1 Introduction 1-1
2 BeforeBeginning L. 2-1
2.1 Software Installation 2-1
2.2 Creating DAQDRIVE. Configuration Files 2-2
2.3 Creating DOS Applications Using The C Libraries 2-3
2.3.1 Microsoft Visual C/C++ i 2-3
23.2Borland C/C++ 2-5

2.4 Creating DOS Applications Using The TSR Drivers 2-7
2.4.1 Loading The TSRs Into Memory 2-7

2.4.2 Removing The TSRs From Memory 2-8

243 Microsoft C/CH+ ... 2-9

244 Borland C/C++and TurboC 2-10
245QUICKBASIC 2-12

2.4.6 Visual BasicforDOS 2-16

247 TurboPascal 2-19

2.5 Creating Windows Applications 2-21
2.5.1 Microsoft Visual C/C++ i 2-22
252Borland C/C++ ... 2-23

2.5.3 Visual Basic for Windows 2-25

2.5.4 Turbo Pascal for Windows 7/ Borland Delphi 3-26

3 Quick Start Procedures, 3-1
31Analog INnput ... 3-2
3.1.1 DagSingleAnaloglnput 3-2

3.1.2 DagSingleAnaloglnputScan, 3-5
32Analog Output 3-8
3.2.1 DagSingleAnalogQutput 3-8

3.2.2 DagSingleAnalogOutputScan 3-11
33Digital Input 3-14
3.3.1 DagSingleDigitallnput 3-14

3.3.2 DagSingleDigitallnputScan 3-17

34 Digital Output 3-20
3.4.1 DagSingleDigitalOutput 3-20

3.4.2 DagSingleDigitalOutputScan 3-23

4 Performing An Acquisition 4-1
5 A/D Converter Requests 5-1
5.1 DagAnaloglnput 5-1
5.2 The Analog Input Request Structure 5-2
521Reserved Fields 5-3

5.2.2 Channel Selections / Gain Settings 5-3
523DataBuffers 5-3

524 Trigger Selections 5-3

525 Data Transfer Modes, 5-3

DAQDRIVE User's Manual i

5.26 CloCK SOUICES ...t 5-4

527SamplingRate 5-5
528 Number Of Scans ..., 5-5
5.29ScanEvents 5-5
5.2.10 Calibration Selections, 5-5
5.2.11 TIME-0UL ... 5-6
5212 RequestStatus 5-6
53 Analog Input Examples e 5-7
5.3.1 Example 1 - Single Channel Input 5-7
5.3.2 Example 2 - Multiple Channel Input 6-8

6 D/A Converter Requests 6-1
6.1 DagAnalogOutput 6-1
6.2 The Analog Output Request Structure 6-2
6.2.1 Reserved Fields i, 6-3
6.2.2 Channel Selections 6-3
6.23DataBuffers 6-3
6.2.4 Trigger Selections i 6-3
6.25 Data Transfer Modes 6-3
6.2.6 ClOCK SOUICES ... 6-4
6.2.7 SamplingRate 6-5
6.2.8 Number Of Scans ..., 6-5
6.29Scan Events 6-5
6.2.10 Calibration Selections, 6-5
6.2.11 TIME-0UL 6-6
6.2.12 Request Status 6-6
6.3 Analog Output Examples 6-7
6.3.1 Example 1 - DC Voltage Level Output 6-7
6.3.2 Example 2 - Simple Waveform Generation 7-8

7 Digital InputRequests ..., 7-1
7.1 DagDigitallnput 7-1
7.2 The Digital Input Request Structure 7-2
7.21Reserved Fields 7-3
7.2.2Channel Selections 7-3
7.23DataBuffers 7-3
7.24 Trigger Selectionsy 7-3
7.25DataTransferModes 7-3
7.26 ClOCK SOUICES ... e 7-4
7.27SamplingRate 7-5
7.2.8 Number Of Scans ... 7-5
7.29SCan Events 7-5
7.220 TIME-0UL ..o e 7-5
7211 Request Status 7-5
7.3 Digital Input Examples i 7-6
7.3.1 Example 1 - Single Value Input 7-6

7.3.2 Example 2 - Multiple Value Input 7-7

8 Digital Output Requests 8-1
8.1 DagDigitalOutput 8-1
8.2 The Digital Output Request Structure 8-2

8.21Reserved Fields 8-3
8.2.2 Channel Selections i, 8-3
823 DataBuffers 8-3
8.2.4 Trigger Selections iy 8-3
8.2.5 Data Transfer Modes, 8-3
8.26 Clock Sourcesc. i 8-4
8.27SamplingRate 8-5
828 NumberOf Scans i 8-5
8.29ScanEvents 8-5
8.210 TIME-0ULo 8-5
8.211 Request Statust 8-5
8.3 Digital Output Examples 8-6
8.3.1 Example 1 - Single Value Output 8-6
8.3.2 Example 2 - Simple Pattern Generation 8-7

9 Defining DataBuffers 0-1
9.1 Multiple Channel Operations 9-5
9.2 Input Operation Examples 9-7

9.2.1 Example 1: Single Channel Analog Input 9-7
9.2.2 Example 2: Multi-Channel Analog Input 9-8
9.2.3 Example 3: Using Multiple Data Buffers 9-9
9.2.4 Example 4: Acquiring Large Amounts Of Data 9-10
9.3 Output Operation Examples 9-13
9.3.1 Example 1: Single Channel Analog Output 9-13
9.3.2 Example 2: Creating Repetitive Signals 9-14
9.3.3 Example 3: Multi-Channel Analog Output 9-15
9.3.4 Example 4: Using Multiple Data Buffers 9-16
9.3.5 Example 5: Creating Complex Output Patterns 9-17
9.3.6 Example 6: Outputting Large Amounts Of Data 9-19

10 Trigger Selections, 10-1

10.1 Trigger SOUICES . .. vttt e et 10-1
10.1.1 Internal Trigger i 10-1
10.2.2 TTL Trigger ...t e e 10-1
10.1.3 Analog Trigger 10-2
10.1.4 Digital Trigger 10-2

10.2Trigger Modest 10-3
10.2.1 One-shot Trigger Mode, 10-3
10.2.2 Continuous Trigger Mode 10-3

11 DAQDRIVEEvents 11-1
11.1 Event Descriptionst 11-1

DAQDRIVE User's Manual \Y

1111 Trigger Event 11-1

11.12Complete Event, 11-1
11.1.3 BufferEmpty Event, 11-1
1114 Buffer Full Event i, 11-1
11.1.5Scan Event 11-2
1116 UserBreak Event, 11-2
11.1.7 Time-out Event, 11-2
11.1.8 Run-time ErrorEvent, 11-2
11.2 Monitoring Events Using The Request Status 11-2
11.3 Monitoring Events Using Event Notification 11-5
11.4 Monitoring Events Using Messages In Windows 11-9
12 Common Application Examples 12-1
12.1 Analog Input (A/D) Examples 12-2
1211 Example 1 ... 12-2
1212 Example 2 ... 12-3
1213 Example 3 ... 12-5
1214 Example 4 .. 12-7
1215 Example 5 ... 12-9
12.2 Analog Output (D/A) Examples 12-12
1221 Example 1 ... 12-12
1222Example 2 ... 12-13
1223 Example 3 ... 12-15
1224 Exampled ... 12-17
12.3 Digital InputExamples 12-20
1231 Example 1 ... 12-20
1232Example 2 ... 12-21
12.4 Digital Output Examples 12-24
1241 Example 1 ... 12-24
1242 Example 2 ... 12-25

13 Command Reference 13-1
13.1 DagAllocateMemory it 13-2
13.2 DagAnaloginput 13-4
13.3 DagAnalogOutput 13-10
13.4 DagArmRequest 13-16
13.5 DagByteSTOWOrdst 13-18
13.6 DaqCloseDevice 13-20
13.7 DagDigitallnput 13-22
13.8 DagDigitalOutput 13-28
13.9 DagFreeMemory 13-34
13.10 DaqGetADCfgInfo 13-36
13.11 DagGetADGainInfo 13-40
13.12 DaqGetDACTgINnfo 13-42
13.13 DagGetDAGainInfo 13-46
13.14 DagGetDeviceCfgIinfo 13-48

Vi

13.15 DagGetDigioCfgIinfo 13-50

13.16 DaqGetExpCfginfo 13-52
13.17 DagGetExpGainInfo 13-56
13.18 DagGetRuntimeError i 13-58
13.19 DaqGetTimerCfgIinfo 13-60
13.20 DagNotifyEvent 13-62
13.20.1 The user-defined event procedure 13-63
13.21 DagqOpenDevVviCeot 13-65
13.21.1 DaqOpenDevice - C Library Version 13-66
13.21.2 DaqOpenDevice - Windows DLL Version 13-68
13.21.3 DaqOpenDevice - TSR Version 13-70
13.22 DagPostMessageEvent 13-72
13.22.1 TheEventMessagecciuiniinninnnnnn.. 13-73
13.23 DagReleaseRequest i 13-74
13.24 DagResetDeVvICet 13-76
13.25 DagSingleAnaloglnput 13-78
13.26 DagSingleAnaloglnputScan 13-80
13.27 DagSingleAnalogOutput 13-82
13.28 DagSingleAnalogOutputScan 13-84
13.29 DagSingleDigitallnput, 13-86
13.30 DagSingleDigitallnputScan 13-88
13.31 DagSingleDigitalOutput 13-90
13.32 DagSingleDigitalOutputScan 13-92
13.33 DagStopRequest 13-94
13.34 DaqTriggerRequest, 13-96
13.35 DaqUserBreak 13-98
13.36 DagVersionNumber 13-100
13.37 DagWordsToBytesy 13-102
14 Error MEesSsages ...t 14-1
15 AppendiCes 15-1

DAQDRIVE User's Manual vii

List of Figures

Figure 1. DAQDRIVE. interface between an application

program and one hardware device. 1-2
Figure 2. DAQDRIVE. interface between an application

program and multiple devices of the same family. 1-3
Figure 3. DAQDRIVE. interface between an application

program and multiple devices of different families. 1-3
Figure 4. buffer_status definition for input operations (A/D

and digital input). 9-3
Figure 5. buffer_status definition for output operations (D/A

and digital output). 9-4
Figure 6. Summary of DAQDRIVE. trigger sources and

parameters. 10-1
Figure 7. request_status bit definitions. 11-3
Figure 8. event_type definition. 11-6
Figure 9. event_mask bit definitions. 11-7
Figure 10. Analog input request structure. 13-5
Figure 11. Analog input request structure definition. 13-6
Figure 12. Analog output request structure. 13-11
Figure 13. Analog output request structure definition. 13-12
Figure 14. Digital input request structure. 13-23
Figure 15. Digital input request structure definition. 13-24
Figure 16. Digital output request structure. 13-29
Figure 17. Digital output request structure definition. 13-30
Figure 18. A/D converter configuration structure definition. 13-37
Figure 19. D/A converter configuration structure definition. 13-43
Figure 20. Device configuration structure definition. 13-48
Figure 21. Digital 1/0 configuration structure definition. 13-50
Figure 22. Analog input expansion board configuration struc

turedefinition. 13-53

Figure 23. Counter/timer configuration structure definition. 13-60
Figure 24. input_array data types as a function of analog

input channeltype. 13-81
Figure 25. output_array data types as a function of analog

outputchannel type. 13-85

viii

1 Introduction

DAQDRIVE is Omega's universal data acquisition interface for the "DAQ"
series of ISA bus and PCMCIA data acquisition adapters. DAQDRIVE.
goes beyond the drivers normally distributed with data acquisition
adapters by isolating the application programmer from the hardware.

DAQDRIVE provides support for application programs written in the
following languages:

Microsoft C/C++

Borland C/C++

Visual Basic for DOS

Quick Basic version 4.5

Turbo Pascal for DOS version 7.0 and newer

Most Windows languages supporting Dynamic Link Libraries
(DLLs) including Visual C/C++, Borland C/C++, Turbo Pascal for
Windows, and Borland Delphi

= === £ =

DAQDRIVE. uses a "data defined" rather than a "function defined"
interface. What this means is that each data acquisition operation is
defined by a series of configuration parameters and requires very few
function calls to implement. Because of this approach, DAQDRIVE. may
seem a little unusual; even intimidating at times. However, after writing
a few example programs, we feel the user will discover the power behind
this type of interface.

DAQDRIVE. supports high speed data 1/0 by providing support for
foreground (CPU software polled) and background (DMA and interrupt
driven) operation. For increased flexibility, DAQDRIVE. also supports
software (internal) and hardware (external) clock and trigger sources.

DAQDRIVE. supports multiple data acquisition adapters in a single
system. In fact, the number of adapters is limited only by the amount of
available system memory. DAQDRIVE. also supports multiple tasks from
one or more applications operating on one or more hardware devices.
This multi-tasking support is accomplished by tracking all system and
data acquisition resources and rejecting any request for which all of the
necessary resources are not available.

DAQDRIVE User's Manual 1-1

In order to minimize the code size of the application programs,
DAQDRIVE. is distributed as a two-part driver. The first part contains
the application program interface (API) and is also responsible for
memory management, file 1/0, and other hardware independent
functions. Regardless of the number of hardware devices installed, only
one copy of the hardware independent driver is required.

The second part of the driver is hardware dependent and is responsible
for implementing the requested operations on the target hardware device.
These drivers are supplied with the data acquisition adapter and
generally support only one family of hardware devices. Only one
hardware dependent driver is required for each family of hardware
installed in the system.

Application Program

:

Hardware independent driver

'

Hardware dependent driver

'

— — I:II:I -
—3 0 O
[I— oo

—/ I
LT

Figure 1. DAQDRIVE. interface between an application
program and one hardware device.

1-2

Application Program

Hardware independent driver

Hardware dependent driver

1 — I:II:I

—/ |

[I— I:II:II:I

|] Iy -
LT

—

- — I:II:I

—/ |

[I— I:II:II:I

|] Iy -
LT

Figure 2. DAQDRIVE. interface between an application
program and multiple devices of the same family.

Application Program

Hardware independent driver

‘L_‘l‘

Hardware dependent driver

—

!

— — I:II:I —

— —/]Ja

[I— I:II:II:I

| | Iy -
LU LT

Hardware dependent driver

!

— — I:II:I —

— —c/a

[I— I:II:II:I

| | Iy -
LT

Figure 3. DAQDRIVE. interface between an application
program and multiple devices of different families.

DAQDRIVE User's Manual

1-3

(This Page Intentionally Left Blank.)

1-4

2 Before Beginning

2.1 Software Installation

The DAQDRIVE distribution disks include installation programs for both
DOS and Windows. The Windows installation program is recommended
for all systems equipped with Windows or Windows 95 and allows a
complete DAQDRIVE. installation for DOS and/or Windows including
the installation of all DAQDRIVE. utility programs. The DOS installation
program may be used to install the DAQDRIVE. components which are
used to create DOS applications ONLY. The DOS installation program
WILL NOT install the DAQDRIVE. components required for Windows
based applications nor will it install any of the DAQDRIVE. utility
programs (including the DAQDRIVE Configuration Utility).

From Windows / Windows 95:
1. From the Windows program manager, select File | Run or from
the Windows 95 desktop select Start | Run.

2. Assuming DAQDRIVE distribution disk 1 is in drive A, enter
"AN\SETUP" in the command line text box and click OK.

From DOS:

1. Assuming DAQDRIVE distribution disk 1 is in drive A, type
"A\INSTALL" and press <Enter>.

Follow the on-screen instructions to select the DAQDRIVE. components to
be installed and insert the remaining diskettes as required. When the
installation program is complete, one or more of the following
subdirectories will have been created in the target directory:

..A\DAQDRIVE\CONFIG DAQDRIVE. Configuration Utility
..\DAQDRIVEATUTOR DAQDRIVE. Request Structure Tutorial
..ADAQDRIVE.\C_LIBS C library support for DOS applications
..ADAQDRIVEA\TSR TSR driver support for DOS applications
..\DAQDRIVEAWINDLL Support for Windows applications

DAQDRIVE User's Manual 2-1

2.2 Creating DAQDRIVE. Configuration Files

Before an application program can operate on a hardware device, the
device must be initialized using the DaqOpenDevice procedure. One of
the parameters provided to this procedure is a data file which specifies
the configuration of the target hardware. Some of the information
contained in the configuration file includes

General Information
v hardware type (e.g. DAQP-16, DAQ-1201, DAQP-208)
v 1/0 address
v interrupt level, DMA channels

Analog Input (A/D) Information
v number of channels
v resolution, gain settings
v input modes (bipolar / unipolar, single-ended / differential)

Analog Input Expansion Information
v number of channels
v input modes (bipolar / unipolar, single-ended / differential)
V gain settings, signal conditioning

Analog Output (D/A) Information
v number of channels
v resolution

Digital 1/0O Information
v number of channels
v channel size, I/0 mode (input, output, bi-directional)

Counter / Timer Information
v number of channels
v channel size (number of bits)
Vv input frequency

DAQDRIVE. configuration files are created by the DAQDRIVE.
Configuration Utility program installed by the DAQDRIVE installation
program for Windows. Under no circumstances should the user attempt
to create and / or edit these configuration files directly. Operating
instructions for the DAQDRIVE Configuration Utility are provided in
Appendix A of the DAQDRIVE User's Manual Supplement.

2-2

2.3 Creating DOS Applications Using The C Libraries

231 Microsoft Visual C/C++

To generate application programs using Microsoft Visual C/C++, the
applications must be linked to one of the following DAQDRIVE. libraries
AND one or more hardware dependent libraries. These libraries MUST
match the memory model selected for the application program. The
DAQDRIVE installation program installs the following files into the
DAQDRIVE.\C_LIBS directory:

DAQDRV.CS.LIB
DAQDRV.CM.LIB
DAQDRV.CC.LIB
DAQDRV.CL.LIB

small model DAQDRIVE. library
medium model DAQDRIVE. library
compact model DAQDRIVE. library
large model DAQDRIVE. library

Three additional files are installed in the DAQDRIVE.\C_LIBS directory
for the programmer's convenience. These files contain the prototypes of
all the DAQDRIVE. procedures, the DAQDRIVE. data structure
definitions, and the DAQDRIVE. constants mentioned throughout this
document. These files must be included in all application programs.

DAQDRIVE..H - procedure prototypes
DAQOPENC.H - DaqOpenDevice definition for C
USERDATA.H - data structures and pre-defined constants

2.3.1.1 The hardware dependent include file

The C library version of the DaqOpenDevice procedure is implemented as
a macro using the "token-pasting" operator to create a unique open
command for each hardware device. Application programs must include
the file DAQOPENC.H and the hardware dependent include file defined
in the target hardware's appendix of the DAQDRIVE User's Manual
Supplement. The DAQDRIVE installation program installs these files into
the DAQDRIVE.\C_LIBS directory.

DAQDRIVE User's Manual 2-3

2.3.1.2 Creating byte-aligned data structures

Because DAQDRIVE supports multiple languages, the DAQDRIVE. data
structures are byte-aligned (packed). The application program must also
set structure packing to byte-aligned for proper operation.

IMPORTANT:
For proper operation, all application programs must be

compiled using byte- aligned data structures.

To select byte aligned structures within the Visual C/C++ environment,
first select Options, Project, Compiler, then set the structure member
alignment field to 1 byte. For byte aligned structures from the Visual
C/C++ command line, use the '/Zp1' option.

2-4

2.3.2 Borland C/C++

To generate application programs using Borland C/C++, the applications
must be linked to one of the following DAQDRIVE. libraries AND one or
more hardware dependent libraries. These libraries MUST match the
memory model selected for the application program. The DAQDRIVE
installation program installs the following files into the DAQDRIVE.
\C_LIBS directory:

DAQDRV.BS.LIB
DAQDRV.BM.LIB
DAQDRV.BC.LIB
DAQDRV.BL.LIB

small model DAQDRIVE. library
medium model DAQDRIVE. library
compact model DAQDRIVE. library
large model DAQDRIVE. library

Three additional files are installed in the DAQDRIVE.\C_LIBS directory
for the programmer's convenience. These files contain the prototypes of
all the DAQDRIVE. procedures, the DAQDRIVE. data structure
definitions, and the DAQDRIVE. constants mentioned throughout this
document. These files must be included in all application programs.

DAQDRIVE.. H - procedure prototypes
DAQOPENC.H - DaqOpenDevice definition for C
USERDATA.H - data structures and pre-defined constants

2.3.2.1 The hardware dependent include file

The C library version of the DaqOpenDevice procedure is implemented as
a macro using the "token-pasting" operator to create a unique open
command for each hardware device. Application programs must include
the file DAQOPENC.H and the hardware dependent include file defined
in the target hardware's appendix of the DAQDRIVE User's Manual
Supplement. The DAQDRIVE installation program installs these files into
the DAQDRIVE.\C_LIBS directory.

DAQDRIVE User's Manual 2-5

2.3.2.2 Creating byte-aligned data structures

Because DAQDRIVE supports multiple languages, the DAQDRIVE. data
structures are byte-aligned (packed). The application program must also
set structure packing to byte-aligned for proper operation.

IMPORTANT:
For proper operation, all application programs must be

compiled using byte- aligned data structures.

To guarantee structures are byte aligned within the Borland C/C++
environment, select Options, Compiler, Code Generation, then confirm
the Word alignment box is not checked. For byte aligned structures
from the Borland C/C++ command line, use the '-a-' option.

2.3.2.3 Program optimization

When selecting the optimization options for the Borland C/C++ compiler,
problems may arise if the 'Invariant code motion' option is selected and
DAQDRIVE. is operated in one of the background modes (IRQ or DMA).
To disable the 'Invariant code motion' optimization within the Borland
C/C++ environment, select Options, Compiler, Optimizations, then
confirm the 'Invariant code motion' box is not checked. From the
Borland C/C++ command line, make sure the '-Om' and '-O2' options are
not used.

IMPORTANT:
It is strongly recommended that the 'Invariant code motion’

optimization option be disabled when using the Borland C/C++
compiler.

2-6

2.4 Creating DOS Applications Using The TSR Drivers

DAQDRIVE provides a TSR (Terminate-and-Stay-Resident) driver for
creating DOS applications in any language that supports software
interrupt (int) calls. In addition, libraries are provided to interface the
following high-level languages to the DAQDRIVE. TSR: Visual Basic for
DOS, Quick Basic version 4.5, Turbo Pascal version 7.0 and newer, and
most C compilers.

Although the interface to each of these languages is similar, the methods
for generating application programs varies with the application language.
The following sections describe the steps required to load the TSRs into
memory and generate an application in each of the supported languages.

2.4.1 Loading The TSRs Into Memory

The DAQDRIVE installation program installs the TSR driver into the
DAQDRIVE.\TSR directory: The first step in creating applications which
use the DAQDRIVE. TSR is to load the driver into memory using the
command line:

DAQDRIVE.

In this mode, DAQDRIVE. searches software interrupts 60H through 64H
for an available interrupt. If an unused interrupt is located, DAQDRIVE.
takes control of this interrupt and displays a message indicating the
installation was successful and which software interrupt is being used. If
there are no available interrupts in this range, an error message is
displayed and the DAQDRIVE. TSR is not installed.

If the user wants to control the software interrupt number, or if all of the
software interrupts between 60H and 64H are used, the user may specify
a software interrupt with the following command line:

DAQDRIVE. [/I=interrupt]

where interrupt specifies the software interrupt number in hexadecimal
format. If the user-specified interrupt is not available, an error message is
displayed and the DAQDRIVE. TSR is not installed.

Examples:
DAQDRIVE. /1=63 installs DAQDRIVE. on interrupt 63H
DAQDRIVE. /1=4F installs DAQDRIVE. on interrupt 4FH

DAQDRIVE User's Manual 2-7

DAQDRIVE. /1=hb9 installs DAQDRIVE. on interrupt BOH
After the DAQDRIVE. TSR has been loaded, the user must load one or
more TSRs for the hardware device(s) to be accessed. The DAQDRIVE
installation program installs the TSR driver(s) for the selected hardware
device(s) into the DAQDRIVE.\TSR directory. For this discussion, we
will assume the hardware driver's TSR name is HARDWARE.EXE. To
load this TSR simply execute the command:

HARDWARE

The hardware TSR will search for the DAQDRIVE. TSR in memory and, if
it is located, will install itself using the same software interrupt. If
DAQDRIVE. was not previously installed, the hardware TSR will respond
with an error message and will not be installed.

Multiple TSR drivers may be installed for multiple devices by repeating
the above process for each hardware driver.

2.4.2 Removing The TSRs From Memory

The DAQDRIVE. and hardware device TSRs may be removed from
memory using the '/R' option to make additional memory available to
other applications. The only restriction is that the TSRs must be removed
in the reverse order of their installation. Consider an example where the
following TSRs have been loaded:

DAQDRIVE. - installs the DAQDRIVE. TSR
DAQPTSR- installs the DAQP-208 TSR
I0OP-241- installs the IOP-241 TSR

To remove these TSRs from memory, the user simply reverses the
installation order and adds the '/R' option to each command line:

IOP-241 /R - removes the IOP-241 TSR
DAQPTSR /R - removes the DAQP-208 TSR
DAQDRIVE. /R - removes the DAQDRIVE. TSR

2-8

24.3 Microsoft C/C++

To generate application programs using the DAQDRIVE. TSR with
Microsoft C/C++, the application must be linked with the DAQDRIVE.
library DAQTSRC.LIB installed in the DAQDRIVE.\TSR\C directory by
the DAQDRIVE installation program. This library is model independent
and should work with most C compilers for DOS.

Three additional files are installed in the DAQDRIVE.\TSR\C directory
for the programmer's convenience. These files contain the prototypes of
all the DAQDRIVE. procedures, the DAQDRIVE. data structure
definitions, and the DAQDRIVE. constants mentioned throughout this
document. These files must be included in all application programs.

DAQDRIVE.. H - procedure prototypes
DAQOPENT.H - DaqOpenDevice prototype
USERDATA.H - data structures and pre-defined constants

2.4.3.1 Creating byte-aligned data structures

Because DAQDRIVE supports multiple languages, the DAQDRIVE. data
structures are byte-aligned (packed). The application program must also
set structure packing to byte-aligned for proper operation.

IMPORTANT:
For proper operation, all application programs must be

compiled using byte- aligned data structures.

To define byte aligned structures with Microsoft C use the '/Zpl'
command line option. Within the Microsoft Visual C/C++ environment,
select Options, Project, Compiler and set the structure member alignment
field to 1 byte.

DAQDRIVE User's Manual 2-9

244 Borland C/C++ and Turbo C

To generate application programs using the DAQDRIVE. TSR with
Borland C/C++ or Turbo C, the application must be linked with the
DAQDRIVE. library DAQTSRC.LIB installed in the DAQDRIVE.\TSR\C
directory by the DAQDRIVE installation program. This library is model
independent and should work with most C compilers for DOS.

Three additional files are installed in the DAQDRIVE.\TSR\C directory
for the programmer's convenience. These files contain the prototypes of
all the DAQDRIVE. procedures, the DAQDRIVE. data structure
definitions, and the DAQDRIVE. constants mentioned throughout this
document. These files must be included in all application programs.

DAQDRIVE.. H - procedure prototypes
DAQOPENT.H - DaqOpenDevice prototype
USERDATA.H - data structures and pre-defined constants

2.4.4.1 Creating byte-aligned data structures

Because DAQDRIVE supports multiple languages, the DAQDRIVE. data
structures are byte-aligned (packed). The application program must also
set structure packing to byte-aligned for proper operation.

IMPORTANT:
For proper operation, all application programs must be

compiled using byte- aligned data structures.

To guarantee structures are byte aligned within the Borland C/C++
environment, select Options, Compiler, Code Generation, then confirm
the Word alignment box is not checked. Within the Turbo C
environment, select Options, Compiler, Code Generation, then set the
Alignment option to byte. For byte aligned structures from the Borland
C/C++ or Turbo C command lines, use the '-a-' option.

2-10

2.4.4.2 Program optimization

When selecting the optimization options for the Borland C/C++ compiler,
problems may arise if the 'Invariant code motion' option is selected and
DAQDRIVE. is operated in one of the background modes (IRQ or DMA).
To disable the 'Invariant code motion' optimization within the Borland
C/C++ environment, select Options, Compiler, Optimizations, then
confirm the 'Invariant code motion' box is not checked. From the
Borland C/C++ command line, make sure the '-Om' and '-O2' options are
not used.

IMPORTANT:
It is strongly recommended that the ‘'Invariant code motion’

optimization option be disabled when using the Borland C/C++
compiler.

DAQDRIVE User's Manual 2-11

245 Quick Basic

To generate application programs using the DAQDRIVE. TSR with Quick
Basic 4.5, the Quick Library DAQQB45.QLB must be loaded from the
Quick Basic command line using the /L option. DAQQB45.QLB is
installed into the DAQDRIVE.\TSR\QB45 directory by the DAQDRIVE
installation program. A standard library, DAQQB45.LIB, is also installed
in this directory for creating executable programs (.EXE) using Quick
Basic.

Two additional files are installed into the DAQDRIVE.\TSR\QB45
directory for the programmer's convenience. These files contain the
prototypes of all the DAQDRIVE. procedures, the DAQDRIVE. data
structure definitions, and the DAQDRIVE. constants mentioned
throughout this document. These files must be included in all application
programs.

DAQQB45.INC - procedure declarations
USERDATA.INC - data structures and pre-defined constants

2.4.5.1 Quick Basic's on-line help

Although undocumented, the Quick Basic 4.5 on-line help appears to use
software interrupt 60H and may interfere with the DAQDRIVE. TSR. If
suspicious errors occur while using Quick Basic, users are advised to
install DAQDRIVE. on software interrupt 61H, 62H, 63H, or 64H.

IMPORTANT:
Although undocumented, the Quick Basic 4.5 on-line help

appears to use software interrupt 60H and may interfere
with DAQDRIVE.

2.4.5.2 Quick Basic and the under-score character

One difference between the Quick Basic version and other versions of
DAQDRIVE. is that Quick Basic reserves the underscore character (_).
The underscore character appears in data declarations and constants
throughout this document but has been removed from the Quick Basic
version of DAQDRIVE..

2-12

2.4.5.3 Adjusting the size of Quick Basic's stack and heap
DAQDRIVE. uses the application program's stack for storing local

variables and for passing variables between DAQDRIVE. procedures. By
default, Quick Basic 4.5 only allocates 2K of memory for the application's

stack which may be insufficient under come circumstances. Itis

recommended that the user increase the size of the application's stack by
at least 2K using the CLEAR command. Note that the CLEAR command
also clears all data memory and should therefore be used at the beginning

of the application program.

In addition, application programs written using Quick Basic 4.5 allocate

all available DOS memory for use as a local heap. This causes

DAQDRIVE. to report an error 300 (memory allocation error) when the
application attempts to open a device. The application must reduce the
size of the heap using Quick Basic's SETMEM function before executing
DagOpenDevice. As a guide, the application should reduce the heap by

10,000 bytes for each hardware device opened and once the

DagOpenDevice procedure has been executed, the allocated heap space
must not be returned to Quick Basic until the DaqCloseDevice procedure

has been completed.

IR SRR EE RS RS EE SRR EEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEREEREESESESEEEEEEES]

Increase the size of the Quick Basic stack by 2K

IR SRR RS RS RS EE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEREEEEEEEESESEEEEEEEES]

CLEAR , , 2048

IR SRR EE RS EEEEE SRR EEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEREEEEEERESESESEEEEEEES]

Decrease the size of the heap so DAQDR VE. can allocate required nenory

IR SRR RS RS RS EE SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEESESESEEREEEES]

HeapSi ze = SETMEM - 10000)
R EEE R R R EEEE SRR SRS EEEEEEE R R R R R R EEEEEREE R R R R EEEEEEEEEREEREESEERSESS

Performall DAQDRI VE. functions

RS S EE RS RS RS EE SRS RS EEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEERESESESEEREEEES]

DaqQpenDevi ce

Daqd oseDevi ce
IR SRR RS RS E SRR SR RS EEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESESESEEEEEEES]

Optionally restore heap

IR SRR RS RS E SRR E RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEERESESEEEEEEEES]

HeanSi ze = SETMEM +10000)

DAQDRIVE User's Manual

2-13

2.4.5.4 The DagOpenDevice Command

DAQDRIVE.'s DaqOpenDevice command requires two null-terminated
string variables: DeviceType and ConfigFile. Because Quick Basic does
not support null-terminated strings, the user must create these strings by
appending a null character, CHR$(0), to the end of each string before
passing it to DAQDRIVE.. For example:

A% ="FILENAME.DAT" normal Quick Basic string
B$ = "FILENAME.DAT" + CHR$(0) null-terminated string

Furthermore, Quick Basic is unable to pass the address of a string variable
as a far pointer. To overcome this problem, the DaqOpenDevice
procedure is declared differently for the Quick Basic version of
DAQDRIVE.:

DagOpenDevice (BYVAL TSRNumber AS Integer,
SEG LogicalDevice AS Integer,
BYVAL DeviceTypeSegment AS Integer,
BYVAL DeviceTypeOffset AS Integer,
BYVAL ConfigFileSegment AS Integer,
BYVAL ConfigFileOffset AS Integer)

The string variables normally found in the DaqOpenDevice command
have been replaced by integer values which contain the segment and
offset address of the string. The application program can obtain these
addresses using the VARSEG and SADD functions as shown in the
following example.

IR SRR EE RS EEEEE SRR EEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESESESEEREEEES]

Step 1: Open the device

IR SRR RS RS RS EE SRS RS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEREEEEEEEEERESESESEEEEEEES]

Logi cal Device% = 0

Devi ceType$ = " DA8P-12B" + CHR$(0)

ConfigFile$ = "da8p-12b.dat " + CHR$(O)

St at us% = DagOpenDevi ce(&HF006, Logi cal Devi ce%
VARSEQ(Devi ceType$), SADD(Devi ceType$),
VARSEG(Confi gFil e$), SADD(Confi gFile$))

2-14

2.4.5.5 Storing a variable's address in a data structure

Another short-coming of Quick Basic is its inability to easily operate on a

variable's address. Because of this limitation, all of the variables declared
as 'far pointers' in the DAQDRIVE. data structures have been divided into
two integer values: a segment address and an offset address. An example
of this is the channel array variable in the ADCRequest structure

unsigned short far *channel_array_ptr;
which becomes

ChannelArrayPtrOffset ~ AS Integer
ChannelArrayPtrSegment AS Integer

For an array named Channel, the application fills in the array's address
using the VARSEG and VARPTR procedures as follows:

DIM Channel[10] AS Integer

ADCRequest.ChannelArrayPtrOffset = VARPTR(Channel[0])
ADCRequest.ChannelArrayPtrSegment = VARSEG(Channel[0])

2.4.5.6 Dynamic memory allocation

To prevent Quick Basic from dynamically relocating variables, it is good
practice to declare all variables before the first instruction of the
application program.

DAQDRIVE User's Manual 2-15

2.4.6 Visual Basic for DOS

To generate application programs using the DAQDRIVE. TSR with Visual
Basic for DOS, the Quick Library DAQVBDOS.QLB must be loaded from
the Visual Basic command line using the /L option. DAQVBDOS.QLB is
installed into the DAQDRIVE\TSR\VBDOS directory by the DAQDRIVE
installation program. A standard object library, DAQVBDOS.LIB, is also
installed in this directory for creating executable programs (.EXE) using
Visual Basic for DOS.

Two additional files are installed into the DAQDRIVE\TSR\VBDOS
directory for the programmer's convenience. These files contain the
prototypes of all the DAQDRIVE. procedures, the DAQDRIVE. data
structure definitions, and the DAQDRIVE. constants mentioned
throughout this document. These files must be included in all application
programs.

DAQVBDOS.INC - procedure declarations
USERDATA.INC - data structures and pre-defined constants

2.4.6.1 Visual Basic for DOS and the under-score character

One difference between the Visual Basic for DOS version and other
versions of DAQDRIVE. is that Visual Basic reserves the underscore
character (_). The underscore character appears in data declarations and
constants throughout this document but has been removed from the
Visual Basic for DOS version of DAQDRIVE..

2.4.6.2 Adjusting the size of the Visual Basic's stack and heap
DAQDRIVE. uses the application program's stack for storing local
variables and for passing variables between DAQDRIVE. procedures. By
default, Visual Basic for DOS only allocates 2K of memory for the
application’s stack which may be insufficient under come circumstances.
It is recommended that the user increase the size of the application’s stack
by at least 2K using the CLEAR command. Note that the CLEAR
command also clears all data memory and should therefore be used at the
beginning of the application program.

In addition, application programs written using Visual Basic for DOS
allocate all available DOS memory for use as a local heap. This causes
DAQDRIVE. to report an error 300 (memory allocation error) when the
application attempts to open a device. The application program must
reduce the size of the heap using Visual Basic's SETMEM function before
executing DaqOpenDevice. As a guide, the application should reduce the

2-16

heap by 10,000 bytes for each hardware device to be opened and once the
DagOpenDevice procedure has been executed, the allocated heap space
must not be returned to Visual Basic until the DagCloseDevice procedure
has been completed.

IR S SRR RS RS RS EE SRS EEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEESESESEEEEEEES]

Increase the size of the Visual Basic stack by 2K

IR R EE RS RS R SR EE SRR RS EEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEERESESEEEEEEEES]

CLEAR , , 2048

IR SRR EE SRS EE R EE RS EEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEREESESEEEEEEEES]

Decrease the size of the heap so DAQDR VE. can allocate required nenory

IR SRR EE RS EE R EE SRR R RS EEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEREEREESESESEEEEEEES]

HeapSi ze = SETMEM - 10000)
IR R EEEEEEEEEE SRS RS E R EEEEEEE R R R R R R R EEEE R R R R R R R EEEEEEEEEREEREESEERSESS

Performall DAQDRI VE. functions

IR SRR RS RS E SRR SRR EEEEEEE SRS EEEEEEEEEEEEEEEEEREEEEEEEEREEEEEEEEREESESESEEEEEEES]

DaqQpenDevi ce

Daqd oseDevice
IR SRR RS RS EEEEE SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESESESEEEEEEES]

Optionally restore heap

RS SRR RS RS RS EE SRR R EEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEREERESESESEREEEES]

HeapSi ze = SETMEM +10000)

2.4.6.3 The DagOpenDevice Command

DAQDRIVE.'s DaqOpenDevice command requires two null-terminated
string variables: DeviceType and ConfigFile. Because Visual Basic does
not support null-terminated strings, the user must create these strings by
appending a null character, CHR$(0), to the end of each string before
passing it to DAQDRIVE.. For example:

A% ="FILENAME.DAT" normal Visual Basic string
B$ = "FILENAME.DAT" + CHR$(0) null-terminated string

Furthermore, Visual Basic for DOS is unable to pass the address of a
string variable as a far pointer. To overcome this problem, the
DagOpenDevice procedure is declared differently for the Visual Basic for
DOS version of DAQDRIVE.:

DagOpenDevice (BYVAL TSRNumber AS Integer,
SEG LogicalDevice AS Integer,
BYVAL DeviceTypePtr AS Long,
BYVAL ConfigFilePtr ASLong)

DAQDRIVE User's Manual 2-17

The string variables normally found in the DaqOpenDevice command
have been replaced by long integer values which contain the string's
address. The application program can obtain the string address using the
SSEGADD function as shown in the following example.

RS SRR RS E SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEESESEEEEEEEES]

Step 1: Open the device

IR R EE RS RS RS EE R RS RS EEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEREREESESEEEEEEEES]

Logi cal Device% = 0

Devi ceType$ = " DA8P-12B" + CHR$(0)

ConfigFile$ = "da8p-12b.dat " + CHR$(O)

St at us% = DagOpenDevi ce(&HF006, Logi cal Devi ce%
SSEGADD(Devi ceType$) ,
SSEGADD(Conf i gFi | e$))

2.4.6.4 Storing a variable's address in a data structure

Another short-coming of Visual Basic for DOS is its inability to easily
operate on a variable's address. Because of this limitation, all of the
variables declared as 'far pointers' in the DAQDRIVE. data structures
have been divided into two integer values: a segment address and an
offset address. An example of this is the channel array variable in the
ADCRequest structure

unsigned short far *channel_array_ptr;
which becomes

ChannelArrayPtrOffset ~ AS Integer
ChannelArrayPtrSegment AS Integer

For an array named Channel, the application fills in the array's address
using the VARSEG and VARPTR procedures as follows:

DIM Channel[10] AS Integer

ADCRequest.ChannelArrayPtrOffset = VARPTR(Channel[0])
ADCRequest.ChannelArrayPtrSegment = VARSEG(Channel[0])

2.4.6.5 Dynamic memory allocation

To prevent Visual Basic for DOS from dynamically relocating variables, it
is good practice to declare all variables before the first instruction of the
application program.

2-18

2.4.7 Turbo Pascal

DAQDRIVE supports applications written with Turbo Pascal version 7.0
and newer through the unit files DAQDRIVE..TPU and DAQDATA.TPU
installed in the DAQDRIVE.\TSR\PASCAL directory by the DAQDRIVE
installation program. DAQDRIVE..TPU defines the Turbo Pascal
interface to the DAQDRIVE. functions while DAQDATA.TPU defines the
DAQDRIVE. data structures (Pascal 'records') and constants mentioned
throughout this document.

In order to access DAQDRIVE.'s functions, data structures, and constants,
all application programs must include the following statement:

USES DAQDRIVE., DAQDATA,

2.4.7.1 Turbo Pascal and floating-point math

The Turbo Pascal floating-point emulation library only supports variables
of type 'real’. To use the single and double precision variables required
byDAQDRIVE., the 8087 floating-point math mode must be enabled by
selecting Options, Compiler, 8087/80287 or by defining the numeric
coprocessor switch {SN+}.

2.4.7.2 Adjusting the size of the Turbo Pascal heap

By default, application programs written using Turbo Pascal allocate all
available DOS memory for use as a local heap. This causes DAQDRIVE.
to report an error 300 (memory allocation error) when the application
attempts to open a device. The user must reduce the size of the
application's heap by selecting Options, Memory sizes and setting the
'High heap limit' option to a value less than 655,360 (640K). As a guide,
reduce the heap by 10,000 bytes for each hardware device to be opened by
the application.

