settings

1. Open the Control Panel window from the Start > Settings menu, click on the System icon, and
select the Device Manager tab. Under the line "Ports (COM & LPT)", look for a list of used ports.
For each port, highlight the port and click on the Properties button.

2. Properties already being used in the system are displayed under the Resources tab. Values NOT
listed are available.

For more information on the configuration of Driver488 software settings for IEEE 488 interfaces and
external devices, see chapter Driver488/W95 & Driver488/WNT on page 41.

Checking the Driver488/WNT Software Settings

1. From the console mode, or DOS prompt, execute the program WINMSD.EXE.

2. When the Windows NT Diagnostic dialog box appears, you can check the settings from the
available tab displays.

For more information on the configuration of Driver488 software settings for IEEE 488 interfaces and
external devices, see chapter Driver488/W95 & Driver488/WNT on page 41.

Personal488 User's Manual For Windows 95 and Windows NT Appendix 121

Appendix A

IEEE 488 Bus & Serial Bus……121
IEEE 488 Bus Commands……122
ASCII Codes……123

ASCII Code Summary……123
ASCII Code Details……125

IEEE 488 Bus & Serial Bus Lines

Bus State Bus Line Data Transfer (DIO) Lines
8 7 6 5 4 3 2 1

Bus Management Lines

IFC Interface Clear

REN Remote Enable

IEEE 488 Interface: Bus Management Lines

ATN Attention ($04) 0 0 0 0 0 1 0 0
EOI End-Or-Identify ($80) 1 0 0 0 0 0 0 0
SRQ Service Request ($40) 0 1 0 0 0 0 0 0

IEEE 488 Interface: Handshake Lines

DAV Data Valid ($08) 0 0 0 0 1 0 0 0
NDAC Not Data Accepted ($10) 0 0 0 1 0 0 0 0
NRFD Not Ready For Data ($20) 0 0 1 0 0 0 0 0

Serial Interface: Bus Management Lines

DTR Data Terminal Ready ($02) 0 0 0 0 0 0 1 0
RI Ring Indicator ($10) 0 0 0 1 0 0 0 0
RTS Request To Send ($01) 0 0 0 0 0 0 0 1

Serial Interface: Handshake Lines

CTS Clear To Send ($04) 0 0 0 0 0 1 0 0
DCD Data Carrier Detect ($08) 0 0 0 0 1 0 0 0
DSR Data Set Ready ($20) 0 0 1 0 0 0 0 0

Hexadecimal & Decimal Values

Hexadecimal Value $80 $40 $20 $10 $08 $04 $02 $01

Decimal Value 128 064 032 016 008 004 002 001

122 Appendix Personal488 User's Manual For Windows95 and Windows NT

IEEE 488 Bus Commands

Bus State IEEE 488 Bus Command Data Transfer (DIO) Lines
(ATN is asserted “1”) 8 7 6 5 4 3 2 1

DCL Device Clear 0 0 0 1 0 1 0 0
GET Group Execute Trigger ($08) 0 0 0 0 1 0 0 0
GTL Go To Local ($01) 0 0 0 0 0 0 0 1
LAG Listen Address Group ($20-3F) 0 0 1 a d d r n
LLO Local Lock Out ($11) 0 0 0 1 0 0 0 1
MLA My Listen Address 0 0 1 a d d r n
MTA My Talk Address 0 1 0 a d d r n
PPC Parallel Poll Config 0 1 1 0 S P2 P1 P0
PPD Parallel Poll Disable ($07) 0 0 0 0 0 1 1 1
PPU Parallel Poll Unconfig ($15) 0 0 0 1 0 1 0 1
SCG Second. Cmd. Group ($60-7F) 0 1 1 c o m m d
SDC Selected Device Clear ($04) 0 0 0 0 0 1 0 0
SPD Serial Poll Disable ($19) 0 0 0 1 1 0 0 1
SPE Serial Poll Enable ($18) 0 0 0 1 1 0 0 0
TAG Talker Address Group ($40-5F) 0 1 0 a d d r n
TCT Take Control ($09) 0 0 0 0 1 0 0 1
UNL Unlisten ($3F) 0 0 1 1 1 1 1 1
UNT Untalk ($5F) 0 1 0 1 1 1 1 1

