DRA-TCI-2D
DIN Rail 2-Wire Temperature
Transmitter for
Thermocouple Input
Operator's Manual
1

OPEN THE HOUSING PROCEDURE
Carefully insert a proper screwdriver tip into the side slots. By pressing inwards and rotating, the plastic locker will release.

Gently pull out the unit's front panel.

To close the unit, insert the printed circuit board in the proper side guiding slots and push it all the way until the front panel clicks with the body housing
2. TRANSMITTER CALIBRATION
2.1 Switch Setting

Inside the enclosure are located six DIP-switches for coarse range, and two multi-turn potentiometers are located on the transmitter panel for fine-tuning.

Note: The DRA-TCI-2D is ordered for a specific T/C, and can not be altered.
Note: The following tables indicate coarse ranges. It might occur that the proper range can be obtained with adjacent switch combinations.
2.1.1. Define the desired range limits:

Tmin - the temperature at which the output current is 4 mA .
Tmax - the temperature at which the output current is 20 mA . Tspan - the difference between T max and $T \min$.
According to the following tables, set switches no. 4 to 6 for the Zero (Tmin), and set switches 1 to 3 for the Span (Tspan). Note: "1" represent the switch "ON" state.

2.4.1................. Calibration example:	
Needed: T/C Type K ranged for: 200 to $500^{\circ} \mathrm{C}$ Tmin: $200^{\circ} \mathrm{C}$	
Tspan: $500-200=300^{\circ} \mathrm{C}$	
1. Set the DIP switch to: $0,1,0,0,0,1$ (sw1..sw6)	
2. Set the calibrator for $200^{\circ} \mathrm{C}$, calibrate "Z" to 4.000 mA .	
3. Set for $500^{\circ} \mathrm{C}$ and calibrate "S" to 20.000 mA .	
4. Repeat steps 2,3 until satisfactory results are obtained.	
3. DISPLAY CALIBRATION	
The display calibration is performed by setting two jumpers and two trimmers (Zero and Span).	
The display has $31 / 2$ digits, i.e it can display from -1999 to 1999 . Three decimal positions can be obtained using one of the two jumpers.	
Jumper position over pins \#1 to \#5 sets the decimal point. No jumper - 1999	
Pins \#1-\#2-199.9	
Pins \#3-\#4-19.99	
Pins \#4-\#5-1.999	
Jumper over pins \#11 to \#13 sets the display range according to:	
No jumper	1000 to 1999
Pins \#12-\#13	500 to 1000
Pins \#11-\#12	200 to 500

Fig. 4
3.1 CALIBRATION PROCEDURE
a. Set the transmitter to exactly $4-20 \mathrm{~mA}$.
b. Place the jumpers for desired range.
c. Adjust the display Zero trimmer for 000 at 4 mA .
d. Adjust the display Span trimmer for desired span.
e. Adjust the display Zero trimmer for Tmin at 4 mA .
Example:
required $-100^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}$. The span is $850^{\circ} \mathrm{C}$.
Set the display (at $-100^{\circ} \mathrm{C}$) to 000 by the Zero potentiometer. Set
the display (at $+750^{\circ} \mathrm{C}$) to 850 by the Span potentiometer. Set the
display (at $-100^{\circ} \mathrm{C}$) to -100 by the Zero potentiometer
4. CONNECTION DIAGRAM

Fig. 5

> MECHANICAL DIMENSIONS, mm (in)

Fig. 6
9

```
```

6. SPECIFICATIONS
```
```

6. SPECIFICATIONS
INPUT: Thermocouple type B, E, J, K, R, S T
INPUT: Thermocouple type B, E, J, K, R, S T
BURNOUT PROTECTION: Upscale
BURNOUT PROTECTION: Upscale
MINIMUM INPUT SPAN: 4mV
MINIMUM INPUT SPAN: 4mV
OUTPUT: 4-20mA, (25 mA limited)
OUTPUT: 4-20mA, (25 mA limited)
LOOP RESISTANCE: Rmax (\Omega)=(Vsupply-12).02
LOOP RESISTANCE: Rmax (\Omega)=(Vsupply-12).02
ISOLATION: 1500 Vdc or peak ac
ISOLATION: 1500 Vdc or peak ac
RESPONSE TIME: 160 msec (0-98%)
RESPONSE TIME: 160 msec (0-98%)
CALIBRATION:
CALIBRATION:
Span Calibration: Three DIP switches and "Span" potentiometer
Span Calibration: Three DIP switches and "Span" potentiometer
Zero Calibration: Three DIP switches and "Zero" potentiometer
Zero Calibration: Three DIP switches and "Zero" potentiometer
COLD JUNCTION COMPENSATION ERROR: Typical }\pm0.\mp@subsup{9}{}{\circ}\textrm{C
COLD JUNCTION COMPENSATION ERROR: Typical }\pm0.\mp@subsup{9}{}{\circ}\textrm{C
for 0-60 C Change (}\pm\mp@subsup{3}{}{\circ}\textrm{C}\mathrm{ for B, R and S)
for 0-60 C Change (}\pm\mp@subsup{3}{}{\circ}\textrm{C}\mathrm{ for B, R and S)
ACCURACY (linearity, hysteresis and repeatability):
ACCURACY (linearity, hysteresis and repeatability):
\pm0.1% of span for type K,
\pm0.1% of span for type K,
\pm0.1% to \pm0.2% for other thermocouple types, typical
\pm0.1% to \pm0.2% for other thermocouple types, typical
TEST TERMINALS: }40\mathrm{ to 200 mV represent 4-20 mA
TEST TERMINALS: }40\mathrm{ to 200 mV represent 4-20 mA
SUPPLY VOLTAGE: 12-40 Vdc reverse polarity protected
```
```

SUPPLY VOLTAGE: 12-40 Vdc reverse polarity protected

```
```



```
```

 for full change
    ```
```

 for full change
 CMR: 127db typical dc to 60 Hz
CMR: 127db typical dc to 60 Hz
DISPLAY: 0.3" 3}1/2\mathrm{ digit back-illuminated, LCD
DISPLAY: 0.3" 3}1/2\mathrm{ digit back-illuminated, LCD
LCD DISPLAY RANGE: -1999 to 1999.
LCD DISPLAY RANGE: -1999 to 1999.
DISPLAY CALIBRATION: Internal Zero \& Span potentiometers.
DISPLAY CALIBRATION: Internal Zero \& Span potentiometers.
TEMPERATURE STABILITY: }\pm0.01%\mathrm{ of span / / }\mp@subsup{}{}{\circ}\textrm{C

```
```

TEMPERATURE STABILITY: }\pm0.01%\mathrm{ of span / / }\mp@subsup{}{}{\circ}\textrm{C

```
```

OPERATING TEMPERATURE: -20 to $+70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ STORAGE TEMPERATURE: -30 to $+85^{\circ} \mathrm{C}\left(-22\right.$ to $\left.185^{\circ} \mathrm{F}\right)$ HUMIDITY: 5-95\% relative humidity, non-condensing HOUSING: Plastic polycarbonate PROTECTION LEVEL:

Housing: According to IP-40
Terminals: According to IP-20 MOUNTING: Standard 35 mm DIN rail WEIGHT: 200 grams (7 oz)