IMPORTANT:
The user must modify the default Turbo Pascal heap settings

to prevent the application from allocating all available DOS
memory at start-up.

DAQDRIVE User's Manual 2-19

2.4.7.3 Using other Turbo Pascal versions

When using a version of Turbo Pascal other than 7.0, the user must create
new unit files ((TPUs) by re-compiling the source files DAQDRIVE..PAS
and DAQDATA.PAS. These files, along with the interface library
DAQTSR.OBJ, are also installed into the DAQDRIVE.\TSR\PASCAL
directory by the DAQDRIVE installation program.

2-20

2.5 Creating Windows Applications

DAQDRIVE supports Windows application programs written in most
languages which support the Windows DLL (Dynamic Link Library)
interface. When the Windows application programs are executed, they
must be able to dynamically link to DAQDRIVE..DLL and one or more
hardware dependent DLLs. Windows searches for any necessary DLLs in
the following locations:

=

the current directory
2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing
GDI.EXE)

4. the directory of the application program
5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program installs the DAQDRIVE. DLL and
the DLLs for any selected hardware device into the Windows\System
directory. In addition, the installation program installs the DAQDRIVE.
import library, DAQDRIVE..LIB, into the DAQDRIVE.\WINDLL
directory. This import library can be used by many Windows compilers
to simplify the linking of application programs to the APIs available
within theDAQDRIVE. DLL.

DAQDRIVE. has been tested with application programs written in
Microsoft Visual C/C++, Borland C/C++, Turbo Pascal for Windows, and
Borland Delphi. The following sections provide additional information
about producing Windows applications in the languages above.

DAQDRIVE User's Manual 2-21

251 Microsoft Visual C/C++

To generate application programs using the DAQDRIVE. DLL with
Microsoft Visual C/C++, the application must be linked with the
DAQDRIVE. import library, DAQDRIVE..LIB, installed in theDAQDRIVE.
\WINDLL directory by the DAQDRIVE installation program. This
library is model independent and should work with most C compilers for
Windows.

Three additional files are installed into the DAQDRIVE\WINDLL\C
directory for the programmer's convenience. These files contain the
prototypes of the DAQDRIVE. procedures, the DAQDRIVE. data
structure definitions, and the DAQDRIVE. constants mentioned
throughout this document. These files must be included in all application
programs.

DAQDRIVE.. H - procedure prototypes
DAQOPENW.H - DaqOpenDevice definition for Windows
USERDATA.H - data structures and pre-defined constants

2.5.1.1 Creating byte-aligned data structures

Because DAQDRIVE supports multiple languages, the DAQDRIVE. data
structures are byte-aligned (packed). The application program must also
set structure packing to byte-aligned for proper operation.

IMPORTANT:
For proper operation, all application programs must be

compiled using byte- aligned data structures.

To select byte aligned structures within the Microsoft Visual C/C++
environment, first select Options, Project, Compiler, then set the structure
member alignment field to 1 byte. For byte aligned structures from the
Visual C/C++ command line, use the '/Zp1’ option.

2-22

25.2 Borland C/C++

To generate application programs using the DAQDRIVE. DLL with
Borland C/C++, the application must be linked with the DAQDRIVE.
import library DAQDRIVE..LIB installed in the DAQDRIVE\WINDLL
directory by the DAQDRIVE installation program. This library is model
independent and should work with most C compilers for Windows.

Three additional files are installed into the DAQDRIVE\WINDLL\C
directory for the programmer's convenience. These files contain the
prototypes of the DAQDRIVE. procedures, the DAQDRIVE. data
structure definitions, and the DAQDRIVE. constants mentioned
throughout this document. These files must be included in all application
programs.

DAQDRIVE.. H - procedure prototypes
DAQOPENW.H - DaqOpenDevice definition for Windows
USERDATA.H - data structures and pre-defined constants

2.5.2.1 Creating byte-aligned data structures

Because DAQDRIVE supports multiple languages, the DAQDRIVE. data
structures are byte-aligned (packed). The application program must also
set structure packing to byte-aligned for proper operation.

IMPORTANT:
For proper operation, all application programs must be

compiled using byte- aligned data structures.

Borland C/C++ defines structures as byte aligned by default. To
guarantee structures are byte aligned within the Borland C/C++
environment, select Options, Compiler, Code Generation, then confirm
the Word alignment box is not checked. For byte aligned structures
from the Borland C/C++ command line, use the '-a-' option.

DAQDRIVE User's Manual 2-23

2.5.2.2 Program optimization

When selecting the optimization options for the Borland C/C++ compiler,
problems may arise if the 'Invariant code motion' option is selected and
DAQDRIVE. is operated in one of the background modes (IRQ or DMA).
To disable the 'Invariant code motion' optimization within the Borland
C/C++ environment, select Options, Compiler, Optimizations, then
confirm the 'Invariant code motion' box is not checked. From the
Borland C/C++ command line, make sure the '-Om' and '-O2' options are
not used.

IMPORTANT:
It is strongly recommended that the ‘'Invariant code motion’

optimization option be disabled when using the Borland C/C++
compiler.

2-24

2.5.3 Visual Basic for Windows

Visual Basic programming support is provided by the "VisualDAQ" and
"VisualDAQ Light" software packages. VisualDAQ is a set of Visual Basic
custom controls for Omega’s data acquistion hardware. The VisualDAQ
controls provide an easy interface to interact with Omega’s data
acquisition product line.

VisualDAQ Light, which is included free with the purchase of any data
aquisition product, provides a simple interface to perform single point
data aquisition I/0. On-line documentation is included with VisualDAQ
Light.

VisualDAQ provides Visual Basic programmers with custom controls to
configure all parameters of the data aquisition board. VisualDAQ is sold
seperately and includes a complete programming reference manual.

DAQDRIVE User's Manual 2-25

2.5.4 Turbo Pascal for Windows / Borland Delphi

DAQDRIVE supports applications written with Turbo Pascal for
Windows version 1.5 and newer through the unit files DAQDRV.W.TPU
and DAQDATA.TPU while Borland Delphi applications are supported
with the unit files DAQDRV.W.DCU and DAQDATA.DCU. The unit
DAQDRV.W defines the interface to the DAQDRIVE. DLL functions
while DAQDATA defines the DAQDRIVE. data structures (Pascal
'records’) and constants mentioned throughout this document. All of
these files are installed into the DAQDRIVE\WINDLL\PASCAL
directory by the DAQDRIVE installation program.

In order to access DAQDRIVE.'s functions, data structures, and constants,
all Turbo Pascal for Windows and Borland Delphi application programs
must include the following statement:

USES DAQDRV.W, DAQDATA,

2.5.4.1 Using other Turbo Pascal for Windows / Delphi versions

When using versions other than Turbo Pascal for Windows 1.5 or Borland
Delphi 1.0, the user must create new unit files by re-compiling the source
files DAQDRV.W.PAS and DAQDATA.PAS. These files are also installed
into the DAQDRIVE.\WINDLL\PASCAL directory by the DAQDRIVE
installation program.

2.5.4.2 Turbo Pascal for Windows and floating-point math

The Turbo Pascal for Windows floating-point emulation library only
supports variables of type 'real’. To use the single and double precision
variables required by DAQDRIVE., the 8087 floating-point math mode
must be enabled by selecting Options, Compiler, 08x87 code or by
defining the numeric coprocessor switch {$N+}.

2-26

3 Quick Start Procedures

DAQDRIVE's "data defined" interface may be considerably different from
"normal” data acquisition drivers and for simple operations may seem to
result in more work for the application programmer. For this reason,
DAQDRIVE. provides a set of procedures to perform simple operations in
the "normal” way. These procedures act as DAQDRIVE. macros,
configuring all of the necessary data structures and executing all of the
routines required to complete the pre-defined function. To use any of
these functions, the application need only follow the steps listed below.

Step 1: Define The Hardware Configuration

DAQDRIVE. determines the configuration of a device from the data file
specified when the device is opened. These configuration files are created
using the DAQDRIVE configuration utility as described in Appendix A of
the DAQDRIVE User's Manual Supplement.

Step 2: Open The Hardware Device

Before the application program can use an adapter, it must first open the
device using the DagOpenDevice command. The application must
provide the open command with the adapter type and specify the name of
a configuration file (generated in step 1) which describes the target
hardware's configuration. If the open command completes successfully,
DAQDRIVE. assigns a logical device number to be used for all future
references to the adapter.

Step 3: Execute The Quick-Start Procedure(s)

These procedures are discussed on the following pages.

Step 4: Close The Hardware Device

When all operations on the hardware are complete, the device should be
closed using DagCloseDevice to free any resources used by that device.

System integrity can not be quaranteed if the application program exits
without closing the hardware device.

DAQDRIVE User's Manual 3-1

3.1 Analog Input

For analog input, DAQDRIVE. provides two special purpose procedures,
DagSingleAnaloglnput and DagSingleAnaloginputScan. The intent of
this section is to provide an overview of these procedures. For details on
the implementation of the procedures, consult the alphabetical listing of
commands in chapter 13.

3.1.1 DagSingleAnaloglnput

One of the simplest cases of analog input is to input a single sample from
a single A/D channel under CPU control. DAQDRIVE. provides a
simplified interface for this operation through the DagSingleAnaloginput
procedure. The format of this command is shown below.

unsi gned short DaqSi ngl eAnal ogl nput (unsigned short | ogical _device,

unsi gned short channel _nunber ,
fl oat gai n_setting,
void far *i nput _val ue)

DagSingleAnaloglnput sets the gain of the A/D channel specified by
channel_number on the adapter specified by logical device to the value
specified by gain_setting. A single sample is then input from this analog
channel and stored in the memory location specified by input_value. The
following example shows the usage of DagSingleAnaloglnput.

3-2

[*** |nput a single sanple fromA/D channel 0 ***/
unsi gned short mai n()

unsi gned short | ogical _device;
unsi gned short status;
short input_val ue;

char far *device_type
char far *config_file

" DAQP-16";
" dagp- 16. dat ";

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)

printf("Error opening device. Status code 9%l.\n", status);
exit(status);

[*** Step 2: |nput value fromchannel 0, gain of 1 xRk

status = DaqSi ngl eAnal ogl nput (1 ogi cal _devi ce, 0, 1, & nput_val ue);
if (status !'= 0)

printf("\nmM\nA/D input error. Status code %l.\n\n", status);
el se

printf("Channel 0: 9%\ n\n", input_value);

[*** Step 3: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

}

DagSingleAnaloglnput is a very basic interface without any allowance for
multiple channels, multiple input values, trigger sources, etc. It acts as a
DAQDRIVE. macro defining the necessary data structures, executing the

analog input configuration procedure (DagAnaloglinput), arming the

requested configuration (DagArmRequest), and triggering the operation

(DaqTriggerRequest).

For users interested in learning more about DAQDRIVE.'s analog input

interface, the following example program creates the equivalent of the

DagSingleAnaloglinput procedure.

DAQDRIVE User's Manual

3-3

unsi gned short M Si ngl eAnal ogl nput (unsi gned short
unsi gned short
fl oat gai n_setti

struct ADC_request ny_request;
struct DAQDRI VE. _buffer ny_data;

unsi gned short request _handl e;
unsi gned short st at us;

[***** Construct the request structure *kk kx|

ny_request. channel _array_ptr
ny_request.gain_array_ptr
ny_request.array_|l ength
ny_request . ADC buf f er
ny_request . trigger_source
ny_request . | O _node

&channel _nunber ;
&gai n_setting;

1

&ny_dat a;

| NTERNAL_TRI GGER;
FOREGROUND_CPU,

ny_dat a. data_buffer
ny_dat a. buffer_l ength
ny_dat a. next _structure
ny_dat a. buf f er _st at us

(void huge*)input_val ue;

NULL;
BUFFER_ENPTY;

[***** Execute the request *kk kx|
request _handle = 0;

if (status !'= 0)
return(status);

[***** | f no errors, armthe request *kk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

{
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, software trigger the request

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

DaqSt opRequest (request _handl e) ;
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, release the request and return

status = DagRel easeRequest (request _handl e);
return(status);
!

| ogi cal _devi ce,
channel _nunber,
ng,

void far *i nput _val ue)

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;
ny_request.calibration) CALI BRATI ON;
ny_request . ti meout _i nterval 0;

ny_request . request _status NO_EVENTS;

[***** Construct the data buffer structure i

status = DagAnal ogl'nput(l ogi cal _device, &ny_request, &request_handle);

*****/

*****/

3-4

3.1.2 DagSingleAnaloglnputScan

Another simple case of analog input is to input one value each from
multiple A/D channels under CPU control. This allows multiple analog
inputs to be sampled simultaneously (or nearly simultaneously
depending on the data acquisition hardware). A simplified interface for
this operation is provided through the DagSingleAnaloglnputScan
procedure. The format of this command is shown below.

unsi gned short DaqSi ngl eAnal ogl nput Scan (unsi gned short | ogi cal _device,
unsi gned short far *channel _array,
float far *gai n_array,

unsi gned short array_l ength,
void far *input_array)

DagSingleAnaloglnputScan inputs a single sample from each of the A/D
channels specified by channel_array using the corresponding gain setting
in the gain_array. The A/D channels are located on the adapter specified
by logical_device and the samples are stored in the array specified by
input_array. A one-to-one correspondence is required between the
number of analog input channels, the gain settings, and the number of
samples. Therefore, array_length specifies the length of channel_array,
gain_array, and input_array. The following example shows the usage of
DagSingleAnaloglnputScan.

DAQDRIVE User's Manual 3-5

[*** |nput a single sanple fromA/D channels 0, 1, 3, and 7 xRk
unsi gned short mai n()

unsi gned short | ogical _device;

unsi gned short channel _array[4] ={ 0, 1, 3, 7}
unsi gned short gain_array[4] ={1 1, 1, 2}
unsi gned short status;

short input_array[4];

char far *device_type " DAQP-208";

char far *config_file " dagp- 208. dat "

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)

printf("Error opening device. Status code 9%l.\n", status);
exit(status);

[*** Step 2: Input one sanple fromeach channel xRk

status = DaqSi ngl eAnal ogl nput Scan(| ogi cal _devi ce, channel _array,
gain_array, 4, input_array);
if (status !'= 0)
printf("\nm\nAD input error. Status code %l.\n\n", status);
el se

%\ n\n", input_array[O0]);
%\ n\n", input_array[1]);
%\ n\n", input_array[2]);
%\ n\n", input_array[3]);

printf (" Channel
printf (" Channel
printf (" Channel
printf (" Channel

WNRO

[*** Step 3: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

}

DagSingleAnaloglnputScan is a very basic interface without any
allowance for timing information, trigger sources, etc. It acts as a
DAQDRIVE. macro defining the necessary data structures, executing the
analog input configuration procedure (DagAnaloglnput), arming the
requested configuration (DagArmRequest), and triggering the operation
(DaqTriggerRequest).

For users interested in learning more about DAQDRIVE.'s analog input
interface, the following example program creates the equivalent of the
DagSingleAnaloglnputScan procedure.

3-6

unsi gned short MSi ngl eAnal ogl nput Scan(unsi gned short | ogical _device,
unsi gned short far *channel _array,
float far *gai n_array,
unsi gned short array_| ength,
void far *i nput _array)

struct ADC_request ny_request;
struct DAQDRI VE. _buffer ny_data;

unsi gned short request _handl e;
unsi gned short st at us;

[***** Construct the request structure *Rk kx|

ny_request. channel _array_ptr channel _array;

ny_request.gain_array_ptr gai n_array;
ny_request.array_|l ength array_| ength;
ny_request . ADC buf f er &ny_dat a;

ny_request . trigger_source
ny_request .| O node

I NTERNAL_TRI GGER,;
FOREGROUND_CPU,

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;
ny_request.calibration) CALI BRATI O\,
ny_request . timeout _i nterval 0;

ny_request . request _status NO_EVENTS;

[***** Construct the data buffer structure Fhxxk |

ny_dat a. dat a_buffer
ny_dat a. buffer_l ength
ny_dat a. next _buffer
ny_dat a. buf f er _st at us

(void huge*)input_array;
array_| ength;

BUFFER_EMPTY;
[***** Execute the request *kk kx|

request _handle = 0;
status = DagAnal ogl nput (I ogi cal _device, &nmy_request, & equest_handle);
if (status !'= 0)

return(status);

[***** | f no errors, armthe request *kk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

{
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, software trigger the request *kk kx|

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

DaqSt opRequest (request _handl e) ;
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, release the request and return *Rk kx|

status = DagRel easeRequest (request _handl e);
return(status);
1

DAQDRIVE User's Manual

3-7

3.2 Analog Output

For analog output, DAQDRIVE. provides two special purpose
procedures, DagSingleAnalogOutput and DaqgSingleAnalogOutputScan.
The intent of this section is to provide an overview of these procedures.
For details on the implementation of the procedures, consult the
alphabetical listing of commands in chapter 13.

3.21 DagSingleAnalogOutput

One of the simplest cases of analog output is to output a single value to a
single D/A converter under CPU control. DAQDRIVE. provides a
simplified interface for this function through the DagSingleAnalogOutput
procedure. The format of this command is shown below.

unsi gned short DaqSi ngl eAnal ogQut put (unsigned short | ogical _device,
unsi gned short channel _nunber ,

void far *out put _val ue)

DagSingleAnalogOutput outputs the value specified by output_value to
the D/ A converter specified by channel_number on the adapter specified
by logical_device. The following example shows the usage of
DagSingleAnalogOutput.

3-8

/*** Qutput a single sanple to DA channel 1 ***/
unsi gned short mai n()

unsi gned short | ogical _device;
unsi gned short status;
short output_val ue;

char far *device_type
char far *config_file

" DAQ 1201 ";
" dag- 1201. dat "

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQL200, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening device. Status code 9%l.\n", status);
exit(status);

[*** Step 2: Qutput the value to channel 1 ***/

out put _val ue = 512;
status = DaqSi ngl eAnal ogQut put (I ogi cal _devi ce, 1, &output_val ue);
if (status !'= 0)

printf("\n\nD)A output error. Status code 9%l.\n\n", status);
el se

printf("\n\nConpl ete. No errors.);

[*** Step 3: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

}

DagSingleAnalogOutput is a very basic interface without any allowance
for multiple channels, multiple output values, trigger sources, etc. It acts
as a DAQDRIVE. macro defining the necessary data structures, executing
the analog output configuration procedure (DagAnalogOutput), arming
the requested configuration (DagArmRequest), and triggering the
operation (DagTriggerRequest).

For users interested in learning more about DAQDRIVE.'s analog output
interface, the following example program creates the equivalent of the
DagSingleAnalogOutput procedure.

DAQDRIVE User's Manual 3-9

unsi gned short M Si ngl eAnal ogQut put (unsi gned short | ogical _devi ce,
unsi gned short channel _nunber,
void far *out put _val ue)

struct DAC_request ny_request;
struct DAQDRI VE. _buffer ny_data;

unsi gned short request _handl e;
unsi gned short st at us;

[***** Construct the request structure *kk kx|

ny_request. channel _array_ptr
ny_request.array_|l ength
ny_request . DAC buf fer
ny_request . trigger_source
ny_request . | O node

&channel _nunber ;

1

&ny_dat a;

| NTERNAL_TRI GGER;
FOREGROUND_CPU,

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;
ny_request.calibration) CALI BRATI O\,
ny_request . ti meout _i nterval 0;

ny_request . request _status NO_EVENTS;

[***** Construct the data buffer structure Fhxxk |
ny_dat a. data_buffer = (void huge*)out put _val ue;
ny_data. buffer_length = 1;

ny_dat a. buf f er_cycl es =1

ny_dat a. next _structure = NULL;

ny_dat a. buf f er _st at us = BUFFER_FULL;

[***** Execute the request *Rk kx|

request _handle = 0;
status = DagAnal ogQut put (| ogi cal _devi ce, &nmy_request, & equest_handl e);
if (status !'= 0)

return(status);

[***** | f no errors, armthe request *kk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

{
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, software trigger the request *kk kx|

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

DaqSt opRequest (request _handl e) ;
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, release the request and return *kk kx|

status = DagRel easeRequest (request _handl e);
return(status);

3-10

3.2.2 DagSingleAnalogOutputScan

Another simple case of analog output is to output one value each to
multiple D/A converters under CPU control. This allows multiple analog
outputs to be updated simultaneously (or nearly simultaneously
depending on the data acquisition hardware). A simplified interface for
this operation is provided through the DagSingleAnalogOutputScan
procedure. The format of this command is shown below.

unsi gned short DaqgSi ngl eAnal ogQut put Scan (unsi gned short | ogi cal _device,
unsi gned short far *channel _array,
unsi gned short array_l ength,

void far *out put _array)

DagSingleAnalogOutputScan outputs the values in the array specified by
output_array to the D/A converter channels in the array specified by
channel_array on the adapter specified by logical_device. A D/A channel
may appear in channel_array only once and a one-to-one correspondence
is required between the number of D/A converter channels and the
number of output values. Therefore, array_length specifies the length of
both channel_array and output_array. The following example shows the
usage of DagSingleAnalogOutputScan.

DAQDRIVE User's Manual 3-11

[*** Qutput a single sanple to DJA channels 1, 5, and 2 xRk
unsi gned short mai n()

unsi gned short | ogical _device;

unsi gned short status;

unsi gned short channel _array[3] = { 1, 5, 2},
short output_array[3] = { 413, 3781, -1468 };
char far *device_type " DA8P-12B";

char far *config_file " da8p- 12b. dat "

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DA8P-12, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening device. Status code %l.\n", status);
exit(status);

[*** Step 2: Qutput the DA values ***/

status = DaqSi ngl eAnal ogQut put Scan(| ogi cal _devi ce, channel _array,
3, out put _array);
if (status !'= 0)
printf("\n\nD)A output error. Status code 9%l.\n\n", status);
el se
printf("\n\nConpl ete. No errors.);

[*** Step 3: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

}

DagSingleAnalogOutputScan is a very basic interface without any
allowance for timing information, trigger sources, etc. It acts as a
DAQDRIVE. macro defining the necessary data structures, executing the
analog output configuration procedure (DagAnalogOutput), arming the
requested configuration (DagArmRequest), and triggering the operation
(DaqTriggerRequest).

For users interested in learning more about DAQDRIVE.'s analog output
interface, the following example program creates the equivalent of the
DagSingleAnalogOutputScan procedure.

3-12

unsi gned short MSi ngl eAnal ogQut put Scan(unsi gned short | ogi cal _devi ce,
unsi gned short far *channel _array,
unsi gned short array_| ength,
void far *out put _array)

struct DAC_request ny_request;
struct DAQDRI VE. _buffer ny_data;

unsi gned short request _handl e;
unsi gned short st at us;

[***** Construct the request structure *Rk kx|

ny_request. channel _array_ptr
ny_request.array_|l ength
ny_request . DAC buf fer
ny_request . trigger_source
ny_request . | O node

channel _array;
array_| ength;
&ny_dat a;

| NTERNAL_TRI GGER;
FOREGROUND_CPU,

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;
ny_request.calibration) CALI BRATI ON;
ny_request . timeout _i nterval 0;

ny_request. request _status NO_EVENTS;

[***** Construct the data buffer structure i

ny_dat a. data_buffer
ny_dat a. buffer_Il ength
ny_dat a. buf f er _cycl es
ny_dat a. next _buffer
ny_dat a. buf f er _st at us

(void huge*)out put_array;
array_| ength;

NULL

BUFFER_FULL;

[***** Execute the request *kk kx|

request _handle = 0;
status = DagAnal ogQut put (| ogi cal _devi ce, &ny_request, & equest_handl e);
if (status !'= 0)

return(status);

[***** | f no errors, armthe request *Rk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

{
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, software trigger the request *kkkk |

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

DaqSt opRequest (request _handl e) ;
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, release the request and return kR kx|

status = DagRel easeRequest (request _handl e);
return(status);

DAQDRIVE User's Manual

3-13

3.3 Digital Input

DAQDRIVE. provides two special purpose procedures for digital input:
DagSingleDigitallnput and DagSingleDigitallnputScan. The intent of this
section is to provide an overview of these procedures. For details on the
implementation of the procedures, consult the alphabetical listing of
commands in chapter 13.

3.3.1 DagSingleDigitallnput

One of the simplest cases of digital input is to input a single sample from
a single digital 170 channel under CPU control. DAQDRIVE. provides a
simplified interface for this operation through the DaqgSingleDigitallnput
procedure. The format of this command is shown below.

unsi gned short DaqSingl eDigital Il nput (unsigned short | ogical _device,

unsi gned short channel _nunber ,
void far *i nput _val ue)

DagSingleDigitallnput inputs a single sample from the digital 1/0
specified by channel_number on the adapter specified by logical_device.
The sample is stored in the memory location specified by input_value.
The following example shows the usage of DaqSingleDigitallnput.

3-14

/*** |nput a single sanple fromdigital 1/0O channel 3 xRk
unsi gned short mai n()

unsi gned short | ogical _device;

unsi gned short status;

unsi gned char input_val ue;

char far *device_type " DAQP-16";
char far *config_file " dagp- 16. dat ";

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)

printf("Error opening device. Status code 9%l.\n", status);
exit(status);

[*** Step 2: |Input one value fromchannel 3 ***/

status = DaqSingl eD gitall nput (I ogi cal _devi ce, 3, & nput_val ue);
if (status !'= 0)

printf("\n\nDigital input error. Status code %l.\n\n", status);
el se

printf("Channel 3: 9%\ n\n", (int)input_value);

[*** Step 3: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

}

DagSingleDigitallnput is a very basic interface without any allowance for
multiple channels, multiple input values, trigger sources, etc. It acts as a
DAQDRIVE. macro defining the necessary data structures, executing the

digital input configuration procedure (DagDigitallnput), arming the

requested configuration (DagArmRequest), and triggering the operation

(DaqTriggerRequest).

For users interested in learning more about DAQDRIVE.'s digital input

interface, the following example program creates the equivalent of the

DagSingleDigitallnput procedure.

DAQDRIVE User's Manual

3-15

void far *i nput _val ue)

struct digio_request ny_request;
struct DAQDRI VE. _buffer ny_data;

unsi gned short request _handl e;
unsi gned short st at us;

[***** Construct the request structure *kk kx|

ny_request. channel _array_ptr
ny_request.array_|l ength
ny_request . di gi o_buffer
ny_request . trigger_source
ny_request . | O _node

&channel _nunber ;

1

&ny_dat a;

| NTERNAL_TRI GGER;
FOREGROUND_CPU,

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;

ny_request . ti meout _i nterval 0;

ny_request . request _status NO_EVENTS;

[***** Construct the data buffer structure i
ny_dat a. data_buffer = (void huge*)input_val ue;
ny_data. buffer_length = 1;

ny_dat a. next _structure = NULL;

ny_dat a. buf f er _st at us = BUFFER_EMPTY;

[***** Execute the request *kk kx|
request _handle = 0;

if (status !'= 0)
return(status);

[***** | f no errors, armthe request *kk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

{
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, software trigger the request kR kx|

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

DaqSt opRequest (request _handl e) ;
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, release the request and return *kk kx|

status = DaqRel easeRequest (request _handl e);
return(status);
1

unsi gned short MSingleD gitall nput(unsigned short | ogical_device,
unsi gned short channel _nunber,

status = DagD gi taI'I nput (1 ogi cal _devi ce, &ny_request, & equest_handl e);

3-16

3.3.2 DagSingleDigitallnputScan

Another simple case of digital input is to input one value each from
multiple digital 1/0 channels under CPU control. This allows multiple
digital inputs to be sampled simultaneously (or nearly simultaneously
depending on the data acquisition hardware). A simplified interface for
this operation is provided through the DagSingleDigitalinputScan
procedure. The format of this command is shown below.

unsi gned short DaqSi ngl eDi gital | nput Scan (unsi gned short | ogical _device,
unsi gned short far *channel _array,

unsi gned short array_l ength,
void far *input_array)

DagSingleDigitallnputScan inputs a single sample from each of the digital
I/0 channels specified by channel_array on the adapter specified by
logical_device. The samples are stored in the array specified by
input_array. A one-to-one correspondence is required between the
number of digital input channels and the number of samples. Therefore,
array_length specifies the length of channel_array and input_array. The
following example shows the usage of DagSingleDigitalinputScan.

DAQDRIVE User's Manual 3-17

/*** |nput a single sanple fromdigital I/O channels 3, 2, and 1 xRk
unsi gned short mai n()

unsi gned short | ogical _device;

unsi gned short channel _array[3] =1{ 3, 2, 1};
unsi gned short status;

unsi gned char input_array[3];

char far *device_type "1 OP-241",

char far *config_file "iop-241.dat ";

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(|1 OP241, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening device. Status code 9%l.\n", status);
exit(status);

[*** Step 2: Input one sanple from each channel kx|
status = DaqSingl eD gital |l nput Scan(! ogi cal _devi ce, channel _array,
3, i nput _array);

if (status !'= 0)
printf("\nmM\nAD input error. Status code %l.\n\n", status);
el se

{

printf("Channel 3: 9%\ n\n", (int)input_array[O0]);
printf("Channel 2: 9%\ n\n", (int)input_array[1]);
printf("Channel 1: 9%\ n\n", (int)input_array[2]);

[*** Step 3: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code %l.\n", status);
return(status);

}

DagSingleDigitallnputScan is a very basic interface without any
allowance for timing information, trigger sources, etc. It acts as a
DAQDRIVE. macro defining the necessary data structures, executing the
digital input configuration procedure (DagDigitalinput), arming the
requested configuration (DagArmRequest), and triggering the operation
(DaqTriggerRequest).

For users interested in learning more about DAQDRIVE.'s digital input
interface, the following example program creates the equivalent of the
DagSingleDigitallnputScan procedure.

3-18

unsi gned short MSingleD gital | nput Scan(unsi gned short | ogical _device,
unsi gned short far *channel _array,
unsi gned short array_| ength,
void far *i nput _array)

struct digio_request ny_request;
struct DAQDRI VE. _buffer ny_data;

unsi gned short request _handl e;
unsi gned short st at us;

[***** Construct the request structure *kk kx|

ny_request. channel _array_ptr
ny_request.array_|l ength
ny_request . ADC buf f er
ny_request . trigger_source
ny_request . | O node

channel _array;
array_| ength;
&ny_dat a;

| NTERNAL_TRI GGER;
FOREGROUND_CPU,

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;

ny_request . ti meout _i nterval 0;

ny_request . request _status NO_EVENTS;

[***** Construct the data buffer structure *hxxk

ny_dat a. data_buffer
ny_dat a. buf fer_|l ength
ny_dat a. next _buffer
ny_dat a. buf f er _st at us

(void huge*)input_array;
array_| ength;

BUFFER_EMPTY;
[***** Execute the request *kk kx|

request _handle = 0;
status = DaqgDi gital I nput (Il ogi cal _devi ce, &nmy_request, & equest_handl e);
if (status !'= 0)

return(status);

[***** | f no errors, armthe request kR kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

{
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, software trigger the request *kk kx|

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

DaqSt opRequest (request _handl e) ;
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, release the request and return *kk kx|

status = DagRel easeRequest (request _handl e);
return(status);
1

DAQDRIVE User's Manual

3-19

3.4 Digital Output

DAQDRIVE. provides two special purpose procedures for digital output:
DagSingleDigitalOutput and DagSingleDigitalOutputScan. The intent of
this section is to provide an overview of these procedures. For details on
the implementation of the procedures, consult the alphabetical listing of
commands in chapter 13.

3.4.1 DagSingleDigitalOutput

One of the simplest cases of digital output is to output a single value to a
single digital 1/0 channel under CPU control. DAQDRIVE. provides a
simplified interface for this function through the DagSingleDigitalOutput
procedure. The format of this command is shown below.

unsi gned short DaqSi ngl eDi gital Qut put (unsigned short | ogical _device,
unsi gned short channel _nunber ,

void far *out put _val ue)

DagSingleDigitalOutput outputs the value specified by output_value to
the digital 1/0 channel specified by channel_number on the adapter
specified by logical _device. The following example shows the usage of
DagSingleDigitalOutput.

3-20

/*** Qutput a single sanple to digital 1/0O channel 2 xRk
unsi gned short mai n()

unsi gned short | ogical _device;

unsi gned short status;

unsi gned char out put _val ue;

char far *device_type = "DAQ 1201";
char far *config file = "dag-1201.dat "

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQL200, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening device. Status code 9%l.\n", status);
exit(status);

[*** Step 2: Qutput the value to channel 2 ***/

out put _value = 1;
status = DaqSingl eD gital Qut put (I ogi cal _devi ce, 2, &output_val ue);
if (status !'= 0)
printf("\n\nDigital 1/Ooutput error. Status code %l.\n\n", status);
el se
printf("\n\nConpl ete. No errors.);

[*** Step 3: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

}

DagSingleDigitalOutput is a very basic interface without any allowance
for multiple channels, multiple output values, trigger sources, etc. It acts
as a DAQDRIVE. macro defining the necessary data structures, executing
the digital output configuration procedure (DagDigitalOutput), arming
the requested configuration (DagArmRequest), and triggering the
operation (DagTriggerRequest).

For users interested in learning more about DAQDRIVE.'s digital output
interface, the following example program creates the equivalent of the
DagSingleDigitalOutput procedure.

DAQDRIVE User's Manual 3-21

void far *out put _val ue)

struct digio_request ny_request;
struct DAQDRI VE. _buffer ny_data;

unsi gned short request _handl e;
unsi gned short st at us;

[***** Construct the request structure *kk kx|

ny_request. channel _array_ptr
ny_request.array_|l ength
ny_request . di gi o_buffer
ny_request . trigger_source
ny_request . | O _node

&channel _nunber ;

1

&ny_dat a;

| NTERNAL_TRI GGER;
FOREGROUND_CPU,

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;

ny_request . ti meout _i nterval 0;

ny_request . request _status NO_EVENTS;

[***** Construct the data buffer structure i
ny_dat a. data_buffer = (void huge*)out put _val ue;
ny_data. buffer_length = 1;

ny_dat a. buf f er_cycl es =1

ny_dat a. next _structure = NULL;

ny_dat a. buf f er _st at us = BUFFER_FULL;

[***** Execute the request *kk kx|
request _handle = 0;

if (status !'= 0)
return(status);

[***** | f no errors, armthe request *kk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

{
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, software trigger the request *kk kx|

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

DaqSt opRequest (request _handl e) ;
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, release the request and return *kk kx|

status = DaqRel easeRequest (request _handl e);
return(status);
1

unsi gned short MSingl eD gital Qut put (unsigned short | ogical_device,
unsi gned short channel _nunber,

status = DagD gi tal' Qut put (1 ogi cal _devi ce, &nmy_request, & equest_handl e);

3-22

3.4.2 DagSingleDigitalOutputScan

Another simple case of digital output is to output one value each to
multiple digital 1/0 channels under CPU control. This allows multiple
digital outputs to be updated simultaneously (or nearly simultaneously
depending on the data acquisition hardware). A simplified interface for
this operation is provided through the DagSingleDigitalOutputScan
procedure. The format of this command is shown below.

unsi gned short DaqSi ngl eDi gi t al Qut put Scan (unsi gned short | ogical _device,
unsi gned short far *channel _array,

unsi gned short array_l ength,
void far *out put _array)

DagSingleDigitalOutputScan outputs the values in the array specified by
output_array to the digital 1/0 channels in the array specified by
channel_array on the adapter specified by logical_device. A digital I/0
channel may appear in channel_array only once and a one-to-one
correspondence is required between the number of digital output
channels and the number of output values. Therefore, array_length
specifies the length of both channel_array and output_array. The
following example shows the usage of DagSingleDigitalOutputScan.

DAQDRIVE User's Manual 3-23

/*** Qutput a single sanple to digital 1/Ochannels 1, 2, 3, 4, and 5 xRk
unsi gned short mai n()

unsi gned short | ogical _device;
unsi gned short status;

unsi gned short channel _array[5] ={ 1, 2, 3, 4, 5}
unsi gned char output_array[5] ={3 0 0, 1, 3}
char far *device_type = "DA8P-12B";

char far *config_file = "da8p-12b.dat ";

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DA8P-12, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening device. Status code %l.\n", status);
exit(status);

[*** Step 2: Qutput the digital I/O values ***/

status = DaqSi ngl eD gital Qut put Scan(| ogi cal _devi ce, channel _array,
5, out put _array);
if (status !'= 0)
printf("\n\nDigital 1/Ooutput error. Status code %l.\n\n", status);
el se
printf("\n\nConpl ete. No errors.);

[*** Step 3: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

}

DagSingleDigitalOutputScan is a very basic interface without any
allowance for timing information, trigger sources, etc. It acts as a
DAQDRIVE. macro defining the necessary data structures, executing the
digital output configuration procedure (DagDigitalOutput), arming the
requested configuration (DagArmRequest), and triggering the operation
(DaqTriggerRequest).

For users interested in learning more about DAQDRIVE.'s digital output
interface, the following example program creates the equivalent of the
DagSingleDigitalOutputScan procedure.

3-24

unsi gned short M Singl eD gital Qut put Scan(unsi gned short | ogical _device,
unsi gned short far *channel _array,
unsi gned short array_| ength,
void far *out put _array)

struct digio_request ny_request;
struct DAQDRI VE. _buffer ny_data;

unsi gned short request _handl e;
unsi gned short st at us;

[***** Construct the request structure *Rk kx|

ny_request. channel _array_ptr
ny_request.array_|l ength
ny_request . di gi o_buffer
ny_request . trigger_source
ny_request . | O node

channel _array;
array_| ength;
&ny_dat a;

| NTERNAL_TRI GGER;
FOREGROUND_CPU,

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;

ny_request . timeout _i nterval 0;

ny_request . request _status NO_EVENTS;

[***** Construct the data buffer structure Fhxxk |

ny_dat a. data_buffer
ny_dat a. buffer_|l ength
ny_dat a. buf f er_cycl es
ny_dat a. next _buffer
ny_dat a. buf f er _st at us

(void huge*)out put _array;
array_| ength;

NULL;

BUFFER_FULL;

[***** Execute the request *kk kx|

request _handle = 0;
status = DaqDi gital Qut put (| ogi cal _devi ce, &nmy_request, & equest_handl e);
if (status !'= 0)

return(status);

[***** | f no errors, armthe request *kk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

{
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, software trigger the request *kk kx|

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

DaqSt opRequest (request _handl e) ;
DagRel easeRequest (request _handl e) ;
return(status);

}

[***** | f no errors, release the request and return *kk kx|

status = DagRel easeRequest (request _handl e);
return(status);

DAQDRIVE User's Manual

3-25

3-26

4 Performing An Acquisition

DAQDRIVE uses a "data defined" rather than a "function defined"
interface. What this means is that each data acquisition operation is
defined by a series of configuration parameters and requires very few
function calls to implement. These parameters, which are contained in a
data structure, are hereafter referred to as a request structure or simply a
request and define such parameters as channel numbers, sampling rate,
number of scans, trigger source, etc. The key to unlocking the power and
flexibility of DAQDRIVE. lies in the understanding of these request
structures.

A utility program, DAQTUTOR.EXE, is provided to aid the user in
understanding DAQDRIVE. request structures. DAQTUTOR.EXE is a
Microsoft Windows application that allows the user to specify a
DAQDRIVE. request using a set of configuration windows. After the
request is defined, DAQTUTOR.EXE allows the user to view, print, or
cut-and-paste the equivalent C code required to implement the
information as a DAQDRIVE. request structure. For details on the
operation of DAQTUTOR.EXE, consult Appendix B of the DAQDRIVE
User's Manual Supplement.

Another parameter which the user needs to become familiar with is
DAQDRIVE.'s use of request handles which are used to identify valid
request structures. When a request structure is passed into one of the
configuration routines, DAQDRIVE. verifies the contents of the structure
and confirms that the target hardware can perform the type of operation
requested. If the request structure is valid, a request handle is assigned to
the structure and all future operations on this request are referenced using
its request handle.

The following steps define the sequence required to perform an operation
using DAQDRIVE.'s data defined interface.

DAQDRIVE User's Manual 4-1

Step 1: Define The Hardware Configuration

DAQDRIVE. determines the configuration of a device from the data file
specified when the device is opened. These configuration files are created
using the DAQDRIVE configuration utility as described in Appendix A of
the DAQDRIVE User's Manual Supplement.

Step 2: Open The Hardware Device

Before the application program can use an adapter, it must first open the
device using the DagOpenDevice command. The application must
provide the open command with the adapter type and specify the name of
a configuration file (generated in step 1) which describes the target
hardware's configuration. If the open command completes successfully,
DAQDRIVE. assigns a logical device number to be used for all future
references to the adapter.

Step 3. Define The Request Structure And Data Buffers

With the device successfully opened, the application must now allocate
and define all of the parameters associated with the operation to be
performed. These parameters include such variables as the channel
number(s), trigger source, and sampling rate. DAQDRIVE.'s request
structures are covered in detail in chapters 5 through 8. In addition to the
request structure, the application must define one or more data buffer
structures where the request's data is stored. These data buffer structures
are discussed in chapter 9.

Step 4. Request The Operation

The next step is to request the operation. The configuration procedures
serves to validate the contents of the request structure and to determine if
the target hardware can support the type of operation requested. If the
request is not valid, an error is returned and the application must redefine
the request. If the request is valid and the operation is supported by the
hardware, a request handle is issued to identify this configuration. Once
the request handle is issued, the channel(s) specified in the request
structure's channel list are allocated for use by this request. Any other
hardware resources required to execute the request (timers, triggers, etc.)
remain available until the request is armed. Chapters 5 through 8 contain
detailed descriptions of each type of DAQDRIVE. request.

4-2

Step 5: Arm The Request

With a valid configuration requested, the application must now arm the
request in order to prepare the hardware for the impending trigger. Itis
during the arm procedure, DagArmRequest, that the hardware is
programmed and any system resources required for the request (i.e. IRQ
levels, DMA channels, timers, etc.) are allocated and assigned to the
request. An error will occur during the arm process if any of the required
resources are not available.

Step 6: Trigger The Request

After the request is armed, the next step is to trigger the request and start
the operation. If the request specified an internal (software) trigger, the
application must now issue the trigger using DaqTriggerRequest. If the
request specified any of the hardware trigger sources, the application may
wait for the trigger event to occur or it may continue to step 7.

