iDRN-FP

FREQUENCY/PULSE INPUT

General Description:
The iDRN Series of DIN rail-mountable signal conditioners are available for Thermocouple, RTD, Strain, Process, AC Voltage, AC Current and Pulse/Totalizer input types.
The factory calibrated signal conditioners are ideal for all process and power monitoring applications, they feature 3-way isolation, high accuracy input, programmable outputs, and are excellent front end interfaces for programmable logic controllers or data acquisition systems. For maximum user configurability the signal conditioners allow complete input-output scaling via a RS-232 connection to any PC or PLC.

Software Description:
The signal conditioner configuration program is a MS DOS/Windows program (this manual is for the Windows version). It is designed especially for the iDRN Series Signal Conditioner. This program will run on any PC with Windows application and will start automatically.

Free Serial Communication software and ActiveX Controls are on the CD-ROM enclosed with this shipment. To download the latest software release (or request a free CD-ROM) please go to: www.omega.com/software

What You need:
• Your choice of the signal conditioner
• IBM PC or compatible
• Windows software 3.1 or higher, or Windows 95/98
• RJ12 connector with telephone cable
• Adapter (DB9 or DB25 to RJ12)

Setting up your System

To connect the signal input proceed as follows:

Power Input and Analog Output Setup:
To connect the signal input proceed as follows:

1. Connect a DC power supply with an output voltage between 10 to 32 Vdc to the signal conditioner (I1). Note: If power supply used has current limiting, it may not be able to power the signal conditioners if the available output voltage is around 10 V, since the peak current may reach 1 to 5 Amps for a few milliseconds.

2. Ensure that if the selected mode or signal source is different from the default then change them using serial communication explained later in this manual.

Operation:
Note: When connecting a pulse signal, ensure that the input signal voltage is less than or equal to the rating. The unit may be damaged if the input voltage exceeds the maximum rating.

Power Input and Analog Output Setup:
To connect the signal input proceed as follows:

1. Connect a DC power supply with an output voltage between 10 to 32 Vdc to the signal conditioner (I1).

2. Ensure that if the selected mode or signal source is different from the default then change them using serial communication explained later in this manual.

TTL/CMOS Input: (Use software to set: no pull up/down). Low <= 0.8 V, High >= 3.5 V (For Input: 0.2 Hz to 16 KHz)
Low <= 0.8 V, High >= 12 V (For Input: 0.2 Hz to 50 KHz)
NAMUR Sensors (Use software to set: 1KΩ pull down to RTN and 8.2V Excitation.)

For measuring a low level signal riding on top of a large DC signal, connect a 0.1uF capacitor. See Detail.

Use software to set 1KΩ pull down to RTN.

OPERATING MODES:
Frequency: Range = 0.2 Hz to 50 KHz
Max. Input Frequency: 30 KHz. for Input Level: 0-5 V
Max. Input Frequency: 50 KHz. for Input Level: 0-12 V

FREQUENCY
0 to 9,9999 Hz
10 to 99,999 Hz
100 to 999,999 Hz
1000 to 9999.9 Hz
10000 to 99999.9 Hz
0 to 50000 Hz
0.1 Hz

Totalize with Reset: Range = 0 to 999999, if reading is larger than 999999, then reading is converted to floating point number, i.e. 9.99E9 (maximum).
Max. Input Frequency: 30 KHz. for Input Level: 0-5 V
Max. Input Frequency: 50 KHz. for Input Level: 0-12 V
A-B Totalize (Reset input used as +A input): Range = -99999 to 999999, if reading is larger than 999999, then reading is converted to floating point number, i.e. -9.99E9 (minimum), 9.99E9 (maximum).
Max. Input Frequency: 30 KHz. for Input Level: 0-5 V
Max. Input Frequency: 25 KHz. for Input Level: 0-12 V
Quadrate (Reset input used as second input): Range = -99999 to 999999, if reading is larger than 999999, then reading is converted to floating point number, i.e. -9.99E9 (minimum), 9.99E9 (maximum).
Max. Input Frequency: 30 KHz. for Input Level: 0-5 V
Max. Input Frequency: 25 KHz. for Input Level: 0-12 V

* Resolution is 1 count.