Hexadecimal & Decimal Values

Hexadecimal Value $80 $40 $20 $10 $08 $04 $02 $01

Decimal Value 128 064 032 016 008 004 002 001

Personal488 User's Manual For Windows 95 and Windows NT Appendix 123

ASCII Codes

ASCII Code Summary

Decimal Values 00 to 63 – ACG, UCG & LAG

Box Items

Hexadecimal Value $41 65 Decimal Value

A
Bus Message 01 (in center) ASCII Character

Addressed Command Group (ACG)

$00 00 $01 01 $02 02 $03 03 $04 04 $05 05 $06 06 $07 07

NUL SOH STX ETX EOT ENQ ACK BEL
GTL SDC PPD

$08 08 $09 09 $0A 10 $0B 11 $0C 12 $0D 13 $0E 14 $0F 15

BS HT LF VT FF CR SO SI
GET TCT

Universal Command Group (UCG)

$10 16 $11 17 $12 18 $13 19 $14 20 $15 21 $16 22 $17 23

DLE DC1 DC2 DC3 DC4 NAK SYN ETB
LLO DCL PPU

$18 24 $19 25 $1A 26 $1B 27 $1C 28 $1D 29 $1E 30 $1F 31

CAN EM SUB ESC FS GS RS US
SPE SPD

Listen Address Group (LAG)

$20 32 $21 33 $22 34 $23 35 $24 36 $25 37 $26 38 $27 39

SP ! ” # $ % & ’
00 01 02 03 04 05 06 07

$28 40 $29 41 $2A 42 $2B 43 $2C 44 $2D 45 $2E 46 $2F 47

() * + , - . /
08 09 10 11 12 13 14 15

$30 48 $31 49 $32 50 $33 51 $34 52 $35 53 $36 54 $37 55

0 1 2 3 4 5 6 7
16 17 18 19 20 21 22 23

$38 56 $39 57 $3A 58 $3B 59 $3C 60 $3D 61 $3E 62 $3F 63

8 9 : ; < = > ?
24 25 26 27 28 29 30 UNL

124 Appendix Personal488 User's Manual For Windows95 and Windows NT

Decimal Values 64 to 127 – TAG & SCG

Box Items

Hexadecimal Value $41 65 Decimal Value

A
Bus Message 01 (in center) ASCII Character

Talk Address Group (TAG)

$40 64 $41 65 $42 66 $43 67 $44 68 $45 69 $46 70 $47 71

@ A B C D E F G
00 01 02 03 04 05 06 07

$48 72 $49 73 $4A 74 $4B 75 $4C 76 $4D 77 $4E 78 $4F 79

H I J K L M N O
08 09 10 11 12 13 14 15

$50 80 $51 81 $52 82 $53 83 $54 84 $55 85 $56 86 $57 87

P Q R S T U V W
16 17 18 19 20 21 22 23

$58 88 $59 89 $5A 90 $5B 91 $5C 92 $5D 93 $5E 94 $5F 95

X Y Z [\] ^ _
24 25 26 27 28 29 30 UNT

Secondary Command Group (SCG)

$60 96 $61 97 $62 98 $63 99 $64 100 $65 101 $66 102 $67 103

‘ a b c d e f g
00 01 02 03 04 05 06 07

$68 104 $69 105 $6A 106 $6B 107 $6C 108 $6D 109 $6E 110 $6F 111

h i j k l m n o
08 09 10 11 12 13 14 15

$70 112 $71 113 $72 114 $73 115 $74 116 $75 117 $76 118 $77 119

p q r s t u v w
16 17 18 19 20 21 22 23

$78 120 $79 121 $7A 122 $7B 123 $7C 124 $7D 125 $7E 126 $7F 127

x y z { | } ~ DEL
24 25 26 27 28 29 30 31

Personal488 User's Manual For Windows 95 and Windows NT Appendix 125

ASCII Code Details

Decimal Values 00 to 31 – ACG & UCG Characteristics

ASCII Control Codes (Decimal 00 to 31)
Dec

Value
Hex

Value ($)
Character &
Abbreviation

Name Bus Message

Addressed Command Group (ACG)

00 $00 None / NUL Null None

01 $01 ^A / SOH Start of Header Go To Local (GTL)

02 $02 ^B / STX Start of Text None

03 $03 ^C / ETX End of Text None

04 $04 ^D / EOT End of Transmission Selected Device Clear (SDC)