Step 7: Wait For Completion

With the operation in progress, the application must wait for the request
to be completed before any further action can be taken on this request. If
necessary, the application can terminate the request using the
DaqStopRequest procedure. When the operation is completed or
otherwise terminated, any system resources allocated by the request are
freed for use by other requests. However, the channel(s) specified in the
request structure's channel list remain allocated to the request until the
request is released by the DagReleaseRequest procedure.

Step 8: Release The Configuration

After the operation is complete (or otherwise terminated), the request
may be released using DagReleaseRequest. Releasing the request frees
the channel(s) used by the request making them available for future
requests.

Step 9: Close The Hardware Device

The final step, after all operations on the hardware are complete, is to
close the device using DagCloseDevice to free any remaining resources
used by that device. System integrity can not be quaranteed if the
application program exits without closing the hardware device.

DAQDRIVE User's Manual 4-3

(This Page Intentionally Left Blank.)

4-4

5 A/D Converter Requests

In chapter 3, some special purpose procedures were presented to help the
user get familiar with DAQDRIVE.'s A/D converter interface. The key to
understanding and utilizing DAQDRIVE., however, is to understand its
request structures. This chapter will present the analog input request
structure and provide examples to illustrate how this structure is
configured for some common applications.

51 DagAnaloglnput

DagAnaloglnput is DAQDRIVE.'s A/D converter interface. Any analog
input operation is possible with the proper configuration of the request
structure. The format of the command is shown below.

unsi gned short DagAnal ogl nput (unsigned short | ogical _device,
struct ADC request far *user_request,

unsi gned short far *request _handl e)

DagAnaloglnput performs the configuration portion of an analog input
request. For a new configuration, the application program sets
request_handle to 0 before calling DagAnaloginput. DagAnaloginput
then analyzes the data structure specified by user_request to determine if
all of the parameters are valid and if the requested operation can be
performed by the device specified by logical_device. If the requested
operation is valid, DagAnaloglnput assigns request_handle a unique
non-zero value. This request handle is used to identify this request in all
future operations.

If the application program modifies the contents of user_request after
executing DagAnaloglnput, the structure must be verified again. To
request re-verification of a previously approved request, the application
executes DagAnaloglnput with request_handle set to the value returned
by DagAnaloglnput when the request was first approved. All parameters
except the channel list may be modified after the initial configuration. To
modify the channel list, the existing request must be released (using
DagReleaseRequest) and a new configuration requested.

DAQDRIVE User's Manual 5-1

5.2 The Analog Input Request Structure

The power of DagAnaloginput lies in the application's ability to modify a
single data structure and execute a single procedure to perform multiple
analog input operations. The elements of the analog input request
structure are discussed on the following pages.

ﬁr uct ADC_request
{

unsi gned short far *channel _array_ptr ;
float far *gain_array_ptr;
unsi gned short reservedl[4];
unsi gned short array_l ength;
struct DAQDRI VE. _buffer far
*ADC_buf fer ;
unsi gned short reserved2[4];
unsi gned short trigger_source;
unsi gned short trigger_node;
unsi gned short trigger_slope;
unsi gned short trigger_channel ,
doubl e trigger_voltage;
unsi gned long trigger_val ue,
unsi gned short reserved3[4];
unsi gned short | O _node;
unsi gned short cl ock_source;
doubl e clock_rate;
doubl e sanple_rate;
unsi gned short reserved4[4];
unsi gned | ong nunber_of _scans;
unsi gned | ong scan_event_|evel ;
unsi gned short reserved5[8];
unsi gned short calibration;
unsi gned short timeout_interval;
unsi gned | ong request_status;
b

IMPORTANT:

1. If the application program modifies the contents of the request
structure after executing DagAnaloglnput, the updated
structure must be re-verified by DagAnaloginput before the
request is armed.

2. Once the request is armed using DagArmRequest, the only field
the application can modify is request_status. All other fields in
the request structure must remain constant until the operation is
completed or otherwise terminated.

3. If the request structure is dynamically allocated by the
application, it MUST NOT be de-allocated until the request has
been released by the DagReleaseRequest procedure. In
addition, applications using the Windows DLL version of
DAQDRIVE. should use DagAllocateMemory if dynamically
allocated request structures are required.

5-2

5.2.1 Reserved Fields

The fields reservedl through reserved5 are provided for expansion of the
analog input request structure in future releases of DAQDRIVE.. To
maintain maximum compatibility, the application program should
initialize all reserved fields to 0.

5.2.2 Channel Selections / Gain Settings

The analog input request structure begins with a list of one or more
analog input channels to be operated on by this request. The application
provides the memory address of the first channel in the list using the
channel_array ptr field. In addition to the channel list, the application
must provide a gain setting for each channel in the channel list. The
application provides the memory address of the first gain setting in the
gain list using the gain_array_ptr field. For each channel in the channel
list there must be one and only one setting in the gain list. Therefore, the
lengths of both lists are specified by the array_length field.

5.2.3 Data Buffers

ADC_buffer defines the request's data buffer structure(s) to be used for
storing the data input from the specified channel(s). The application
program must define these buffers within the guidelines provided in
chapter 9.

5.2.4 Trigger Selections

The trigger selection determines how the requested operation will be
initiated after being armed. Six fields are required to define and
configure the trigger for the request: trigger_source, trigger_mode,
trigger_slope, trigger_channel, trigger_voltage, and trigger_value.
Because the trigger selection is an integral part of the operation and is
common to all of DAQDRIVE.'s request structures. trigger configurations
are discussed separately in chapter 10.

5.25 Data Transfer Modes

The request structure field IO_mode determines the mechanism that will
be used to input the data from the hardware device. In general, the
foreground modes provide the highest data transfer rates at the expense
of requiring 100% of the CPU time. In contrast, background mode
operations generally provide lower data transfer rates while allowing the
CPU to perform other tasks.

DAQDRIVE User's Manual 5-3

5.2.5.1 Foreground CPU mode

This mode uses the CPU to input the data from the hardware device.
From the moment the request is triggered, DAQDRIVE. uses all of the
CPU time and will not return control to the application program until the
request is completed or otherwise terminated.

5.2.5.2 Background IRQ mode

This mode uses interrupts generated by the hardware device to gain
control of the CPU to input the data to the hardware device. DAQDRIVE.
does not require all of the CPU time in this mode and returns control of
the CPU to the application after the request is triggered.

5.2.5.3 Foreground DMA mode

This mode uses the DMA controller to input the data from the hardware
device while using the CPU to monitor and control the DMA operation.
From the moment the request is triggered, DAQDRIVE. uses all of the
CPU time and will not return control to the application program until the
request is completed or otherwise terminated.

5.2.5.4 Background DMA mode

This mode uses the DMA controller to input the data from the hardware
device while using interrupts generated by the hardware device to gain
control of the CPU to monitor and control the DMA operation.
DAQDRIVE. does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

5.2.6 Clock Sources

The clock_source field is used to define the source of the timing signal for
requests acquiring multiple samples.

5.2.6.1 Internal Clock

When the clock source field is set for an internal clock, the timing for the
request is provided by the adapter's on-board timer circuitry. The
clock_rate field is unused with the internal clock source and any value
provided in the clock_rate field is ignored.

5.2.6.2 External Clock

Setting the clock_source field to external indicates the timing for the
request is provided by a signal input to the adapter as defined by the
hardware device. The clock_rate field must be used to define the
frequency of the external clock signal in Hertz.

5-4

5.2.7 Sampling Rate

The sampling rate specifies the number of samples / second (Hz) to be
input from the hardware device. The application specifies a desired
sampling rate in the sample_rate field of the request structure. On most
hardware devices, only a finite number of sampling rates are achievable.
When DagAnaloglnput configures a request, the closest available
sampling rate is selected and the sample_rate field is updated with the
actual rate at which the data will be input.

5.2.8 Number Of Scans

The number_of_scans field determines the number of times the channel(s)
specified in the channel list are processed. For example, to input 100
samples from a single A/D channel, number_of_scans must be set to 100.
To input 50 samples each from 6 A/D channels (300 points total),
number_of_scans is set to 50.

5.2.9 Scan Events

DAQDRIVE. generates a scan event each time the number of scans
specified by scan_event_level are completed. For example, if
scan_event_level is set to 50, a scan event is generated every time the
channel array is processed 50 times. DAQDRIVE. events are discussed in
detail in chapter 11.

5.2.10 Calibration Selections

The calibration field allows the application to specify the type of
calibration to be performed (if any) by the hardware device(s) during the
requested operation. In general, enabling calibration results in lower
throughput rates while providing greater accuracy.

5.2.10.1 Auto-calibration

Enabling auto-calibration instructs the hardware device to perform one or
more calibration cycles on the A/D converter(s) specified by this request.
The results of auto-calibration vary with different hardware devices.
Consult the hardware user's manual and the appendices in the back of
this document for details about how auto-calibration operates on the
device in use.

5.2.10.2 Auto-zero

Enabling auto-zero instructs the hardware device to perform one or more
zero offset adjustment cycles on the A/D converter(s) specified by this
request. The results of auto-zeroing vary with different hardware
devices. Consult the hardware user's manual and the appendices in the

DAQDRIVE User's Manual 5-5

back of this document for details about how auto-zero operates on the
device in use.

5.2.11 Time-out

The timeout_interval field is used primarily during foreground mode
operations to instruct DAQDRIVE. when to abandon the processing of a
request. When DAQDRIVE. has control of the CPU and is waiting for an
event to occur (i.e. waiting for a trigger or waiting for the A/D to
complete a conversion), DAQDRIVE. will wait timeout_interval seconds
and if the event has not occurred, the request will be aborted.

5.2.12 Request Status

The request_status field provides a mechanism for the application to
monitor the state of a request. The request status is an integral part of
DAQDRIVE.'s event mechanisms and is discussed in detail in chapter 11.

5-6

5.3 Analog Input Examples

53.1 Example 1 - Single Channel Input

Purpose: Input 1000 samples from a single analog input channel at a
10KHz sampling rate.

unsi gned short channel _|i st
float gain_list
unsi gned short input_val ues[1000] ;

0;
2;

struct ADC_request ny_request;
struct DAQDRI VE. _buffer ny_data;

[***** Construct the request structure *kk kx|

ny_request. channel _array_ptr = &channel _|ist;
ny_request.gai n_array+ptr &gain_list;
ny_request.array_|l ength 1;

ny_request . ADC buf f er &ny_dat a;

ny_request . trigger_source
ny_request. | O node
nmy_request . cl ock_source
ny_request. sanpl e_rate
ny_request . nunber _of _scans = 1000;
ny_request . scan_event _| evel =0
ny_request.calibration
ny_request . timeout _i nterval
ny_request . request _status

I NTERNAL_TRI GGER,;

O CALI BRATI ON;
0;
NO_EVENTS;

[***** Construct the data buffer structure *okokokok

ny_dat a. data_buffer = input_val ues;
ny_data. buffer_length = 1000;
ny_dat a. next _structure = NULL;
ny_dat a. buf f er _st at us = BUFFER_EMPTY;

Variations on example 1:

1. To change the operating mode from background mode with
interrupts to foreground mode using DMA, set
my_request.IO_mode = FOREGROUND_DMA

2. To change the trigger mode to an analog trigger, set
my_request.trigger_source = ANALOG_TRIGGER
my_request.trigger_channel =0
my_request.trigger_voltage = 3.0
my_request.trigger_slope = RISING_EDGE

3. To enable calibration for the request, set
my_request.calibration = AUTO_CALIBRATE or
my_request.calibration = AUTO_ZERO or
my_request.calibration = AUTO_CALIBRATE | AUTO_ZERO.

DAQDRIVE User's Manual

5.3.2 Example 2 - Multiple Channel Input

Purpose: Input 1000 sample from each of 4 analog input channels at a
rate of 500Hz.

unsi gned short channel _nunber[4] =
float gain_settings[4] = {1,
unsi gned short input_values[4 * 1000];
struct ADC_request ny_request;
struct DAQDRI VE. _buffer ny_data;

[***** Construct the request structure *kk kx|
ny_request. channel _array_ptr

ny_request.gain_array_ptr
ny_request.array_|l ength

channel _nunber ;
gai n_settings;
4;

ny_request . ADC buf fer &ny_dat a;
ny_request.trigger_source TTL_TR GCGER
ny_request.trigger_sl ope Rl SI NG_EDGE;

ny_request .| O node
nmy_request . cl ock_source I NTERNAL _ CLOCK;
ny_request.sanpl e_rate 500;

ny_request . nunber _of _scans 1000;

ny_request . scan_event _| evel = 0;
ny_request.calibration NO_CALI BRATI ON;

FOREGROUND_CPU,

ny_request . ti meout _i nterval = 0;

ny_request . request _status = NO_EVENTS;

[***** Construct the data buffer structure i
ny_dat a. data_buffer = input _val ues;

ny_data. buffer_length =4 * 1000;

ny_dat a. next _buffer = NULL;

ny_dat a. buf fer_status = BUFFER_EMPTY;

Variations on example 2:

1. To change the number of points from 1000 per channel to 5000
per channel, re-define input_values[] and then set
my_request.number_of scans = 5000
my_data.buffer_length =4 * 5000

2. To notify the application every time 100 scans are complete, set
my_request.scan_event_level = 100

3. Toenable a time-out if no data is available for a period of 3
seconds, set
my_request.timeout_interval =3

5-8

6 D/A Converter Requests

In chapter 3, some special purpose procedures were presented to help the
user get familiar with DAQDRIVE.'s D/A converter interface. The key to
understanding and utilizing DAQDRIVE., however, is to understand its
request structures. This chapter will present the analog output request
structure and provide examples to illustrate how this structure is
configured for some common applications.

6.1 DagAnalogOutput

DagAnalogOutput is DAQDRIVE.'s D/A converter interface. Any analog
output operation is possible with the proper configuration of the request
structure. The format of the command is shown below.

unsi gned short DagAnal ogQut put (unsigned short | ogical _device,
struct DAC request far *user_request,

unsi gned short far *request _handl e)

DagAnalogOutput performs the configuration portion of an analog
output request. For a new configuration, the application program sets
request_handle to 0 before calling DagAnalogOutput. DagAnalogOutput
then analyzes the data structure specified by user_request to determine if
all of the parameters are valid and if the requested operation can be
performed by the device specified by logical_device. If the requested
operation is valid, DagAnalogOutput assigns request_handle a unique
non-zero value. This request handle is used to identify this request in all
future operations.

If the application program modifies the contents of user_request after
executing DagAnalogOutput, the structure must be verified again. To
request re-verification of a previously approved request, the application
executes DagAnalogOutput with request_handle set to the value returned
by DagAnalogOutput when the request was first approved. All
parameters except the channel list may be modified after the initial
configuration. To modify the channel list, the existing request must be
released (using DagReleaseRequest) and a new configuration requested.

DAQDRIVE User's Manual 6-1

6.2 The Analog Output Request Structure

The power of DagAnalogOutput lies in the application's ability to modify
a single data structure and execute a single procedure to perform multiple
analog output operations. The elements of the analog output request
structure are discussed on the following pages.

//;:;uct DAC _request
{

unsi gned short far *channel _array_ptr ;
unsi gned short reservedl[4]

unsi gned short array_l ength;
struct DAQDRI VE. _buffer far *DAC buffer;
unsi gned short reserved2[4]

unsi gned short trigger_source;
unsi gned short trigger_node;
unsi gned short trigger_slope;
unsi gned short trigger_channel ,
doubl e trigger_voltage

unsi gned long trigger_val ue;
unsi gned short reserved3[4]

unsi gned short | O _node;

unsi gned short cl ock_source;
doubl e clock_rate;

doubl e sanple_rate;

unsi gned short reserved4[4]

unsi gned | ong nunber_of _scans;
unsi gned | ong scan_event_|evel ;
unsi gned short reserved5[8]

unsi gned short calibration;

unsi gned short timeout_interval
unsi gned | ong request_status;

b

IMPORTANT:

1. If the application program modifies the contents of the request
structure after executing DagAnalogOutput, the updated
structure must be re-verified by DagAnalogOutput before the
request is armed.

2. Once the request is armed using DagArmRequest, the only field
the application can modify is request_status. All other fields in
the request structure must remain constant until the operation is
completed or otherwise terminated.

3. If the request structure is dynamically allocated by the
application, it MUST NOT be de-allocated until the request has
been released by the DagReleaseRequest procedure. In
addition, applications using the Windows DLL version of
DAQDRIVE. should use DagAllocateMemory if dynamically
allocated request structures are required.

6-2

6.2.1 Reserved Fields

The fields reservedl through reserved5 are provided for expansion of the
analog output request structure in future releases of DAQDRIVE.. To
maintain maximum compatibility, the application program should
initialize all reserved fields to 0.

6.2.2 Channel Selections

The analog output request structure begins with a list of one or more
analog output channels to be operated on by this request. The application
provides the memory address of the first channel in the list using the
channel_array ptr field and must specify the length of the list in the
array_length field.

6.2.3 Data Buffers

DAC_buffer defines the request's data buffer structure(s) containing the
data to be output to the specified channel(s). The application program
must define these buffers within the guidelines provided in chapter 9.

6.2.4 Trigger Selections

The trigger selection determines how the requested operation will be
initiated after being armed. Six fields are required to define and
configure the trigger for the request: trigger_source, trigger_mode,
trigger_slope, trigger_channel, trigger_voltage, and trigger_value.
Because the trigger selection is an integral part of the operation and is
common to all of DAQDRIVE.'s request structures. trigger configurations
are discussed separately in chapter 10.

6.2.5 Data Transfer Modes

The request structure field IO_mode determines the mechanism that will
be used to output the data to the hardware device. In general, the
foreground modes provide the highest data transfer rates at the expense
of requiring 100% of the CPU time. In contrast, background mode
operations generally provide lower data transfer rates while allowing the
CPU to perform other tasks.

6.2.5.1 Foreground CPU mode

This mode uses the CPU to output the data to the hardware device. From
the moment the request is triggered, DAQDRIVE. uses all of the CPU time
and will not return control to the application program until the request is

completed or otherwise terminated.

DAQDRIVE User's Manual 6-3

6.2.5.2 Background IRQ mode

This mode uses interrupts generated by the hardware device to gain
control of the CPU to output the data to the hardware device.
DAQDRIVE. does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

6.2.5.3 Foreground DMA mode

This mode uses the DMA controller to output the data to the hardware
device while using the CPU to monitor and control the DMA operation.
From the moment the request is triggered, DAQDRIVE. uses all of the
CPU time and will not return control to the application program until the
request is completed or otherwise terminated.

6.2.5.4 Background DMA mode

This mode uses the DMA controller to output the data to the hardware
device while using interrupts generated by the hardware device to gain
control of the CPU to monitor and control the DMA operation.
DAQDRIVE. does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

6.2.6 Clock Sources

The clock_source field is used to define the source of the timing signal for
requests containing multiple data values.

6.2.6.1 Internal Clock

When the clock source field is set for an internal clock, the timing for the
request is provided by the adapter's on-board timer circuitry. The
clock_rate field is unused with the internal clock source and any value
provided in the clock_rate field is ignored.

6.2.6.2 External Clock

Setting the clock_source field to external indicates the timing for the
request is provided by a signal input to the adapter as defined by the
hardware device. The clock_rate field must be used to define the
frequency of the external clock signal in Hertz.

6-4

6.2.7 Sampling Rate

The sampling rate specifies the number of samples / second (Hz) to be
output to the hardware device. The application specifies a desired
sampling rate in the sample_rate field of the request structure. On most
hardware devices, only a finite number of sampling rates are achievable.
When DagAnalogOutput configures a request, the closest available
sampling rate is selected and the sample_rate field is updated with the
actual rate at which the data will be output.

6.2.8 Number Of Scans

The number_of_scans field determines the number of times the channel(s)
specified in the channel list are processed. For example, to output 100
samples to a single D/A channel, number_of_scans must be set to 100. To
output 50 samples each to two D/A channels (100 points total),
number_of_scans is set to 50.

6.2.9 Scan Events

DAQDRIVE. generates a scan event each time the number of scans
specified by scan_event_level are completed. For example, if
scan_event_level is set to 50, a scan event is generated every time the
channel array is processed 50 times. DAQDRIVE. events are discussed in
detail in chapter 11.

6.2.10 Calibration Selections

The calibration field allows the application to specify the type of
calibration to be performed (if any) by the hardware device(s) during the
requested operation. In general, enabling calibration results in lower
throughput rates while providing greater accuracy.

6.2.10.1 Auto-calibration

Enabling auto-calibration instructs the hardware device to perform one or
more calibration cycles on the D/A converter(s) specified by this request.
The results of auto-calibration vary with different hardware devices.
Consult the hardware user's manual and the appendices in the back of
this document for details about how auto-calibration operates on the
device in use.

6.2.10.2 Auto-zero

Enabling auto-zero instructs the hardware device to perform one or more
zero offset adjustment cycles on the D/A converter(s) specified by this
request. The results of auto-zeroing vary with different hardware
devices. Consult the hardware user's manual and the appendices in the

DAQDRIVE User's Manual 6-5

back of this document for details about how auto-zero operates on the
device in use.

6.2.11 Time-out

The timeout_interval field is used primarily during foreground mode
operations to instruct DAQDRIVE. when to abandon the processing of a
request. When DAQDRIVE. has control of the CPU and is waiting for an
event to occur (i.e. waiting for a trigger or waiting for the D/A to become
ready), DAQDRIVE. will wait timeout_interval seconds and if the event
has not occurred, the request will be aborted.

6.2.12 Request Status

The request_status field provides a mechanism for the application to
monitor the state of a request. The request status is an integral part of
DAQDRIVE.'s event mechanisms and is discussed in detail in chapter 11.

6-6

6.3 Analog Output Examples

6.3.1 Example 1 - DC Voltage Level Output

Purpose: Output a single value to each of three analog output channels.

unsi gned short channel _list[] = { 4, 0, 1}
unsi gned short output_values[] = { -1024, 0, 512 };
struct DAC_request ny_request;

struct DAQDRI VE. _buffer ny_data;

[***** Construct the request structure *kk kx|

ny_request. channel _array_ptr channel _list;
ny_request.array_|l ength 3;
ny_request . DAC buf fer &ny_dat a;

ny_request . trigger_source
ny_request . | O _node

I NTERNAL_TRI GGER,;
FOREGROUND_CPU,

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;
ny_request.calibration NO_CALI BRATI O\,
ny_request . timeout _i nterval 0;

ny_request . request _status NO_EVENTS;
[***** Construct the data buffer structure Fhxxk
ny_dat a. data_buffer = out put _val ues;
ny_data. buffer_length = 3;

ny_dat a. buf f er_cycl es =1

ny_dat a. next _structure = NULL;

ny_dat a. buf f er _st at us = BUFFER_FULL;

Variations on example 1:

1. To change the number of channels from three to five, re-define
channel_list[] and output_values|] then set
my_request.array_length =5
my_data.buffer_length =5

2. To change the trigger mode to a TTL trigger, set
my_request.trigger_source = TTL_TRIGGER
my_request.trigger_slope = RISING_EDGE

3. To enable calibration for the request, set
my_request.calibration = AUTO_CALIBRATE or
my_request.calibration = AUTO_ZERO or
my_request.calibration = AUTO_CALIBRATE | AUTO_ZERO.

DAQDRIVE User's Manual

6-7

6.3.2 Example 2 - Simple Waveform Generation

Purpose: Output 300 cycles of a 60 Hz sinewave defined with 180 points
per cycle.

unsi gned short channel _nunber;
unsi gned short sinewave[180] ;

struct DAC_request ny_request;

struct DAQDRI VE. _buffer ny_data;

[***** Assume data val ues have been cal cul at ed i
[***** and stored in sinewave[] *kk kx|

[***** Construct the request structure *Rk kx|

ny_request. channel _array_ptr &channel _nunber ;

ny_request.array_|l ength 1;

ny_request . DAC buf fer &ny_dat a;
ny_request.trigger_source TTL_TRI GGER
ny_request.trigger_sl ope ;

ny_request . | O _node
nmy_request . cl ock_source
ny_request. sanpl e_rate
ny_request . nunber _of _scans
ny_request . scan_event _| evel =0

TR ;n oy
5
A

O CALI BRATI ON;

ny_request.calibration =

ny_request . ti meout _i nterval = 0;

ny_request . request _status = NO_EVENTS;

[***** Construct the data buffer structure Fhxxk
ny_dat a. data_buffer = sinewave;

ny_data. buffer_length = 180;

ny_dat a. buffer_cycles = 300;

ny_dat a. next _buffer = NULL;

ny data. buffer status = BUFFER FULL;

Variations on example 2:

1. To change the number of points from 180 to 360, re-define
sinewave[] and then set
my_request.sample_rate = 60 * 360
my_request.number_of_scans = 300 * 360
my_data.buffer_length = 360

2. To change the number of cycles from 300 to 15,000, set
my_request.number_of_scans = 15000
my_data.buffer_cycles = 15000

3. To enable a time-out if the trigger does not occur within 15
seconds after the request is armed, set
my_request.timeout_interval = 15

6-8

7 Digital Input Requests

In chapter 3, some special purpose procedures were presented to help the
user get familiar with DAQDRIVE.'s digital input interface. The key to
understanding and utilizing DAQDRIVE., however, is to understand its
request structures. This chapter will present the digital input request
structure and provide examples to illustrate how this structure is
configured for some common applications.

7.1 DaqgDigitallnput

DaqgDigitallnput is DAQDRIVE.'s digital input interface. Any digital
input operation is possible with the proper configuration of the request
structure. The format of the command is shown below.

unsi gned short DaqDigitallnput (unsigned short 1 ogical _device,
struct digio_request far *user_request,

unsi gned short far *request _handl e)

DaqgDigitallnput performs the configuration portion of a digital input
request. For a new configuration, the application program sets
request_handle to 0 before calling DagDigitalinput. DagDigitallnput then
analyzes the data structure specified by user_request to determine if all of
the parameters are valid and if the requested operation can be performed
by the device specified by logical _device. If the requested operation is
valid, DagDigitallnput assigns request_handle a unique non-zero value.
This request handle is used to identify this request in all future
operations.

If the application program modifies the contents of user_request after
executing DagDigitallnput, the structure must be verified again. To
request re-verification of a previously approved request, the application
executes DagDigitallnput with request_handle set to the value returned
by DagDigitallnput when the request was first approved. All parameters
except the channel list may be modified after the initial configuration. To
modify the channel list, the existing request must be released (using
DagReleaseRequest) and a new configuration requested.

DAQDRIVE User's Manual 7-1

7.2 The Digital Input Request Structure

The power of DagDigitallnput lies in the application's ability to modify a
single data structure and execute a single procedure to perform multiple
digital input operations. The elements of the digital input request
structure are discussed on the following pages.

//Z;;uct di gi o_request

{

unsi gned short far *channel _array_ptr ;
unsi gned short reservedl[4]

unsi gned short array_l ength;
struct DAQDRI VE. _buffer far

gi o_buffer;

unsi gned short reserved2[4]

unsi gned short trigger_source;
unsi gned short trigger_node;
unsi gned short trigger_slope;
unsi gned short trigger_channel ,
doubl e trigger_voltage

unsi gned long trigger_val ue;
unsi gned short reserved3[4]

unsi gned short | O _node;

unsi gned short cl ock_source;
doubl e clock_rate;

doubl e sanple_rate;

unsi gned short reserved4[4]

unsi gned | ong nunber_of _scans;
unsi gned I ong scan_event_|evel ;
unsi gned short reserved5[8]

unsi gned short timeout_interval
unsi gned | ong request_status;

1 .

*d

IMPORTANT:

1. If the application program modifies the contents of the request
structure after executing DagDigitallnput, the updated
structure must be re-verified by DagDigitallnput before the
request is armed.

2. Once the request is armed using DagArmRequest, the only field
the application can modify is request_status. All other fields in
the request structure must remain constant until the operation is
completed or otherwise terminated.

3. If the request structure is dynamically allocated by the
application, it MUST NOT be de-allocated until the request has
been released by the DagReleaseRequest procedure. In
addition, applications using the Windows DLL version of
DAQDRIVE. should use DagAllocateMemory if dynamically
allocated request structures are required.

7-2

7.2.1 Reserved Fields

The fields reservedl through reserved5 are provided for expansion of the
digital input request structure in future releases of DAQDRIVE.. To
maintain maximum compatibility, the application program should
initialize all reserved fields to 0.

7.2.2 Channel Selections

The digital input request structure begins with a list of one or more digital
input channels to be operated on by this request. The application
provides the memory address of the first channel in the list using the
channel_array ptr field and must specify the length of the list in the
array_length field.

7.2.3 Data Buffers

digio_buffer defines the request's data buffer structure(s) to be used for
storing the data input from the specified channel(s). The application
program must define these buffers within the guidelines provided in
chapter 9.

7.2.4 Trigger Selections

The trigger selection determines how the requested operation will be
initiated after being armed. Six fields are required to define and
configure the trigger for the request: trigger_source, trigger_mode,
trigger_slope, trigger_channel, trigger_voltage, and trigger_value.
Because the trigger selection is an integral part of the operation and is
common to all of DAQDRIVE.'s request structures. trigger configurations
are discussed separately in chapter 10.

7.25 Data Transfer Modes

The request structure field IO_mode determines the mechanism that will
be used to input the data from the hardware device. In general, the
foreground modes provide the highest data transfer rates at the expense
of requiring 100% of the CPU time. In contrast, background mode
operations generally provide lower data transfer rates while allowing the
CPU to perform other tasks.

7.2.5.1 Foreground CPU mode

This mode uses the CPU to input the data from the hardware device.
From the moment the request is triggered, DAQDRIVE. uses all of the
CPU time and will not return control to the application program until the
request is completed or otherwise terminated.

DAQDRIVE User's Manual 7-3

7.2.5.2 Background IRQ mode

This mode uses interrupts generated by the hardware device to gain
control of the CPU to input the data to the hardware device. DAQDRIVE.
does not require all of the CPU time in this mode and returns control of
the CPU to the application after the request is triggered.

7.2.5.3 Foreground DMA mode

This mode uses the DMA controller to input the data from the hardware
device while using the CPU to monitor and control the DMA operation.
From the moment the request is triggered, DAQDRIVE. uses all of the
CPU time and will not return control to the application program until the
request is completed or otherwise terminated.

7.2.5.4 Background DMA mode

This mode uses the DMA controller to input the data from the hardware
device while using interrupts generated by the hardware device to gain
control of the CPU to monitor and control the DMA operation.
DAQDRIVE. does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

7.2.6 Clock Sources

The clock_source field is used to define the source of the timing signal for
requests acquiring multiple samples.

7.2.6.1 Internal Clock

When the clock source field is set for an internal clock, the timing for the
request is provided by the adapter's on-board timer circuitry. The
clock_rate field is unused with the internal clock source and any value
provided in the clock_rate field is ignored.

7.2.6.2 External Clock

Setting the clock_source field to external indicates the timing for the
request is provided by a signal input to the adapter as defined by the
hardware device. The clock_rate field must be used to define the
frequency of the external clock signal in Hertz.

7-4

7.2.7 Sampling Rate

The sampling rate specifies the number of samples / second (Hz) to be
input from the hardware device. The application specifies a desired
sampling rate in the sample_rate field of the request structure. On most
hardware devices, only a finite number of sampling rates are achievable.
When DagDigitalinput configures a request, the closest available
sampling rate is selected and the sample_rate field is updated with the
actual rate at which the data will be output.

7.2.8 Number Of Scans

The number_of_scans field determines the number of times the channel(s)
specified in the channel list are processed. For example, to input 100
samples from a single digital input channel, number_of_scans must be set
to 100. To input 50 samples each from four digital input channels (200
points total), number_of scans is set to 50.

7.2.9 Scan Events

DAQDRIVE. generates a scan event each time the number of scans
specified by scan_event_level are completed. For example, if
scan_event_level is set to 50, a scan event is generated every time the
channel array is processed 50 times. DAQDRIVE. events are discussed in
detail in chapter 11.

7.2.10 Time-out

The timeout_interval field is used primarily during foreground mode
operations to instruct DAQDRIVE. when to abandon the processing of a
request. When DAQDRIVE. has control of the CPU and is waiting for an
event to occur (i.e. waiting for a trigger or waiting for the digital input
channel to become ready), DAQDRIVE. will wait timeout_interval
seconds and if the event has not occurred, the request will be aborted.

7.2.11 Request Status

The request_status field provides a mechanism for the application to
monitor the state of a request. The request status is an integral part of
DAQDRIVE.'s event mechanisms and is discussed in detail in chapter 11.

DAQDRIVE User's Manual 7-5

7.3 Digital Input Examples

7.3.1 Example 1 - Single Value Input

Purpose: Input a single value from each of three digital input channels.

unsi gned short channel _list[] ={ 0, 1, 2};
unsi gned char i nput _val ues[3] ;
struct digio_request ny_request;

struct DAQDRI VE. _buffer ny_data;

[***** Construct the request structure *kk kx|

ny_request. channel _array_ptr channel _list;
ny_request.array_|l ength 3;
ny_request . di gi o_buffer &ny_dat a

%
:
%

ny_request. trigger_source

ny_request . | O node FOREGROUND_CPU,

ny_request . nunber _of _scans 1;

ny_request . scan_event _| evel 0;

ny_request . ti meout _i nterval 0;

ny_request . request _status NO_EVENTS,

[***** Construct the data buffer structure Fhxxk |

ny_dat a. data_buffer nput _val ues;

i
3;

ny_data. buffer_length =
ny_dat a. next _structure = NULL;
ny_dat a. buf f er _st at us = BUFFER_EMPTY;

Variations on example 1:

1. To change the number of channels from three to eight, re-define
channel_list[] and input_values]] then set
my_request.array_length =8
my_data.buffer_length =8

2. To change the trigger mode to a TTL trigger, set
my_request.trigger_source = TTL_TRIGGER
my_request.trigger_slope = RISING_EDGE

3. To enable a time-out if no data is available after 5 seconds, set
my_request.timeout_interval =5

7-6

7.3.2

Example 2 - Multiple Value Input

Purpose: Input 500 points from a single digital input channel at 1 second

intervals.

struct
struct

/*****

ny_request. channel _array_ptr

nmy_request . cl ock_source

ny_dat a. data_buffer =
ny_data. buffer_length =
ny_dat a. next _buffer = NULL;
ny_data. buffer_status =

unsi gned short channel _nunber;
unsi gned char i nput _val ues[500] ;

di gi o_request ny_request;
DAQDRI VE. _buffer ny_data;

Construct the request structure *kk kx|

&channel _nunber ;

ny_request.array_|l ength 1;

ny_request . di gi o_buffer &ny_dat a;
ny_request.trigger_source TTL_TRI GGER
ny_request.trigger_sl ope Rl SI NG_EDGE;
ny_request . | O node)

%
3

ny_request.sanpl e_rate 1;

ny_request . nunber _of _scans 500;

ny_request . scan_event _| evel 0;

ny_request . timeout _i nterval 0;

ny_request . request _status NO_EVENTS,

[***** Construct the data buffer structure i

i nput _val ues;
= 500;

BUFFER_EMPTY;

Variations on example 2:

1.

2.

To change the number of points from 500 to 650, re-define
input_values[] and then set
my_request.number_of_scans = 650
my_data.buffer_length = 650

To notify the application every time 100 scans are complete, set
my_request.scan_event_level = 100

DAQDRIVE User's Manual

7-7

(This page intentionally left blank.)

8 Digital Output Requests

In chapter 3, some special purpose procedures were presented to help the
user get familiar with DAQDRIVE.'s digital output interface. The key to
understanding and utilizing DAQDRIVE., however, is to understand its
request structures. This chapter will present the digital output request
structure and provide examples to illustrate how this structure is
configured for some common applications.

8.1 DagDigitalOutput

DaqgDigitalOutput is DAQDRIVE.'s digital output interface. Any digital
output operation is possible with the proper configuration of the request
structure. The format of the command is shown below.

unsi gned short DaqgDi gital Qut put (unsigned short | ogical _device,
struct digio_request far *user_request,

unsi gned short far *request _handl e)

DaqgDigitalOutput performs the configuration portion of a digital output
request. For a new configuration, the application program sets
request_handle to 0 before calling DagDigitalOutput. DagDigitalOutput
then analyzes the data structure specified by user_request to determine if
all of the parameters are valid and if the requested operation can be
performed by the device specified by logical_device. If the requested
operation is valid, DagDigitalOutput assigns request_handle a unique
non-zero value. This request handle is used to identify this request in all
future operations.

If the application program modifies the contents of user_request after
executing DagDigitalOutput, the structure must be verified again. To
request re-verification of a previously approved request, the application
executes DagDigitalOutput with request_handle set to the value returned
by DaqgDigitalOutput when the request was first approved. All
parameters except the channel list may be modified after the initial
configuration. To modify the channel list, the existing request must be
released (using DagReleaseRequest) and a new configuration requested.

DAQDRIVE User's Manual 8-1

8.2 The Digital Output Request Structure

The power of DagDigitalOutput lies in the application’s ability to modify
a single data structure and execute a single procedure to perform multiple
digital output operations. The elements of the digital output request
structure are discussed on the following pages.

//;:;uct di gi o_request

{

unsi gned short far *channel _array_ptr ;
unsi gned short reservedl[4]

unsi gned short array_l ength;
struct DAQDRI VE. _buffer far

gi o_buffer;

unsi gned short reserved2[4]

unsi gned short trigger_source;
unsi gned short trigger_node;
unsi gned short trigger_slope;
unsi gned short trigger_channel ,
doubl e trigger_voltage

unsi gned long trigger_val ue;
unsi gned short reserved3[4]

unsi gned short | O _node;

unsi gned short cl ock_source;
doubl e clock_rate;

doubl e sanple_rate;

unsi gned short reserved4[4]

unsi gned | ong nunber_of _scans;
unsi gned I ong scan_event_|evel ;
unsi gned short reserved5[8]

unsi gned short timeout_interval

unsi gned | ong request_status;
1 .

*d

IMPORTANT:

1. If the application program modifies the contents of the request
structure after executing DagDigitalOutput, the updated
structure must be re-verified by DagDigitalOutput before the
request is armed.

2. Once the request is armed using DagArmRequest, the only field
the application can modify is request_status. All other fields in
the request structure must remain constant until the operation is
completed or otherwise terminated.

3. If the request structure is dynamically allocated by the
application, it MUST NOT be de-allocated until the request has
been released by the DagReleaseRequest procedure. In
addition, applications using the Windows DLL version of
DAQDRIVE. should use DagAllocateMemory if dynamically
allocated request structures are required.

8-2

8.2.1 Reserved Fields

The fields reservedl through reserved5 are provided for expansion of the
digital output request structure in future releases of DAQDRIVE.. To
maintain maximum compatibility, the application program should
initialize all reserved fields to 0.

8.2.2 Channel Selections

The digital output request structure begins with a list of one or more
digital output channels to be operated on by this request. The application
provides the memory address of the first channel in the list using the
channel_array ptr field and must specify the length of the list in the
array_length field.

8.2.3 Data Buffers

digio_buffer defines the request's data buffer structure(s) containing the
data to be output to the specified channel(s). The application program
must define these buffers within the guidelines provided in chapter 9.

8.2.4 Trigger Selections

The trigger selection determines how the requested operation will be
initiated after being armed. Six fields are required to define and
configure the trigger for the request: trigger_source, trigger_mode,
trigger_slope, trigger_channel, trigger_voltage, and trigger_value.
Because the trigger selection is an integral part of the operation and is
common to all of DAQDRIVE.'s request structures. trigger configurations
are discussed separately in chapter 10.

8.25 Data Transfer Modes

The request structure field IO_mode determines the mechanism that will
be used to output the data to the hardware device. In general, the
foreground modes provide the highest data transfer rates at the expense
of requiring 100% of the CPU time. In contrast, background mode
operations generally provide lower data transfer rates while allowing the
CPU to perform other tasks.

8.2.5.1 Foreground CPU mode

This mode uses the CPU to output the data to the hardware device. From
the moment the request is triggered, DAQDRIVE. uses all of the CPU time
and will not return control to the application program until the request is

completed or otherwise terminated.

DAQDRIVE User's Manual 8-3

8.2.5.2 Background IRQ mode

This mode uses interrupts generated by the hardware device to gain
control of the CPU to output the data to the hardware device.
DAQDRIVE. does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

8.2.5.3 Foreground DMA mode

This mode uses the DMA controller to output the data to the hardware
device while using the CPU to monitor and control the DMA operation.
From the moment the request is triggered, DAQDRIVE. uses all of the
CPU time and will not return control to the application program until the
request is completed or otherwise terminated.

8.2.5.4 Background DMA mode

This mode uses the DMA controller to output the data to the hardware
device while using interrupts generated by the hardware device to gain
control of the CPU to monitor and control the DMA operation.
DAQDRIVE. does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

8.2.6 Clock Sources

The clock_source field is used to define the source of the timing signal for
requests containing multiple data values.

8.2.6.1 Internal Clock

When the clock source field is set for an internal clock, the timing for the
request is provided by the adapter's on-board timer circuitry. The
clock_rate field is unused with the internal clock source and any value
provided in the clock_rate field is ignored.

8.2.6.2 External Clock

Setting the clock_source field to external indicates the timing for the
request is provided by a signal input to the adapter as defined by the
hardware device. The clock_rate field must be used to define the
frequency of the external clock signal in Hertz.

8-4

8.2.7 Sampling Rate

The sampling rate specifies the number of samples / second (Hz) to be
output to the hardware device. The application specifies a desired
sampling rate in the sample_rate field of the request structure. On most
hardware devices, only a finite number of sampling rates are achievable.
When DagDigitalOutput configures a request, the closest available
sampling rate is selected and the sample_rate field is updated with the
actual rate at which the data will be output.

8.2.8 Number Of Scans

The number_of_scans field determines the number of times the channel(s)
specified in the channel list are processed. For example, to output 100
samples to a single digital output channel, number_of_scans must be set
to 100. To output 50 samples each to two digital output channels (100
points total), number_of scans is set to 50.

8.2.9 Scan Events

DAQDRIVE. generates a scan event each time the number of scans
specified by scan_event_level are completed. For example, if
scan_event_level is set to 50, a scan event is generated every time the
channel array is processed 50 times. DAQDRIVE. events are discussed in
detail in chapter 11.