Isolation:
Dielectric strength per 1 minute test based on EN 61010 for 50 Vdc or Vrms working voltage.
Three way Isolation:
• Power to Signal Input: 1800V Peak
• Power to Analog Output/Communication: 1800V Peak
• Signal Input to Analog Output/Communication: 1400V

Common Mode Rejection:
100 dB

Input Impedance:
Input: 1MΩ to +EXC Reset: 100K to +5V

Input Over-Voltage Protection:
With 1K pull down: 14V With 3K pull up: 20V
Without pull up/down: 60V

Excitation:
5, 8, 2 or 12.5V at 25mA, programmable

Accuracy at 25 °C:
±0.1% of Full scale Crystal time base accuracy: ± 50 ppm

Temperature Stability:
± 50 ppm/°C typical
Time base stability: ± 1ppm/°C

Step Response for RS232 Output:
1.0 second to 99% of the final value (Filter time constant of 0, Gate time = 0.05 Sec)

Response Time:
To verify the response time, check the carriage return <CR>, it will be sent at the end of the response. You can send another command after you receive the <CR>.
i.e. send: *X01
X01<DATA><CR>

Only for reading (X01 command).
Note: When connecting a pulse signal, ensure that the input signal voltage is less than or equal to the rating.

Step response is controlled by the gate time. If gate time is increased then response time is longer.

Other modes: response time is not controlled by the gate time.

Analog Output Step Response Time:
2 seconds to 99% of the final value

Warm up to Rated Accuracy:
30 minutes

Analog Output Signal Type:
Voltage: 10 Volts (maximum loop resistance 500Ω)
Current: 0-20 mA or 4-20 mA, maximum compliance voltage 10 Volts (maximum loop resistance 500Ω)

Analog Output Linearity:
0.1% of FS

Input Power:
10 to 32 Volt DC

Power Consumption:
3 Watts (125mA at 24V DC)

Operating Ambient:
-5 to +55 °C

Storage Temperature:
-40 to +85 °C

Relative Humidity:
90% at 40 °C
Non-condensing

Dimensions:

Introduction:
The frequency/pulse signal conditioners are high performance instruments which operates in 4 different modes. Input can be programmed to read different signal sources including low level pulse, open collector and TTL/CMOS signals. Key features are: programmable excitation and input; operates as a rate meter, totalizer with reset, A-B totalizing and Quadrate; scalable analog output and a simple RS232 interface for scaling analog output and range selection. The RS232 interface may also be used for digital transmission of the input signal to a computer or a PLC. Additional features include three way isolation between DC power, signal input and analog output/RS232.

Set up your System

Power Connection (or power to Analog Output/Communication) 1800V Peak
Power Connection (or power to Signal Input) 1800V Peak
Power Connection (Signal Input to Analog Output/Communication) 1400V

Computer Connection (DB9 or DB25 to RJ12)

Computer Power Connection

Adapter (DB9-RJ12, #DB25-RJ12)

Test Lead and connector for signal input

SIGNAL CONDITIONER MODULE

Input Type:
Min. Low level signal input (magnetic pickups): From 0 mV to 120 mV
Open Collector NPN (Use software to set: 3 KΩ pull up to 5V): Max. current source = 1.66 mA
Open Collector PNP (Use software to set: 1KΩ pull down to RTN): Max. current sink = 12.5 mA

Computer Power Connection
WARNING: These products are not designed for use in, and should not be used for, patient-connected applications.

11. You may save or print a particular configuration by selecting the file menu. It’s always a good practice to both print and save the configuration of each signal conditioner.

12. If the program is not able to establish communication then an error message is displayed. This happens either when the serial port is specified or when the cable is disconnected.

13. The procedure to disable Continuous Mode and change the iDRN to Command Mode is as follows:

Using HyperTerminal, or any serial communication program, type: Ctrl + S
To change the Device to Command Mode, type: * AE
To change the Bus Format Register, type: * W014
To reset the device, type: * Z01
Cycle power to the unit.