05 $05 ^E / ENQ Inquiry None

06 $06 ^F / ACK Acknowledgement None

07 $07 ^G / BEL Bell Parallel Poll Disable (PPD)

08 $08 ^H / BS Backspace Group Execute Trigger (GET)

09 $09 ^I / HT Horizontal Tab Take Control (TCT)

10 $0A ^J / LF Line Feed None

11 $0B ^K / VT Vertical Tab None

12 $0C ^L / FF Form Feed None

13 $0D ^M / CR Carriage Return None

14 $0E ^N / SO Shift Out None

15 $0F ^O / SI Shift In None

Universal Command Group (UCG)

16 $10 ^P / DLE Data Link Escape None

17 $11 ^Q / DC1 Device Control 1 Local Lockout (LLO)

18 $12 ^R / DC2 Device Control 2 None

19 $13 ^S / DC3 Device Control 3 None

20 $14 ^T / DC4 Device Control 4 Device Clear (DCL)

21 $15 ^U / NAK Negative Acknowledgement Parallel Poll Unconfig (PPU)

22 $16 ^V / SYN Synchronous Idle None

23 $17 ^W / ETB End of Transmission Block None

24 $18 ^X / CAN Cancel Serial Poll Enable (SPE)

25 $19 ^Y / EM End of Medium Serial Poll Disable (SPD)

26 $1A ^Z / SUB Substitute None

27 $1B ^[/ ESC Escape None

28 $1C ^\ / FS File Separator None

29 $1D ^] / GS Group Separator None

30 $1E ^^ / RS Record Separator None

31 $1F ^_ / US Unit Separator None

Note: (1) ASCII control codes are sometimes used to “formalize” a communications session
between communication devices. (2) DC1, DC2, DC3, DC4, FS, GS, RS, and US all
have user-defined meanings, and may vary in use between sessions or devices. (3) DC4 is
often used as a general “stop transmission character.” (4) Codes used to control cursor
position may be used to control print devices, and move the print head accordingly. However,
not all devices support the full set of positioning codes.

126 Appendix Personal488 User's Manual For Windows95 and Windows NT

Decimal Values 00 to 31 – ACG & UCG Descriptions

ASCII Control Codes (00 to 31)

Dec Name Description

Addressed Command Group (ACG)

00 Null (NUL) Space filler character. Used in output timing for some device
drivers.

01 Start of Header (SOH) Marks beginning of message header.

02 Start of Text (STX) Marks beginning of data block (text).

03 End of Text (ETX) Marks end of data block (text).

04 End of Transmission (EOT) Marks end of transmission session.

05 Inquiry (ENQ) Request for identification or information.

06 Acknowledgement (ACK) “Yes” answer to questions or “ready for next transmission.” Used in
asynchronous protocols for timing.

07 Bell (BEL) Rings bell or audible alarm on terminal.

08 Backspace (BS) Moves cursor position back one character.

09 Horizontal Tab (HT) Moves cursor position to next tab stop on line.

10 Line Feed (LF) Moves cursor position down one line.

11 Vertical Tab (VT) Moves cursor position down to next “tab line.”

12 Form Feed (FF) Moves cursor position to top of next page.

13 Carriage Return (CR) Moves cursor to left margin.

14 Shift Out (SO) Next characters do not follow ASCII definitions.

15 Shift In (SI) Next characters revert to ASCII meaning.

Universal Command Group (UCG)

16 Data Link Escape (DLE) Used to control transmissions using “escape sequences.”

17 Device Control 1 (DC1) Not defined. Normally used for ON controls.

18 Device Control 2 (DC2) Usually user-defined.

19 Device Control 3 (DC3) Not defined. Normally used for OFF controls.

20 Device Control 4 (DC4) Usually user-defined.

21 Negative Acknowledgement (NAK) “No” answer to questions or “errors found, re-transmit.” Used in
asynchronous protocols for timing.