8.2.10 Time-out

The timeout_interval field is used primarily during foreground mode
operations to instruct DAQDRIVE. when to abandon the processing of a
request. When DAQDRIVE. has control of the CPU and is waiting for an
event to occur (i.e. waiting for a trigger or waiting for the digital output
channel to become ready), DAQDRIVE. will wait timeout_interval
seconds and if the event has not occurred, the request will be aborted.

8.2.11 Request Status

The request_status field provides a mechanism for the application to
monitor the state of a request. The request status is an integral part of
DAQDRIVE.'s event mechanisms and is discussed in detail in chapter 11.

DAQDRIVE User's Manual 8-5

8.3 Digital Output Examples

8.3.1 Example 1 - Single Value Output

Purpose: Output a single value to each of two digital output channels.

unsi gned short channel _list[] ={ 1, 0 };
unsi gned char output_values[] ={ 0, 255 };

struct digio_request ny_request;
struct DAQDRI VE. _buffer ny_data;

[***** Construct the request structure *kk kx|

ny_request. channel _array_ptr channel _list;
ny_request.array_|l ength 2;
ny_request . di gi o_buffer &ny_dat a

%
:
%

ny_request . trigger_source
ny_request . | O node
ny_request . nunber _of _scans
ny_request . scan_event _| evel
ny_request . ti meout _i nterval
ny_request . request _status

FOREGROUND_CPU,

oeer

8
3
7

[***** Construct the data buffer structure *okokokok

ny_dat a. data_buffer
ny_dat a. buffer_|l ength
ny_dat a. buf f er_cycl es
ny_dat a. next _structure
ny_dat a. buf f er _st at us

ut put _val ues;

wEﬁNO
aF

ER FULL;

Variations on example 1:

1. To change the number of channels from two to three, re-define
channel_list[] and output_values|] then set
my_request.array_length =3
my_data.buffer_length =3

2. To change the trigger mode to a TTL trigger, set
my_request.trigger_source = TTL_TRIGGER
my_request.trigger_slope = FALLING_EDGE

8-6

8.3.2 Example 2 - Simple Pattern Generation

Purpose: Output 100 cycles of a digital pattern defined with 128 points
per cycle with 10ms between samples.

unsi gned short channel _nunber;
unsi gned char pattern[128];

struct digio_request ny_request;

struct DAQDRI VE. _buffer ny_data;

[***** Assume data val ues have been cal cul at ed i
[***** and stored in pattern[] *kk kx|

[***** Construct the request structure *Rk kx|

ny_request. channel _array_ptr &channel _nunber ;

ny_request.array_|l ength 1;

ny_request . di gi o_buffer &ny_dat a
ny_request.trigger_source EXTERNAL_TRI GGER,
ny_request.trigger_sl ope Rl SI NG_EDGE,
ny_request . | O node)

nmy_request . cl ock_source

g %
o

ny_request.sanpl e_rate 100
ny_request . nunber _of _scans 100 * 128
ny_request . scan_event _| evel 0;
ny_request . timeout _i nterval 0;
ny_request . request _status NO_EVENTS,
[***** Construct the data buffer structure i
ny_dat a. data_buffer = pattern;

ny_data. buffer_length = 128;

ny_dat a. buffer_cycles = 100;

ny_dat a. next _buffer = NULL;

ny_dat a. buffer_status = BUFFER FULL;

Variations on example 2:

1. To change the number of points from 128 to 64, re-define
pattern[] and then set
my_request.number_of scans = 100 * 64
my_data.buffer_length = 64

2. To change the number of cycles from 100 to 800, set
my_request.number_of_scans = 800 * 128
my_data.buffer_cycles = 800

DAQDRIVE User's Manual 8-7

(This page intentionally left blank.)

9 Defining Data Buffers

DAQDRIVE's data buffers are defined as structures containing the buffer
configuration and a pointer to the data storage area. This allows multiple
data buffers to be defined as each buffer is completely self-contained.

[st ruct DAQDRI VE. _buffer
{
unsi gned short buffer_status;
void huge *data_buffer;
unsigned long buffer_length;
unsigned long buffer_cycles;
struct DAQDRI VE. _buffer far
*next_structure;
1.

buffer_status - This unsigned short integer value is used to monitor /
control the current state of the data buffer. buffer_status
is defined on the following pages for input operations
(see figure 4) and for output operations (see figure 5).

data_buffer - This void huge pointer specifies the address of the actual
input / output data buffer. data_buffer is declared as a
void to allow it to point to data of any type. Itis the
application program's responsibility to ensure the data
pointed to by data_buffer is correct for the request type
and the target hardware as listed in the tables below.

Request type Resolution Configuration data type
A/Dor D/A 1 to 8 bits unipolar unsigned char
bipolar signed char
9 to 16 bits unipolar unsigned short
bipolar signed short
17 to 32 bits unipolar unsigned long
bipolar signed long
Request type Channel size (in bits) data type
digital input or 1 to 8 bits unsigned char
digital output 9 to 16 bits unsigned short
17 to 32 bits unsigned long

DAQDRIVE User's Manual 9-1

buffer_length -

buffer_cycles -

next_structure -

This unsigned long integer value defines the length of
data_buffer in units of "number-of-points". Each data
buffer must be large enough to hold at least 1 point for
every channel in the channel list. Therefore
buffer_length must be greater than 0.

This unsigned long integer value is used during output
operations (D/A, digital output) only to define the
number of times the data in this structure is processed
before continuing on to the next_structure. Setting
buffer_cycles = 0 causes the data in this buffer to be
processed continuously (next_structure will never be
accessed). buffer_cycles is undefined for input
operations and any value in this field will be ignored.

This structure pointer is used to connect multiple data
buffers for larger acquisition requests. When the data
buffer associated with this structure has been filled (or
emptied), DAQDRIVE. will switch to the structure
pointed to by next_structure and continue the operation
using the new structure's data buffer. next_buffer is set
to NULL if there are no more structures in the chain.

IMPORTANT:

1. Once the request is armed using DagArmRequest, the
application program must obey the rules defined in figures 4
and 5 for accessing the buffer structures and data buffers at

run-time.

These rules apply until the operation is completed or

otherwise terminated.

2. If the buffer structures or the data buffers are dynamically
allocated by the application, they MUST NOT be de-allocated
until the request is completed or otherwise terminated. In
addition, applications using the Windows DLL version of
DAQDRIVE. should use DagAllocateMemory if dynamically
allocated buffer structures or data buffers are required.

9-2

buffer_status - INPUT OPERATIONS

Bit Value DAQDRIVE. constant Description

0 0x0001 BUFFER_FULL BUFFER_FULL indicates the data buffer associated with this structure is full.
DAQDRIVE. sets BUFFER_FULL to 1 after the last value is transferred into the data buffer. Once BUFFER_FULL is set,
DAQDRIVE. will not operate on this buffer again unless BUFFER_EMPTY is re-set to 1 by the application program.
DAQDRIVE. will never clear BUFFER_FULL during input operations.
The application program may use BUFFER_FULL to determine when a data buffer may be safely accessed. After the
application sets BUFFER_EMPTY and arms the request, it MUST NOT modify the contents of the DAQDRIVE._buffer
structure or the associated data buffer until DAQDRIVE. sets BUFFER_FULL to 1 or until the operation is halted. The
application may clear BUFFER_FULL at any time.

1 0x0002 BUFFER_EMPTY BUFFER_EMPTY indicates the data buffer associated with this structure is empty.

The application must set BUFFER_EMPTY to 1 to inform DAQDRIVE. that the data buffer is ready for input. After the
application sets BUFFER_EMPTY and arms the request, it MUST NOT modify the contents of the DAQDRIVE._buffer
structure or the associated data buffer until DAQDRIVE. sets BUFFER_FULL to 1 or until the operation is halted (this
includes modifying BUFFER_EMPTY).

DAQDRIVE. clears BUFFER_EMPTY to 0 when the first data value is transferred into the buffer and will report a buffer

over-run error if a data buffer is encountered that does not have the BUFFER_EMPTY bit set. DAQDRIVE. will never set

BUFFER_EMPTY during input operations.

Figure 4. buffer_status definition for input operations (A/D and digital input).

DAQDRIVE User's Manual

buffer_status - OUTPUT OPERATIONS

Bit Value DAQDRIVE. constant Description

0 0x0001 BUFFER_FULL BUFFER_FULL indicates the data buffer associated with this structure is full.
The application must set BUFFER_FULL to 1 to inform DAQDRIVE. that the data buffer is ready for output. After the
application sets BUFFER_FULL and arms the request, it MUST NOT modify the contents of the DAQDRIVE._buffer
structure or the associated data buffer until DAQDRIVE. sets BUFFER_EMPTY to 1 or until the operation is halted (this
includes modifying BUFFER_FULL).
DAQDRIVE. clears BUFFER_FULL to 0 when the first data value is removed from the buffer and will report a buffer
under-run error if a data buffer is encountered that does not have BUFFER_FULL bit set. DAQDRIVE. will never set
BUFFER_FULL during output operations.

1 0x0002 BUFFER_EMPTY BUFFER_EMPTY indicates the data buffer associated with this structure is empty.

DAQDRIVE. sets BUFFER_EMPTY to 1 after the last value is removed from the data buffer. Once BUFFER_EMPTY is set,
DAQDRIVE. will not operate on this buffer again unless BUFFER_FULL is re-set to 1 by the application program.
DAQDRIVE. will never clear BUFFER_EMPTY during output operations.

The application program may use BUFFER_EMPTY to determine when a data buffer may be safely accessed. After the
application sets BUFFER_FULL and arms the request, it MUST NOT modify the contents of the DAQDRIVE._buffer
structure or the associated data buffer until DAQDRIVE. sets BUFFER_EMPTY to 1 or until the operation is halted. The
application may clear BUFFER_EMPTY at any time.

Figure 5. buffer_status definition for output operations (D/A and digital output).

9-4

9.1 Multiple Channel Operations

When defining a data buffer for single channel operations, the data buffer
is simply an array of values and is stored in system memory in
continuous, increasing memory locations. For example, if an application
requests 10 samples from a single analog input channel, the application
must declare an array to hold the ten values

short array[10];

This array appears in system memory as

array[0], array[1], array[2], ..., array[9]

When DAQDRIVE. is acquiring the data, however, it does not view this
memory as an array but simply as a data buffer. For this single channel
example, DAQDRIVE. would place the following information in the data
buffer

sanpl el, sanple2, sanple3, ..., sanplel0

which the application views as

array[0] = sanplel
array[1] = sanple2
= sanpl e3

array|[2]

array[é] = sanpl el0

As mentioned above, DAQDRIVE. views the memory as a data buffer and
not as an array. If this same buffer was used to acquire 5 samples from
each of two A/D channels, DAQDRIVE. would place the following data
in the buffer

chanl, chan2, chanl, chan2, ..., chanl, chan2

which the application would view as

array[0] = chanl (sanple #1)
array[1l] = chan2 (sanple #1)
array[2] = chanl (sanple #2)
array[3] = chan2 (sanple #2)
array[8] = chanl (sanple #5)
array[9] = chan2 (sanple #5)

Obviously, as the number of channels increases, it becomes more difficult
to determine the correlation between the channel number and the value.

DAQDRIVE User's Manual 9-5

One solution to this problem is to use two-dimensional arrays.
Re-defining the array of the previous example to

short array[5][2];

does not change the size of the data buffer. The array now appears in
memory as

array[0][0], array[O][1], ..., array[4][0], array[4][1]

and after DAQDRIVE. loads the data into the buffer, the application
views the data as

array[0][0] = chanl (sanpl e #1)
array[0][1] = chan2 (sanpl e #1)
array[1][0] = chanl (sanpl e #2)
array[1][1] = chan2 (sanpl e #2)
array[4][0] = chanl (sanpl e #5)
array[4][1] = chan2 (sanpl e #5)

In general terms, the array may be defined as

array[sanpl e_nunber][channel _nunber];

Although the previous examples only illustrated the definition of data
buffers for input operations, it should be noted that all DAQDRIVE.
requests implement the same buffer structure and therefore all output
data buffers must be defined accordingly.

9-6

9.2 Input Operation Examples

9.21 Example 1. Single Channel Analog Input

An example of a simple input operation is to acquire 100 samples from a
single A/D channel. To perform this operation, the application must first
allocate enough memory to hold 100 samples. Assuming a 12-bit A/D
converter operating in bipolar mode, the samples are each size "short".
Therefore, the memory allocation may be done as simply as

short input_data[100];

The next step is to allocate and configure a DAQDRIVE._buffer structure.
data_buffer is set to point to the array defined above. Its length is 100
points and there are no other structures so next_structure is set to NULL.

struct DAQDRI VE. buffer ny_ADC dat a;

ny_ADC dat a. dat a_buf fer = i nput _dat a;
ny_ADC data. buffer_length = 100;
ny_ADC dat a. next _structure = NULL;

The next step is to allocate and configure an ADC_request structure. The
ADC _request structure is beyond the scope of this chapter and will not be
discussed here except for the ADC_buffer and number_of_scans fields
which directly relate to the data structure configuration. For this
example, ADC_buffer is set to point to our DAQDRIVE._buffer structure
and the number_of_scans is set to 100 scans (1 channel / scan).

struct ADC request ny_ADC request;

ny_ADC r equest. ADC buffer = .
ny_ADC request. nunber _of _scans = 100;

The final step is to set the BUFFER_EMPTY status in the buffer_status
field. Once BUFFER_EMPTY is set and the request is armed, the
application must not modify my_ADC_data or input_data until
BUFFER_FULL is set or until the operation is terminated.

ny_ADC dat a. buf fer_status = BUFFER EMPTY;

DAQDRIVE User's Manual 9-7

9.2.2 Example 2: Multi-Channel Analog Input

The purpose of this example is to input 500 samples each from three
analog input channels. To perform this operation, the application must
first allocate enough memory to hold 1500 (3 * 500) samples. Assuming a
16-bit A/D converter operating in unipolar mode, the samples are each
size "unsigned short". Therefore, the memory allocation may be done as
simply as

unsi gned short i nput_data[1500] ;

The next step is to allocate and configure a DAQDRIVE._buffer structure.
data_buffer is set to point to the array defined above. Its length is 1500
points and there are no other structures so next_structure is set to NULL.

struct DAQDRIVE. buffer ny_ADC dat a;

ny_ADC dat a. dat a_buf fer = i nput _dat a;
ny_ADC data. buffer_length = 1500;
ny_ADC data. next _structure = NULL;

The next step is to allocate and configure an ADC_request structure. The
ADC _request structure is beyond the scope of this chapter and will not be
discussed here except for the ADC_buffer and number_of_scans fields
which directly relate to the data structure configuration. For this
example, ADC_buffer is set to point to our DAQDRIVE._buffer structure
and the number_of scans is set to 500 scans (3 channels / scan).

struct ADC request ny_ADC request;

ny_ADC r equest . ADC buffer = ny_ADC dat a;
ny_ADC request. nunber _of _scans = 500;

The final step is to set the BUFFER_EMPTY status in the buffer_status
field. Once BUFFER_EMPTY is set and the request is armed, the
application must not modify my_ADC_data or input_data until
BUFFER_FULL is set or until the operation is terminated.

ny_ADC dat a. buf fer_status = BUFFER EMPTY;

9-8

9.2.3 Example 3: Using Multiple Data Buffers

The purpose of this example is to use multiple data buffers to input 25,000
samples from a single analog input channel. The application could
allocate a single 25,000 sample buffer but for this example will allocate
one 10,000 sample buffer and one 15,000 sample buffer. Assuming a
12-bit A/D converter operating in unipolar mode, the samples are each
size "unsigned short".

unsi gned short i nput_dat a0O[10000];
unsi gned short input_datal[15000];

The next step is to allocate and configure two DAQDRIVE._buffer
structures. The data_buffer fields are set to point to the arrays defined
above and the buffer_length fields are set accordingly. The first structure
has its next_structure field set to point to the second structure. The
second structure has its next_structure field set to NULL.

struct DAQDRIVE. buffer ny_ADC datal?];

ny_ADC dat a[0] . dat a_buffer
ny_ADC data[0] . buffer_l ength
ny_ADC dat a[0] . next _structure

i nput _dat ao0;
10000;
&ny_ADC dat a[1] ;

ny_ADC dat a[1] . dat a_buffer = input_datal,
ny_ADC data[1].buffer_length = 15000;
ny_ADC data[1] . next _structure = NULL;

The next step is to allocate and configure an ADC_request structure. The
ADC _request structure is beyond the scope of this chapter and will not be
discussed here except for the ADC_buffer and number_of_scans fields
which directly relate to the data structure configuration. For this
example, ADC_buffer is set to point to our first DAQDRIVE._ buffer
structure and the number_of_scans is set to 25,000 scans (1 channel /
scan).

struct ADC request ny_ADC request;

ny_ADC r equest . ADC buffer = ny_ADC dat a;
ny_ADC request . nunber _of _scans = 25000;

The final step is to set the BUFFER_EMPTY status in the buffer_status
fields. Once BUFFER_EMPTY is set and the request is armed, the
application must not modify the DAQDRIVE._buffer structures or the
associated input data buffers until BUFFER_FULL is set or until the
operation is terminated.

ny_ADC dat a[0] . buffer_status
ny_ADC data[1] . buffer_status

BUFFER_EMPTY,;
BUFFER_EMPTY,;

DAQDRIVE User's Manual 9-9

9.24 Example 4: Acquiring Large Amounts Of Data

The purpose of example 4 is to illustrate one way to acquire large
amounts of data using relatively small amounts of memory. If, for
example, an application wants to input 100,000 samples from each of 5
analog input channels using a 12-bit A/D converter operating in unipolar
mode, the samples are each size "unsigned short" and 500,000 samples
would require 1 Megabyte of memory. This example will acquire the
500,000 samples using only 40K of memory. The first step is to allocate
two buffers with 10,000 points each.

unsi gned short i nput_dat aO[10000];
unsi gned short i nput_datal[10000];

The next step is to allocate and configure two DAQDRIVE._buffer
structures. The data_buffer fields are set to point to the arrays defined
above and the buffer_length fields are set accordingly. The first structure
has its next_structure field set to point to the second structure. The
second structure has its next_structure field set to point to the first
structure forming a circular buffer.

struct DAQDRIVE. _buffer ny_ADC datal2];

ny_ADC dat a[0] . dat a_buffer
ny_ADC data[0] . buffer_l ength
ny_ADC dat a[0] . next _structure

i nput _dat ao0;
10000;
&ny_ADC dat a[1] ;

ny_ADC dat a[1] . dat a_buffer
ny_ADC data[1].buffer_length
ny_ADC dat a[1] . next _structure

i nput _dat al;
10000;
&ny_ADC dat a[0] ;

The next step is to allocate and configure an ADC_request structure. The
ADC _request structure is beyond the scope of this chapter and will not be
discussed here except for the ADC_buffer and number_of_scans fields
which directly relate to the data structure configuration. For this
example, ADC_buffer is set to point to our first DAQDRIVE. buffer
structure and the number_of_scans is set to 100,000 scans (5 channel /
scan).

struct ADC request ny_ADC request;

ny_ADC r equest . ADC buffer = ny_ADC dat a;
ny_ADC request. nunber _of _scans = 100000;

The key to acquiring 500,000 samples with only enough buffer space to
hold 20,000 samples is in the use of the BUFFER_FULL and
BUFFER_EMPTY bits. Before arming the request, the BUFFER_EMPTY
bits in the buffer_status fields are set

ny_ADC data[0] . buffer_status = BUFFER EMPTY;

9-10

ny_ADC data[1].buffer_status = BUFFER EMPTY;

DAQDRIVE User's Manual 9-11

The

application may not modify the DAQDRIVE._buffer structures or the

data buffers until the operation is halted or until DAQDRIVE. sets the
BUFFER_FULL bit. If this is a background operation, the application may
sit in a loop waiting for BUFFER_FULL and processing each buffer as it
becomes available.

/1 wait in dead |loop until buffer 0 is full
whi | e((my_ADC dat a[0] . buf fer_status & BUFFER_FULL) == 0);

/1 buffer 0 is full. process data, clear BUFFER FULL, and
/1l re-set BUFFER EMPTY when done.

nmy_ADC dat a[0] . buf f er _status = BUFFER _EMPTY;
/1 wait in dead loop until buffer 1 is full
whi | e((my_ADC data[1]. buffer_status & BUFFER _FULL) == 0);

/1 buffer 1 is full. process data, clear BUFFER FULL, and
/1l re-set BUFFER EMPTY when done.

nmy_ADC dat a[1] . buffer_status = BUFFER_EMPTY;

/1 repeat until 500,000 sanples are processed

Another option for background mode operations is to monitor the
BUFFER_FULL_EVENT bit in the request_status field of the ADC_request
structure. The application may assume the BUFFER_FULL bit is set
before the BUFFER_FULL_EVENT is generated and that the application
may safely access the data buffer.

/1 wait in dead loop until a buffer is full
whi | e((my_ADC request.request_status & BUFFER FULL_EVENT) ==0) ;

/1 a buffer is full. determ ne which buffer, process the
/!l data, clear BUFFER FULL, and re-set BUFFER EMPTY

i f((my_ADC data[O0].buffer_status & BUFFER_FULL) != 0)
{

/1l process buffer O

nmy_ADC dat a[0] . buf f er _stat us
}

el se

{

/1l process buffer 1

BUFFER_EMPTY,;

nmy_ADC dat a[1] . buf fer_status
}

/1 repeat until 500,000 sanples are processed

BUFFER_EMPTY,;

9-12

DAQDRIVE User's Manual 9-13

Another option for background mode operations, and the only option
available for foreground mode operations, is to use the event notification
procedure DagNotifyEvent. The idea of event notification is that
DAQDRIVE. will execute a user-supplied procedure each time an event
occurs. This mechanism can be used to process a data buffer on each
occurrence of the BUFFER_FULL_EVENT. The details of event
notification are beyond the scope of this chapter but are discussed in
chapter 11.

The methods shown in example 4 will work only if the application can
process the data and re-set BUFFER_EMPTY before DAQDRIVE. tries to
access that buffer again. If DAQDRIVE. tries to access a buffer in which
the BUFFER_EMPTY bit has not been set, a buffer over-run error will
occur.

9-14

9.3 Output Operation Examples

9.3.1 Example 1. Single Channel Analog Output

An example of a simple output operation is to write 100 samples to a
single D/A channel. To perform this operation, the application must first
allocate enough memory to hold 100 samples. Assuming a 12-bit D/A
converter operating in bipolar mode, the samples are each size "short".
Therefore, the memory allocation may be done as simply as

short out put _data[100];

The next step is to allocate and configure a DAQDRIVE._buffer structure.
data_buffer is set to point to the array defined above. Its length is 100
points, the buffer will be processed only once (buffer_cycles = 1), and
there are no other structures so next_structure is set to NULL.

struct DAQDRIVE. buffer ny_DAC dat a;

ny_DAC dat a. dat a_buf fer
ny_DAC data. buffer_length
ny_DAC dat a. buf fer_cycl es
ny_DAC dat a. next _structure

out put _dat a;
100;

1;

NULL;

The next step is to allocate and configure a DAC_request structure. The
DAC_request structure is beyond the scope of this chapter and will not be
discussed here except for the DAC_buffer and number_of_scans fields
which directly relate to the data structure configuration. For this
example, DAC_buffer is set to point to our DAQDRIVE._buffer structure
and the number_of_scans is set to 100 scans (1 channel / scan).

struct DAC request ny_DAC request;

ny_DAC request . DAC buffer
ny_DAC r equest . nunber _of _scans

ny_DAC dat a;
100;

The final step is to set the BUFFER_FULL status in the buffer_status field.
Once BUFFER_FULL is set and the request is armed, the application must
not modify my_DAC_data or output_data until BUFFER_EMPTY is set or
until the operation is terminated.

ny_DAC data. buf fer_status = BUFFER FULL;

DAQDRIVE User's Manual 9-15

9.3.2 Example 2: Creating Repetitive Signals

In example 1, 100 samples were output to a single D/A channel. If these
100 points represent a sinewave and the desired output is 250 cycles of
this sinewave, the application could allocate 25,000 (250 * 100) points,
calculate 250 cycles of the sinewave, and output 25,000 points to the D/A.
A simpler approach is to change the configuration as shown below (the
original values from example 1 are shown in the comments).

short out put _data[100];
struct DAQDRIVE. buffer ny_DAC dat a;

ny_DAC dat a. dat a_buf fer out put _dat a;

ny_DAC data. buffer_length = 100;
ny_DAC data. buffer_cycles = 250; /[/* was =1 */
ny_DAC data. next _structure = NULL;

struct DAC request ny_DAC request;

ny_DAC request. DAC buffer = ny_DAC dat a;
ny_DAC request. nunber _of _scans = 25000; /* was = 100 */

ny_DAC data. buf fer_status = BUFFER FULL;

By changing the number_of scans to 25,000, the application is instructing
DAQDRIVE. to output 25,000 samples to the D/A channel. In order to
generate these 25,000 points, however, the application is also instructing
DAQDRIVE. to process the data buffer 250 times (buffer_cycles = 250).
The result is that the 100 points contained in the data buffer will be
output to the D/A converter 250 times producing the equivalent of a
25,000 point data buffer containing 250 cycles of the sinewave.

(NOTE:

In this example, setting buffer_cycles = 250 effectively created a
25,000 point data buffer. In the same way, setting buffer_cycles
= 300 would have effectively created a 30,000 point data buffer.
Had a 30,000 point data buffer been used with

number_of scans set to 25,000, the result would have been the
same except the BUFFER_EMPTY bit would not have been set
since all 30,000 points were not output to the D/A.

9-16

9.3.3 Example 3: Multi-Channel Analog Output

The purpose of this example is to output 500 samples each to three analog
output channels. To perform this operation, the application must first
allocate enough system memory to hold 1500 (3 * 500) samples.
Assuming a 12-bit D/A converter operating in unipolar mode, the
samples are each size "unsigned short". Therefore, the memory allocation
may be done as simply as

unsi gned short out put _dat a[1500] ;

The next step is to allocate and configure a DAQDRIVE._buffer structure.
data_buffer is set to point to the array defined above. Its length is 1500
points, the buffer will be processed only once (buffer_cycles = 1), and
there are no other structures so next_structure is set to NULL.

struct DAQDRIVE. buffer ny_DAC dat a;

ny_DAC dat a. dat a_buf fer out put _dat a;

ny_DAC data. buffer_length = 1500;
ny_DAC data. buffer_cycles = 1;
ny_DAC data. next _structure = NULL;

The next step is to allocate and configure a DAC_request structure. The
DAC_request structure is beyond the scope of this chapter and will not be
discussed here except for the DAC_buffer and number_of_scans fields
which directly relate to the data structure configuration. For this
example, DAC_buffer is set to point to our DAQDRIVE._buffer structure
and the number_of scans is set to 500 scans (3 channels / scan).

struct DAC request ny_DAC request;

ny_DAC request. DAC buffer = ny_DAC dat a;
ny_DAC request. nunber _of _scans = 500;

The final step is to set the BUFFER_FULL status in the buffer_status field.
Once BUFFER_FULL is set and the request is armed, the application must
not modify my_DAC_data or output_data until BUFFER_EMPTY is set or
until the operation is terminated.

ny_DAC data. buf fer_status = BUFFER FULL;

DAQDRIVE User's Manual 9-17

9.3.4 Example 4: Using Multiple Data Buffers

The purpose of this example is to use multiple data buffers to output 4,000
points each to two analog output channels. The application could allocate
a single 8,000 (2* 4000) sample buffer but for this example will allocate
one 5,000 sample buffer and one 3,000 sample buffer. Assuming a 12-bit
D/A converter operating in unipolar mode, the samples are each size
"unsigned short".

unsi gned short out put _dat aO[5000] ;
unsi gned short out put _dat al[3000];

The next step is to allocate and configure two DAQDRIVE._buffer
structures. The data_buffer fields are set to point to the arrays defined
above and the buffer_length fields are set accordingly. The first structure
has its next_structure field set to point to the second structure. The
second structure has its next_structure field set to NULL.

struct DAQDRIVE. buffer ny_DAC dataf?];

ny_DAC dat a[0] . dat a_buffer
ny_DAC data[0] . buffer_l ength
ny_DAC dat a[0] . buffer_cycl es
ny_DAC dat a[0] . next _structure

out put _dat ao0;
5000;

1

&y _DAC dat a[1] ;

ny_DAC dat a[1] . dat a_buffer out put _dat al;

ny_DAC data[1].buffer_length = 3000;
ny_DAC data[1].buffer_cycles = 1;
ny_DAC data[1] . next_structure = NULL;

The next step is to allocate and configure a DAC_request structure. The
DAC_request structure is beyond the scope of this chapter and will not be
discussed here except for the DAC_buffer and number_of_scans fields
which directly relate to the data structure configuration. For this
example, DAC_buffer is set to point to our first DAQDRIVE._ buffer
structure and number_of_scans is set to 4,000 scans (2 channels / scan).

struct DAC request ny_DAC request;

ny_DAC request. DAC buffer = ny_DAC dat a;
ny_DAC request . nunber _of _scans = 4000;

The final step is to set the BUFFER_EMPTY status in the buffer_status
fields. Once BUFFER_EMPTY is set and the request is armed, the
application must not modify the DAQDRIVE._buffer structures or the
associated input data buffers until BUFFER_FULL is set or until the
operation is terminated.

ny_DAC dat a[0] . buffer_status
ny_DAC data[1] . buffer_status

BUFFER_EMPTY,;
BUFFER_EMPTY,;

9-18

9.3.5 Example 5: Creating Complex Output Patterns

Combining the ideas of example 2 and example 4, the application of
example 5 wants to output 50 cycles of a sinewave containing 360
samples, 45 cycles of a square wave containing 2 samples, and 75 cycles of
a triangle wave containing 30 samples. Assuming a 12-bit D/A converter
operating in bipolar mode, the following arrays are defined

short sine[360];
short square[2];
short triangl e[30];

The next step is to allocate and configure three DAQDRIVE._buffer
structures. The data_buffer fields are set to point to the arrays defined
above and the buffer_length fields are set accordingly. The first structure
has its next_structure field set to point to the second structure. The
second structure has its next_structure field set to point to the third
structure, and the third structure has its next_structure field set to NULL
since it is the last structure in the chain.

struct DAQDRIVE. buffer ny_DAC dataf3];

ny_DAC dat a[0] . dat a_buffer = sine;
ny_DAC data[0].buffer_length = 360;
ny_DAC data[0] . buffer_cycles = 50;

my_DAC data[0] . next_structure &y _DAC data[1] ;

ny_DAC dat a[1] . dat a_buffer = square;

ny_DAC data[1].buffer_length = 2;

ny_DAC data[1].buffer_cycles = 45;

ny_DAC data[1].next_structure = &nmy_DAC data[2];
ny_DAC dat a[2] . dat a_buffer = triangle;

ny_DAC data[?2].buffer_length = 30;

ny_DAC data[?2].buffer_cycles = 75;

ny_DAC data[2].next_structure = NULL

The next step is to allocate and configure a DAC_request structure. The
DAC_request structure is beyond the scope of this chapter and will not be
discussed here except for the DAC_buffer and number_of_scans fields
which directly relate to the data structure configuration. For this
example, DAC_buffer is set to point to our first DAQDRIVE._ buffer
structure and the number_of_scans is defined as follows

number_of_scans number_of samples / samples_per_scan
50 cycles * 360 samples / cycle (sine)

45 cycles * 2 samples / cycle (square)
75 cycles * 30 samples / cycle (triangle)
20,340 samples / (1 sample / scan)

20,340 scans

I+ + 1

DAQDRIVE User's Manual 9-19

struct DAC request ny_DAC request;

ny_DAC request. DAC buffer = ny_DAC dat a;
ny_DAC request. nunber _of _scans = 20340;

The final step is to set the BUFFER_EMPTY status in the buffer_status
fields. Once BUFFER_EMPTY is set and the request is armed, the
application must not modify the DAQDRIVE._buffer structures or the
associated input data buffers until BUFFER_FULL is set or until the
operation is terminated.

ny_DAC dat a[0] . buffer_status
ny_DAC data[1] . buffer_status
ny_DAC dat a[2] . buffer_status

BUFFER_EMPTY,;
BUFFER_EMPTY,;
BUFFER_EMPTY,;

Variations on example 5

1. To execute only the sinewave portion of the buffers, simply
change number_of scans to 50 * 360

ny_DAC request. nunber _of _scans = 18000;

2. To change the square wave portion of the output from 45 cycles
to 300 cycles, change the corresponding buffer_cycles to 300 and
number_of scans to (50 * 360) + (300 * 2) + (30 * 75)

ny_DAC data[1] . buffer_cycles
ny_DAC r equest . nunber _of _scans

300;
20850;

3. If the triangle wave is redefined to have 60 samples, change the
corresponding buffer_length to 60 and number_of scans to (50 *
360) + (45 * 2) + (75 * 60)

ny_DAC data[2] .buffer_length
ny_DAC r equest . nunber _of _scans

60;
22590;

9-20

9.3.6 Example 6: Outputting Large Amounts Of Data

The multiple buffer operation of example 4 can be extended for the
application that needs to output large numbers of points. Assume 500,000
points need to be read from a file and output to a 12-bit D/A converter. If
all of the samples are input from the file at once, 1 Megabyte of memory
would be required to hold the data. An alternative solution may be to
allocate two buffers with 25,000 points each.

unsi gned short out put _dat a0[25000] ;
unsi gned short out put _dat al[25000] ;

The next step is to allocate and configure two DAQDRIVE._buffer
structures. The data_buffer fields are set to point to the arrays defined
above and the buffer_length fields are set accordingly. The first structure
has its next_structure field set to point to the second structure. The
second structure has its next_structure field set to point to the first
structure forming a circular buffer.

struct DAQDRIVE. buffer ny_DAC dataf?];

ny_DAC dat a[0] . dat a_buffer
ny_DAC data[0] . buffer_l ength
ny_DAC dat a[0] . buffer_cycl es
ny_DAC dat a[0] . next _structure

out put _dat ao0;
25000;

1

&y _DAC dat a[1] ;

ny_DAC dat a[1] . data_buffer
ny_DAC data[1].buffer_length
ny_DAC dat a[1] . buffer_cycles
ny_DAC dat a[1] . next _structure

out put _dat al;
25000;

1

&ny_DAC dat a[0] ;

The next step is to allocate and configure a DAC_request structure. The
DAC_request structure is beyond the scope of this chapter and will not be
discussed here except for the DAC_buffer and number_of_scans fields
which directly relate to the data structure configuration. For this
example, DAC_buffer is set to point to our first DAQDRIVE. buffer
structure and number_of _scans is set to 500,000 scans (1 channel / scan).

struct DAC request ny_DAC request;

ny_DAC request. DAC buffer = ny_DAC dat a;
ny_DAC request. nunber _of _scans = 500000;

The key to processing 500,000 samples with only enough buffer space to
hold 50,000 samples is in the use of the BUFFER_FULL and
BUFFER_EMPTY bits. Before arming the request, the BUFFER_FULL bits
in the buffer_status fields are set

ny_DAC dat a[0] . buffer_status
ny_DAC data[1] . buffer_status

BUFFER_FULL,;
BUFFER_FULL,;

DAQDRIVE User's Manual 9-21

The application may not modify the DAQDRIVE._buffer structures or the
data buffers until the operation is halted or until DAQDRIVE. sets the
BUFFER_EMPTY bit. If this is a background operation, the application
may sit in a loop waiting for BUFFER_EMPTY and re-filling each buffer
as it becomes available.

/!l wait in dead loop until buffer 0 is enpty
whi | e((my_DAC data[0] . buf fer_status & BUFFER_EMPTY) == 0);

[l buffer O is enpty. re-fill buffer frominput file, clear
/1 BUFFER_EMPTY and re-set BUFFER_FULL when conpl ete.

nmy_DAC data[0] . buffer_status = BUFFER FULL;
/!l wait in dead loop until buffer 1 is enpty
whi | e((nmy_DAC data[1] . buffer_status & BUFFER_EMPTY) == 0);

/[l buffer 1 is enpty. re-fill buffer frominput file, clear
/1 BUFFER_EMPTY and re-set BUFFER_FULL when conpl ete.

nmy_DAC data[1]. buffer_status = BUFFER FULL;

/1 repeat until 500,000 sanples are processed

Another option for background mode operations is to monitor the
BUFFER_EMPTY_EVENT bit in the DAC_request structure's
request_status field. The application may assume the BUFFER_EMPTY
bit is set before the BUFFER_EMPTY_EVENT is generated and that the
application may safely access the data buffer.

/1 wait in dead | oop for BUFFER_EVMPTY_EVENT
whi | e((my_DAC request.request_status & BUFFER _EMPTY_EVENT) ==0) ;

/1l a buffer is enpty. determ ne which buffer,re-fill the
/!l buffer, clear BUFFER EMPTY, and re-set BUFFER FULL

i f((my_DAC data[O0].buffer_status & BUFFER_EMPTY) = 0)

{
/Il re-fill buffer O

nmy_DAC dat a[0] . buf f er _stat us
}

el se

{
/] re-fill buffer 1

BUFFER_FULL,;

nmy_DAC data[1] . buffer_status
}

/1l repeat until 500,000 sanples are processed

BUFFER_FULL,;

9-22

DAQDRIVE User's Manual 9-23

Another option for background mode operations, and the only option
available for foreground mode operations, is to use the event notification
procedure DagNotifyEvent. The idea of event notification is that
DAQDRIVE. will execute a user-supplied procedure each time an event
occurs. This mechanism can be used to re-fill the data buffers on each
occurrence of the BUFFER_EMPTY_EVENT. The details of event
notification are beyond the scope of this chapter but are discussed in
chapter 11.

The methods shown in example 5 will work only if the application can
process the data and re-set BUFFER_FULL before DAQDRIVE. tries to
access that buffer again. If DAQDRIVE. tries to access a buffer in which
the BUFFER_FULL bit has not been set, a buffer under-run error will
occur.

9-24

(This page intentionally left blank.)

DAQDRIVE User's Manual 9-25

10 Trigger Selections

Once a request has been configured and armed, the trigger determines
when the requested operation will begin. A summary of available trigger
sources and their required parameters is shown in figure 6 below.

Source Slope Channel Voltage Value
internal

TTL X

analog X X X

digital X X

Figure 6. Summary of DAQDRIVE trigger sources and
parameters.

10.1 Trigger Sources

When a request is configured, the application program must specify a
trigger source in the request structure. Depending on which trigger is
specified, additional trigger related fields in the structure may also be
required (see figure 6). When these additional settings are not required,
any value provided in the field is ignored.

10.1.1 Internal Trigger

The simplest trigger source is an internal trigger, also referred to as a
software trigger. To generate an internal trigger, the application program
must execute the DaqTriggerRequest procedure. The internal trigger
source does not require any additional configuration parameters and any
values provided in these fields are ignored.

10.1.2 TTL Trigger

The TTL trigger is a specific TTL input to the hardware device that is
designated by the adapter as a trigger input. When the TTL trigger
source is selected, the trigger slope must also be defined as either rising
edge, requiring a low-to-high transition of the trigger signal, or falling
edge, requiring a high-to-low transition of the trigger signal. The trigger
channel, trigger voltage, and trigger value settings are not required and
any values provided in these fields is ignored.

10-1

10.1.3 Analog Trigger

The analog trigger source allows a request to be initiated by an analog
input voltage level. When the analog trigger is selected, the application
must specify the voltage required to generate the trigger and the analog
input channel to be monitored for this trigger voltage. In addition, the
trigger slope must be specified as either rising edge, the voltage must
transition from below the trigger voltage to above the trigger voltage, or
falling edge, the voltage must transition from above the trigger voltage to
below the trigger voltage. The trigger value setting is not required for an
analog trigger and any value provided in this field is ignored.

10.1.4 Digital Trigger

The digital trigger allows a request to be initiated when a specific value is
detected on a digital input channel. When the digital trigger is selected,
the application must specify the digital input channel to be monitored and
the value that must be received to generate the trigger. The trigger slope
and trigger voltage settings are not required for a digital trigger and any
value provided in these fields is ignored.

DAQDRIVE User's Manual 10-2

10.2 Trigger Modes

DAQDRIVE. supports two trigger modes, one-shot and continuous.
When the application configures a request, the trigger mode must be
specified along with the trigger source.

10.2.1 One-shot Trigger Mode

When a request is configured for one-shot trigger mode, a separate
occurrence of the trigger is required for each scan of the channel list. For
example, if a single digital output channel is configured for an internal
trigger in one-shot mode, each call to DagTriggerRequest will output one
sample to the specified digital channel. If a request is configured to input
data from six analog inputs with a rising edge TTL trigger in one-shot
mode, then each low-to-high transition of the TTL trigger input will cause
six samples to be input (one sample from each of the six channels in the
channel list).

10.2.2 Continuous Trigger Mode

When a request is configured for continuous trigger mode, only one
trigger occurrence is required to initiate the request; the remainder of the
operation is executed periodically at time intervals specified by the
sample rate. For example, if a request is configured to output data to an
analog output channel with a falling edge TTL trigger in continuous
mode at a sample rate of 1KHz, then a high-to-low transition of the TTL
trigger will output the first sample with additional samples following at
1ms intervals (1KHz). If a request is configured to input data from ten
digital inputs with a continuous mode internal trigger at a 50Hz sample
rate, then ten samples will be input when the DaqTriggerRequest
procedure is executed and ten more samples will be input at each 20ms
(50H2z) interval thereafter.

10-3

(This page intentionally left blank.)

DAQDRIVE User's Manual 10-4

11 DAQDRIVE Events

DAQDRIVE uses events to keep the application program informed of the
progress of a request. The following sections provide descriptions of
DAQDRIVE. events and methods of monitoring these events from the
application program.

11.1 Event Descriptions

11.1.1 Trigger Event

The trigger event is generated when a valid trigger is received. If the
request was configured for continuous trigger mode, only one trigger
event will occur when the operation is initiated. If the request was
configured for one-shot trigger mode, a trigger event is generated with
each occurrence of the trigger.