Modbus Register Definition

<table>
<thead>
<tr>
<th>Reg.</th>
<th>Read Function</th>
<th>Write Function</th>
<th>T of byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input Range</td>
<td>Input Range</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Input/Output Config.</td>
<td>Input/Output Conf.</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Decimal Points</td>
<td>Decimal Parameter</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Filter Time Constant</td>
<td>Filter Time Constant</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Reading/Output Scale</td>
<td>Scale Support</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Reading/Output Offset</td>
<td>Offset Support</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Comm. Parameters</td>
<td>Comm. Parameters</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Comm. Bus Format</td>
<td>Comm. Bus Format</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Comm. Data Format</td>
<td>Comm. Data Format</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Comm. Device Addr</td>
<td>Comm. Device Addr</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Comm. Recog. Char</td>
<td>Comm. Recog. Addr Add</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Unit of Measure</td>
<td>Unit of Measure</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Date Time</td>
<td>Date Time</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Debounce Time</td>
<td>Debounce Time</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Transmit Time</td>
<td>Transmit Time</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Main Value</td>
<td>Main Value</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>Sub Value</td>
<td>Sub Value</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>Value Address</td>
<td>Value Address</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Value Offset</td>
<td>Value Offset</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Not Supported</td>
<td>M.S. bytes Output Scale 2</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>Not Supported</td>
<td>L.S. byte Output Scale 2</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>Not Supported</td>
<td>L.S. byte Output OFFSET 1</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Not Supported</td>
<td>L.S. byte Output OFFSET 2</td>
<td>1</td>
</tr>
</tbody>
</table>

Note:
1) Main, Peak, Valley value: 4 bytes will be sent from the unit.a. Highest byte always 00h.
b. 2nd highest byte: (MSB is sign) 1 (negative), 0 (positive).c. Next 3 bits are number of decimal points.d. Low nibble of second byte, and lowest 2 bytes are the value.2) Bus Format: Bit 5 1/0 = Modbus/Newport3) Output Scale/Offset Write: Due to write scale/offset being an operation needed to write scale/offset, and to make it effective it needs to follow with Hard Reset command.4) To configure to Newport protocol, set bit 5 of Bus Format to low and follow with Hard Reset command.

For immediate technical or application assistance:
USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA®
Tel: +1 (203) 769-7807 / Fax: +1 (203) 359-7803
E-Mail: support@omega.com

WARRANTY/DISCLAIMER
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship under normal use for a period of 12 months from date of purchase. OMEGA hereby agrees to repair or replace, at its option, this product, if it is determined by OMEGA that the product is defective in materials or workmanship. All returned products, if so determined, shall be sent prepaid to OMEGA with 1) a copy of the purchase receipt (if original is not available); 2) the product will be returned to customer at OMEGA’s expense and at OMEGA’s discretion. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The Basic Component under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical uses, are trademarks of OMEGA Engineering, Inc.

OmeGanet® On-Line Service
USA: www.omega.com
Internet e-mail info@omega.com

Servicing North America:
OMEGA Engineering, Inc. is ISO 9001:2000 Certified, FDA approved, and RoHS compliant.

OMEGA Engineering, Inc.
1 Omega Drive
P.O. Box 447
Stamford, CT 06907-0407
Tel: +1 (203) 759-1860
E-Mail: info@omega.com

For immediate technical or application assistance:
USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA®
Tel: +1 (203) 769-7807 / Fax: +1 (203) 359-7803
E-Mail: support@omega.com

Servicing Europe:

Central Europe:
Czech Republic:
OMEGA Shop, a.s.
Nová 184
733 01 Karviná
Tel: +420 59 631 1899
Fax: +420 59 631 1114
E-Mail: info@omegashop.cz

OMEGA Shop, a.s.
Nová 184
733 01 Karviná
Tel: +420 59 631 1899
Fax: +420 59 631 1114
E-Mail: info@omegashop.cz

Germany/Austria:
DE: Deimlingstrasse 26, 7-70327 Dorken, Germany
Tel: +49 7235 5969-0
Fax: +49 7235 5969-29
Toll Free in Germany: 0800 639 7678
E-Mail: info@omega.de

UK:
Tel: +44 1114 747747
OmeGA Engineering, Inc.
USA:
One Omega Drive
P.O. Box 447
Stamford, CT 06907-0407
Tel: +1 (203) 759-1860
E-Mail: info@omega.com

© Copyright 2006 OMEGA ENGINEERING, INC. All rights reserved.

This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written permission of OMEGA ENGINEERING, INC.