22 Synchronous Idle (SYN) Sent by asynchronous devices when idle to insure sync.

23 End of Transmission Block (ETB) Marks block boundaries in transmission.

24 Cancel (CAN) Indicates previous transmission should be disregarded.

25 End of Medium (EM) Marks end of physical media, as in paper tape.

26 Substitute (SUB) Used to replace a character known to be wrong.

27 Escape (ESC) Marks beginning of an Escape control sequence.

28 File Separator (FS) Marker for major portion of transmission.

29 Group Separator (GS) Marker for submajor portion of transmission.

30 Record Separator (RS) Marker for minor portion of transmission.

31 Unit Separator (US) Marker for most minor portion of transmission.

Note: (1) ASCII control codes are sometimes used to “formalize” a communications session
between communication devices. (2) DC1, DC2, DC3, DC4, FS, GS, RS, and US all
have user-defined meanings, and may vary in use between sessions or devices. (3) DC4 is
often used as a general “stop transmission character.” (4) Codes used to control cursor
position may be used to control print devices, and move the print head accordingly. However,
not all devices support the full set of positioning codes.

Personal488 User's Manual For Windows 95 and Windows NT Appendix 127

Decimal Values 32 to 63 – LAG

ASCII Character Set (Decimal 32 to 63)

Dec Hex Character Name Bus Message

Listen Address Group (LAG)

32 $20 <space> Space Bus address 00

33 $21 ! Exclamation Point Bus address 01

34 $22 “ Quotation Mark Bus address 02

35 $23 # Number Sign Bus address 03

36 $24 $ Dollar Sign Bus address 04

37 $25 % Percent Sign Bus address 05

38 $26 & Ampersand Bus address 06

39 $27 ‘ Apostrophe Bus address 07

40 $28 (Opening Parenthesis Bus address 08

41 $29) Closing Parenthesis Bus address 09

42 $2A * Asterisk Bus address 10

43 $2B + Plus Sign Bus address 11

44 $2C , Comma Bus address 12

45 $2D - Hyphen or Minus Sign Bus address 13

46 $2E . Period Bus address 14

47 $2F / Slash Bus address 15

Listen Address Group (LAG)

48 $30 0 Zero Bus address 16

49 $31 1 One Bus address 17

50 $32 2 Two Bus address 18

51 $33 3 Three Bus address 19

52 $34 4 Four Bus address 20

53 $35 5 Five Bus address 21

54 $36 6 Six Bus address 22

55 $37 7 Seven Bus address 23

56 $38 8 Eight Bus address 24

57 $39 9 Nine Bus address 25

58 $3A : Colon Bus address 26

59 $3B ; Semicolon Bus address 27

60 $3C < Less Than Sign Bus address 28

61 $3D = Equal Sign Bus address 29

62 $3E > Greater Than Sign Bus address 30

63 $3F ? Question Mark Unlisten (UNL)

128 Appendix Personal488 User's Manual For Windows95 and Windows NT

Decimal Values 64 to 95 – TAG

ASCII Character Set (Decimal 64 to 95)

Dec Hex Character Name Bus Message

Talk Address Group (TAG)

64 $40 @ At Sign Bus address 00

65 $41 A Capital A Bus address 01

66 $42 B Capital B Bus address 02

67 $43 C Capital C Bus address 03

68 $44 D Capital D Bus address 04

69 $45 E Capital E Bus address 05

70 $46 F Capital F Bus address 06

71 $47 G Capital G Bus address 07

72 $48 H Capital H Bus address 08

73 $49 I Capital I Bus address 09

74 $4A J Capital J Bus address 10

75 $4B K Capital K Bus address 11

76 $4C L Capital L Bus address 12

77 $4D M Capital M Bus address 13

78 $4E N Capital N Bus address 14

79 $4F O Capital O Bus address 15

Talk Address Group (TAG)

80 $50 P Capital P Bus address 16

81 $51 Q Capital Q Bus address 17

82 $52 R Capital R Bus address 18

83 $53 S Capital S Bus address 19

84 $54 T Capital T Bus address 20

85 $55 U Capital U Bus address 21

86 $56 V Capital V Bus address 22

87 $57 W Capital W Bus address 23

88 $58 X Capital X Bus address 24

89 $59 Y Capital Y Bus address 25

90 $5A Z Capital Z Bus address 26

91 $5B [Opening Bracket Bus address 27

92 $5C \ Backward Slash Bus address 28

93 $5D] Closing Bracket Bus address 29

94 $5E ^ Caret Bus address 30

95 $5F _ Underscore Untalk (UNT)

Personal488 User's Manual For Windows 95 and Windows NT Appendix 129

Decimal Values 96 to 127 – SCG

ASCII Character Set (96 to 127)