11.1.2 Complete Event

The complete event is generated when a request has completed
successfully. If the complete event occurs at the same time as the buffer
full event, the buffer empty event, and/or the scan event, the events are
reported in the following sequence: scan event, buffer full or buffer
empty event, complete event. A request will never report any events after
the complete event.

11.1.3 Buffer Empty Event

The buffer empty event is generated during output operations each time
one of the specified output data buffers has been completely emptied. If a
buffer empty event occurs at the same time as the complete event, the
buffer full event is reported before the complete event. If a buffer empty
event and a scan event occur simultaneously, the scan event is reported
before the buffer empty event.

11.1.4 Buffer Full Event

The buffer full event is generated during input operations each time one
of the specified input data buffers has been completely filled. If a buffer
full event occurs at the same time as the complete event, the buffer full
event is reported before the complete event. If a buffer full event and a
scan event occur simultaneously, the scan event is reported before the
buffer full event.

11-1

11.1.5 Scan Event

The scan event is generated each time the number of scans specified by
the scan_event_level have been completed. If a scan event occurs at the
same time as the complete event, the scan event is reported before the
complete event. If a scan event and a buffer full or buffer empty event
occur simultaneously, the scan event is reported before the buffer full or
buffer empty event.

11.1.6 User Break Event

The user-break event is generated when a request is aborted as a result of
the user-break procedure. The user-break procedure is discussed in
section 13.35. A request will never report any events after the user-break
event.

11.1.7 Time-out Event

The time-out event is generated when a request is aborted because the
specified time-out interval was exceeded. A request will never report any
events after the time-out event.

11.1.8 Run-time Error Event

The run-time error event is generated when an error occurs during the
processing of the request. The application can determine the source of the
error using the DagGetRuntimeError procedure. A request will never
report any events after the time-out event.

11.2 Monitoring Events Using The Request Status

One method of monitoring DAQDRIVE. events is through the
request_status field in the request structure. When an event occurs
during the processing of a request, DAQDRIVE. sets the corresponding
bit to 1 in the request's request_status field as shown in figure 7.
DAQDRIVE. does not rely on the information contained in this field nor
does it ever clear any of the event bits to 0. Therefore, the application
should initialize request_status during the configuration process and may
modify its contents at any time.

DAQDRIVE User's Manual 11-2

DAQDRIVE. constant

Value

Description

NO_EVENTS 0x00000000 | This constant does not represent an event status. It is provided to the application for convenience.
TRIGGER_EVENT 0x00000001 | When setto 1, this bit indicates the specified trigger has been received.

COMPLETE_EVENT 0x00000002 | When set to 1, this bit indicates the request has completed successfully.

BUFFER_EMPTY_EVENT 0x00000004 | When set to 1, this bit indicates at least one of the output data buffers has been emptied.
BUFFER_FULL_EVENT 0x00000008 | When set to 1, this bit indicates at least one of the input data buffers has been filled.

SCAN_EVENT 0x00000010 | When set to 1, this bit indicates the number of scans specified by scan_event_level have been completed at least once.
USER_BREAK_EVENT 0x20000000 | When set to 1, this bit indicates the request has terminated due to a user-break.

TIMEOUT_EVENT 0x40000000 | When set to 1, this bit indicates the request has terminated because the specified time-out interval was exceeded.
RUNTIME_ERROR_EVENT | 0x80000000 | Whensetto 1, this bit indicates the request has terminated because of an error during processing. The application can

determine the source of the error using the DaqGetRuntimeError procedure.

Figure 7. request_status bit definitions.

11-3

Quatech Inc.

#i nclude "daqdrive. .h"

#i ncl ude "userdata. h"

unsi gned short exit_program

[***** (pen the device (see DagQpenDevice). *
[***** Prepare a background request. *kk kx|

ny_request . | O _node
ny_request . request _status

= BACKGROUND | RQ
= NO _EVENTS;

[***** Request the operation. *kk kx|

[***** Armthe request (See DagArnRequest). *

[***** Define events which will make execution st

printf("Request aborted. Tine-out error.\n");

[***** | ndicate run-time error. *okokokok

printf("Request aborted. Run-time error.\n");
[***** | ndicate conplete - no errors. *kk kx|

if ((nmy_request.request_status & COVPLETE EVENT)
printf("Request conpleted.\n");

[***** (O ose the device (See Dagd oseDevice).

***/

***/

[***** Trigger the request (See DaqTriggerRequest).

op.

exit_program = COVPLETE_EVENT | RUNTI ME_ERROR EVENT |

[**xx% Wit for "exit" event. Fhxxk
whi l e((ny_request.request_status & exit_program) == 0)
[***** \Mit in dead | oop for any event. *Rk kx|
whi l e(ny_request.request_status == NO EVENTS);
[***** Process trigger event. *Rk kx|
if ((nmy_request.request_status & TRI GGER_EVENT)
printf("Trigger received.\n");
ny_request.request _status &= (~TR GGER_EVENT);
[***** Process scan event. i
if ((nmy_request.request_status & SCAN EVENT) != 0)
printf("Scan Event.\n");
ny_request.request _status &= (~SCAN_EVENT);
}
[***** |ndicate time-out error. Fhxxk
if ((nmy_request.request_status & TIMEQUT_EVENT) != 0)

if ((nmy_request.request_status & RUNTI ME_ERROR _EVENT)

1= 0)

[***** Re| ease the request (See DagRel easeRequest).

*****/

*****/

*****/

TI MEQUT_EVENT;

= 0)

1= 0)

*****/

DAQDRIVE User's Manual

11-4

11.3 Monitoring Events Using Event Notification

Event notification allows the user to define a procedure that DAQDRIVE.
will execute each time an event occurs. Event notification is especially
useful during foreground mode operations when DAQDRIVE. has control
of the CPU. The request's event notification procedure is installed using
DaqgNotifyEvent and should be installed before the request is armed.

unsi gned short DagNotifyEvent (unsigned short request_handl e,
void (far pascal *event_procedure)
(unsi gned short,

unsi gned short,
unsi gned short),
unsi gned | ong event _mask)

The event procedure defined by the application program must be a 'far’
pascal compatible procedure of type void. When executed, DAQDRIVE.
provides the event procedure with the request's request_handle, the type
of event which has occurred as shown in figure 8, and an event error
code. This error code is set to 0 for all events except the run-time error
event where it is used to specify the type of error encountered as defined
in chapter 14. Since the request_handle is provided to the event
procedure, a single event procedure may service events from multiple
requests.

void far pascal event_procedure(unsigned short request_handl e,
unsi gned short event _type,

unsi gned short error_code)

The following restrictions apply to the event procedure:

1. only one event procedure may be installed per request.
2. the event procedure can not call any DAQDRIVE. procedures.

3. Because the event procedure may be called from within an
interrupt service routine (ISR), the event procedure should
avoid using BIOS, DOS or Windows system calls.

11-5

DAQDRIVE. constant Value | Description

EVENT_TYPE_TRIGGER 0 | This call to the notification procedure is the result of a trigger event.
EVENT_TYPE_COMPLETE 1 | Thiscall to the notification procedure is the result of a complete event.
EVENT_TYPE _BUFFER_EMPTY 2 | Thiscall to the notification procedure is the result of a buffer empty event.
EVENT_TYPE_BUFFER_FULL 3 | Thiscall to the notification procedure is the result of a buffer full event.
EVENT_TYPE_SCAN 4 | This call to the notification procedure is the result of a scan event.
EVENT_TYPE_USER_BREAK 29 | Thiscall to the notification procedure is the result of a user break event.
EVENT _TYPE_TIMEOUT 30 | Thiscall to the notification procedure is the result of a time-out event.
EVENT_TYPE_RUNTIME_ERROR 31 | Thiscall to the notification procedure is the result of a run-time error event.

Figure 8.

event_type definition.

DAQDRIVE User's Manual

11-6

The application may enable or disable the notification of specific events
using the bits of the event_mask variable as defined in figure 9. To enable
notification of an event, the application need only set the corresponding
bit in the event_mask to 1. To disable the notification, the event_mask bit
is cleared to 0. Because event_mask is a bit mask, multiple events may be
enabled by ORing specific event notification bits.

IMPORTANT:
event_mask only controls the notification of events. The

request_status field in the request structure is updated
regardless of the event_mask settings.

DAQDRIVE. constant Value Description

NO _EVENTS 0x00000000 Disable all event notification.
TRIGGER_EVENT 0x00000001 Enable notification of trigger events.
COMPLETE_EVENT 0x00000002 | Enable notification of complete events.
BUFFER_EMPTY_EVENT 0x00000004 | Enable notification of buffer empty events.
BUFFER_FULL EVENT 0x00000008 Enable notification of buffer full events.
SCAN_EVENT 0x00000010 | Enable notification of scan events.
USER_BREAK_EVENT 0x20000000 | Enable notification of user break events.
TIMEOUT_EVENT 0x40000000 Enable notification of time-out events.
RUNTIME_ERROR_EVENT | 0x80000000 Enable notification of run-time error events.

Figure 9. event_mask bit definitions.

11-7

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

swi tch(event _type)
{
case EVENT_TYPE TR GGER
[***** process trigger event *kk kx|
br eak;
case EVENT_TYPE COWPLETE:

[***** process conpl ete event *kk kx|
br eak;

voi d main()
unsi gned short request_handl e;
unsi gned short status;
unsi gned long event_mask;
[***** (Cpen the device (see DaqgQpenDevice). *kk kx|
[***** Request an operation. (gets a request_handle)
[***** Define events to be notified. Fhxxk
event_mask = TRI GGER EVENT | OOVPLETE_EVENT;
[***** |nstall notification procedure. *kk kx|
if (status !'= 0)
printf("Error installing notification.\n");

[***** Armthe request (See DagArnRequest). *kk kx|

[***** Trigger the request (See DaqTriggerRequest).

void far pascal ny_event_procedure(unsigned short request_handl e,
unsi gned short event _type,
unsi gned short error_code)

‘k****/

status = DaqgNoti fyEvent (request _handl e, ny_event _procedure, event_mask);

‘k****/

DAQDRIVE User's Manual

11-8

11.4 Monitoring Events Using Messages In Windows

DAQDRIVE provides an additional procedure for Windows applications
which provides event notification by posting messages to the application
window. This procedure, DagPostMessageEvent, installs a pre-defined
messaging procedure using the DagNotifyEvent mechanism discussed in
the previous section. Therefore, DagPostMessageEvent and
DaqgNotifyEvent can not both be used on the same request.

unsi gned short DaqPost MessageEvent (unsigned short request_handl e,
unsi gned | ong event _nask,

unsi gned short wi ndow_handl e)

When an event occurs, DAQDRIVE. uses the Windows PostMessage
procedure to send an event message to the window specified by
window_handle. The message number (uMsg) is the sum of the event
value specified in figure 8 and the Windows message constant
WM_USER. The two message specific arguments, LPARAM and
WPARAM, are used to specify the request's request_handle and an event
error_code respectively. The error code is set to 0 for all events except the
run-time error event where it is used to specify the type of error
encountered as defined in chapter 14.

The application may enable or disable the notification of certain events
using the bits of the event_mask variable as defined in figure 9. To enable
notification of an event, the application need only set the corresponding
bit in the event_mask to 1. To disable the notification, the event_mask bit
is cleared to 0. Because event_mask is a bit mask, multiple events may be
enabled by ORing specific event notification bits.

IMPORTANT:
event_mask only controls the notification of events. The

request_status field in the request structure is updated
regardless of the event_mask settings.

11-9

(This page intentionally left blank.)

DAQDRIVE User's Manual 11-10

12 Common Application Examples

This chapter is dedicated to providing working example programs for
some common data acquisition applications. In each of these examples,
one data acquisition adapter was selected for the purpose of illustration.
All of these examples are written in C using the DOS C-library version of
DAQDRIVE.. Additional example programs are also provided on the
distribution diskette(s) supplied with the data acquisition hardware.

12-1

12.1 Analog Input (A/D) Examples

12.1.1 Examplel
This example inputs a single value to a single A/D channel .

/*** |nput a single point froma single A D channel xRk

#i ncl ude <coni o. h>
#i ncl ude <graph. h>
#i ncl ude <stdio. h>
#i nclude <stdlib. h>

#i ncl ude "userdata. h"
#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i nclude "dagp.h"

unsi gned short nain()
{
unsi gned short | ogical _device;
unsi gned short status;
unsi gned short channel ;
short input_val ue;
float gain;

char far *device_type
char far *config_file

" DAQP-16";
" dagp- 16. dat ";

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)

printf("Error opening device. Status code 9%l.\n", status);
exit(status);
}
do
{ .
[*** Step 2: Get A/D channel and gain ***/

cl ear scr een(_GCLEARSCREEN) ;

Bri ntf("\n\nEnter a channel nunmber between O and 7 or \"99\" to quit: ");
scanf ("%l", &channel);
i f(channel 1= 99)

{
printf("\n\nEnter a gain of 1, 2, 4, or 8 ");
scanf ("%", &gain);

[*** Step 3: |nput value from channel kx|

status = DagSi ngl eAnal ogl nput (| ogi cal _devi ce, channel , gai n, & nput _val ue);
if(status !'=0)
printf("\m\nAD input error. Status code 9%l.\n\n", status);
el se
printf("Channel %: 9%\ n\n", channel, input_val ue);
printf(" Press <ESC> to continue.\n");
whil e(getch() != 0xlb);
}
}
whi | e(channel = 99);

[*** Step 4: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

DAQDRIVE User's Manual

12-2

12.1.2 Example 2

This example inputs 1000 samples from A/D channel 0 at 100Hz .

/*** ‘k**/

I nput 1000 sanpl es from A/ D channel 0

<coni o. h>

<gr aph. h>
<stdlib. h>
<stdi 0. h>
"userdata. h"
"daqdrive. . h"
"dagopenc. h"
" daq1200. h "

i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude

/*** \When defined global or static, structures are
[*** automatically initialized to all 0

struct DAQDRIVE. _buffer ny_data;
struct ADC request user _request;
unsi gned short nain()

{

unsi gned short 1 ogical _device

unsi gned short request_handl e

unsi gned short channel

unsi gned short status

unsi gned short i, j;

short i nput_data[1000];

float gain;

unsi gned | ong event _nask

char far *device_type = "DAQ 1201";
char far *config file = "dag-1201.dat "
[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQL200,
if (status !'= 0)

&l ogi cal _devi ce

printf("Error St at us code

exit(status);

openi ng devi ce

}
[*** Step 2: Input data ***/
channel =0
gain =1
/*** Prepare Buffer Structure ***/
ny_dat a. dat a_buffer = input_data; /*
ny_data. buffer_length = 1000; /*
ny_dat a. next _structure = NULL; /*
ny_dat a. buf f er _st at us = BUFFER_EMPTY; /*
/*** Prepare the A/D request structure ***/
user _request. channel _array_ptr &channel
user _request.gain_array_ptr &gai n;
user _request.array_l ength 1;
user _request . ADC buf fer &ny_dat a

user _request .
user _request .
user _request .
user _request .

trigger_source
trigger_node

| O_node

cl ock_source

I NTERNAL_TRI GGER,

user _request.sanple_rate 100

user _request . nunber _of _scans 1000

user _request.scan_event _| evel 0;

user _request.calibration) CALI BRATI O\,
user _request.timeout _interval 0;

%l.\n",

‘k**/
‘k**/

devi ce_type

status);

config_file);

set pointer to data array
nunber of points in buffer
indicate no nore buffers
indicate buffer enpty (ready)

array of channel s
array of gains
nunber of channels
pointer to data
interna

i nput al
backgr ound node
use on-board clock
100 Hz input rate
1000 scans

no scan events

no calibration

di sabl e ti me-out

trigger
poi nts

12-3

request _handle = 0; /* new request */
status = DagAnal ogl nput (| ogical _device, &user_request, &request_handle);
if(status !'=0)

printf("A'D request error. Status code %l.\n", status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[*** Step 3: Armthe Request ***/

status = DagArnRequest (request _handl e);
if(status !'=0)

printf("Arm request error. Status code %l.\n", status);
DagRel easeRequest (request _handl e) ;

DaqC oseDevi ce(l ogi cal _devi ce);

exit(status);

[*** Step 4: Trigger the Request ***/

printf("Acquiring data. This will take 10 seconds. Please wait.\n");
status = DaqTri gger Request (request _handl e);
if(status !'=0)

printf("Trigger request error. Status code 9%l.\n", status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

/*** Step 5: Wait for conpletion or error xRk

event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
whi |l e((user_request.request_status & event_nask) == 0); [/* wait for event */
i f((user_request.request_status & COVPLETE EVENT) != 0)

[*** if successful, display data ***/
for(i =0; i < 50; i++)

{
_cl ear screen(_GCLEARSCREEN) ;
for(j =0; j < 20; j++)
printf("sanple #%d: value = 9% d\n", ((i*20)+j),input_data[(i*20)+j]);
printf("\n Press <ESC> to continue");
whil e(getch() != 0xlb);
}

el se

printf("Run-time error. Qperation aborted.\n");
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

[*** Step 6: Rel ease the Request ***/

status = DagRel easeRequest (request _handl e);
if(status !'=0)

printf("Could not release configuration. Status code %l.\n", status);
exit(status);

[*** Step 7: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

DAQDRIVE User's Manual 12-4

12.1.3 Example 3
This example inputs 200 samples each from five A/D channels at 100Hz .

/*** ‘k**/

I nput 200 sanpl es each from A/ D channels 0 to 4
<coni o. h>
<gr aph. h>

<stdlib. h>
<stdi 0. h>

i ncl ude
i ncl ude
i ncl ude
i ncl ude

"userdata. h"
"daqdrive. . h"
"dagopenc. h"
"dagp. h"

i ncl ude
i ncl ude
i ncl ude
i ncl ude
/*** \When defined global or static, structures are xRk
[*** automatically initialized to all 0O xRk
struct
struct

DACQDRI VE. _buffer
ADC r equest

ny_dat a;
user _r equest ;

unsi gned short

{

unsi gned short
unsi gned short

mai n()

| ogi cal _devi ce;
request _handl e;

short
unsi gned | ong

| ogi cal _devi ce
status =
if (status !'= 0)

printf("Error

*config_file =

char far *device_type
char far
[*** Step 1: Ini

i nput_dat a[200] [5] ;

event _nask;

= " DAQP-208";

" dagp- 208. dat "
tialize Hardware ***/

= 0;

DaqQpenDevi ce(DAQP, &l ogi cal _devi ce,

openi ng devi ce.

St at us code

exit(status);

unsi gned short channel [5] = 0, 1, 2, 3, 4},
float gain[5] ={ 10, 1.0, 2.0, 4.0, 1.0 };
unsi gned short status;

unsi gned short i, j, k

device_type, config_file);

%l.\n", status);

}
[*** Step 2: Input data ***/
/*** Prepare Buffer Structure ***/
ny_dat a. dat a_buffer = input_data; /* set pointer to data array */
ny_data. buffer_length = 1000; /* nunber of points in buffer */
ny_dat a. next _structure = NULL; /* indicate no nore buffers */
ny_dat a. buf f er _st at us = BUFFER_EMPTY; /* indicate buffer enpty (ready) */
/*** Prepare the A/D request structure ***/
user _request.channel _array_ptr = channel ; /* array of channels */
user _request.gain_array_ptr = gain; /* array of gains */
user _request.array_l ength = 5; /* nunber of channels */
user _request .. ADC buf fer = &ny_dat a; /* pointer to data */
user _request.trigger_source = | NTERNAL_TRI GGER; /* internal trigger */
user _request. trigger_node = CONTINUOUS TRIGGER, /* input all points */
user _request. | O node = BACKGROUND | RQ /* background rmode */
user _request. cl ock_source = | NTERNAL_CLOCK /* use on-board clock */
user _request.sanple_rate = 100; /* 100 Hz input rate */
user _r equest . nunber _of _scans = 200; /* 200 scans */
user _request.scan_event _| evel = 0; /* no scan events */
user _request.calibration = NO_CALI BRATI ON, /* no calibration */
user _request.timeout _interval = 0; /* disable tinme-out */
user _request. request _st at us = 0; /* initialize status */

12-5

status = DagAnal ogl nput (| ogical _device, &user_request, &request_handle);
if(status !'=0)

printf("A'D request error. Status code %l.\n", status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

}
[*** Step 3: Armthe Request ***/

status = DagArnRequest (request _handl e);
if(status !'=0)

printf("Arm request error. Status code %l.\n", status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

}
[*** Step 4: Trigger the Request ***/

printf("Acquiring data. This will take 2 seconds. Please wait.\n");
status = DaqTri gger Request (request _handl e);
if(status !'=0)

printf("Trigger request error. Status code 9%il.\n", status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

/[*** Step 5: Wait for conpletion or error xRk

event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
whi |l e((user_request.request_status & event_nask) == 0); /* wait for event */
i f((user_request.request_status & COVPLETE EVENT) != 0)

[*** if successful, display data ***/
for(i =0; i < 10; i++)

{
_cl ear screen(_GCLEARSCREEN) ;
for(j =0; j < 20; j++)

printf("sanple #%d: ", ((i * 20) +j));
for(k =0; k <5; k++)

printf(" 9%d", input_data[(i * 20) + j][k];
printf("\n");

printf("\n Press <ESC> to continue");
whil e(getch() != 0xlb);
}

el se

printf("Run-time error. Qperation aborted.\n");
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

}
[*** Step 6: Rel ease the Request ***/

status = DagRel easeRequest (request _handl e);
if(status !'=0)

printf("Could not release configuration. Status code %l.\n", status);
exit(status);

}
[*** Step 7: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

DAQDRIVE User's Manual 12-6

12.1.4 Example 4

This example simulates a volt meter operation reading 20 samples from
A/D channel 0 s at 1Hz using only one data memory location .

/*** ‘k**/

I nput 20 sanples from A/ D channel 0

<coni 0. h>
<gr aph. h>
<stdlib. h>
<stdi 0. h>

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

"userdata. h"
"daqdrive. . h"
"dagopenc. h"
"daqgp. h"

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

‘k**/

/*** \When defined global or static, structures are

/*** automatically initialized to al

O ‘k**/

struct
struct

DACQDRI VE. _buffer
ADC r equest

ny_dat a
user _r equest ;

unsi gned short

unsi gned short
unsi gned short

mai n()

| ogi cal _devi ce
request _handl e

channel
status

unsi gned short
unsi gned short

short current_sanpl e;

float gain;

unsi gned long event_nask

char far *device_type = "DAQP-16";
char far *config_file = "dagp-16.dat ";
[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device
if (status !'= 0)

device_type, config_file);

printf("Error Status code 9%d.\n",

exit(status);

openi ng devi ce. status);

HeAr v AmAc

Aal i hrAati An

NN AL L DDATIE ML 1%

nA Aaali hratiAn

[*** Step 2: Input data ***/

channel =0

gain =2

/*** Prepare Buffer Structure ***/

ny_dat a. dat a_buffer = ¤t_sanple; /* set pointer to data storage */
ny_data. buffer_length = 1; /* nunber of points in buffer */
ny_dat a. next _structure = NULL; /* indicate no nore buffers */
ny_dat a. buf f er _st at us = BUFFER_EMPTY; /* indicate buffer enpty (ready) */
/*** Prepare the A/D request structure ***/

user _request. channel _array_ptr = &channel ; /* array of channels */
user _request.gain_array_ptr = &gain; /* array of gains */
user _request.array_l ength =1 /* nunber of channels */
user _request .. ADC buf fer = &ny_dat a; /* pointer to data */
user _request.trigger_source = | NTERNAL_TRI GGER; /* internal trigger */
user _request. trigger_node = CONTINUOUS TRIGGER, /* input all points */
user _request. | O node = BACKGROUND | RQ /* background rmode */
user _request. cl ock_source = | NTERNAL_CLOCK; /* use on-board clock */
user _request.sanple_rate =1 /* 1 Hz input rate */
user _request . nunber _of _scans = 20; /* 20 scans */
user _request.scan_event _| evel = 0; /* no scan events */

* 1

12-7

user _request.timeout _interval 0; /* disable tinme-out */
user _request. request _st at us 0; /* initialize status */
request _handle = 0; /* new request */
status = DagAnal ogl nput (| ogical _device, &user_request, &request_handle);
if(status !'=0)

printf("A'D request error. Status code %l.\n", status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[*** Step 3: Armthe Request ***/

status = DagArnRequest (request _handl e);
if(status !'=0)

printf("Arm request error. Status code %l.\n", status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

[*** Step 4: Trigger the Request ***/

status = DaqTri gger Request (request _handl e);
if(status !'=0)

printf("Trigger request error. Status code 9%l.\n", status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

/[*** Step 5: Wait for conpletion or error xRk

_cl ear screen(_GCLEARSCREEN) ;
event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;

do
{
i f((user_request.request_status & BUFFER FULL_EVENT) != 0)
_settextposition(10, 10);
printf("The current value is 9%d", current_sanple);
ny_dat a. buf fer_status = BUFFER_EMPTY; /* buffer enpty (ready) */
user _request.request _status &= (~BUFFER _FULL_EVENT);
}
whi |l e((user_request.request_status & event_mask) == 0); /* wait for event */
i f((user_request.request_status & RUNTI ME ERROR EVENT) != 0)

DaqCet Runt i meError (request _handl e, &st at us)

printf("\n\n\nRun-time error. Error code %. Qperation aborted.\n", status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

[*** Step 6: Rel ease the Request ***/

status = DagRel easeRequest (request _handl e);
if(status !'=0)

printf("Could not release configuration. Status code %l.\n", status);
exit(status);

[*** Step 7: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

DAQDRIVE User's Manual 12-8

12.1.5 Example 5

This example inputs 100,000 samples from A/D channel 0 and stores the
data in a disk file.

[*** | nput 100,000 sanples fromA/D channel 0 and wite to disk xRk

#i ncl ude <coni o. h>
#i ncl ude <graph. h>
#i nclude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude "userdata. h"
#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i nclude "dagp.h"

/*** \When defined global or static, structures are xRk
[*** automatically initialized to all 0 xRk

struct DAQDRI VE. _buffer ny_data[4];
struct ADC_request user _request;

unsi gned short mai n()

unsi gned short | ogical _device;
unsi gned short request_handl e;
unsi gned short channel ;

unsi gned short status;

unsi gned short current_buffer;
unsi gned short i;

short buffer[4][1000];

float gain;

unsi gned |l ong event_nask;

char far *device_type = "DAQP-208";
char far *config file = "dagp-208.dat "

FILE *output _file;
[*** Step 1: Initialize Hardware ***/
| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)
printf("Error opening device. Status code %l.\n", status);
exit(status);

[*** Step 2: Input data ***/

channel

= 0;
gain = 2;

/*** Prepare Buffer Structures ***/

ny_dat a[0] . dat a_buf f er = &buffer[0][0]; /* set pointer to data array */
ny_data[0] . buffer_l ength = 1000; /* nunber of points in buffer */
ny_data[0] . next _structure = &nmy_data[1]; /* point to next buffer */
ny_dat a[0] . buf f er _stat us = BUFFER_EMPTY; /* buffer enpty (ready) */
ny_dat a[1] . dat a_buf fer = &buffer[1][0]; /* set pointer to data array */
ny_data[1] . buffer_l ength = 1000; /* nunber of points in buffer */
ny_data[1] . next _structure = &nmy_data[2]; /* point to next buffer */
ny_dat a[1] . buf f er _stat us = BUFFER_EMPTY; /* buffer enpty (ready) */
ny_dat a[2] . dat a_buf fer = &buffer[2][0]; /* set pointer to data array */
ny_data[2] . buffer_l ength = 1000; /* nunber of points in buffer */
ny_data[2] . next_structure = &nmy_data[3]; /* point to next buffer */
ny data[2].buffer status = BUFFER EMPTY,; /* buffer enpty (ready) */

12-9

ny_dat a[3] . dat a_buf fer
ny_data[3] . buffer_l ength
ny_dat a[3] . next _structure
ny_dat a[3] . buf fer _status

&uffer[3][0]; /* set pointer to data array */
1 ; /* nunber of points in buffer */
&ny_dat a[0] ; /* point to next buffer */
BUFFER_EMPTY; /* buffer enpty (ready) */

/*** Prepare the A/D request structure ***/

user _request. channel _array_ptr &channel ; /* array of channels */
user _request.gain_array_ptr &gai n; /* array of gains */
user _request.array_|l ength 1; /* nunber of channels */
user _request . ADC buf fer &ny_dat a[0] ; /* pointer to data */

user _request . trigger_source
user _request.trigger_node

| NTERNAL_TRI GGER, /* internal trigger */
CONTI NUOUS_TRIGGER, /* input all points */

user _request. | O node BACKGROUND_| RQ /* background rmode */
user _request. cl ock_source I NTERNAL _ CLOCK; /* use on-board clock */
user _request.sanple_rate 1000; /* 1 KHz input rate */
user _request . nunber _of _scans 100000; /* 100000 scans */
user _request.scan_event _| evel 0; /* no scan events */
user _request.calibration NO_CALI BRATI ON; /* no calibration */
user _request.timeout _interval 0; /* disable tinme-out */
user _request. request _st at us 0; /* initialize status */
request _handle = 0; /* new request */

status = DagAnal ogl'nput(| ogi cal _devi ce, &user_request, & equest_handle);
if(status !'=0)

printf("A'D request error. Status code %l.\n", status);
DaqQ oseDevi ce(l ogi cal _devi ce);
exit(status);

[*** Step 3: Armthe Request ***/

status = DagArnRequest (request _handl e);
if(status !'=0)

printf("Arm request error. Status code %l.\n", status);
DagRel easeRequest (request _handl e) ;

DaqQ oseDevi ce(l ogi cal _devi ce);

exit(status);

[*** Step 4: Open a data file ***/
output _file = fopen("ADC DATA. ASC',"W');
[*** Step 5: Trigger the Request ***/
printf("Acquiring data. This will take 100 seconds. Please wait.\n");
status = DaqTri gger Request (request _handl e);
if(status !'=0)
printf("Trigger request error. Status code 9%l.\n", status);
DagRel easeRequest (request _handl e) ;
Daqd oseDevi ce(l ogi cal _devi ce);

fclose(output_file);
exit(status);

/*** Step 6: Wait for conpletion or error xRk

current _buffer = 0;
event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
do
{
if((ny_data[current_buffer].buffer_status == BUFFER_FULL)

for(i =0; i < 1000; i++)
fprintf(output_file,"%d\n", buffer[current_buffer][i]);
nv datalcurrent bufferl.buffer status = BUFFER EMPTY: /* buffer emotv */

DAQDRIVE User's Manual 12-10

if(current_buffer == 3)
current _buffer = 0;
el se
current _buffer++;
}

whi |l e((user_request.request_status & event_mask) == 0); /* wait for event */
[*** Exit if error ***/
i f((user_request.request_status & RUNTI ME_ ERROR EVENT) != 0)
DaqCet Runt i meError (request _handl e, &st at us) ;
printf("\n\n\nRun-time error. Error code %. Qperation aborted.\n", status);
DagRel easeRequest (request _handl e) ;
Daqd oseDevi ce(l ogi cal _devi ce);

fclose(output_file);
exit(status);

/*** Wite any remaining buffers and close file xRk

do
{
if (ny_data[current_buffer].buffer_status == BUFFER FULL)
{
for(i =0; i < 1000; i++)
fprintf(output_file,"%d\n", buffer[current_buffer][i]);
ny_data[current _buffer].buffer_status = BUFFER _EMPTY; /* buffer enpty */
if(current_buffer == 3)
current _buffer = 0;
el se
current _buffer++;
}
whil e(current _buffer 1= 0);

fclose(output_file);
[*** Step 6: Rel ease the Request ***/

status = DagRel easeRequest (request _handl e);
if(status !'=0)

printf("Could not release configuration. Status code %l.\n", status);
exit(status);

[*** Step 7: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)
printf("Error closing device. Status code 9%l.\n", status);
return(status);
1

12-11

12.2 Analog Output (D/A) Examples

12.2.1 Examplel
This example outputs a single value to a single D/A channel .

[*** Qutput a single point to a single DA channel . xRk

#i ncl ude <coni o. h>
#i ncl ude <graph. h>
#i ncl ude <stdio. h>
#i nclude <stdlib. h>

#i ncl ude "userdata. h"
#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "daql200.h"

unsi gned short nain()
{
unsi gned short | ogical _device;
unsi gned short status;
unsi gned short channel ;
short output_val ue;
char far *device_type
char far *config_file

" DAQ 1201 ";
" dag- 1201. dat "

[*** Step 1: Initialize Hardware ***/
| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQL200, &l ogical _device, device type, config_file);
if (status !'= 0)
printf("Error opening device. Status code 9%l.\n", status);
exit(status);

}
do

{
[*** Step 2: Get DA channel and output value ***/

cl ear scr een(_GCLEARSCREEN) ;

Bri ntf("\n\nEnter a channel nunmber between O and 7 or \"99\" to quit: ");
scanf ("%l", &channel);
i f(channel 1= 99)

printf("\n\nEnter the output val ue between -2048 and 2047: ");
scanf ("%l", &output_val ue);

[*** Step 3: Qutput value to channel *Ek |

status = DagSi ngl eAnal ogQut put (I ogi cal _devi ce, channel , &out put_val ue)

if(status !'=0)
printf("\n\n DA output error. Status code 9%l.\n\n", status);
printf(" Press <ESC> to continue.\n");
whil e(getch() != 0xlb);
}

}

}
whi | e(channel = 99);

[*** Step 4: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)
printf("Error closing device. Status code 9%l.\n", status);
return(status);
1

DAQDRIVE User's Manual

12-12

12.2.2 Example 2

This example outputs a single value to a single D/A channel usinga TTL
trigger.

/*** Qutput a single point to a single DDA channel on an external trigger xRk

#i ncl ude <graph. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude "userdata. h"
#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i nclude "da8p-12.h"

/*** \When defined global or static, structures are xRk
[*** automatically initialized to all 0O xRk

struct DAQDRI VE. _buffer ny_data;
struct DAC_request user _request;

unsi gned short mai n()

unsi gned short 1 ogical _device;

unsi gned short request_handl e;

unsi gned short status;

unsi gned short channel ;

short output_val ue;

unsi gned | ong event _mask;

char far *device_type = "DA8P-12B";
char far *config file = "da8p-12b.dat "

[*** Step 1: Initialize Hardware ***/
| ogi cal _device = 0;
status = DaqQpenDevi ce(DA8P-12, &l ogical _device, device type, config_file);
if (status !'= 0)
printf("Error opening device. Status code %l.\n", status);
exit(status);
do
[*** Step 2: Get DA channel and output value ***/
_cl ear screen(_GCLEARSCREEN) ;
printf("\n\nEnter a channel nunber between 0 and 7 or \"99\" to quit: ");
scanf ("%l", &channel);
if(channel !'=99)

{
printf("\n\nEnter the output val ue between -2048 and 2047: ");
scanf ("%l", &output_val ue);

[*** Step 3: Qutput data ***/

[*** Prepare Buffer Structure ***/

ny_dat a. data_buffer = &out put _val ue; /* point to output data */
ny_data. buffer_length = 1; /* nunber of points */
ny_dat a. buf f er _cycl es =1 /* cycle buffer once */
ny_dat a. next _structure = NULL; /* no nore buffers */
ny_dat a. buf f er _st at us = BUFFER _FULL; /* buffer full (ready) */

/*** Prepare the DA request structure ***/

user _request.channel _array_ptr = &channel ; /* array of channels */
1.

I % wiimdanr ~Af Alaneal A * 1

timAr v AamiiAant Av v A | amat bk —

12-13

user _request . DAC buffer = &ny_dat a; /* pointer to data */
user _request.trigger_source = TTL_TR GGER /* select TTL trigger */
user _request.trigger_sl ope = R SI NG_EDGE; /* rising edge trigger*/
user _request. | O node = BACKGROUND | RQ /* background node */
user _r equest . nunber _of _scans =1 /* scan channela once */
user _request.scan_event _| evel = 0; /* no scan events */
user _request.calibration =) CALIBRATION, /* no calibration */
user _request.timeout _interval = 0; /* disable tinme-out */
user _request . request _st at us = 0; /* initialize status */
request _handle = 0; /* new request */
status = DagAnal ogQut put (| ogi cal _devi ce, &ser _request, & equest _handl e)
if(status !'=0)
printf("D'A request error. Status code %l.\n", status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);
[*** Step 4: Armthe Request ***/
status = DagArnRequest (request _handl e);
if(status !'=0)
printf("Arm request error. Status code %l.\n", status);
DagRel easeRequest (request _handl e) ;
DaqC oseDevi ce(l ogi cal _devi ce);
exit(status);
/*** Step 5: Wait for conpletion or error *Ek |
printf("\n\n\n Waiting for trigger ...");
event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
whi |l e((user_request.request_status & event_nmask) == 0); /* wait for */
/* event */
i f((user_request.request_status & COWLETE EVENT) !=0)
printf("\n\n D/A Qutput Request conplete.\n");
el se
printf("Run-time error. Qperation aborted.\n");
DagRel easeRequest (request _handl e) ;
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);
/*** Step 6: Rel ease the Request ***/
status = DagRel easeRequest (request_handl e);
if(status !'=0)
{
printf("Could not release configuration. Status code %l.\n", status);
exit(status);
}
whi | e(channel = 99);
[*** Step 7: O ose Hardware Device ***/
status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)
printf("Error closing device. Status code 9%l.\n", status);
return(status);
DAQDRIVE User's Manual 12-14

12.2.3 Example 3

This example outputs 1000 cycles of a 60 Hz sinewave to D/A channel 0.
The sinewave contains 60 points per cycle.

[*** Qutput a sinewave to DA channel 0 ***/

#i nclude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <nath. h>

#i ncl ude "userdata. h"
#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i nclude "dagp.h"

/*** \When defined global or static, structures are xRk
[*** automatically initialized to all 0O xRk

struct DAQDRI VE. _buffer ny_data;
struct DAC_request user _request;

unsi gned short mai n()

unsi gned short 1 ogical _device;

unsi gned short request_handl e;

unsi gned short channel ;

unsi gned short status;

unsi gned short i;

short sinewave[60];

unsi gned long event_mask;

char far *device_type " DAQP-208";
char far *config_file " dagp- 208. dat "

[*** Step 1: Initialize Hardware ***/
| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)
printf("Error opening device. Status code 9%l.\n", status);
exit(status);
[*** Step 2: Get DA channel and output val ues xRk
channel = 0;
for(i =0; i < 60; i++)
sinewave[i] = (short)(2047 * sin((2 * 3.1416 * i) / 60));
[*** Step 3: Qutput data ***/

[*** Prepare Buffer Structure ***/

ny_dat a. dat a_buffer = sinewave; /* set pointer to output data */
ny_data. buffer_length = 60; /* nunber of points in buffer */
ny_dat a. buf f er_cycl es = 1000; /* 1000 cycl es through buffer */
ny_dat a. next _structure = NULL; /* indicate no nore buffers */
ny_dat a. buf f er _st at us = BUFFER_FULL; /* indicate buffer full (ready) */

/*** Prepare the DA request structure ***/

user _request. channel _array_ptr = &channel ; /* array of channels */
user _request.array_l ength =1 /* nunber of channels */
user _request . DAC buffer = &ny_dat a; /* pointer to data */
user _request.trigger_source = | NTERNAL_TRI GGER; /* internal trigger */
user _request.trigger_node = CONTINUOUS TRIGGER, /* output all points */
user _request. | O _node = BACKGROUND | RQ /* background mnode */
user _request. cl ock_source = | NTERNAL_CLOCK; /* use on-board clock */

12-15

user _r equest . nunber _of _scans = 60l * 1000l ; /* 60000 scans */
user _request.scan_event _| evel = 0; /* no scan events */
user _request.calibration = NO_CALI BRATI ON, /* no calibration */
user _request.timeout _interval = 0; /* disable tinme-out */
user _request. request _st at us = 0; /* initialize status */
request _handle = 0; /* new request */
status = DagAnal ogQut put (| ogical _device, &user_request, &request_handle);
if(status !'=0)

printf("DIA request error. Status code %l.\n", status);

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);
[*** Step 4: Armthe Request ***/
status = DagArnRequest (request _handl e);
if(status !'=0)

printf("Arm request error. Status code %l.\n", status);

DagRel easeRequest (request _handl e) ;

DaqC oseDevi ce(l ogi cal _devi ce);

exit(status);
[*** Step 5: Trigger the Request ***/
status = DaqTri gger Request (request _handl e) ;
if(status !'=0)

printf("Trigger request error. Status code 9%l.\n", status);

DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);
/*** Step 6: Wait for conpletion or error *Ek |
event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
whi |l e((user_request.request_status & event_nmask) == 0); /* wait for event */
if((user_request.request_status & COWLETE EVENT) !=0)

printf("\n\n D/A Qutput Request conplete.\n");
el se

printf("Run-time error. Qperation aborted.\n");

DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);
[*** Step 7: Rel ease the Request ***/
status = DagRel easeRequest (request _handl e);
if(status !'=0)

printf("Could not release configuration. Status code %l.\n", status);

exit(status);
/*** Step 8: O ose Hardware Device ***/
status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);
DAQDRIVE User's Manual 12-16

12.2.4 Example 4

This example outputs 600 cycles of a sinewave, 300 cycles of a ramp, and
18000 cycles of a square wave to D/A channel 0.

[*** Qutput sine, ranp, and square waves to DY A channel 0 xRk

#i nclude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <nath. h>

#i ncl ude "userdata. h"
#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i nclude "da8p-12.h"

/*** \When defined global or static, structures are initialized to all 0 xRk

struct DAQDRIVE. _buffer ny_data[3];
struct DAC_request user _request;

unsi gned short main()

unsi gned short | ogical _device;

unsi gned short request_handl e;

unsi gned short channel ;

unsi gned short status;

unsi gned short i;

short sinewave[60];

short ranp[120];

short square[2];

unsi gned long event_mask;

char far *device_type " DA8P-12B";
char far *config_file " da8p- 12b. dat "

[*** Step 1: Initialize Hardware ***/
| ogi cal _device = 0;
status = DaqQpenDevi ce(DA8P-12, &l ogical _device, device_ type, config_file);
if (status !'= 0)
printf("Error opening device. Status code 9%l.\n", status);
exit(status);
/*** Step 2: Define the output channel and data val ues xRk
channel = 0;
for(i =0; i < 60; i++)
sinewave[i] = (short)(2047 * sin((2 * 3.1416 * i) / 60));

for(i =0; i < 120; i++)

ranp[i] = (short)((2047.0 * i) / 119);
square[0] = -2048;
square[1] = 2047;

[*** Step 3: Qutput data ***/

/*** Prepare Buffer Structures ***/

ny_dat a[0] . dat a_buf fer = sinewave; /* set pointer to output data */
ny_data[0] . buffer_l ength = 60; /* nunber of points in buffer */
ny_dat a[0] . buf fer _cycl es = 600; /* 600 cycles through buffer */
ny_data[0] . next _structure = &nmy_data[1]; /* point to next buffer */
ny_dat a[0] . buf f er _stat us = BUFFER_FULL; /* indicate buffer full (ready) */
ny_dat a[1] . dat a_buf fer = ranp; /* set pointer to output data */
ny_data[1] . buffer_l ength = 120; /* nunber of points in buffer */

12-17

ny_data[1] . next _structure = &nmy_data[2]; /* point to next buffer */
ny_dat a[1] . buf fer _stat us = BUFFER_FULL; /* indicate buffer full (ready) */
ny_dat a[2] . dat a_buf fer = square; /* set pointer to output data */
ny_data[2] . buffer_l ength = 2; /* nunber of points in buffer */
ny_dat a[2] . buf fer _cycl es = 18000; /* 18000 cycl es through buffer */
ny_data[2] . next_structure = NULL; /* mo nmore buffers */
ny_dat a[2] . buf fer _status = BUFFER_FULL; /* indicate buffer full (ready) */
/*** Prepare the DA request structure ***/
user _request. channel _array_ptr = &channel ; /* array of channels */
user _request.array_l ength =1 /* nunber of channels */
user _request . DAC buffer = &ny_data[O0]; /* pointer to data */
user _request.trigger_source = | NTERNAL_TRI GGER; /* internal trigger */
user _request. trigger_node = CONTINUOUS TRIGGER, /* output all points */
user _request. | O node = BACKGROUND | RQ /* background rmode */
user _request. cl ock_source = | NTERNAL_CLQOCK; /* use on-board clock */
user _request.sanple_rate = 3600; /* 3600 points / second */
user _request . nunber _of _scans = 60 * 600I /* 36000 scans of sine */
+ 1201 * 300l /* 36000 scans of ranp */
+ 2 * 18000l ; /* 36000 scans of square*/

user _request.scan_event _| evel = 0; /* no scan events */
user _request.calibration =) CALI BRATI O\, /* no calibration */
user _request.timeout _interval = 0; /* disable tinme-out */
user _request . request _st at us = 0; /* initialize status */
request _handle = 0; /* new request */
status = DagAnal ogQut put (| ogical _device, &user_request, &request_handle);
if(status !'=0)

printf("DIA request error. Status code %l.\n", status);

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);
[*** Step 4: Armthe Request ***/
status = DagArnRequest (request _handl e);
if(status !'=0)

printf("Arm request error. Status code %l.\n", status);

DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);
[*** Step 5: Trigger the Request ***/
status = DaqTri gger Request (request _handl e);
if(status !'=0)

{

printf("Trigger request error. Status code 9%l.\n", status);

DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);
[*** Step 6: Wait for conpletion or error xRk
event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
whi |l e((user_request.request_status & event_nask) == 0); /* wait here for
event */
if((user_request.request_status & COWLETE EVENT) !=0)

printf("\n\n D/A Qutput Request conplete.\n");
el se

printf("Run-time error. Qperation aborted.\n");

DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

DAQDRIVE User's Manual 12-18

[*** Step 7: Rel ease the Request ***/

status = DagRel easeRequest (request _handl e);
if(status !'=0)

printf("Could not release configuration. Status code 9%l.\n", status);
exit(status);

/*** Step 8: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

}

12-19

12.3 Digital Input Examples

12.3.1 Examplel

This example inputs a single value from a single digital input channel .

/*** |nput a single point froma single digita

<coni 0. h>
<gr aph. h>
<stdi 0. h>
<stdlib. h>

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

"userdata. h"
"daqdrive. . h"
"dagopenc. h"
"dagp. h"

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
unsi gned short
{
unsi gned
unsi gned
unsi gned
unsi gned
char far
char far

mai n()

short
short

| ogi cal _devi ce

stat us

short channel

char input_val ue

*devi ce_type " DAQP-16";
*config_file " dagp- 16. dat ";

/*** ‘k**/

Step 1: Initialize Hardware

| ogi cal _device = 0;

status = DaqQpenDevi ce(DAQP, &l ogical _device
if (status !'= 0)

cl ear scr een(_GCLEARSCREEN) ;

printf("Channel %: 9% H n\n", channel

printf(" Press <ESC> to continue.\n");
whil e(getch() != 0xlb);
}

whi | e(channel = 99);

[*** Step 4: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce)

if(status !'=0)

printf("Error St at us code
return(status);

1

cl osi ng devi ce. %l.\n",

i nput channe

devi ce_type

printf("Error opening device. Status code %l.\n"
exit(status);
}
do
[*** Step 2: Get digital input channel *Ek |

nunber or \"99\" to quit: ");

channel

Brintf("\n\nEnter a digital input channe

scanf ("%l", &channel);

i f(channel 1= 99)
[*** Step 3: |nput value from channel *Ek |
status = DagSingleD gital | nput (I ogi cal _device
if(status !'=0)

printf("\n\nDigital input error. Status code

el se

(int)input_val ue);

‘k**/

config_file);

status);

& nput _val ue) ;

%l.\n\n", status);

status);

DAQDRIVE User's Manual

12-20

12.3.2 Example 2

This example inputs 1000 samples from digital 1/0 channel 0.

/***

I nput 1000 sanples fromdigital
<coni o. h>
<gr aph. h>

<stdlib. h>
<stdi 0. h>

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

"userdata. h"
"daqdrive. . h"
"dagopenc. h"
"iop241.h"

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

/*** \When defined global or static,
[*** automatically initialized to all 0O

struct DAQDRI VE. _buffer ny_data;
struct digi o_request user _request;
unsi gned short nain()

{

unsi gned short | ogical _device;

unsi gned short request_handl e;

unsi gned short channel ;

unsi gned short status;

unsi gned short i, j;

unsi gned char input_dat a[1000] ;

unsi gned | ong event _mask;

char far *device_type = "10P-241";
char far *config_file = "iop-241.dat ";
[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;

status = DaqQpenDevi ce(|1 OP241,

if (status !'= 0)
printf("Error St at us code

exit(status);

openi ng devi ce.

i nput channel 0

structures are

&l ogi cal _devi ce,

‘k**/

‘k**/
‘k**/

device_type, config_file);

%l.\n", status);

}
[*** Step 2: Input data ***/
channel = 0;
/*** Prepare Buffer Structure ***/
ny_dat a. dat a_buffer = input_data; /* set pointer to output data
ny_data. buffer_length = 1000; /* nunber of points in buffer
ny_dat a. next _structure = NULL; /* indicate no nore buffers
ny_dat a. buf f er _st at us = BUFFER_EMPTY; /* indicate buffer enpty (ready)
/*** Prepare the digital input request structure xRk
user _request. channel _array_ptr = &channel ; /* array of channels
user _request.array_l ength =1 /* nunber of channels
user _request. di gi o_buffer = &ny_data; /* pointer to data
user _request.trigger_source = | NTERNAL_TRI GGER; /* internal trigger
user _request.trigger_node = CONTINUOUS TRIGGER, /* input all points
user _request. | O node = BACKGROUND | RQ /* background rode
user _request. cl ock_source = | NTERNAL_CLOCK; /* use on-board clock
user _request.sanple_rate = 100; /* 100 Hz input rate
user _request . nunber _of _scans = 1000; /* 1000 scans
user _request.scan_event _| evel = 0; /* no scan events
user _request.timeout _interval = 0; /* disable tinme-out
lear reaniect reniect <t atiie =N I'* initiali7ze atatiie

12-21

request _handle = 0; /* new request */
status = DaqgDi gital I nput (| ogi cal _devi ce, &user _request, &request_handl e);
if(status !'=0)

printf("Digital input request error. Status code %l.\n", status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[*** Step 3: Armthe Request ***/

status = DagArnRequest (request _handl e);
if(status !'=0)

printf("Arm request error. Status code %l.\n", status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

[*** Step 4: Trigger the Request ***/

status = DaqTri gger Request (request _handl e);
if(status !'=0)

printf("Trigger request error. Status code 9%il.\n", status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

/*** Step 5: Wait for conpletion or error xRk

event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
whi |l e((user_request.request_status & event_nask) == 0); [/* wait for event */
i f((user_request.request_status & COVPLETE EVENT) != 0)

[*** if successful, display data ***/
for(i =0; i < 50; i++)

_cl ear screen(_GCLEARSCREEN) ;
for(j =0; j < 20; j++)
printf("sanple #%d: value = 9%RxHn", ((i*20)+),
(int)(input_data[(i*20)+j]));
printf("\n Press <ESC> to continue");
whil e(getch() != 0xlb);
}

el se

printf("Run-time error. Qperation aborted.\n");
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

[*** Step 6: Rel ease the Request ***/

status = DagRel easeRequest (request _handl e);
if(status !'=0)

printf("Could not release configuration. Status code %l.\n", status);
exit(status);

[*** Step 7: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);

DAQDRIVE User's Manual 12-22

(This page intentionally left blank.)

12-23

12.4 Digital Output Examples

12.4.1 Examplel
This example outputs a single value to a single digital output channel .

/*** Qutput a single point to a single DA channel xRk

#i ncl ude <coni o. h>
#i ncl ude <graph. h>
#i ncl ude <stdio. h>
#i nclude <stdlib. h>

#i ncl ude "userdata. h"
#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "daql200.h"

unsi gned short main()

{

unsi gned short | ogical _device;

unsi gned short status;

unsi gned short channel ;

unsi gned char out put _val ue;

char far *device_type = "DAQ 1201";
char far *config file = "dag-1201.dat "

[*** Step 1: Initialize Hardware ***/

| ogi cal _device = 0;

status = DaqQpenDevi ce(DAQL200, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening device. Status code 9%l.\n", status);
exit(status);

}
do
/*** Step 2: Get digital output channel and output val ue *Ek |
_cl ear screen(_GCLEARSCREEN) ;
printf("\n\nEnter a digital output channel nunber or \"99\" to quit: ");
scanf ("%l", &channel);
i f(channel 1= 99)

printf("\n\nEnter the output value between 0 and 255: ");
scanf ("%l", &output_val ue);

/[*** Step 3: Qutput value to channel xRk

status = DagSingl eD gital Qut put (I ogi cal _devi ce, channel, &out put_val ue);
if(status !'=0)

printf("\n\n Digital output error. Status code %l.\n\n", status);
printf(" Press <ESC> to continue.\n");
whil e(getch() != 0xlb);
}
}
}
whi | e(channel = 99);
[*** Step 4: O ose Hardware Device ***/
status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)

printf("Error closing device. Status code 9%l.\n", status);
return(status);
h]

DAQDRIVE User's Manual 12-24

12.4.2 Example 2

This example outputs a 20 point pattern to digital output channel 0.

/***

Qutput a pattern to

<stdlib. h>
<stdi 0. h>
<mat h. h>

#i ncl ude
#i ncl ude
#i ncl ude

#
#
#
#

"userdata. h"
"daqdrive. . h"
"dagopenc. h"
"da8p-12.h"

ncl ude
ncl ude
ncl ude
ncl ude

/*** \When defined gl oba

struct
struct

DACQDRI VE. _buffer
di gi o_request

unsi gned
{

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short main()

short
short
short channel
short status
char pattern[20]

unsi gned
char far
char far

long event_nask
*devi ce_type

/***

Step 1:

| ogi cal _devi ce
status =
if (status !'= 0)

= 0;

printf("Error
exit(status);

openi ng

}
[*** Step 2: Qutput data
channel =0
/*** Prepare Buffer Struc

ny_dat a. dat a_buffer
ny_dat a. buf fer_l ength
ny_dat a. buf f er _cycl es
ny_dat a. next _structure
ny_dat a. buf f er _st at us

/***

Prepare the digital

Initialize Hardware

DaqQpenDevi ce(DASP-12,

digital

or static,

ny_dat a
user _r equest ;

| ogi cal _devi ce
request _handl e

={0 1 1 0 1,
o 1o
1

i

= OO
R OR

1, O
1, O

= " DA8P- 12B";
*config_file = "da8p-12b.dat "

‘k**/

device. Status code

out put channe

structures are
[*** automatically initialized to all 0

&l ogi cal _devi ce

0 ‘k**/

‘k**/
‘k**/

device_type, config_file);

%l.\n", status);

user _r equest

user _r equest

user _r equest

user _request .
user _request .

user _request .
user _request .
user _request .
user _request .

user _request .
user _request .

channel _array_ptr
array_l ength
.digio_buffer
trigger_source
trigger_node

| O_node

cl ock_source
.sanple_rate
nunber _of _scans
scan_event _| eve
.timeout _interva

***/
ture ***/
pattern; /* set pointer to output data */
20; /* nunber of points in buffer */
500; /* 500 cycles through buffer */
NULL; /* indicate no nore buffers */
BUFFER_FULL; /* indicate buffer full (ready) */
out put request structure xRk
&channel ; /* array of channels
1; /* nunber of channels
&ny_dat a; /* pointer to data
| NTERNAL_TRI GGER, /* internal trigger
CONTI NUOUS_TRIGGER, /* output all points
BACKGROUND_| RQ /* background rmode

I NTERNAL _ CLOCK; /* use on-board clock
200; /* 10 patterns / second
20 * 500 /* 10000 scans

0; /* no scan events

0; /* disable tinme-out

12-25

request_handle =0
if(status !'=0)
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);
[*** Step 4: Armthe Request ***/
status = DagArnRequest (request _handl e);

if(status !'=0)

DagRel easeRequest (request _handl e) ;
DaqC oseDevi ce(l ogi cal _devi ce);
exit(status);

[*** Step 5: Trigger the Request ***/

status = DaqTrigger Request(request_handle)
if(status !'=0)

printf("Trigger request error. Status cod
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

/*** Step 6: Wait for conpletion or error *

if((user_request.request_status & COWLETE
el se

printf("Run-time error. Qperation aborted
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[*** Step 7: Rel ease the Request ***/

status = DagRel easeRequest (request _handl e);
if(status !'=0)

printf("Could not release configuration.
exit(status);

[*** Step 8: O ose Hardware Device ***/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if(status !'=0)
printf("Error closing device. Status code

return(status);
!

printf("Arm request error. Status code %l.\n",

status = DagD gi tal' Qutput (| ogical _device, &user_request,

printf("Digital output request error. Status code

e 9%.\n"

*/

event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
whi | e((user_request.request_status & event_nask)

EVENT ;

printf("\n\n D/A Qutput Request conpl et e\ n");

An");

/* new request

& equest _handle);

%l.\n", status);

status);

, Sstatus);

0); [/* wait for event */

Status code %l.\n",

%l.\n",

status);

status);

*/

DAQDRIVE User's Manual

12-26

13 Command Reference

Analog Input
DagAnaloglnput
DagSingleAnaloglnput
DagSingleAnaloglnputScan

Digital Input
DaqgDigitallnput
DagSingleDigitallnput
DagSingleDigitallnputScan

Process Control
DagArmRequest
DaqCloseDevice
DaqOpenDevice
DaqgReleaseRequest
DaqgResetDevice
DagStopRequest
DaqTriggerRequest

System Configuration
DaqGetADCfglInfo
DagGetADGainInfo
DaqGetDACTfgInfo
DagGetDAGaininfo
DaqGetDeviceCfglinfo
DaqGetDigioCfglinfo
DaqGetExpCfglinfo
DaqGetExpGainlnfo

Analog Output

DagAnalogOutput
DagSingleAnalogOutput
DagSingleAnalogOutputScan

Digital Output

DaqgDigitalOutput
DagSingleDigitalOutput
DagSingleDigitalOutputScan

System Monitoring

DagGetRuntimeError
DaqgNotifyEvent
DaqgPostMessageEvent
DagUserBreak

Miscellaneous

DagAllocateMemory
DagBytesToWords
DagFreeMemory
DaqVersionNumber
DagWordsToBytes

13-1

13.1 DagAllocateMemory

DagAllocateMemory is a DAQDRIVE. utility function used to
dynamically allocate memory for use by the application program. All
memory is allocated from the global (far) heap and should be de-allocated
using the DagFreeMemory procedure before the application terminates.

The application programmer may wish to use this procedure instead of
the mechanisms provided within the application language because it
eliminates language and operating systems dependencies.

Special note to Window's DLL users:

In the DLL version of DAQDRIVE., DagAllocateMemory performs a
GlobalLock and a GlobalPageLock on the allocated memory. This allows
the memory to be used within DAQDRIVE.'s interrupt service routines.

unsi gned short DagAl | ocat eMenory (unsigned |ong menory_size,
unsi gned short far *menory_handl e,

void far *(far *menory_pointer))

memory_size - This unsigned long integer value is used to specify the
amount of memory required by the application.

memory_handle - This unsigned short integer pointer defines the
address of a variable where the handle associated with
this allocation will be stored. The application must
preserve this handle for later use by the
DagFreeMemory procedure.

memory_pointer - This void pointer defines the address of a pointer
variable where the starting address of the newly
allocated memory block will be stored. The memory
is allocated in a manner that makes memory_pointer
compatible with all data types including huge.

DAQDRIVE User's Manual 13-2

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/***/

/* 1nput 5000 points each from2 anal og i nput channel s.

/***/

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short request_handl e;

unsi gned short channel _nuni 2] ={ 0 1};
float gain_settings[2] ={ 1, 8 };

unsi gned | ong nenory_si ze;

unsi gned short menory_handl e;

void far *nenory_pointer;

unsi gned short status;

struct ADC_request user _request;

struct DAQDRIVE. _buffer data_structure;
[***** (Cpen the device (see DagQpenDevice). *Rk kx|

[***** Al ocate menory for the input data. *Rk kx|
[***** 5000 sanpl es/channel * 2 channels * 2 bytes/sanple *kk kx|

menory_size = 5000 * 2 * sizeof(short);
status = DagAl | ocat eMenory(menory_si ze, &renory_handl e, &nenory_pointer);
if (status !'= 0)

printf("Error allocating data buffer. Status code 9%l.\n",status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[***** Prepare data structure for anal og input. *kk kx|

data_structure. data_buffer
data_structure. buffer_length

menory_poi nter;
10000;

[***** Prepare the A/ D request structure. *kk kx|
[***** Request A/ D input. *kk kx|
request _handle = 0;
status = DagAnal ogl nput (I ogi cal _devi ce, &user_request, & equest_handle);
if (status !'= 0)
printf("A'D request error. Status code %l.\n",status);
DaqFr eeMenory(nenory_handl e, menory_pointer);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);
[***** Armthe request (See DagArnRequest). *kk kx|
[***** Trigger the request (See DaqTriggerRequest). *kk kx|
[*****% Nt for conplete. *kk kx|

[***** Free all ocated menory. *kk kx|

status = DaqFreeMenory(nenory_handl e, rmenory_pointer);
if (status !'= 0)

printf("Error de-allocating menory. Status code %l.\n",status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[***** (C ose the device. (See DaqQ oseDevice). *kk kx|
1

*/

13-3

13.2 DagAnaloglnput

DagAnaloglnput is DAQDRIVE.'s generic A/D converter interface. It
does not configure any hardware but acts simply to confirm that all
parameters are valid and that the type of operation requested is
supported by the target hardware.

unsi gned short DagAnal ogl nput (unsigned short | ogical _device,
struct ADC request far *user_request,

unsi gned short far *request _handl e)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DaqgOpenDevice command.

user_request - This structure pointer defines the address of an A/D
request structure containing the desired configuration
information for this operation. This structure is
discussed in detail on the following pages.

request_handle - This unsigned short integer pointer is used to identify
this analog input request. For a new configuration,
request_handle is set to 0 by the application before
calling DagAnaloglnput. If the configuration is
successful request_handle will be assigned a unique
non-zero value by the DagAnaloginput procedure. If
the application modifies a previously configured
request, the application must call DagAnaloglnput
using the previously assigned request_handle. All
parameters except the channel list may be modified
using a reconfiguration request. To modify the channel
list, the present request must be released
(DagReleaseRequest) and a new configuration
requested.

DAQDRIVE User's Manual 13-4

ﬁr uct ADC_request

{

unsi gned short far *channel _array_ptr ;
float far *gain_array_ptr;
unsi gned short reservedl[4];
unsi gned short array_l ength;
struct DAQDRI VE. _buffer far
*ADC _buf fer ;
unsi gned short reserved2[4];
unsi gned short trigger_source;
unsi gned short trigger_node;
unsi gned short trigger_slope;
unsi gned short trigger_channel ;
doubl e trigger_voltage;
unsi gned long trigger_val ue;
unsi gned short reserved3[4];
unsi gned short | O _node;
unsi gned short cl ock_source;
doubl e clock_rate;
doubl e sanpl e_rate;
unsi gned short reserved4[4];
unsi gned | ong nunber_of _scans;
unsi gned I ong scan_event_|evel ;
unsi gned short reserved5[8];
unsi gned short calibration;
unsi gned short timeout_interval;
unsigned long request_status;
1 .

Figure 10. Analog input request structure.

IMPORTANT:
1. Once the request is armed using DagArmRequest, the only field

the application can modify is request_status. All other fields in
the request structure must remain constant until the operation is
completed or otherwise terminated.

If the request structure is dynamically allocated by the
application, it MUST NOT be de-allocated until the request has
been released by the DagReleaseRequest procedure. In
addition, applications using the Windows DLL version of
DAQDRIVE. should use DagAllocateMemory if dynamically
allocated request structures are required.

13-5

channel_array_ptr

This pointer defines the address of an unsigned short integer array specifying the logical analog input channel(s) to be operated on by this request.

gain_array_ptr

This pointer defines the address of a floating point array specifying the gain for each channel in the array pointed to by channel_array_ptr. There must be a
one-to-one correspondence between the values specified by channel_array_ptr and the values specified by gain_array_ptr.

reserved1[4]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.

array_length

This unsigned short integer value defines the length of the arrays pointed to by channel_array_ptr and gain_array_ptr. The arrays must be of equal length.

ADC_buffer

This pointer defines the address of the first data buffer structure. Data buffer structures are discussed in chapter 9.

reserved2[4]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.

trigger_source

This unsigned short integer value specifies the trigger source for this request. Trigger selections are discussed in chapter 10.

trigger_mode

DAQDRIVE. Constant Value Description
INTERNAL_TRIGGER 0 internal (software) trigger
TTL_TRIGGER 1 TTL trigger
ANALOG_TRIGGER 2 analog trigger
DIGITAL_TRIGGER 3 digital value trigger
This unsigned short integer value defines the trigger mode. Trigger selections are discussed in chapter 10.
DAQDRIVE. Constant Value Description
CONTINUOUS_TRIGGER 0 only one trigger is required to start the output operation
ONE_SHOT_TRIGGER 1 a trigger is required for each input scan

trigger_slope

This unsigned short integer value defines the slope for TTL and analog triggers. trigger_slope is ignored for all other trigger sources. Trigger selections are
discussed in chapter 10.

DAQDRIVE. Constant Value Description
RISING_EDGE 0 for TTL and analog triggers only, specifies a low-to-high transition is required.
FALLING_EDGE 1 for TTL and analog triggers only, specifies a high-to-low transition is required.

trigger_channel

This unsigned short value specifies the channel to be used as the input for the analog or digital trigger sources. trigger_channel is undefined for all other
trigger sources. Trigger selections are discussed in chapter 10.

Figure 11. Analog input request structure definition.

DAQDRIVE User's Manual

13-6

trigger_voltage

This double precision value defines the trigger voltage level for the analog trigger. trigger_voltage is ignored for all other trigger sources. Trigger selections
are discussed in chapter 10.

trigger_value

This unsigned long value defines the value required on the digital input for a digital trigger to be generated. trigger_value is ignored for all other trigger
sources. Trigger selections are discussed in chapter 10.

reserved3[4] This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.
10_mode This unsigned short integer value specifies the method of data transfer.
DAQDRIVE. Constant Value Description
FOREGROUND_CPU 0 DAQDRIVE. takes control of the CPU until the request is complete
BACKGROUND_IRQ 1 hardware interrupts are used to gain control of the CPU and input the data
FOREGROUND_DMA 2 DMA is used to input the data; the CPU monitors / controls the DMA operation
BACKGROUND_DMA 3 DMA is used to input the data; interrupts are used to monitor / control the DMA operation
clock_source This unsigned short value selects the clock source to provide the timing for multiple point input operations.
DAQDRIVE. Constant Value Description
INTERNAL_CLOCK 0 the sampling rate is generated by the on-board clock circuitry
EXTERNAL_CLOCK 1 the sampling rate is generated from an external input
clock_rate This double precision value defines the clock frequency of the external clock. clock_rate is ignored for internal clock sources.
sample_rate This double precision value specifies the input data rate in samples / second (Hz) for multiple point operations.
reserved4[4] This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

number_of_scans

This unsigned long integer value defines the number of times the channels specified in channel_array_ptr will be input. Setting number_of_cycles = 0 will
cause the channels to be scanned continuously.

scan_event_level

This unsigned long integer value defines the frequency at which scan events are reported to the application. For example, setting scan_event_level to 100
causes a scan event to be generated each time 100 scans are completed.

reserved5[8]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.

Figure 11 (continued). Analog input request structure definition.

13-7

calibration

This unsigned short integer value specifies the type of calibration to be performed for this request. The calibration methods are dependent on the type of
hardware installed. Consult the hardware specific appendices for specifics on adapter calibration.

DAQDRIVE. Constant Value Description
NO_CALIBRATION 0x0000 No calibration requested.
AUTO_CALIBRATE 0x0001 Perform auto-calibration on this request.
AUTO_ZERO 0x0002 Perform auto-zero on this request.

timeout_interval

This unsigned short integer value defines a time-out interval, in seconds, for foreground mode processes. The input operation will abort if the input can not
be read every timeout_interval seconds. Setting timeout_interval = 0 disables the time-out function and causes the routine to wait indefinitely.

request_status

This unsigned long integer value provides the application with the current status of the request. DAQDRIVE. does not rely on the information contained in
this field nor does it ever clear any of the event bits to 0. Therefore, the application should initialize request_status during the configuration process and may

modify its contents at any time.

DAQDRIVE. Constant Value Description

NO_EVENTS 0x00000000 This constant does not represent an event status. It is provided to the application for convenience.

TRIGGER_EVENT 0x00000001 | When set to 1, this bit indicates the specified trigger has been received.

COMPLETE_EVENT 0x00000002 | When set to 1, this bit indicates the request has completed successfully.

BUFFER_EMPTY_EVENT 0x00000004 | When set to 1, this bit indicates at least one of the specified output data buffers has been emptied.

BUFFER_FULL_EVENT 0x00000008 | When set to 1, this bit indicates at least one of the specified input data buffers has been filled.

SCAN_EVENT 0x00000010 | When set to 1, this bit indicates the number of scans specified by scan_event_level have been completed at
least once.

USER_BREAK_EVENT 0x20000000 | When set to 1, this bit indicates the request has terminated due to a user-break.

TIMEOUT_EVENT 0x40000000 | When set to 1, this bit indicates the request has terminated because the specified time-out interval was
exceeded.

RUNTIME_ERROR_EVENT 0x80000000 | When set to 1, this bit indicates the request has terminated because of an error during processing. The

application can determine the source of the error using the DaqGetRuntimeError procedure.

Figure 11 (continued). Analog input request structure definition.

DAQDRIVE User's Manual

13-8

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/***/

/* 1nput 500 points each from 2 anal og i nput channels.
/***/

unsi gned short main()
short
short
short
fl oat
short
short

unsi gned
unsi gned
unsi gned

| ogi cal _devi ce;
request _handl e;
channel _nuni 2]
gai n_settings[2]
stat us;

dat a_array[1000] ;

unsi gned

struct
struct

ADC r equest
DACQDRI VE. _buffer

user _r equest ;
data_structure;

/***** *****/

Open the device (see DaqQpenDevice).

/***** *****/

Prepare data structure for anal og input.

/***/

/* put data in data_array data_array is 1000 points |ong

/* next_structure = NULL (no nore structures)
/***/

data_structure. data_buffer
data_structure. buffer_length
data_structure. next_structure

/*****

/*
/*
/*
/*
/*

channel list is in
channel
trigger source is internal

i nput using

Prepare the A/ D request structure.

IR (in background)

data_array;
1000;
NULL;

*****/

/***/

channel _num
& gain array length is 2

gain list is in gain_settings
use data_structure for data
trigger node is continuous

use internal clock

scan channel |ist 500 times

/*

user _r equest

user _r equest
user _r equest

/*****

/*****

status =

user _r equest .
user _r equest .
user _r equest .
user _r equest .
.trigger_source
user _r equest .
user _r equest .
user _r equest .
user _r equest .
user _r equest .
user _r equest .
user _r equest .
.timeout _interval
. request _status

request _handl e
DagAnal ogl nput (I ogi cal _devi ce,
if (status !'= 0)

sanple at 1 KHz
do not signal

channel _array_ptr

gain_array_ptr
array_l ength
ADC buf fer

trigger_node
| O_node

cl ock_source
sanple_rate

nunber _of _scans
scan_event _| evel

calibration

I ndi cate data buffer ready for input.
data_structure. buffer_status

Request A/ D input.

= 0;

buf fer scan events
/***/

do not inplenent tine-out

channel _num
gai n_settings;
2

data_structure;

| NTERNAL_TRI GGER
CONTI NUQUS_TRI GGER,
BACKGROUND_| RQ

| NTERNAL_CLOCK;
1000;

500;

0;

NO_CALI BRATI ON,
0;

NO_EVENTS;

*****/

= BUFFER_EMPTY;

*****/

&user _request, &request_handl e);

St at us code

printf("A'D request error.

%l.\n", status);

Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

*/

*/
*/

*/
*/
*/
*/
*/
*/

13-9

13.3 DagAnalogOutput

DagAnalogOutput is DAQDRIVE.'s generic D/A converter interface. It
does not configure any hardware but acts simply to confirm that all
parameters are valid and that the type of operation requested is
supported by the target hardware.

unsi gned short DagAnal ogQut put (unsigned short | ogical _device,
struct DAC request far *user_request,

unsi gned short far *request _handl e)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DaqgOpenDevice command.

user_request - This structure pointer defines the address of a D/A
request structure containing the desired configuration
information for this operation. This structure is
discussed in detail on the following pages.

request_handle - This unsigned short integer pointer is used to identify
this analog output request. For a new configuration,
request_handle is set to 0 by the application before
calling DagAnalogOutput. If the configuration is
successful request_handle will be assigned a unique
non-zero value by the DagAnalogOutput procedure. If
the application modifies a previously configured
request, the application must call DagAnalogOutput
using the previously assigned request_handle. All
parameters except the channel list may be modified
using a reconfiguration request. To modify the channel
list, the present request must be released
(DagReleaseRequest) and a new configuration
requested.

DAQDRIVE User's Manual 13-10

//;:}uct DAC _request
{

unsi gned short far *channel _array_ptr ;

unsi gned short reservedl[4]

unsi gned short array_l ength;

struct DAQDRI VE. _buffer far
*DAC_buf fer;

unsi gned short reserved2[4]

unsi gned short trigger_source;

unsi gned short trigger_node;

unsi gned short trigger_slope;

unsi gned short trigger_channel ;

doubl e trigger_voltage

unsigned long trigger_val ue;

unsi gned short reserved3[4]

unsi gned short | O _node;

unsi gned short cl ock_source;

doubl e clock_rate;

doubl e sanple_rate;

unsi gned short reserved4[4]

unsi gned | ong nunber_of _scans;

unsi gned | ong scan_event_|evel ;

unsi gned short reserved5[8]

unsi gned short calibration;

unsi gned short timeout_interval
unsi gned | ong request_status;

b

Figure 12. Analog output request structure.

IMPORTANT:

1. Once the request is armed using DagArmRequest, the only field
the application can modify is request_status. All other fields in
the request structure must remain constant until the operation is
completed or otherwise terminated.

2. If the request structure is dynamically allocated by the
application, it MUST NOT be de-allocated until the request has
been released by the DagReleaseRequest procedure. In
addition, applications using the Windows DLL version of
DAQDRIVE. should use DagAllocateMemory if dynamically
allocated request structures are required.

13-11

channel_array_ptr

This pointer defines the address of an unsigned short integer array specifying the logical analog output channel(s) to be operated on by this request.

reserved1[4]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

array_length

This unsigned short integer value defines the number of channels contained in the array pointed to by channel_array_ptr.

DAC_buffer

This pointer defines the address of the first data buffer structure. Data buffer structures are discussed in chapter 9.

reserved2[4]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

trigger_source

This unsigned short integer value specifies the trigger source for this request. Trigger selections are discussed in chapter 10.

DAQDRIVE. Constant Value Description
INTERNAL_TRIGGER 0 internal (software) trigger
TTL_TRIGGER 1 TTL trigger
ANALOG_TRIGGER 2 analog trigger
DIGITAL_TRIGGER 3 digital value trigger

trigger_mode

This unsigned short integer va

lue defines the tr

igger mode. Trigger selections are discussed in chapter 10.

DAQDRIVE. Constant Value Description
CONTINUOUS_TRIGGER 0 only one trigger is required to start the output operation
ONE_SHOT_TRIGGER 1 a trigger is required for each output scan

trigger_slope

This unsigned short integer val
discussed in chapter 10.

lue defines the sl

ope for TTL and analog triggers. trigger_slope is ignored for all other trigger sources. Trigger selections are

DAQDRIVE. Constant Value Description
RISING_EDGE 0 for TTL and analog triggers only, specifies a low-to-high transition is required.
FALLING_EDGE 1 for TTL and analog triggers only, specifies a high-to-low transition is required.

trigger_channel

This unsigned short value specifies the channel to be used as the input for the analog or digital trigger sources. trigger_channel is undefined for all other

trigger sources. Trigger selections are discussed in chapter 10.

Figure 13. Analog output request structure definition.

DAQDRIVE User's Manual

13-12

trigger_voltage

This double precision value defines the trigger voltage level for the analog trigger. trigger_voltage is ignored for all other trigger sources. Trigger selections
are discussed in chapter 10.

trigger_value

This unsigned long value defines the value required on the digital input for a digital trigger to be generated. trigger_value is ignored for all other trigger
sources. Trigger selections are discussed in chapter 10.

reserved3[4] This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.
10_mode This unsigned short integer value specifies the method of data transfer.

DAQDRIVE. Constant Value Description
FOREGROUND_CPU 0 DAQDRIVE. takes control of the CPU until the request is complete
BACKGROUND_IRQ 1 hardware interrupts are used to gain control of the CPU and input the data
FOREGROUND_DMA 2 DMA is used to input the data; the CPU monitors / controls the DMA operation
BACKGROUND_DMA 3 DMA is used to input the data; interrupts are used to monitor / control the DMA operation
clock_source This unsigned short value selects the clock source to provide the timing for multiple point output operations.
DAQDRIVE. Constant Value Description
INTERNAL_CLOCK 0 the sampling rate is generated by the on-board clock circuitry
EXTERNAL_CLOCK 1 the sampling rate is generated from an external input
clock_rate This double precision value defines the clock frequency of the external clock. clock_rate is ignored for internal clock sources.
sample_rate This double precision value specifies the output data rate in samples / second (Hz) for multiple point operations.
reserved4[4] This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

number_of_scans

This unsigned long integer value defines the number of times the channels specified in channel_array_ptr will be written. Setting number_of_cycles = 0 will
cause the channels to be scanned continuously.

scan_event_level

This unsigned long integer value defines the frequency at which scan events are reported to the application. For example, setting scan_event_level to 100
causes a scan event to be generated each time 100 scans are completed.

reserved5[8]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.

Figure 13 (continued). Analog output request structure definition.

13-13

calibration

This unsigned short integer value specifies the type of calibration to be performed for this request. The calibration methods are dependent on the type of
hardware installed. Consult the hardware specific appendices for specifics on adapter calibration.

DAQDRIVE. Constant Value Description
NO_CALIBRATION 0x0000 No calibration requested.
AUTO_CALIBRATE 0x0001 Perform auto-calibration on this request.
AUTO_ZERO 0x0002 Perform auto-zero on this request.

timeout_interval

This unsigned short integer value defines a time-out interval, in seconds, for foreground mode processes. The operation will abort if the analog output can not
be updated every timeout_interval seconds. Setting timeout_interval = 0 disables the time-out function and causes the routine to wait indefinitely.

request_status

This unsigned long integer value provides the application with the current status of the request. DAQDRIVE does not rely on the information contained in
this field nor does it ever clear any of the event bits to 0. Therefore, the application should initialize request_status during the configuration process and may

modify its contents at any time.

DAQDRIVE. Constant Value Description

NO_EVENTS 0x00000000 This constant does not represent an event status. It is provided to the application for convenience.

TRIGGER_EVENT 0x00000001 | When set to 1, this bit indicates the specified trigger has been received.

COMPLETE_EVENT 0x00000002 | When set to 1, this bit indicates the request has completed successfully.

BUFFER_EMPTY_EVENT 0x00000004 | When set to 1, this bit indicates at least one of the specified output data buffers has been emptied.

BUFFER_FULL_EVENT 0x00000008 | When set to 1, this bit indicates at least one of the specified input data buffers has been filled.

SCAN_EVENT 0x00000010 | When set to 1, this bit indicates the number of scans specified by scan_event_level have been completed at
least once.

USER_BREAK_EVENT 0x20000000 | When set to 1, this bit indicates the request has terminated due to a user-break.

TIMEOUT_EVENT 0x40000000 | When set to 1, this bit indicates the request has terminated because the specified time-out interval was
exceeded.

RUNTIME_ERROR_EVENT 0x80000000 | When set to 1, this bit indicates the request has terminated because of an error during processing. The

application can determine the source of the error using the DaqGetRuntimeError procedure.

Figure 13 (continued). Analog output request structure definition.

DAQDRIVE User's Manual

13-14

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/***/

/* CQutput a 20 point waveform to a DA channel.
/***/

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short request_handl e;
unsi gned short channel _num = O;
unsi gned short status;

short data_array[20];

struct DAC_request user _request;
struct DAQDRI VE. _buffer data_structure;

[***** (Cpen the device (see DagQpenDevice). *Rk kx|

[***** Prepare data structure for anal og out put. *kk kx|
/***/
/* data is in data_array data_array is 20 points |ong

/* output buffer 1 tine next _structure = NULL (no nore structures)
/***/
data_structure. data_buffer = data_array;

data_structure. buffer_length = 20;

data_structure. buffer_cycles =1

data_structure.next_structure = NULL;

[***** Prepare the DA request structure. kR k kx|
/***/
/* channel list is in channel _num channel _num is 1 channel |ong

/* data is in data_structure trigger source is internal

/* trigger node is continuous out put using IR (in background)
/* use internal clock output 1 point every 10ns (100Hz)
/* repeat all buffers once do not signal buffer scan events

/* do not inplenent tinme-out
/***/

user _request. channel _array_ptr = hannel _num

user _request.array_l ength 1;

user _request . DAC buffer data_structure;
user _request.trigger_source I NTERNAL_TRI GGER
user _request. trigger_node CONTI NUOUS_TRI GGER,
user _request. | O node BACKGROUND_| RQ
user _request. cl ock_source I NTERNAL _ CLOCK;

user _request.sanple_rate 100;

user _r equest . nunber _of _scans 1;

user _request.scan_event _| evel 0;

user _request.calibration) CALI BRATI O\,

user _request.timeout _interval 0;

user _request.request_status NO_EVENTS;

[***** | ndicate data buffer ready for output. *kkkk |
data_structure.buffer_status = BUFFER FULL;

[***** Request D/ A output. *kkkk |

request _handle = 0;
status = DagAnal ogQut put (| ogi cal _devi ce, &user _request, &request_handl e);
if (status !'= 0)

printf("DIA request error. Status code %l.\n",status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

*/

*/
*/

*/
*/
*/
*/
*/
*/

13-15

13.4 DagArmRequest

DagArmRequest is executed after the DagAnaloglnput,
DagAnalogOutput, DagDigitalinput, or DagDigitalOutput functions to
prepare the specified configuration for execution. During the arming
process, any resources required for the request (e.g. IRQs, DMA channels,
timers) are allocated for use by this request and all hardware is prepared
for the impending trigger.

unsi gned short DagArnRequest (unsigned short request_handl e) '

request_handle - This unsigned short integer variable is used to define
which request is to be armed. This is the value returned
to the application by the configuration procedures
DagAnaloglnput, DagAnalogOutput, DagDigitalInput,
or DagDigitalOutput.

DAQDRIVE User's Manual 13-16

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/**/

/* 1nput 500 points froman A/ D channel. */

/**/

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short request_handl e;
unsi gned short status;

short data_array[500];

struct ADC_request user _request;
struct DAQDRIVE. _buffer data_structure;

[***** (pen the device (see DagQpenDevice). *kk kx|
[***** Prepare data structure for anal og out put. *kk kx|
[***** Prepare the A/ D request structure. kR kx|
[***** Request A/ D input. *Rk kx|
request _handle = 0;
status = DagAnal ogl nput (I ogi cal _devi ce, &user_request, & equest_handle);
if (status !'= 0)
printf("A'D request error. Status code %l.\n",status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[***** Armthe request. *kk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

printf("Arm request error. Status code %l.\n",status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

13-17

13.5 DaqgBytesToWords

DaqgBytesToWords reverses the function of DagWordsToBytes converting
an unsigned short integer array of 8-bit "packed" values into an unsigned
short integer array of 16-bit "un-packed" values. These function are
provided especially for languages that do not support 8-bit variable types.