Dec Hex Character Name Bus Message

Secondary Command Group (SCG)

96 $60 ’ Grave Command 00

97 $61 a Lowercase A Command 01

98 $62 b Lowercase B Command 02

99 $63 c Lowercase C Command 03

100 $64 d Lowercase D Command 04

101 $65 e Lowercase E Command 05

102 $66 f Lowercase F Command 06

103 $67 g Lowercase G Command 07

104 $68 h Lowercase H Command 08

105 $69 I Lowercase I Command 09

106 $6A j Lowercase J Command 10

107 $6B k Lowercase K Command 11

108 $6C l Lowercase L Command 12

109 $6D m Lowercase M Command 13

110 $6E n Lowercase N Command 14

111 $6F o Lowercase O Command 15

Secondary Command Group (SCG)

112 $70 p Lowercase P Command 16

113 $71 q Lowercase Q Command 17

114 $72 r Lowercase R Command 18

115 $73 s Lowercase S Command 19

116 $74 t Lowercase T Command 20

117 $75 u Lowercase U Command 21

118 $76 v Lowercase V Command 22

119 $77 w Lowercase W Command 23

120 $78 x Lowercase X Command 24

121 $79 y Lowercase Y Command 25

122 $7A z Lowercase Z Command 26

123 $7B { Opening Brace Command 27

124 $7C | Vertical Line Command 28

125 $7D } Closing Brace Command 29

126 $7E ~ Tilde Command 30

127 $7F DEL Delete Command 31

130 Appendix Personal488 User's Manual For Windows95 and Windows NT

- Notes

Personal488 User's Manual For Windows 95 and Windows NT Index 131

Index

A
Abort, 48, 89, 99
accessories

hardware, 2
Active Controller, 48, 89, 98, 104,

105, 106
address

base, 17, 25, 35
bus, 52, 77
port, 43
primary, 43, 45, 67, 106
secondary, 43, 67, 87, 106

Address Change, 99, 106
Arm, 49, 63
ASCII codes, 123
asynchronous, 42, 51, 64, 65, 87,

107, 108, 112, 118
AT488, 15, 18
AT488pnp, 7
Attention (ATN), 48, 100, 101
AutoRemote, 50, 87

B
binary, 90, 91
Borland C++, 42
Borland Delphi, 42
buffer, 65, 88, 118
Buffered, 51, 108
bus

command, 54, 74, 76, 114, 115
errors, 119
line, 57, 121
management, 48, 95, 96

BusAddress, 52, 77
ByteIn, 107
ByteOut, 107

C
C language, 42
CA-7-3, 2
cables, 2
CARD488, 11
Carriage Return (CR), 45, 110, 119
CheckListener, 53
Clear, 54, 99
ClearList, 55
Close, 56
communication, 71
compatibility, 1, 2, 19, 31, 40
compatibility layer, 42
configuration

AT488, 16
GP488B, 24
GP488B/MM, 34

configuration parameters, 119
configuration utility, 41, 42
console mode, 41, 84, 120
Control Panel, Windows, 41, 42, 78

Controller Active, 48, 89, 98, 104,
105, 106

controller device, 2
ControlLine, 57

D
data transfer, 27, 48, 87, 102, 103,

106, 110
default settings, 17, 18, 19, 25, 26,

27, 35, 36, 37, 42, 43, 45
Device Clear (DCL), 54
device handle, 45, 64, 65, 69, 70, 86,

87, 88
differences, software, 41, 42
DigArm, 58
DigArmSetup, 59
DigRead, 60
DigSetup, 61
DigWrite, 62
DIO lines, 90, 91, 98
Direct Memory Access (DMA), 17,

19, 25, 27, 35, 37, 43
troubleshooting, 120

Disarm, 63, 99
DOS, 84
Driver488/W31, 42
Driver488/W95, 3, 7, 11, 15, 23, 33,

78, 84, 111, 113
Driver488/WIN, 42
Driver488/WNT, 3, 7, 11, 15, 23, 33,

78, 84
Dynamic Link Library (DLL), 41, 42,

71

E
End-Of-Line (EOL), 110
End-Or-Identify (EOI), 44, 45, 110,

119
Enter, 51, 64, 65, 107, 118
EnterMore, 65
EnterN, 65
EnterNMore, 65
EnterX, 64
Error, 66, 99
error message, 66
event handling, 83
external device, 42, 55, 96

F
FindListeners, 67
Finish, 68, 100

G
GetError, 69, 70
GetErrorList, 70
Go To Local (GTL), 74
GP488B, 19, 23, 26, 31
GP488B/MM, 33, 34, 36, 37, 40

Group Execute Trigger (GET), 114,
115

H
hardware

connection, 2
products, 1

header, 83
Hello, 71
hexadecimal value, 17, 25, 35, 98

I
I/O, 31, 56
individual status (ist), 91
installation

AT488, 20, 22
AT488pnp, 8, 10
CARD488, 12, 14
GP488B, 28, 30
GP488B/MM, 38, 40
PCI488, 4, 6

interface, 42
Interface Clear (IFC), 44, 48
interrupt selection, 26, 36, 43

troubleshooting, 120
IOAddress, 77
ISA bus, 1, 4, 8, 19, 20, 27, 28

K
KeepDevice, 72, 77, 78

L
Line Feed (LF), 45, 110, 119
Listen, 64, 67, 73, 79, 87, 95, 96,

100, 106, 114, 115, 116
Local, 74
Local Lockout (LLO) (bus

command), 76
LocalList, 75
Lol (system command), 76

M
MakeDevice, 72, 77, 78
MakeNewDevice, 78
Microsoft C, 42
My Talk Address (MTA) (bus

command), 48
MyListenAddr (system command), 79
MyTalkAddr (system command), 80

N
name, external device, 45
name, interface, 43

O
OnDigEvent, 81

132 Index Personal488 User's Manual For Windows95 and Windows NT

OnDigEventVDM, 82
OnEvent, 83
OnEventVDM, 84
OpenName, 86
operating mode, 74, 89, 98, 104, 105,

106
Output, 51, 88, 114, 115
OutputMore, 88
OutputN, 88
OutputNMore, 88
OutputX, 87

P
PassControl, 89
PC/XT bus, 18
PCI bus, 4, 8, 20, 28
PCI488, 3
Peripheral, 89, 98, 99, 104, 105, 106,

107
port address, 43
PPoll, 90
PPollConfig (system command), 91
PPollDisable (system command), 92
PPollDisableList, 93
PPollUnconfig (system command), 94
primary address, 43, 45, 67, 106

troubleshooting, 119
printer, 110

R
radio interference, 119
Remote, 95

Remote Enable (REN), 44, 50, 74,
87, 95, 96

RemoteList, 96
RemoveDevice, 72, 97
Request, 98, 105
Request for Service (rsv), 98, 104,

105, 107
Reset, 99
Resume, 100

S
secondary address, 43, 45, 67, 87,

106
Selected Device Clear (SDC), 54, 55
SendCmd, 101
SendData, 51, 102
SendEoi, 51, 103
serial, 90, 98, 104, 105
Service Request (SRQ), 90, 98, 104,

105, 107
software

products, 2
specifications, 3, 7, 11, 15, 23, 33
SPoll, 90, 104
SPollList, 105
status

Serial Poll, 98, 105
Status, 63, 106
status reading, 57, 65, 87, 88, 90,

104, 105, 106, 107
Stop, 99, 108
string, 69, 71, 101
SysController, 106

System Controller, 44, 48, 74, 75, 87,
89, 99, 106

T
Talk, 64, 80, 87, 100, 106, 109
Term, 110
terminator, 64

bus, 119
End-Of-Line (EOL), 110
input, 44, 45, 87, 110
output, 44, 45, 110

TermQuery, 111
time out period, 43, 45, 112, 113

troubleshooting, 119
TimeOut, 77, 112
TimeOutQuery, 113
Trigger, 99, 114
TriggerList, 115

U
UnListen (system command), 116
UnTalk (system command), 117

V
Visual Basic, 42

W
Wait, 118
wait state, 31
Windows 3.x, 41, 42

Personal488 User's Manual For Windows 95 and Windows NT Index 133

- Notes

134 Abbreviations Personal488 User's Manual For Windows95 and Windows NT

Abbreviations
�� (bullet symbol) “and” (e.g. *SC��CA) FCC Federal Communications Commission