DagBytesToWords reads the "packed" 8-bit values in array byte_array,
converts these values to their "un-packed" 16-bit unsigned short integer
format, and stores the results in array word_array. For an array of four
values, the packed and un-packed arrays appear as follows:

byte byte byte byte
"packed" array 14 2E 6 F7
"un-packed" array 14 0 2E 0 6 0 F7 0
integer integer integer integer

voi d DaqByt esToWwrds (unsigned short far *byte_array,
unsi gned short far *word_array,

unsigned long array_length)

byte array - This is a pointer to an unsigned short integer array
containing the "packed" values to be converted.
byte_array must be at least 'array_length ;| 2' short integers
(array_length bytes) in length and may specify the same
array as word_array.

word_array - This is a pointer to an unsigned short integer array where
the "un-packed" values will be stored. word_array must
be at least array_length short integers in length and may
specify the same array as byte array.

array_length - This is an unsigned long integer value defining the
number of data points to be converted. byte array must
be at least 'array_length , 2' short integers (array_length
bytes) in length while word_array must be at least
array_length short integers in length.

DAQDRIVE User's Manual 13-18

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/***/

/* Input 100 points each from4 digital input channels. */
/***/

unsi gned short main()

unsi gned short | ogical _device;

unsi gned short request_handl e;

unsi gned short channel _nunf4] ={ 0, 1, 6, 3 };
unsi gned short status;

unsi gned short data_array[400];

unsi gned short array_i ndex;

unsi gned short error;

unsi gned |l ong event_nask;

struct digio_request user _request;
struct DAQDRI VE. _buffer data_structure;

[***** (Cpen the device (see DagQpenDevice). *kk kx|

[***** Prepare the digital input request structure. *kk kx|
[***** Request digital input (see DagDigitallnput). *kk kx|
[***** Armthe request (see DagArnRequest). *kk kx|

[***** Trjgger the request. *Rk kx|

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

printf("Trigger request error. Status code 9%l.\n",status);
DaqSt opRequest (request _handl e) ;
DagRel easeRequest (request _handl e) ;
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);
[***** \NAit for conpletion or error. *kk kx|

event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
whi |l e((user_request.request_status & event_mask) == 0);

if ((user_request.request_status & RUNTIME_ERROR EVENT) != 0)
gt atus = DaqgCet Runti neError(request_handl e, &error);
exit(error);

[***** Un-pack the values for display. *kk kx|

DagByt esToWrds(data_array, data_array, 400);

[***** Display the input values as integers. *kk kx|

for (array_index = 0; array_index < 400; array_index++)
printf("digital input = %x\n", data_array[array_index]);

13-19

13.6 DaqCloseDevice

DaqgCloseDevice informs DAQDRIVE. that the specified logical device is
no longer required and any resources required by this device may be

freed.
unsi gned short Daqd oseDevice(unsigned short | ogical_device) '

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

DAQDRIVE User's Manual 13-20

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i nclude "dagp.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

" DAQP-16";
"c:\\ dagp- 16\\ dagp- 16. dat "

char far *device_type
char far *config_file

/***** @en the DAQ:)_IG. *****/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** Performany DAQP-16 operations here. *kk kx|
[***** O ose the DAQP-16. *****/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n"),status);
return(status);

}

13-21

13.7 DagDigitallnput

DaqgDigitallnput is DAQDRIVE.'s generic digital input interface.
DaqgDigitallnput does not configure any hardware but acts simply to
confirm that all parameters are valid and that the type of operation
requested is supported by the target hardware.

unsi gned short DaqgDigitallnput (unsigned short | ogical _device,
struct digio_request far *user_request,

unsi gned short far *request _handl e)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DaqgOpenDevice command.

user_request - This structure pointer defines the address of a digital
I/0 request structure containing the desired
configuration information for this operation. This
structure is discussed in detail on the following pages.

request_handle - This unsigned short integer pointer is used to identify
this digital input request. For a new configuration,
request_handle is set to 0 by the application before
calling DagDigitallnput. If the configuration is
successful request_handle will be assigned a unique
non-zero value by the DagDigitalinput procedure. If
the application modifies a previously configured
request, the application must call DagDigitallnput using
the previously assigned request_handle. All parameters
except the channel list may be modified using a
reconfiguration request. To modify the channel list, the
present request must be released (DagReleaseRequest)
and a new configuration requested.

DAQDRIVE User's Manual 13-22

//;:;uct di gi o_request

{

unsi gned short far *channel _array_ptr ;
unsi gned short reservedl[4]

unsi gned short array_l ength;
struct DAQDRI VE. _buffer far

gi o_buffer;

unsi gned short reserved2[4]

unsi gned short trigger_source;
unsi gned short trigger_node;
unsi gned short trigger_slope;
unsi gned short trigger_channel ;
doubl e trigger_voltage

unsi gned long trigger_val ue;
unsi gned short reserved3[4]

unsi gned short | O _node;

unsi gned short cl ock_source;
doubl e clock_rate;

doubl e sanple_rate;

unsi gned short reserved4[4]

unsi gned | ong nunber_of _scans;
unsi gned I ong scan_event_|evel ;
unsi gned short reserved5[8]

unsi gned short timeout_interval
unsi gned | ong request_status;

b

*d

Figure 14. Digital input request structure.

IMPORTANT:

1. Once the request is armed using DagArmRequest, the only field
the application can modify is request_status. All other fields in
the request structure must remain constant until the operation is
completed or otherwise terminated.

2. If the request structure is dynamically allocated by the
application, it MUST NOT be de-allocated until the request has
been released by the DagReleaseRequest procedure. In
addition, applications using the Windows DLL version of
DAQDRIVE. should use DagAllocateMemory if dynamically
allocated request structures are required.

13-23

channel_array_ptr

This pointer defines the address of an unsigned short integer array specifying the logical digital input channel(s) to be operated on by this request.

reserved1[4]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

array_length

This unsigned short integer value defines the number of channels contained in the array pointed to by channel_array_ptr.

digio_buffer

This pointer defines the address of the first data buffer structure. Data buffer structures are discussed in chapter 9.

reserved2[4]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

trigger_source

This unsigned short integer value specifies the trigger source for this request. Trigger selections are discussed in chapter 10.

DAQDRIVE. Constant Value Description
INTERNAL_TRIGGER 0 internal (software) trigger
TTL_TRIGGER 1 TTL trigger
ANALOG_TRIGGER 2 analog trigger
DIGITAL_TRIGGER 3 digital value trigger

trigger_mode

This unsigned short integer va

lue defines the tr

igger mode. Trigger selections are discussed in chapter 10.

DAQDRIVE. Constant Value Description
CONTINUOUS_TRIGGER 0 only one trigger is required to start the output operation
ONE_SHOT_TRIGGER 1 a trigger is required for each output scan

trigger_slope

This unsigned short integer val
discussed in chapter 10.

lue defines the sl

ope for TTL and analog triggers. trigger_slope is ignored for all other trigger sources. Trigger selections are

DAQDRIVE. Constant Value Description
RISING_EDGE 0 for TTL and analog triggers only, specifies a low-to-high transition is required.
FALLING_EDGE 1 for TTL and analog triggers only, specifies a high-to-low transition is required.

trigger_channel

This unsigned short value specifies the channel to be used as the input for the analog or digital trigger sources. trigger_channel is undefined for all other
trigger sources. Trigger selections are discussed in chapter 10.

Figure 15. Digital input request structure definition.

DAQDRIVE User's Manual

13-24

trigger_voltage

This double precision value defines the trigger voltage level for the analog trigger. trigger_voltage is ignored for all other trigger sources. Trigger selections
are discussed in chapter 10.

trigger_value

This unsigned long value defines the value required on the digital input for a digital trigger to be generated. trigger_value is ignored for all other trigger
sources. Trigger selections are discussed in chapter 10.

reserved3[4] This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.
10_mode This unsigned short integer value specifies the method of data transfer.

DAQDRIVE. Constant Value Description
FOREGROUND_CPU 0 DAQDRIVE. takes control of the CPU until the request is complete
BACKGROUND_IRQ 1 hardware interrupts are used to gain control of the CPU and input the data
FOREGROUND_DMA 2 DMA is used to input the data; the CPU monitors / controls the DMA operation
BACKGROUND_DMA 3 DMA is used to input the data; interrupts are used to monitor / control the DMA operation
clock_source This unsigned short value selects the clock source to provide the timing for multiple point input operations.
DAQDRIVE. Constant Value Description
INTERNAL_CLOCK 0 the sampling rate is generated by the on-board clock circuitry
EXTERNAL_CLOCK 1 the sampling rate is generated from an external input
clock_rate This double precision value defines the clock frequency of the external clock. clock_rate is ignored for internal clock sources.
sample_rate This double precision value specifies the input data rate in samples / second (Hz) for multiple point operations.
reserved4[4] This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

number_of_scans

This unsigned long integer value defines the number of times the channels specified in channel_array_ptr will be input. Setting number_of_cycles = 0 will
cause the channels to be scanned continuously.

scan_event_level

This unsigned long integer value defines the frequency at which scan events are reported to the application. For example, setting scan_event_level to 100
causes a scan event to be generated each time 100 scans are completed.

reserved5[8]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.

Figurel5 (continued). Digital input request structure definition.

13-25

timeout_interval

This unsigned short integer value defines a time-out interval, in seconds, for foreground mode processes. The operation will abort if the digital input can not
be read every timeout_interval seconds. Setting timeout_interval = 0 disables the time-out function and causes the routine to wait indefinitely.

request_status

This unsigned long integer value provides the application with the current status of the request. DAQDRIVE. does not rely on the information contained in
this field nor does it ever clear any of the event bits to 0. Therefore, the application should initialize request_status during the configuration process and may

modify its contents at any time.

DAQDRIVE. Constant Value Description

NO_EVENTS 0x00000000 This constant does not represent an event status. It is provided to the application for convenience.

TRIGGER_EVENT 0x00000001 | When set to 1, this bit indicates the specified trigger has been received.

COMPLETE_EVENT 0x00000002 | When set to 1, this bit indicates the request has completed successfully.

BUFFER_EMPTY_EVENT 0x00000004 | When set to 1, this bit indicates at least one of the specified output data buffers has been emptied.

BUFFER_FULL_EVENT 0x00000008 | When set to 1, this bit indicates at least one of the specified input data buffers has been filled.

SCAN_EVENT 0x00000010 | When set to 1, this bit indicates the number of scans specified by scan_event_level have been completed at
least once.

USER_BREAK_EVENT 0x20000000 | When set to 1, this bit indicates the request has terminated due to a user-break.

TIMEOUT_EVENT 0x40000000 | When set to 1, this bit indicates the request has terminated because the specified time-out interval was
exceeded.

RUNTIME_ERROR_EVENT 0x80000000 | When set to 1, this bit indicates the request has terminated because of an error during processing. The

application can determine the source of the error using the DaqGetRuntimeError procedure.

Figure 15 (continued). Digital input request structure definition.

DAQDRIVE User's Manual

13-26

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/***/

/* Input 100 points each from4 digital input channels.
/***/
unsi gned short main()

unsi gned short | ogical _device;

unsi gned short request_handl e;

unsi gned short channel _nunf4] ={ 0, 1, 6, 3 };

unsi gned short status;

unsi gned char data_array[400];

struct digio_request user _request;

struct DAQDRI VE. _buffer data_structure;

[***** (Cpen the device (see DagQpenDevice). *Rk kx|
[***** Prepare data structure for digital input. *kk kx|

/***/

/* put data in data_array data_array is 400 points |ong

/* next_structure = NULL (no nore structures)
/***/

data_structure. data_buffer
data_structure. buffer_length
data_structure. next_structure

data_array;
1000;
NULL;

/***** *****/

Prepare the digital input request structure.

/***/

user _r equest
user _r equest .
user _r equest .
user _request . trigger_source
user _request. trigger_node
user _request. | O node

user _request. cl ock_source

.channel _array_ptr
array_l ength
ADC buf fer

request _handle = 0;
status =

if (status !'= 0)

{

printf("Digital input request
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

1

DagDi gi tal I nput (| ogi cal _devi ce,

/* channel list is in channel _num channel list lengthis 4

/* use data_structure for data trigger source is internal

/* trigger node is continuous input using CPU (in foreground)
/* use internal clock sanple at 100 Hz

/* scan channels list 100 tines do not signal buffer scan events
/* do not inplenent tinme-out

/***/

channel _num

4;

data_structure;

| NTERNAL_TRI GGER
CONTI NUQUS_TRI GGER,
FOREGROUND_CPU,

| NTERNAL_CLOCK;

user _request.sanple_rate 100;

user _r equest . nunber _of _scans 100;

user _request.scan_event _| evel 0;

user _request.timeout _interval = 0;

user _request.request _status = NO_EVENTS;

[***** | ndicate data buffer ready for input. *kk kx|
data_structure.buffer_status = BUFFER _EMPTY;

[***** Request digital input. *kkkk |

&user _request, &request_handl e);

error. Status code %l.\n",status);

*/

*/
*/

*/
*/
*/
*/
*/
*/

13-27

13.8 DagDigitalOutput

DaqgDigitalOutput is DAQDRIVE.'s generic digital output interface.
DagDigitalOutput does not configure any hardware but acts simply to
confirm that all parameters are valid and that the type of operation
requested is supported by the target hardware.

unsi gned short DaqgDi gital Qut put (unsigned short | ogical _device,
struct digio_request far *user_request,

unsi gned short far *request _handl e)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DaqgOpenDevice command.

user_request - This structure pointer defines the address of a digital
I/0 request structure containing the desired
configuration information for this operation. This
structure is discussed in detail on the following pages.

request_handle - This unsigned short integer pointer is used to identify
this digital output request. For a new configuration,
request_handle is set to 0 by the application before
calling DagDigitalOutput. If the configuration is
successful request_handle will be assigned a unique
non-zero value by the DagDigitalOutput procedure. If
the application modifies a previously configured
request, the application must call DagDigitalOutput
using the previously assigned request_handle. All
parameters except the channel list may be modified
using a reconfiguration request. To modify the channel
list, the present request must be released
(DagReleaseRequest) and a new configuration
requested.

DAQDRIVE User's Manual 13-28

//g:;uct di gi o_request

{

unsi gned short far *channel _array_ptr ;
unsi gned short reservedl[4]

unsi gned short array_l ength;
struct DAQDRI VE. _buffer far

gi o_buffer;

unsi gned short reserved2[4]

unsi gned short trigger_source;
unsi gned short trigger_node;
unsi gned short trigger_slope;
unsi gned short trigger_channel ;
doubl e trigger_voltage

unsi gned long trigger_val ue;
unsi gned short reserved3[4]

unsi gned short | O _node;

unsi gned short cl ock_source;
doubl e clock_rate;

doubl e sanple_rate;

unsi gned short reserved4[4]

unsi gned | ong nunber_of _scans;
unsi gned I ong scan_event_| evel ;
unsi gned short reserved5[8]

unsi gned short timeout_interval
unsi gned | ong request_status;

1 -

*d

Figure 16. Digital output request structure.

IMPORTANT:

1. Once the request is armed using DagArmRequest, the only field
the application can modify is request_status. All other fields in
the request structure must remain constant until the operation is
completed or otherwise terminated.

2. If the request structure is dynamically allocated by the
application, it MUST NOT be de-allocated until the request has
been released by the DagReleaseRequest procedure. In
addition, applications using the Windows DLL version of
DAQDRIVE. should use DagAllocateMemory if dynamically
allocated request structures are required.

13-29

channel_array_ptr

This pointer defines the address of an unsigned short integer array specifying the logical digital output channel(s) to be operated on by this request.

reserved1[4]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

array_length

This unsigned short integer value defines the number of channels contained in the array pointed to by channel_array_ptr.

digio_buffer

This pointer defines the address of the first data buffer structure. Data buffer structures are discussed in chapter 9.

reserved2[4]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

trigger_source

This unsigned short integer value specifies the trigger source for this request. Trigger selections are discussed in chapter 10.

DAQDRIVE. Constant Value Description
INTERNAL_TRIGGER 0 internal (software) trigger
TTL_TRIGGER 1 TTL trigger
ANALOG_TRIGGER 2 analog trigger
DIGITAL_TRIGGER 3 digital value trigger

trigger_mode

This unsigned short integer va

lue defines the tr

igger mode. Trigger selections are discussed in chapter 10.

DAQDRIVE. Constant Value Description
CONTINUOUS_TRIGGER 0 only one trigger is required to start the output operation
ONE_SHOT_TRIGGER 1 a trigger is required for each output scan

trigger_slope

This unsigned short integer val
discussed in chapter 10.

lue defines the sl

ope for TTL and analog triggers. trigger_slope is ignored for all other trigger sources. Trigger selections are

DAQDRIVE. Constant Value Description
RISING_EDGE 0 for TTL and analog triggers only, specifies a low-to-high transition is required.
FALLING_EDGE 1 for TTL and analog triggers only, specifies a high-to-low transition is required.

trigger_channel

This unsigned short value specifies the channel to be used as the input for the analog or digital trigger sources. trigger_channel is undefined for all other
trigger sources. Trigger selections are discussed in chapter 10.

Figure 17. Digital output request structure definition.

DAQDRIVE User's Manual

13-30

trigger_voltage

This double precision value defines the trigger voltage level for the analog trigger. trigger_voltage is ignored for all other trigger sources. Trigger selections
are discussed in chapter 10.

trigger_value

This unsigned long value defines the value required on the digital input for a digital trigger to be generated. trigger_value is ignored for all other trigger
sources. Trigger selections are discussed in chapter 10.

reserved3[4] This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.
10_mode This unsigned short integer value specifies the method of data transfer.

DAQDRIVE. Constant Value Description
FOREGROUND_CPU 0 DAQDRIVE. takes control of the CPU until the request is complete
BACKGROUND_IRQ 1 hardware interrupts are used to gain control of the CPU and input the data
FOREGROUND_DMA 2 DMA is used to input the data; the CPU monitors / controls the DMA operation
BACKGROUND_DMA 3 DMA is used to input the data; interrupts are used to monitor / control the DMA operation
clock_source This unsigned short value selects the clock source to provide the timing for multiple point output operations.
DAQDRIVE. Constant Value Description
INTERNAL_CLOCK 0 the sampling rate is generated by the on-board clock circuitry
EXTERNAL_CLOCK 1 the sampling rate is generated from an external input
clock_rate This double precision value defines the clock frequency of the external clock. clock_rate is ignored for internal clock sources
sample_rate This double precision value specifies the output data rate in samples / second (Hz) for multiple point operations.
reserved4[4] This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all

reserved variables to 0.

number_of_scans

This unsigned long integer value defines the number of times the channels specified in channel_array_ptr will be written. Setting number_of_cycles = 0 will
cause the channels to be scanned continuously.

scan_event_level

This unsigned long integer value defines the frequency at which scan events are reported to the application. For example, setting scan_event_level to 100
causes a scan event to be generated each time 100 scans are completed.

reserved5[8]

This unsigned short integer array is reserved for the future expansion of DAQDRIVE.. For maximum compatibility, the application should initialize all
reserved variables to 0.

Figure 17 (continued). Digital output request structure definition.

13-31

timeout_interval

This unsigned short integer value defines a time-out interval, in seconds, for foreground mode processes. The operation will abort if the digital output can not
be updated every timeout_interval seconds. Setting timeout_interval = 0 disables the time-out function and causes the routine to wait indefinitely.

request_status

This unsigned long integer value provides the application with the current status of the request. DAQDRIVE. does not rely on the information contained in
this field nor does it ever clear any of the event bits to 0. Therefore, the application should initialize request_status during the configuration process and may

modify its contents at any time.

DAQDRIVE. Constant Value Description

NO_EVENTS 0x00000000 This constant does not represent an event status. It is provided to the application for convenience.

TRIGGER_EVENT 0x00000001 | When set to 1, this bit indicates the specified trigger has been received.

COMPLETE_EVENT 0x00000002 | When set to 1, this bit indicates the request has completed successfully.

BUFFER_EMPTY_EVENT 0x00000004 | When set to 1, this bit indicates at least one of the specified output data buffers has been emptied.

BUFFER_FULL_EVENT 0x00000008 | When set to 1, this bit indicates at least one of the specified input data buffers has been filled.

SCAN_EVENT 0x00000010 | When set to 1, this bit indicates the number of scans specified by scan_event_level have been completed at
least once.

USER_BREAK_EVENT 0x20000000 | When set to 1, this bit indicates the request has terminated due to a user-break.

TIMEOUT_EVENT 0x40000000 | When set to 1, this bit indicates the request has terminated because the specified time-out interval was
exceeded.

RUNTIME_ERROR_EVENT 0x80000000 | When set to 1, this bit indicates the request has terminated because of an error during processing. The

application can determine the source of the error using the DaqGetRuntimeError procedure.

Figure 17 (continued). Digital output request structure definition.

DAQDRIVE User's Manual

13-32

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/***/

/* CQutput three 50 point patterns to three digital output channels.

/***/

unsi gned short main()

unsi gned short | ogical _device;

unsi gned short request_handl e;

unsi gned short channel _nunf3] ={ 0, 1, 5 };
unsi gned short status;

unsi gned char data_array[150];

struct digio_request user _request;
struct DAQDRI VE. _buffer data_structure;

[***** (Cpen the device (see DagQpenDevice). *Rk kx|

[***** Prepare data structure for digital output. *Rk kx|

/***/

/* data is in data_array data_array is 150 points |ong

/* output buffer 10 times next _structure = NULL (no nore structures)
/***/

data_structure. data_buffer = data_array;

data_structure. buffer_length = 150;

data_structure. buffer_cycles = 10;
data_structure.next_structure = NULL;

[***** Prepare the digital output request structure. *kk kx|

/***/

/* channel list is in channel _num channel _num is 3 channel s | ong
/* data is in data_structure trigger source is internal

/* trigger node is continuous out put using IR (in background)
/* use internal clock output 1 point every 500ns (2Hz)
/* repeat all buffers once do not signal buffer scan events

/* do not inplenent tinme-out
/***/

user _request. channel _array_ptr
user _request.array_l ength

user _request . DAC buffer

user _request . trigger_source
user _request.trigger_node

user _request. | O node

user _request. cl ock_source

channel _num

3;

data_structure;

| NTERNAL_TRI GGER
CONTI NUQUS_TRI GGER,
BACKGROUND_| RQ

| NTERNAL_CLOCK;

user _request.sanple_rate 2;

user _r equest . nunber _of _scans 1;

user _request.scan_event _| evel 0;

user _request.timeout _interval 0;

user _request.request_status NO_EVENTS;

[***** | ndicate data buffer ready for output. *kk kx|
data_structure.buffer_status = BUFFER FULL;

[***** Request digital output. *kk kx|

request _handle = 0;
if (status !'= 0)
printf("Digital output request error. Status code %l.\n",status);

Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

status = DaqDi gital Qut put (| ogi cal _devi ce, &user _request, &request_handl e);

*/

*/
*/

*/
*/
*/
*/
*/
*/

13-33

13.9 DagFreeMemory

DagFreeMemory is a DAQDRIVE. utility function used to free memory
previously allocated by the DagAllocateMemory procedure. All allocated
memory should be freed before the application program terminates.

unsi gned short DaqgFreeMenory (unsigned short nenory_handl e,
void far *menor y_poi nt er)

memory_handle - This unsigned short integer specifies the handle of the
allocated memory block. This is the value returned by
the DagAllocateMemory procedure.

memory_pointer - This void pointer specifies the starting address of the
allocated memory block. This is the value returned by
the DagAllocateMemory procedure.

DAQDRIVE User's Manual 13-34

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/***/

/* 1nput 5000 points each from2 anal og i nput channel s. */

/***/

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short request_handl e;

unsi gned short channel _nuni 2] ={ 0 1};
float gain_settings[2] ={ 1, 8 };

unsi gned | ong nenory_si ze;

unsi gned short menory_handl e;

void far *nenory_pointer;

unsi gned short status;

struct ADC_request user _request;

struct DAQDRIVE. _buffer data_structure;
[***** (Cpen the device (see DagQpenDevice). *Rk kx|

[***** Al ocate menory for the input data. *Rk kx|
[***** 5000 sanpl es/channel * 2 channels * 2 bytes/sanple *kk kx|

menory_size = 5000 * 2 * sizeof(short);
status = DagAl | ocat eMenory(menory_si ze, &renory_handl e, &nenory_pointer);
if (status !'= 0)

printf("Error allocating data buffer. Status code 9%l.\n",status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[***** Prepare data structure for anal og input. *kk kx|

data_structure. data_buffer
data_structure. buffer_length

menory_poi nter;
10000;

[***** Prepare the A/ D request structure. *kk kx|

[***** Request A/D input (See DagAnal oglnput). *kk kx|
[***** Armthe request (See DagArnRequest). *kk kx|

[***** Trijgger the request (See DaqTriggerRequest). *kk kx|
[*****% Nt for conplete. *kk kx|

[***** Free all ocated menory. *kk kx|

status = DaqFreeMenory(nenory_handl e, rmenory_pointer);
if (status !'= 0)

printf("Error de-allocating menory. Status code %l.\n",status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[***** (C ose the device. (See DaqQ oseDevice). *kk kx|
}

13-35

13.10 DagGetADCfglinfo

DagGetADCfglinfo returns the configuration of the A/D converter
specified by ADC_device on the adapter specified by logical_device.

unsi gned short DaqGet ADCf gl nfo (unsigned short | ogical _device,
unsi gned short ADC devi ce,

struct ADC configuration far *ADC i nfo)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

ADC _device - This unsigned short integer value is used to select one of
the A/D converters on the target hardware device.

ADC _info - This structure pointer defines the address of an A/D
configuration structure where the configuration of the
specified A/D converter will be stored.

//;;ruct ADC configuration

unsi gned short resolution;
unsi gned short signal _type;
unsi gned short input_node;
unsi gned short data_coding;

long mn_digital ;

long max_digital ;

long zero_offset;

float mn_anal og;

float nax_anal og;

float mn_sanple_rate;

float max_sanple_rate;

float max_scan_rate;
unsi gned short num exp_boards;
unsi gned short total _channels;
unsi gned short max_scan_length;
unsi gned short gain_array_length;
unsi gned short calibration_nodes;

b

DAQDRIVE User's Manual 13-36

resolution This unsigned short integer value specifies the resolution of the A/D converter in bits.

signal_type This unsigned short integer value specifies the A/D input signal type.

Value Description

0x0001 | When setto 1, this bit indicates the A/D input is bipolar.

0x0002 | When set to 1, this bit indicates the A/D input is unipolar.

input_mode This unsigned short integer value specifies the A/D input mode.

Value Description

0x0001 | When set to 1, this bit indicates the A/D input is differential.

0x0002 | When set to 1, this bit indicates the A/D input is single-ended.

data_coding This unsigned short integer value specifies the A/D data coding format.
Value Description

0 Indicates data is in two's complement format.

1 Indicates data is in binary format.
min_digital This long integer value defines the minimum digital value returned by the A/D.
max_digital This long integer value defines the maximum digital value returned by the A/D.
zero_offset This long integer value defines the offset or zero value reading returned by the A/D.
min_analog This floating point value defines the minimum analog input to the A/D.
max_analog This floating point value defines the maximum analog input to the A/D.

min_sample_rate This floating point value specifies the minimum sampling rate supported by the A/D.

max_sample_rate This floating point value specifies the maximum single channel sampling rate supported by the A/D.

max_scan_rate This floating point value specifies the maximum multi-channel (scanning) sampling rate supported by the A/D.

Figure 18. A/D converter configuration structure definition.

13-37

num_exp_boards This unsigned short integer value defines the number of analog input expansion boards connected to the A/D.

total_channels This unsigned short integer value specifies the total number of analog inputs available on the A/D.

max_scan_length This unsigned short integer value defines the maximum scan length of the A/D. This is the maximum length of the
channel list for A/D requests.

gain_array_length | This unsigned short integer value specifies the number of available A/D gain settings. The application must
allocate an array of length gain_array_length before executing DaqGetADGainlInfo.

calibration_modes | This unsigned short integer value specifies the supported calibration modes of the A/D sub-system.

Value Description

0x0001 | When set to 1, this bit indicates the A/D supports auto-calibration.

0x0002 | When set to 1, this bit indicates the A/D supports auto-zero.

Figure 18 (continued). A/D converter configuration structure definition.

DAQDRIVE User's Manual 13-38

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"
#i ncl ude "daql200.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short ADC devi ces;
unsi gned short status;

struct ADC configuration ADC info;

char far *device_type
char far *config_file

" DAQ 1201 ";
"c:\\ dag- 1201\\ dag- 1201. dat "

[***** (Cpen the DAQ 1201 (see DagQOpenDevice). *kk kx|
[***** Get the A/D configuration. *kk kx|

ADC device = 0;
status = DaqGet ADCI gl nfo(l ogi cal _device, ADC device, &ADC info);
if (status !'= 0)

printf("Error getting A/D configuration. Status code %l.\n",status);
exit(status);

[***** Display the A/D configuration. *Rk kx|

printf("A'D nunber %l ", ADC device);
printf("has a resolution of % bits,\n", ADC.info.resolution);
if (ADC.info.signal _type ==

printf("is configured for unipolar and ");
el se

printf("is configured for bipolar and ");
if (ADC.info.input_node ==

printf("single-ended operation,\n");
el se

printf("differential operation,\n");
switch (ADC.info.calibration_nodes)

case 1: printf("supports auto-calibration,\n");

br eak;

case 2: printf("supports auto-zero,\n");
br eak;

case 3: printf("supports auto-calibration and auto-zero,\n");
br eak;

printf("has a max scan length of % channels,\n", ADC info.max_scan_|length);
printf("supports %l gain settings,\n", ADC info.gain_array_|length);

printf("and has %l expansion boards attached ", ADC i nf 0. num exp_boards) ;
printf("for a total of %l analog inputs.\n", ADC.info.total _inputs);
printf("\n");

printf("The A/Dreturns values in the range %d ", ADC info.min_digital);
printf("to %d\n", ADC.info.nmax_digitla);

printf("which corresponds to an input range of % ", ADC i nfo. mi n_anal og) ;
printf("to % volts.\n", ADC info.nax_anal og);

printf("\n");

printf("A single input nay be sanpled up to % Hz ", ADC i nfo. max_sanpl e_rate);

printf("and nultiple inputs up to % Hz.\n", ADC. info.nax_scan_rate);
printf("The mnimmsanpling rate is % Hz\n", ADC.info.mn_sanple_rate);

13-39

13.11 DagGetADGainlInfo

DaqGetADGainInfo returns an array of the gain settings supported by the
A/D converter specified by ADC_device on the adapter specified by
logical_device. The length of the array is determined by the
gain_array_length variable returned by the DagGetADCfginfo command.

unsi gned short DaqGet ADGai nl nfo (unsigned short | ogical _device,
unsi gned short ADC devi ce,

float far *gain_array)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

ADC _device - This unsigned short integer value is used to select one of
the A/D converters on the target hardware device.

gain_array - This pointer defines the first element of an array of
floating point values where the available A/D gain
settings will be stored. The application must allocate the
array used to store these gain settings. The length of the
array is determined by the gain_array_length variable
returned by the DaqGetADCfgIinfo command.

DAQDRIVE User's Manual 13-40

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"
#i ncl ude "daql200.h"

unsi gned short main()

unsi gned short | ogical _device;

unsi gned short ADC devi ce;

unsi gned short status;

unsi gned short i;

struct ADC configuration ADC info;

float far *gain_array;

char far *device_type
char far *config_file

" DAQ 1201 ";
"c:\\ dag- 1201\\ dag- 1201. dat "

[***** (Cpen the DAQ 1201 (see DagOpenDevice). *Rk kx|
[***** Get the A/D configuration. *Rk kx|

ADC device = 0;
status = DaqGet ADCI gl nfo(l ogi cal _device, ADC device, &ADC info);

[***** Create an array to hold the gain settings. *kk kx|
gain_array = _fmalloc(ADC info.gain_array_length * sizeof(float));
[***** Gt the available gain settings. *Rk kx|

status = DaqCet ADGi nl nfo(l ogi cal _device, ADC device, gain_array);
if (status !'= 0)

printf("Error getting AAD gain settings. Status code %l.\n",status);
exit(status);

[**** Display the avail able gain settings. *kk kx|

printf("The DAQ 1201 supports the following AAD gain settings:\n");

for (i =0; i < ADC.info.gain_array_length; i++)
printf(" gainf%] = 9%\n", i, gain_array[i]);

13-41

13.12 DagqGetDACfgInfo

DagGetDACTfgInfo returns the configuration of the D/A converter
specified by DAC_device on the adapter specified by logical_device.

unsi gned short DaqGet DACf gl nfo(unsigned short 1 ogical _device,
unsi gned short DAC devi ce,

struct DAC configuration far *DAC i nfo)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

DAC_device - This unsigned short integer value is used to select one of
the D/ A converters on the target hardware device.

DAC info - This structure pointer defines the address of a D/A
configuration structure where the configuration of the
specified D/A converter will be stored.

Gr uct DAC configuration
{
unsi gned short resolution;
unsi gned short signal _type;
unsi gned short data_coding;
long mn_digital ;
long max_digital ;
long zero_offset;
float mn_anal og;
float nax_anal og;
float mn_sanple_rate;
float max_sanple_rate;
float max_scan_rate;
unsi gned short reference_source;
float reference_voltage;
unsi gned short gain_array_length;
unsi gned short calibration_nodes;

¥

DAQDRIVE User's Manual 13-42

resolution This unsigned short integer value specifies the resolution of the D/A converter in bits.

signal_type This unsigned short integer value specifies the D/A output signal type.

Value Description

0x0001 | When set to 1, this bit indicates the D/A output is bipolar.

0x0002 | When set to 1, this bit indicates the D/A output is unipolar.

data_coding This unsigned short integer value specifies the D/A data coding format.
Value Description

0 Indicates data is in two's complement format.

1 Indicates data is in binary format.
min_digital This long integer value defines the minimum digital value accepted by the D.A.
max_digital This long integer value defines the maximum digital value accepted by the D/A.
zero_offset This long integer value defines the offset or zero value of the D/A.
min_analog This floating point value defines the minimum analog output from the D/A.
max_analog This floating point value defines the maximum analog output from the D/A.

min_sample_rate This floating point value specifies the minimum sampling rate supported by the D/A.

max_sample_rate This floating point value specifies the maximum single channel sampling rate supported by the D/A.

max_scan_rate This floating point value specifies the maximum multi-channel (scanning) sampling rate supported by the D/A.

reference_source This unsigned short integer value defines the source of the D/A's reference voltage.

reference_voltage This floating point value specifies the value of the D/A's reference voltage.

gain_array_length | This unsigned short integer value specifies the number of available D/A gain settings. The application must
allocate an array of length gain_array_length before executing DaqGetDAGainlInfo.

calibration_modes | This unsigned short integer value specifies the supported calibration modes of the D/A sub-system.

Value Description

0x0001 | When set to 1, this bit indicates the D/A supports auto-calibration.

0x0002 | When set to 1, this bit indicates the D/A supports auto-zero.

Figure 19. D/A converter configuration structure definition.

13-43 Quatech Inc.

DAQDRIVE User's Manual 13-44

(This page intentionally left blank.)

13-45

13.13 DagGetDAGaininfo

DaqGetDAGainInfo returns an array of the gain settings supported by the
D/ A converter specified by DAC_device on the adapter specified by
logical_device. The length of the array is determined by the
gain_array_length variable returned by the DagGetDACfginfo command.

unsi gned short DaqGet DAGai nl nfo (unsigned short | ogical _device,
unsi gned short DAC devi ce,

float far *gain_array)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

DAC_device - This unsigned short integer value is used to select one of
the D/A converters on the target hardware device.

gain_array - This pointer defines the first element of an array of
floating point values where the available D/A gain
settings will be stored. The application must allocate the
array used to store these gain settings. The length of the
array is determined by the gain_array_length variable
returned by the DaqGetDACfgInfo command.

DAQDRIVE User's Manual 13-46

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"
#i nclude "da8p-12.h"

unsi gned short main()

unsi gned short | ogical _device;

unsi gned short DAC devi ce;

unsi gned short status;

unsi gned short i;

struct DAC configuration DAC.info;

float ref_voltage;
float far *gain_array;

char far *device_type
char far *config_file

= " DA8P- 12B";

= "c:\\ da8p-12b\\ da8p- 12b. dat "
[***** (pen the DA8P-12B (see DagOpenDevice). *kk kx|
[***** Get the D/ A configuration. *kk kx|

DAC device = 1;
status = DaqCet DAC gl nf o(l ogi cal _devi ce, DAC device, &DAC info);

[***** Create an array to hold the gain settings. *kk kx|
gain_array = _fmalloc(DAC info.gain_array_length * sizeof(float));
[***** Gt the available gain settings. *kk kx|

status = DaqCet DAGai nl nf o(l ogi cal _devi ce, DAC device, gain_array);
if (status !'= 0)

printf("Error getting DA gain settings. Status code %l.\n",status);
exit(status);

[***** Display the available gain settings. *kkkk |

printf("The DA8P-12B supports the following DA gain settings:\n");

for (i =0; i < DAC.info.gain_array_length; i++)
printf(" gainf%] = 9%\n", i, gain_array[i]);

13-47

13.14 DaqgGetDeviceCfginfo

DaqGetDeviceCfglInfo returns the basic configuration of the adapter
specified by logical_device.

unsi gned short DaqGCet Devi ceCf gl nfo (unsigned short | ogical _device,
struct device_configuration far *dev_info)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

dev_info - This structure pointer defines the address of a device
configuration structure where the configuration of the
specified logical device will be stored.

(st ruct device_configuration
unsi gned short base_address;
short | RQ
short DWVAL,
short DWVAZ;

unsi gned short ADC devi ces;
unsi gned short DAC devi ces;
unsi gned short digi o_devices;
unsi gned short timer_devices;

¥

base_address This unsigned short integer value specifies the base 1/0 address of the device.

IRQ This unsigned short integer value specifies the IRQ level for the device. A value of -1
indicates no IRQ level is defined.

DMA1 This unsigned short integer value specifies the primary DMA channel for the device. A
value of -1 indicates no DMA channel is defined.

DMAZ2 This unsigned short integer value specifies the secondary DMA channel for the device. A
value of -1 indicates no DMA channel is defined.

ADC_devices | This unsigned short integer value specifies the number of A/D converters on the device.

DAC_devices | This unsigned short integer value specifies the number of D/A converters on the device.

digio_devices | This unsigned short integer value specifies the number of digital /0 channels on the
device.

timer_devices | This unsigned short integer value specifies the number of counter / timer channels on the
device.

Figure 20. Device configuration structure definition.

DAQDRIVE User's Manual 13-48

#i nclude "daqdrive. .h"
#i ncl ude "userdata. h"
#i nclude "dagp.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

struct device_configuration dev_info;

char far *device_type
char far *config_file

" DAQP- 208 ";
"c:\\ dagp- 208\\ dagp- 208. dat "

[***** (Cpen the DAQP-208 (see DagOpenDevice). *Rk kx|
[****% Got the DAQP-208 configuration. *kk kx|

status = DaqCet Devi ceCf gl nf o(| ogi cal _devi ce, &dev_i nfo);
if (status !'= 0)

printf("Error getting device configuration. Status code %l.\n", status);
exit(status);

[***** DOisplay the DAQP-208 configuration. *kk kx|

printf("The DAQP-208 is located at address %XH \n", dev_info.base_address);
printf("with interrupt level 9%, \n", dev_info.lRQ;
printf("and DMA channels % and %.\n\n", dev_info.DVAl, dev_info.DVA2);

printf("The DAQP-208 contains % A/D converter(s),\n", dev_info.ADC devices);
printf("% D A converter(s),\n", dev_info.DAC devices);

printf("%l digital I/O device(s),\n", dev_info.digio_devices);

printf("and %l counter/tiner channel(s).\n", dev_info.tinmer_devices);

13-49

13.15 DagGetDigioCfglinfo

DaqGetDigioCfglnfo returns the configuration of the digital 1/0 channel
specified by digio_device on the adapter specified by logical_device.

unsi gned short DaqGet Di gi oCf gl nfo (unsigned short | ogical _device,
unsi gned short di gi o_devi ce,

struct digio_configuration far *digio_info)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

digio_device - This unsigned short integer value is used to select one of
the digital 170 channels on the target hardware device.

digio_info - This structure pointer defines the address of a digital 1/0
configuration structure where the configuration of the
specified digital 1/0 channel will be stored.

struct digio_configuration

{

unsi gned short data_size;

unsi gned short io_node;

b

data_size This unsigned short integer value specifies the size of the digital 1/0 channel in bits.

io_mode This unsigned short integer value specifies the operating mode of the digital 1/0 channel.

Value Description

0x0001 | When set to 1, this bit indicates the digital 1/0 channel is configured for input
mode.

0x0002 | When set to 1, this bit indicates the digital 1/0 channel is configured for output
mode.

0x0003 | When both bits are set to 1, the digital 1/0 channel can operate in input or output
mode (bi-directional operation).

Figure 21. Digital 1/0 configuration structure definition.

DAQDRIVE User's Manual 13-50

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"
include "iop241.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short digi o_device;
unsi gned short status;

struct digio_configuration digio_info;

char far *device_type
char far *config_file

"1 OP-241",
"c:\\ iop-241\\iop-241.dat ";

[***** (Cpen the |OP-241 (see DagQpenDevice). *Rk kx|

[***** Got a digital |/O channel configuration. *Rk kx|

di gi o_device = 0;

status = DaqCet D gi oCf gl nf o(1 ogi cal _devi ce, di gi o_device, &digio_info);

if (status !'= 0)
printf("Error getting digital configuration. Status code %l.\n", status);
exit(status);

[***** Display the digital 1/0O configuration. *Rk kx|

printf("Digital 1/0Ochannel % ", digio_device);

printf("is %l bits wide,\n", digio_info.data_size);

swi tch(digio_info.io_node)

case 1: printf("and is configured for input node.\n");

br eak;

case 2: printf("and is configured for output node.\n");
br eak;

case 3: printf("and is configured for bi-directional operation.\n");
br eak;

}
}

13-51

13.16 DagGetExpCfglinfo

DaqGetExpCfglnfo returns the configuration of the expansion board
specified by exp_device which is connected to the A/D converter
specified by ADC_device on the adapter specified by logical_device.

unsi gned short DaqGet ExpCf gl nfo (unsigned short | ogical _device,
unsi gned short ADC devi ce,
unsi gned short exp_devi ce,

struct exp_configuration far *exp_info)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

ADC _device - This unsigned short integer value is used to select one of
the A/D converters on the target hardware device.

exp_device - This unsigned short integer value is used to select one of
the expansion boards connected to the A/D converter on
the target hardware device.

exp_info - This structure pointer defines the address of an expansion
board configuration structure where the configuration of
the specified expansion board will be stored.

struct exp_configuration

unsi gned short signal _type;

unsi gned short input_node;

unsi gned short num rmux_channel s;
float max_sanple_rate;
float max_scan_rate;

unsi gned short gain_array_length;

¥

DAQDRIVE User's Manual 13-52

signal_type This unsigned short integer value specifies the expansion board input signal type.