* (asterisk symbol) “unasserted” (e.g. *SC) FF Form Feed (ASCII Code)

*CA Not Controller Active mode FS File Separator (ASCII Code)

*SC Not System Controller mode GET Group Execute Trigger bus command

A/D Analog-to-Digital GPIB General Purpose Interface Bus

ACG Addressed Command Group GS Group Separator (ASCII Code)

ACK Acknowledgement (ASCII Code) GTL Go To Local bus command

ADC Analog-to-Digital Converter GUI Graphical User Interface

API Application Program Interface H/W Hardware

ASCII American Standard Code for Info. Interchange HT Horizontal Tab (ASCII Code)

ATN Attention line IDDC Invalid Device Dependent Command

BEL Bell (ASCII Code) IDDCO Invalid Device Dependent Command Option

BS Backspace (ASCII Code) IEEE Institute of Electrical & Electronic Engineers

CA Controller Active mode IFC Interface Clear line

CAN Cancel (ASCII Code) IOCTL Input/Output Control

CCL Character Command Language ISA Industry Standard Architecture bus

CJC Cold Junction Compensation ISR Interrupt Service Routine

CMD Bus Command interpretation ist Bus Device Individual Status

CR Carriage Return (ASCII Code) LAG Listen Address Group bus command

CSR Calibration Status Register LED Light-Emitting Diode

CTS Clear To Send line LF Line Feed (ASCII Code)

DAV Data Valid line LLO Local Lock Out bus command

DC1 Device Control 1 (ASCII Code) LSB Least Significant Bit

DC2 Device Control 2 (ASCII Code) MAV Message Available bit

DC3 Device Control 3 (ASCII Code) MLA My Listen Address

DC4 Device Control 4 (ASCII Code) MSB Most Significant Bit

DCD Data Carrier Detect line MSS Master Summary Status bit

DCL Device Clear bus command MTA My Talk Address

DDE Dynamic Data Exchange N/U Not Used

DEL Delete (ASCII Code) NAK Negative Acknowledgement (ASCII Code)

DIO Data Transfer (I/O) line NDAC Not Data Accepted line

DLE Data Link Escape (ASCII Code) NRFD Not Ready For Data line

DLL Dynamic Link Library NUL Null (ASCII Code)

DMA Direct Memory Access NV-RAM Non-Volatile RAM

DMM Digital Multimeter PCI Peripheral Component Interconnect bus

DSR Data Set Ready line PPC Parallel Poll Configure bus command

DTR Data Terminal Ready line PPD Parallel Poll Disable bus command

EEPROM Electronically Erasable Programmable ROM PPU Parallel Poll Unconfig bus command

EM End of Medium (ASCII Code) RAM Random-Access Memory

ENQ Inquiry (ASCII Code) REN Remote Enable line

EOI End-Or-Identify line RI Ring Indicator line

EOL End-Of-Line terminator RMS Root Mean Square

EOT End of Transmission (ASCII Code) ROM Read-Only Memory

EPROM Erasable Programmable ROM RQS Request for Service bit

ESB Event Status Register bit RS Record Separator (ASCII Code)

ESC Error Source Register RS- Revised Standard (e.g. RS-232, RS-422)

ESC Escape (ASCII Code) rsv Request for Service bit

ESE Event Status Enable Register RTD Resistance Temperature Device

ESR Event Status Register RTS Request To Send line

ETB End of Transmission Block (ASCII Code) SC System Controller mode

ETX End of Text (ASCII Code) SCG Secondary Command Group

Personal488 User's Manual For Windows 95 and Windows NT Abbreviations 135

SCPI Standard Cmds. for Programmable Instruments SUB Substitute (ASCII Code)

SCSI Small Computer System Interface bus SYN Synchronous Idle (ASCII Code)

SDC Selected Device Clear bus command T/C Thermocouple

SI Shift In (ASCII Code) TAG Talk Address Group bus command

SO Shift Out (ASCII Code) TCT Take Control bus command

SOH Start of Header (ASCII Code) TTL Transistor-Transistor Logic

SPD Serial Poll Disable bus command UCG Universal Command Group

SPE Serial Poll Enable bus command UNL Unlisten bus command

SRE Service Request Enable Register UNT Untalk bus command

SRQ Service Request line US Unit Separator (ASCII Code)

STB Status Byte Register VDM Virtual DOS Machine

STX Start of Text (ASCII Code) VT Vertical Tab (ASCII Code)

136 Abbreviations Personal488 User's Manual For Windows95 and Windows NT

- Notes

WARRANTY/DISCLAIMER
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a
period of 13 months13 months from date of purchase. OMEGA Warranty adds an additional one (1) month grace
period to the normal one (1) year product warrantyone (1) year product warranty to cover handling and shipping time. This
ensures that OMEGA's customers receive maximum coverage on each product.
If the unit should malfunction, it must be returned to the factory for evaluation. OMEGA's Customer
Service Department will issue an Authorized Return (AR) number immediately upon phone or written
request. Upon examination by OMEGA, if the unit is found to be defective it will be repaired or replaced at
no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser,
including but not limited to mishandling, improper interfacing, operation outside of design limits,
improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of
having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or
current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating
conditions outside of OMEGA's control. Components which wear are not warranted, including but not
limited to contact points, fuses, and triacs.
OMEGA is pleased to offer suggestions on the use of its various products. However,OMEGA is pleased to offer suggestions on the use of its various products. However,
OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for anyOMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any
damages that result from the use of its products in accordance with information provided bydamages that result from the use of its products in accordance with information provided by
OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will beOMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be
as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES ORas specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR
REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OFREPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF
TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITYTITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OFAND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF
LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability ofLIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of
OMEGA with respect to this order, whether based on contract, warranty, negligence,OMEGA with respect to this order, whether based on contract, warranty, negligence,
indemnification, strict liability or otherwise, shall not exceed the purchase price of theindemnification, strict liability or otherwise, shall not exceed the purchase price of the
component upon which liability is based. In no event shall OMEGA be liable forcomponent upon which liability is based. In no event shall OMEGA be liable for
consequential, incidental or special damages.consequential, incidental or special damages.
CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic
Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical
applications or used on humans. Should any Product(s) be used in or with any nuclear installation or
activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility
as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify
OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the
Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES
Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE
RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN
(AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID
PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return
package and on any correspondence.
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent
breakage in transit.
FOR WARRANTYWARRANTY RETURNS, please have the
following information available BEFORE
contacting OMEGA:
1. P.O. number under which the product was

PURCHASED,
2. Model and serial number of the product under

warranty, and
3. Repair instructions and/or specific problems

relative to the product.

FOR NON-WARRANTYNON-WARRANTY REPAIRS, consult OMEGA
for current repair charges. Have the following
information available BEFORE contacting OMEGA:
1. P.O. number to cover the COST

of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems

relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords
our customers the latest in technology and engineering.
OMEGA is a registered trademark of OMEGA ENGINEERING, INC.
© Copyright 1996 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior
written consent of OMEGA ENGINEERING, INC.

TEMPERATURE
þ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
þ Wire: Thermocouple, RTD & Thermistor
þ Calibrators & Ice Point References
þ Recorders, Controllers & Process Monitors
þ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
þ Transducers & Strain Gauges
þ Load Cells & Pressure Gauges
þ Displacement Transducers
þ Instrumentation & Accessories

FLOW/LEVEL
þ Rotameters, Gas Mass Flowmeters & Flow Computers
þ Air Velocity Indicators
þ Turbine/Paddlewheel Systems
þ Totalizers & Batch Controllers

pH/CONDUCTIVITY
þ pH Electrodes, Testers & Accessories
þ Benchtop/Laboratory Meters
þ Controllers, Calibrators, Simulators & Pumps
þ Industrial pH & Conductivity Equipment

DATA ACQUISITION
þ Data Acquisition & Engineering Software
þ Communications-Based Acquisition Systems
þ Plug-in Cards for Apple, IBM & Compatibles
þ Datalogging Systems
þ Recorders, Printers & Plotters

HEATERS
þ Heating Cable
þ Cartridge & Strip Heaters
þ Immersion & Band Heaters
þ Flexible Heaters
þ Laboratory Heaters

ENVIRONMENTAL
MONITORING AND CONTROL
þ Metering & Control Instrumentation
þ Refractometers
þ Pumps & Tubing
þ Air, Soil & Water Monitors
þ Industrial Water & Wastewater Treatment
þ pH, Conductivity & Dissolved Oxygen Instruments

M2743