Value Description

0x0001 | When set to 1, this bit indicates the expansion board input is bipolar.

0x0002 | When set to 1, this bit indicates the expansion board input is unipolar.

input_mode This unsigned short integer value specifies the expansion board input mode.

Value Description

0x0001 | When set to 1, this bit indicates the expansion board input is differential.

0x0002 | When set to 1, this bit indicates the expansion board input is single-ended.

num_mux_channels | This unsigned short integer value specifies the number of multiplexer channels on the expansion board.

max_sample_rate This floating point value specifies the maximum single channel sampling rate supported by the expansion board.

max_scan_rate This floating point value specifies the maximum multi-channel (scanning) sampling rate supported by the
expansion board.

gain_array_length This unsigned short integer value specifies the number of available expansion board gain settings. The application
must allocate an array of length gain_array_length before executing DaqGetExpGaininfo.

Figure 22. Analog input expansion board configuration structure definition.

13-53 Quatech Inc.

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"
#i ncl ude "daql1200.h"

unsi gned short main()

unsi gned short | ogical _device;

unsi gned short ADC devi ce;

unsi gned short exp_devi ce;

unsi gned short status;

struct exp_configuration exp_info;

char far *device_type
char far *config_file

" DAQ 1201 ";
"c:\\ dag- 1201\\ dag- 1201. dat "

[***** (Cpen the DAQ 1201 (see DagOpenDevice). *kk kx|

[***** Get the expansi on board configuration. *kk kx|
ADC device = 0;
exp_device = 0;

status = DaqCet ExpCf gl nfo(l ogi cal _device, ADC device, exp_device, &exp_info);
if (status !'= 0)

printf("Error getting exp. board configuration. Status code %l.\n", status);
exit(status);

[***** DO splay the expansi on board configuration. *kk kx|

printf("Expansion board nunber % on A/D nunber %\ n", exp_device, ADC device);
if (exp_info.signal _type ==
printf("is configured for unipolar and ");
el se
printf("is configured for bipolar and ");
if (exp_info.input_node ==
printf("singl e-ended operation,\n");
el se
printf("differential operation,\n");
printf("has % analog inputs,\n", exp_info.numnux_channels);
printf("and supports %l gain settings.\n", exp_info.gain_array_|ength);

DAQDRIVE User's Manual 13-54

(This page intentionally left blank.)

13-55

13.17 DagGetExpGainlinfo

DaqGetExpGainlnfo returns an array of the gain settings supported by the
expansion board specified by exp_device connected to the A/D converter
specified by ADC_device on the adapter specified by logical_device. The
length of the array is determined by the gain_array_length variable
returned by the DaqGetExpCfginfo command.

unsi gned short DaqGet ExpGai nl nfo (unsigned short | ogical _device,
unsi gned short ADC devi ce,
unsi gned short exp_devi ce,

float far *gain_array)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

ADC _device - This unsigned short integer value is used to select one of
the A/D converters on the target hardware device.

exp_device - This unsigned short integer value is used to select one of
the expansion boards connected to the A/D converter on
the target hardware device.

gain_array - This pointer defines the first element of an array of
floating point values where the available expansion board
gain settings will be stored. The application must allocate
the array used to store these gain settings. The length of
the array is determined by the gain_array_length variable
returned by the DaqGetExpCfglinfo command.

DAQDRIVE User's Manual 13-56

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"
#i ncl ude "daql200.h"

unsi gned short main()

unsi gned short | ogical _device;

unsi gned short ADC devi ce;

unsi gned short exp_devi ce;

unsi gned short status;

unsi gned short i;

struct exp_configuration exp_info;
float far *gain_array;

char far *device_type
char far *config_file

" DAQ 1201 ";
"c:\\ dag- 1201\\ dag- 1201. dat "

[***** (pen the DAQ 1201 (see DagOpenDevice). *kk kx|
[***** Get the expansi on board configuration. *kk kK |
ADC device = 0;

exp_device = 1;
status = DaqCet ExpCf gl nfo(l ogi cal _device, ADC device, exp_device, &exp_info);

[***** Create an array to hold the gain settings. *Rk kx|
gain_array = _fmalloc(exp_info.gain_array_length * sizeof(float));
[***** Gt the available gain settings. *Rk kx|

status = DaqCet ExpGai nl nf o(| ogi cal _devi ce, ADC devi ce, exp_device, gain_array);
if (status !'= 0)

printf("Error getting expansion board gain settings.\n");
printf("Status code %l.\n", status);
exit(status);

[***** Display the available gain settings. *kkkk |

printf("Expansion board #% supports the following gains:\n", exp_device);

for (i =0; i < exp_info.gain_array_length; i++)
printf(" gainf%] = %\n", i, gain_array[i]);

13-57

13.18 DaqgGetRuntimeError

DaqGetRuntimeError returns the last run-time error encountered by the
request specified by request_handle.

unsi gned short DaqGet Runti neError (unsigned short request_handl e,
unsi gned short far *error_code)

request_handle - This unsigned short integer variable is used to define
which request's error status to retrieve. This is the value
returned to the application by the configuration
procedures DagAnaloginput, DagAnalogOutput,
DaqgDigitallnput, or DagDigitalOutput.

error_code - This pointer defines an unsigned short integer where
the error code from the last run-time error will be
stored. Chapter 14 provides an explanation of these
error codes. DAQDRIVE. resets the request's error_code
to 0 each time the request is armed.

DAQDRIVE User's Manual 13-58

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/**/

/* CQutput a 20 point waveform to a DA channel. */
/**/

unsi gned short mai n()

unsi gned short | ogical _device;
unsi gned short request_handl e;
unsi gned short channel ;
unsi gned short status;
unsi gned short error_code;
unsi gned short i;

short data_array[20];
unsi gned long event_mask;

struct DAC_request user _request;
struct DAQDRIVE. _buffer data_structure;

[***** (Cpen the device (see DagQpenDevice). *kk kx|

[***** define DA output channel and cal cul ate output data. *kk kx|
[***** Prepare data structure for anal og out put. *kk kx|
[***** Prepare the DA request structure. kR kx|

[***** Request D/ A output (See DagAnal ogQutput). kR kx|
[***** Armthe request (See DagArnRequest). *kkkk |
[***** Trjgger the request. *kkkk |

[***** \Nit for conpletion or error. kR kx|

event _mask = COVPLETE EVENT | RUNTI ME_ERROR EVENT;
whi |l e((user_request.request_status & event_mask) == 0);

if ((user_request.request_status & COWLETE_EVENT) != 0)
printf("Request conplete.\n");
el se

status = DaqgCet Runti nmeError(request_handl e, &error_code);
printf("Run-time error #%l. Request aborted.\n", error_code);

[***** Re| ease the request. kR kx|

status = DaqRel easeRequest (request _handl e);
if (status !'= 0)
printf("Could not release configuration. Status code %l.\n"),status);

[***** (ose the device . ****x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)
printf("Error closing device. Status code 9%l.\n"),status);
return(status);
1

13-59

13.19 DaqgGetTimerCfginfo

DagGetTimerCfglnfo returns the configuration of the counter / timer
channel specified by timer_device on the adapter specified by
logical_device.

unsi gned short DaqGet Ti ner Cf gl nfo (unsigned short | ogical _device,
unsi gned short tiner_device,

struct timer_configuration far *tinmer_info)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

timer_device - This unsigned short integer value is used to select one of
the counter / timer channels on the target hardware
device.

timer_info - This structure pointer defines the address of a counter /
timer configuration structure where the configuration of
the specified counter / timer channel will be stored.

struct timer_configuration

unsi gned short dat a_si ze;
double internal _clock_ rate;
double nmin_rate;
double nax_rate;

data_size This unsigned short integer value specifies the size of the counter / timer channel in
bits.

internal_clock_rate | This double precision floating point value specifies the frequency of the on-board clock
input to the counter / timer.

min_rate This double precision floating point value specifies the minimum output frequency of
the counter / timer when using the internal clock source.

max_rate This double precision floating point value specifies the maximum output frequency of
the counter / timer when using the internal clock source.

Figure 23. Counter/timer configuration structure definition.

DAQDRIVE User's Manual 13-60

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"
#include "iop24l1l.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short tiner_device;
unsi gned short status;

struct timer_configuration timer_info;

char far *device_type
char far *config_file

= "10P-241";

= "c:\\iop-241\\iop-241.dat ";

[***** (Cpen the |OP-241 (see DagQpenDevice). *Rk kx|

[***** Got a digital |/O channel configuration. *Rk kx|

di gi o_device = 0;

status = DaqGCet Ti ner Cf gl nf o(1 ogi cal _devi ce, timer_device, &imer_info);
if (status !'= 0)

printf("Error getting digital configuration. Status code %l.\n", status);
exit(status);

[***** Display the digital 1/0O configuration. *Rk kx|

printf("Counter timer channel %l ", timer_device);

printf("is %l bits wide, \n", timer_info.data_size);

printf("has an internal clock rate of % \n", timer_info.internal _clock_rate);
printf("Hz, which can produce output rates between %", timer_info.mn_rate);

printf("and % Hz.\n", timer_info.max_rate);

13-61

13.20 DagNotifyEvent

DaqgNotifyEvent allows the application program to install a procedure
that DAQDRIVE. will execute each time an event occurs and should be

executed before the request is armed. The format of the command is

shown below.

unsi gned short DagNotifyEvent (unsigned short request_handl e,
void (far pascal *event_procedure)

(unsi gned short,

unsi gned short,
unsi gned short),
unsi gned | ong event _mask)

request_handle - This unsigned short integer variable is used to define
which request is to use the event procedure defined by
event_procedure. This is the value returned to the
application by the configuration procedures
DagAnaloglinput, DagAnalogOutput,
DaqgDigitallnput, or DagDigitalOutput.

event_procedure - This pointer defines the starting address of the

procedure to be executed when an event occurs.

event_procedure is defined in the following section.

event_mask - This unsigned long integer value is used to specify
which events the application wishes to be notified of.
event_mask is defined as a bit mask - setting a specific
bit to logic 1 enables notification of the corresponding
event. The bit definitions of event mask are given

below.
DAQDRIVE. constant Value Description
NO_EVENTS 0x00000000 | Disable all event notification.
TRIGGER_EVENT 0x00000001 | Enable notification of trigger events.
COMPLETE_EVENT 0x00000002 | Enable notification of complete events.
BUFFER_EMPTY_EVENT 0x00000004 | Enable notification of buffer empty events.
BUFFER_FULL_EVENT 0x00000008 | Enable notification of buffer full events.
SCAN_EVENT 0x00000010 | Enable notification of scan events.
USER_BREAK_EVENT 0x20000000 | Enable notification of user break events.
TIMEOUT_EVENT 0x40000000 | Enable notification of time-out events.
RUNTIME_ERROR_EVENT | 0x80000000 | Enable notification of run-time error events.

DAQDRIVE User's Manual

13-62

13.20.1 The user-defined event procedure

The application programmer must create the procedure to be executed for
event notification. This procedure must be a far pascal compatible
procedure of type void (does not return a value) and it must accept three
unsigned short integer parameters: request_handle, event_type, and
error_code. A sample C declaration of this procedure is shown below.

void far pascal event_procedure(unsigned short request_handl e,
unsi gned short event _type,

unsi gned short error_code)

When executed, DAQDRIVE. provides the event procedure with the
request's request_handle, the type of event which has occurred (see the
table below), and an event error code. This error code is set to 0 for all
events except the run-time error event where it is used to specify the type
of error encountered as defined in chapter 14. Since the request_handle is
provided to the event procedure, a single event procedure may be used to
service events from multiple requests.

DAQDRIVE. constant Value | Description
EVENT_TYPE_TRIGGER 0 This call to the notification procedure is the
result of a trigger event.
EVENT_TYPE_COMPLETE 1 This call to the notification procedure is the
result of a complete event.
EVENT_TYPE_BUFFER_EMPTY 2 This call to the notification procedure is the
result of a buffer empty event.
EVENT_TYPE_BUFFER_FULL 3 This call to the notification procedure is the
result of a buffer full event.
EVENT_TYPE_SCAN 4 This call to the notification procedure is the
result of a scan event.
EVENT_TYPE_USER_BREAK 29 This call to the notification procedure is the
result of a user break event.
EVENT_TYPE_TIMEOUT 30 This call to the notification procedure is the
result of a time-out event.
EVENT_TYPE_RUNTIME_ERROR 31 This call to the notification procedure is the
result of a run-time error event.

13-63

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

[***** Define an event procedure

void far pascal

swi tch(event _type)

{
case EVENT_TYPE TR GGER

case EVENT_TYPE_RUNTI ME_ERRCR

event _nask = TR GGER EVENT |

[***** |nstall

status =
if (status !'= 0)
printf("Error

/*****

Armthe request (See

/*****

Trigger the request (See

ny_event _procedur e(unsi gned

COVPLETE_EVENT |
notification procedure.

DagNot i f yEvent (request _handl e,

DagAr nRequest) .

*****/

short
unsi gned short
unsi gned short

request _handl e,
event _type,
error_code)

[***** process trigger events *kk kx|
br eak;

case EVENT_TYPE COWPLETE:
[***** process conplete events *Rk kx|
br eak;

[***** process run-tinme error events *kk kx|
br eak;
}

}

[***** Define the main procedure *kk kx|

voi d main()

unsi gned short request_handl e;

unsi gned short status;

unsi gned long event_mask;

[***** (Cpen the device (see DaqgQpenDevice). *kk kx|

[***** Request an operation. (gets a request_handle) *kk kx|

[***** Define events to be notified. Fhxxk

RUNTI ME_ERROR_EVENT;

*****/

ny_event _procedure, event_mask);

installing notification.\n");

*****/

*****/

DaqTri gger Request).

DAQDRIVE User's Manual

13-64

13.21 DagOpenDevice

DagOpenDevice reads the adapter description file generated by the
DAQDRIVE. configuration utilities, initializes the hardware device
according to the contents of the file, and prepares DAQDRIVE. for use
with the device.

DagOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE. and the
application program. The following sections describe the
DaqOpenDevice procedure for linking C applications directly to the
DAQDRIVE. libraries, for applications using the DLL version of
DAQDRIVE. under Windows, and for applications using the DOS
memory resident (TSR) version ofDAQDRIVE..

13-65

13.21.1 DagOpenDevice - C Library Version

The C library version of DaqOpenDevice is intended for DOS applications
that are written in C and linked directly to the DAQDRIVE. libraries.
Consult the target hardware's appendix in theDAQDRIVE User's Manual
Supplement for the required settings of PROCEDURE, the device_type
variable, and the name of the include file (.h) which defines the open
command for the target device.

unsi gned short DaqOpenDevi ce (PROCEDURE,
unsi gned short far *| ogi cal _devi ce,

char far *devi ce_type,
char far *config_file)

PROCEDURE - This is a constant used by the macro to define the "open"
procedure of the driver to be accessed and must be
entered exactly as it is defined in the target hardware's
appendix of the DAQDRIVE User's Manual Supplement.
PROCEDURE is used with the token pasting operator to
generate a unique "open" procedure for each type of
hardware device.

logical_device - This pointer specifies the address of an unsigned short
integer where the logical device number assigned by
DAQDRIVE. will be stored. The application should
initialize the integer pointed to by logical _device to 0.

device _type - This pointer defines the starting address of a character
array (string) which describes the hardware device to be
opened. The target hardware's appendix of the
DAQDRIVE User's Manual Supplement contains the
valid settings for device_type.

config_file - This pointer defines the starting address of a character
array (string) which defines the name of the DAQDRIVE.
configuration file to be used. This character string must
contain the drive, path, filename, and extension of the
desired configuration file.

DAQDRIVE User's Manual 13-66

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i nclude "da8p-12.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

" DA8P- 12B";
"c:\\ da8p-12b\\ da8p- 12b. dat "

char far *device_type
char far *config_file

[***** (pen the DA8P-12B. ****x/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DA8P-12, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** Performany DASP-12B operations here. *kk kx|
[***** J ose the DA8P-12B. *****/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)
printf("Error closing device. Status code 9%l.\n"),status);
return(status);
1

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i nclude "dagp.h"

unsi gned short main()

{

unsi gned short | ogical _device;
unsi gned short status;

char far *device_type
char far *config_file

" DAQP-16";
"c:\\ dagp- 16\\ dagp- 16. dat ";

/***** @en the DAQ:)_IG. *****/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

}
[***** Performany DAQP-16 operations here. *kk kx|
[***** O ose the DAQP-16. *****/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n"),status);
return(status);

}

13-67

13.21.2 DagOpenDevice - Windows DLL Version

The Windows DLL version of DagOpenDevice is intended for Windows
applications that interface to the DAQDRIVE. dynamic link libraries
(DLLs). Consult the target hardware's appendix in the DAQDRIVE User's
Manual Supplement for the required settings of the DLL_name and
device_type variables.

unsi gned short DaqOpenDevice(char far *DLL_nane,
unsi gned short far *| ogi cal _devi ce,

char far *devi ce_type,
char far *config_file)

DLL_name - This pointer defines the starting address of a character
array (string) specifying the hardware dependent DLL
required for the desired adapter. The name of this DLL
is contained in the target hardware's appendix in the
DAQDRIVE User's Manual Supplement. If DLL_name
does not specify a path, Windows will search for the
DLL in the following order: the current directory, the
Windows directory, the Windows system directory, the
application's directory, the system's PATH, and any
mapped network drives.

logical _device - This pointer specifies the address of an unsigned short
integer where the logical device number assigned by
DAQDRIVE. will be stored. The application should
initialize the integer pointed to by logical _device to 0.

device _type - This pointer defines the starting address of a character
array (string) which describes the hardware device to be
opened. The target hardware's appendix of the
DAQDRIVE User's Manual Supplement contains the
valid settings for device_type.

config_file - This pointer defines the starting address of a character
array (string) which defines the name of the DAQDRIVE.
configuration file to be used. This character string must
contain the drive, path, filename, and extension of the
desired configuration file.

DAQDRIVE User's Manual 13-68

#i nclude "daqdrive. .h"
#i ncl ude "daqopenw. h"
#i ncl ude "userdata. h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

char far *device_type
char far *config_file
char far *DLL_nanme ="

" DAQP- 208 ";
"c:\\ dagp- 208\\ dagp- 208. dat "
:\\ dagp-208\\ dagpwi n.dl | "

onn

[***** (pen the DAQP-208. ****x/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DLL_nane, & ogical _device, device_type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** Performany DAQP-208 operations here. *kk kx|
[*****x J ose the DAQP-208. ***x*x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n"),status);
return(status);

}

#i nclude "daqdrive. .h"
#i ncl ude "daqopenw. h"
#i ncl ude "userdata. h"

unsi gned short mai n()
{
unsi gned short | ogical _device;
unsi gned short status;

char far *device_type "1 OP-241",
char far *config_file "c:\\ iop-241\\iop-241.dat ";
char far *DLL_nane = "iop-241.dll ";

[***** (Cpen the |0OP-241. ****x/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DLL_nane, & ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

}

[***** Performany |OP-241 operations here. *kk kx|
[****x%x Jose the |0P-241., **x*x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n"),status);
return(status);

}

13-69

13.21.3 DagOpenDevice - TSR Version

The TSR version of DaqgOpenDevice is intended for DOS applications that
interface to the memory resident version of DAQDRIVE.. Consult the
target hardware's appendix in the DAQDRIVE User's Manual Supplement
for the required settings of the TSR_number and device_type variables.

unsi gned short DaqOpenDevi ce (unsigned short TSR nunber,
unsi gned short far *| ogi cal _devi ce,

char far *devi ce_type,
char far *config_file)

TSR_number -

logical_device -

device_type -

config_file -

This unsigned short integer variable specifies the
interrupt service number for the desired adapter.
TSR_number is defined in the target hardware's
appendix of the DAQDRIVE User's Manual Supplement
and should not be confused with the software interrupt
number where DAQDRIVE. is installed.

This pointer specifies the address of an unsigned short
integer where the logical device number assigned by
DAQDRIVE. will be stored. The application should
initialize the integer pointed to by logical _device to 0.

This pointer defines the starting address of a character
array (string) which describes the hardware device to be
opened. The target hardware's appendix of the
DAQDRIVE User's Manual Supplement contains the
valid settings for device_type.

This pointer defines the starting address of a character
array (string) which defines the name of the DAQDRIVE.
configuration file to be used. This character string must
contain the drive, path, filename, and extension of the
desired configuration file.

DAQDRIVE User's Manual 13-70

#i nclude "daqdrive. .h"
#i ncl ude "daqopent. h"
#i ncl ude "userdata. h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

unsi gned short TSR nunber = Oxf005;
char far *device_type " DAQP-16";
char far *config_file "c:\\ dagp- 16\\ dagp- 16. dat ";

/***** @en the DAQ:)_IG. *****/

| ogi cal _device = 0;
status = DaqQpenDevi ce(TSR nunber, & ogical _device, device_type, config_ file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** Performany DAQP-16 operations here. *Rk kx|
[***** O ose the DAQP-16. *****/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n"),status);
return(status);

}

#i nclude "daqdrive. .h"
#i ncl ude "daqopent.h"
#i ncl ude "userdata. h"

unsi gned short mai n()
{
unsi gned short | ogical _device;
unsi gned short status;

unsi gned short TSR nunber = 0xf006;
char far *device_type " DA8P-12B";
char far *config_file "c:\\ da8p-12b\\ da8p- 12b. dat "

[***** (pen the DA8P-12B. ****x/

| ogi cal _device = 0;
status = DaqQpenDevi ce(TSR nunber, & ogical _device, device_type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

}
[***** Performany DA8P-12B operations here. *kk kx|
[*****x ose the DA8P-12B. *****/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n"),status);
return(status);

}

13-71

13.22 DagPostMessageEvent

DaqgPostMessageEvent is available only in the DLL version of
DAQDRIVE. for use under Windows. It installs a pre-defined messaging
procedure using DagNotifyEvent to post event messages to the
application's window and should be executed before the request is armed.
DaqgNotifyEvent and DagPostMessageEvent can not both be used on the
same request.

unsi gned short DaqPost MessageEvent (unsigned short request_handl e,
unsi gned | ong event _nask,

unsi gned short wi ndow_handl e)

request_handle - This unsigned short integer variable is used to define
which request is to use the event procedure defined by
event_procedure. This is the value returned to the
application by the configuration procedures
DagAnaloglnput, DagAnalogOutput, DagDigitalInput,
or DagDigitalOutput.

event_mask - This unsigned long integer value is used to specify
which events the application wishes to be notified of.
event_mask is defined as a bit mask - setting a specific
bit to logic 1 enables notification of the corresponding
event. The bit definitions of event mask are given

below.
DAQDRIVE. constant Value Description
NO_EVENTS 0x00000000 | Disable all event notification.
TRIGGER_EVENT 0x00000001 | Enable notification of trigger events.
COMPLETE_EVENT 0x00000002 | Enable notification of complete events.
BUFFER_EMPTY_EVENT 0x00000004 | Enable notification of buffer empty events.
BUFFER_FULL_EVENT 0x00000008 | Enable notification of buffer full events.
SCAN_EVENT 0x00000010 | Enable notification of scan events.
USER_BREAK_EVENT 0x20000000 | Enable notification of user break events.
TIMEOUT_EVENT 0x40000000 | Enable notification of time-out events.
RUNTIME_ERROR_EVENT | 0x80000000 | Enable notification of run-time error events.

window_handle - This unsigned short integer value is the handle of the
application program window (HWND).

DAQDRIVE User's Manual 13-72

13.22.1 The Event Message

When an event occurs, DAQDRIVE. uses the Windows PostMessage
procedure to send an event message to the window specified by
window_handle (HWND). The message number (uMsg) is the sum of the
event value specified in figure 8 and the pre-defined Windows constant
WM_USER. The two message specific arguments, LPARAM and
WPARAM, are used to specify the request's request_handle and an event
error_code respectively. The error code is set to 0 for all events except the
run-time error event where it is used to specify the type of error
encountered as defined in chapter 14.

13-73

13.23 DagReleaseRequest

The DagReleaseRequest releases a previously defined request allowing
the configured channels to be re-used. This is the reverse of the
DagAnaloglnput, DagAnalogOutput, DagDigitalInput, and
DaqgDigitalOutput procedures. DagReleaseRequest may be used on
configurations that were never armed (DagArmRequest), on requests that
have been completed, or on requests that have otherwise been terminated.

unsi gned short DaqgRel easeRequest (unsi gned short request_handle) I

request_handle - This unsigned short integer variable is used to define
which request is to be released. This is the value
returned to the application by the configuration
procedures DagAnaloginput, DagAnalogOutput,
DaqgDigitallnput, or DagDigitalOutput.

DAQDRIVE User's Manual 13-74

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/**/

/* CQutput a 20 point waveform to a DA channel.
/**/

unsi gned short mai n()

unsi gned short | ogical _device;
unsi gned short request_handl e;
unsi gned short channel ;
unsi gned short status;
unsi gned short error;
unsi gned short i;

short data_array[20];
unsi gned long event_mask;

struct DAC_request user _request;
struct DAQDRIVE. _buffer data_structure;

[***** (Cpen the DA8P-12B(see DagQpenDevice). *kk kx|

[***** define DA output channel and cal cul ate output data. *kk kx|
[***** Prepare data structure for anal og out put. *kk kx|
[***** Prepare the DA request structure. kR kx|

[***** Request D/ A output (See DagAnal ogQutput). kR kx|
[***** Armthe request (See DagArnRequest). *kkkk |
[***** Trjgger the request. *kkkk |

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

printf("Trigger request error. Status code 9%l.\n",status);
DaqSt opRequest (request _handl e) ;

DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

[***** \Nit for conpletion or error. *kk kx|

event _mask = COVPLETE EVENT | RUNTI ME_ERRCR EVENT;

whi |l e((user_request.request_status & event_mask) == 0);

if ((user_request.request_status & COWLETE_EVENT) != 0)
printf("Request conplete.\n");

el se

status = GetRuntineError(request_handl e, &error);
printf("Run-time error #%l. Wavef orm aborted.\n", error);

[***** Re| ease the request. *kk kx|

status = DagRel easeRequest (request _handl e);
if (status !'= 0)
printf("Could not release configuration. Status code %l.\n"),status);

[***** (ose the DA8BP-12B. ****x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)
printf("Error closing device. Status code 9%l.\n"),status);
return(status);
1

*/

13-75

13.24 DagResetDevice

DagResetDevice returns the specified hardware device to its power-up
state. In situations where more than one application program is using the
target device, performing a reset could corrupt other tasks. Under these
circumstances, DagResetDevice will return an error indicating the device
could not be reset in a multi-user environment.

unsi gned short DaqgReset Devi ce(unsigned short | ogical_device) '

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

NOTE:

Not all hardware devices respond to DagResetDevice in the same
manner. Consult the target hardware's appendix in the DAQDRIVE
User's Manual Supplement to determine the exact operation of this
procedure.

DAQDRIVE User's Manual 13-76

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i nclude "da8p-12.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

char far *device_type
char far *config_file

" DA8P- 12B";
"c:\\ da8p-12b\\ da8p- 12b. dat ";

[***** (Cpen the DA8P-12B. *****/
| ogi cal _device = 0;
status = DaqQpenDevi ce(DA8P-12, &l ogical _device, device type, config_file);
if (status !'= 0)
printf("Error opening configuration file. Status code %l.\n",status);
exit(status);
[***** Perform DA8P-12B operations here. *kk kx|

[***** Reset the DA8BP-12B. ****x/

status = DagReset Devi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error resetting device. Status code %l.\n"),status);
return(status);

}

[***** Perform additional DA8P-12 operations. *kk kx|
[*****x J ose the DA8P-12B. *****/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n"),status);
return(status);

}

13-77

13.25 DagSingleAnaloglinput

The DagSingleAnaloglnput procedure provides a simplified interface for
inputting a single point from a single A/D converter channel. The format
of the command is shown below. The analog input specified by
channel_number on the adapter defined by logical_device is configured
for the gain specified by gain_setting. The analog input is converted to a
digital value which is returned to the address specified by input_value.
This procedure executes the DAQDRIVE. procedures DagAnaloglnput,
DagArmRequest, DagTriggerRequest, and DagReleaseRequest before
returning to the calling application.

unsi gned short DaqSi ngl eAnal ogl nput (unsigned short | ogical _device,
unsi gned short channel _nunber ,

fl oat gai n_setting,
void far *i nput _val ue)

logical device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DagOpenDevice command.

channel_number - This unsigned short integer value is used to specify
which A/D converter channel on logical_device is to
be converted.

gain_setting - This floating point value defines the gain setting for
the channel specified by channel_number.

input_value - This void pointer specifies the address where the
value input from the A/D converter is to be stored.
input_value is declared as a void to allow it to point to
data of any type. It is the application program's
responsibility to ensure the data pointed to by
input_value is the correct type for the target hardware
as listed in the table below.

Resolution Configuration data type

1 to 8 bits unipolar unsigned char
bipolar signed char

9 to 16 bits unipolar unsigned short
bipolar signed short

17 to 32 bits unipolar unsigned long
bipolar signed long

DAQDRIVE User's Manual 13-78

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i ncl ude "daql200.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

unsi gned short ADC channel ;
short input_val ue;

float gain_setting;

char far *device_type
char far *config_file

" DAQ 1201 ";
"c:\\ dag- 1201\\ dag- 1201. dat ";

[***** (Cpen the DAQ 1201. ****x/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQL200, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** | nput one value fromA/ D channel 7 with a gain of 1. *kk kx|

ADC_channel 7;

gai n_setting 1.0;

status = DaqSi ngl eAnal ogl nput (1 ogi cal _devi ce, ADC _channel ,
gai n_setting, & nput_value);

if (status !'= 0)
printf("Error reading fromA/D. Status code 9%l.\n",status);

[***** (ose the DAQ 1201. ****x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)
printf("Error closing device. Status code 9%l.\n",status);

return(status);
!

13-79

13.26 DagSingleAnaloglnputScan

The DagSingleAnaloglnputScan procedure provides a simplified interface
for inputting a single point from multiple A/D converter channels. The
format of the command is shown below. The analog input channels
specified by channel_array on the adapter defined by logical_device are
configured for the gain settings specified by gain_array. The analog
inputs are then converted to digital values which are returned to the array
specified by input_array. There is a one-to-one correspondence between
the number of analog input channels, the number of gain settings, and the
number of samples. Therefore, array_length specifies the length of
channel_array, gain_array, and input_array. This procedure executes the
DAQDRIVE. procedures DagAnaloginput, DagArmRequest,
DaqTriggerRequest, and DagReleaseRequest before returning to the
calling application.

unsi gned short DaqSi ngl eAnal ogl nput Scan (unsi gned short | ogi cal _device,
unsi gned short far *channel _array,
float far *gai n_array,
unsi gned short array_l engt h,

void far *input_array)

logical_device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to the
application by the DagOpenDevice command.

channel_array - This pointer specifies the address of an unsigned short
integer array containing the analog input channels on
logical_device to be sampled.

gain_array - This pointer specifies the address of a floating point
array defining the gain setting for the channels specified
by channel_array.

array _length - This unsigned short integer value defines the length of
channel_array, gain_array, and input_array.

input_array - This void pointer specifies the address of an array where
the values input from the A/D converter are to be stored.
input_array is declared as a void to allow it to point to
data of any type. It is the application program's
responsibility to ensure the data pointed to by
input_array is the correct type for the target hardware as
listed in the table below.

DAQDRIVE User's Manual 13-80

Resolution Configuration data type

1 to 8 bits unipolar unsigned char
bipolar signed char

9 to 16 bits unipolar unsigned short
bipolar signed short

17 to 32 bits unipolar unsigned long
bipolar signed long

Figure 24. input_array data types as a function of analog
input channel type.

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i nclude "dagp.h"

unsi gned short nain()
{
unsi gned short | ogical _device;
unsi gned short status;

unsi gned short channel _array[3]
float gain_array[3]
short input_array[3];

unsi gned short array_l ength;

char far *device_type
char far *config_file

" DAQP- 208 ";
"c:\\ dagp- 208\\ dagp- 208. dat "

[***** (pen the DAQP-208. ****x/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

}
[***** | nput one value fromA/ D channels 0, 1, and 2. *kk kx|
status = DaqSi ngl eAnal ogl nput Scan(| ogi cal _devi ce, channel _array, gain_array,

array_l ength, input_array);
if (status !'= 0)
printf("Error reading fromA/'D. Status code %l.\n",status);

[***** (ose the DAQP-208. ****x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n",status);
return(status);

}

13-81

13.27 DagSingleAnalogOutput

The DagSingleAnalogOutput procedure provides a simplified interface
for outputting a single point to a single D/A converter. The format of the
command is shown below. The value specified by output_value is output
to the D/A converter specified by channel_number on the adapter
specified by logical_device. This procedure executes the DAQDRIVE.
procedures DagAnalogOutput, DagArmRequest, DaqTriggerRequest, and
DaqgReleaseRequest before returning to the calling application.

unsi gned short DaqSi ngl eAnal ogQut put (unsigned short | ogical _device,
unsi gned short channel _nunber ,

void far *out put _val ue)

logical device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DagOpenDevice command.

channel_number - This unsigned short integer value is used to specify
which D/A converter channel on logical_device is to
receive the output data.

output_value - This void pointer specifies the address of the data to
be output to the D/A converter. output_value is
declared as a void to allow it to point to data of any
type. Itis the application program's responsibility to
ensure the data pointed to by output_value is the
correct type for the target hardware as listed in the

table below.

Resolution Configuration data type

1 to 8 bits unipolar unsigned char
bipolar signed char

9 to 16 bits unipolar unsigned short
bipolar signed short

17 to 32 bits unipolar unsigned long
bipolar signed long

DAQDRIVE User's Manual 13-82

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i ncl ude "daql200.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

unsi gned short DAC channel ;
short out put_val ue;

char far *device_type
char far *config_file

" DAQ 1201 ";
"c:\\ dag-1201\\ dag- 1201. dat ";

[***** (Cpen the DAQ 1201. ****x/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQL200, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** Qutput one value to DA channel 0. *kk kx|

DAC_channel 0;
out put _val ue 1024;
status = DaqSi ngl eAnal ogQut put (I ogi cal _devi ce, DAC channel , &out put_val ue);
if (status !'= 0)
printf("Error witing to DA Status code %l.\n",status);

[***** (ose the DAQ 1201. ****x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)
printf("Error closing device. Status code 9%l.\n"),status);
return(status);
1

13-83

13.28 DagSingleAnalogOutputScan

The DagSingleAnalogOutputScan procedure provides a simplified
interface for outputting a single point to multiple D/A converter. The
format of the command is shown below. The values specified by
output_array are output to the D/A converters specified by channel_array
on the adapter specified by logical_device. A D/A channel may appear
in channel_array only once. There is a one-to-one correspondence
between the number of analog output channels and the number of output
values. Therefore, array_length specifies the length of both channel_array
and output_array. This procedure executes the DAQDRIVE. procedures
DagAnalogOutput, DagArmRequest, DaqTriggerRequest, and
DaqgReleaseRequest before returning to the calling application.

unsi gned short DaqgSi ngl eAnal ogQut put Scan (unsi gned short | ogi cal _device,
unsi gned short far *channel _array,
unsi gned short array_l engt h,

voi d far *out put _array)

logical device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DagOpenDevice command.

channel_array - This pointer specifies the address of an unsigned short
integer array containing the analog output channels on
logical_device to be written.

array_length - This unsigned short integer value defines the length of
channel_array and output_array.

output_array - This void pointer specifies the address of an array
containing the data to be output to the analog output
channels. output_array is declared as a void to allow
it to point to data of any type. It is the application
program's responsibility to ensure the data pointed to
by output_array is the correct type for the target
hardware as listed in the table below.

DAQDRIVE User's Manual 13-84

Resolution Configuration data type
1 to 8 bits unipolar unsigned char
bipolar signed char
9 to 16 bits unipolar unsigned short
bipolar signed short
17 to 32 bits unipolar unsigned long
bipolar signed long
Figure 25. output_array data types as a function of analog
output channel type.
#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i nclude "dagp.h"

unsi gned short main()

unsi gned short | ogical _device;

unsi gned short status;

unsi gned short channel _array[2] 0
short output_array[2]

unsi gned short array_length = 2;

char far *device_type
char far *config_file

" DAQP-208";

/*****

Open the DAQP-208.

*****/
| ogi cal _device = 0;
if (status !'= 0)

printf("Error opening configuration file.
exit(status);

[***** Qutput values to DA channels.

if (status !'= 0)
printf("Error witing to DA

/*****

Close the DAQP-208. ***x*xx/
status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device.
return(status);

}

status = DaqQpenDevi ce(DAQP, &l ogical _devi ce,

*****/

status = DaqgSi ngl eAnal ogQut put Scan(| ogi cal _devi ce,
array_| ength,

St at us code

St at us code

{ 1024, 2316 }:

"c:\\ dagp- 208\\ dagp- 208. dat "

devi ce_t ype,

St at us code

%l.\n", status);

%l.\n"), status);

13-85

config_file);

%l.\n", status);

channel _array,
out put _array);

13.29 DagSingleDigitallnput

The DaqgSingleDigitalinput procedure provides a simplified interface for
inputting a single point from a single digital input channel. The format of
the command is shown below. The digital input specified by
channel_number on the adapter defined by logical_device is returned to
the address specified by input_value. This procedure executes the
DAQDRIVE. procedures DagDigitalinput, DagArmRequest,
DaqTriggerRequest, and DagReleaseRequest before returning to the
calling application.

unsi gned short DaqSingl eDi gital Il nput (unsigned short | ogical _device,
unsi gned short channel _nunber ,

void far *i nput _val ue)

logical device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DagOpenDevice command.

channel_number - This unsigned short integer value is used to specify
which digital input channel on logical_device is to be
read.

input_value - This void pointer specifies the address where the
value read from the digital input channel is to be
stored. input_value is declared as a void to allow it to
point to data of any type. Itis the application
program's responsibility to ensure the data pointed to
by input_value is the correct type for the target
hardware as listed in the table below.

Channel size (in bits) data type

1 to 8 bits unsigned char
9 to 16 bits unsigned short
17 to 32 bits unsigned long

DAQDRIVE User's Manual 13-86

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i nclude "dagp.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

unsi gned short digi o_channel ;
short input_val ue;

char far *device_type
char far *config_file

" DAQP-16";
"c:\\ dagp- 16\\ dagp- 16. dat "

/***** @en the DAQ:)_IG. ‘k****/

devi ce_nunber = 0;
status = DaqQpenDevi ce(DAQP, &l ogical _device, device_type, config_ file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** | nput one value fromdigital input channel O. *kk kx|

di gi o_channel = 0;
status = DaqSingl eD gital |l nput (I ogi cal _devi ce, di gi o_channel , & nput_val ue);
if (status !'= 0)

printf("Error reading digital input. Status code 9%d.\n",status);

[***** (lose the DAQP-16. ****%/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)
printf("Error closing device. Status code 9%l.\n"),status);
return(status);
1

13-87

13.30 DagSingleDigitallnputScan

The DagSingleDigitalinputScan procedure provides a simplified interface
for inputting a single point from multiple digital input channels. The
format of the command is shown below. The digital input channels
specified by channel_array on the adapter defined by logical_device are
returned to the array specified by input_array. There is a one-to-one
correspondence between the number of digital input channels and the
number of input values. Therefore, array_length specifies the length of
both channel_array and input_array. This procedure executes the
DAQDRIVE. procedures DagDigitalinput, DagArmRequest,
DaqgTriggerRequest, and DagReleaseRequest before returning to the
calling application.

unsi gned short DaqSi ngl eDi gital | nput Scan (unsi gned short | ogical _device,
unsi gned short far *channel _array,
unsi gned short array_l engt h,

void far *input_array)

logical device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DagOpenDevice command.

channel_array - This pointer specifies the address of an unsigned short
integer array containing the digital input channels on
logical_device to be input.

array_length - This unsigned short integer value defines the length of
channel_array and input_array.

input_array - This void pointer specifies the address of an array
where the values read from the digital input channels
are to be stored. input_array is declared as a void to
allow it to point to data of any type. Itis the
application program's responsibility to ensure the data
pointed to by input_array is the correct type for the
target hardware as listed in the table below.

Channel size (in bits) data type

1 to 8 bits unsigned char
9 to 16 bits unsigned short
17 to 32 bits unsigned long

DAQDRIVE User's Manual 13-88

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#include "iop24l1l.h"

unsi gned short mai n()

unsi gned short | ogical _device;
unsi gned short status;

unsi gned short channel _array[3] ={ 3, 0, 6 };
short input_array[3];
unsi gned short array_length = 3;

char far *device_type
char far *config_file

"1 OP-241",
"c:\\ iop-241\\iop-241.dat ";

[***** (Cpen the |OP-241. ****x/

devi ce_nunber = 0;
status = DaqQpenDevi ce(|1 OP241, &l ogical _device, device_ type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** | nput val ues from channel s. *Rk kx|

status = DaqSingl eD gitall nput Scan(! ogi cal _devi ce, channel _array,
array_l ength, input_array);
if (status !'= 0)
printf("Error reading digital input. Status code 9%d.\n",status);

[***x* (CJose the |OP-241. ****x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)
printf("Error closing device. Status code 9%l.\n"),status);
return(status);
1

13-89

13.31 DagSingleDigitalOutput

The DaqgSingleDigitalOutput procedure provides a simplified interface for
outputting a single point to a single digital output channel. The format of
the command is shown below. The value specified by output_value is
output to the digital output channel specified by channel_number on the
adapter specified by logical_device. This procedure executes the
DAQDRIVE. procedures DagDigitalOutput, DagArmRequest,
DaqTriggerRequest, and DagReleaseRequest before returning to the
calling application.

unsi gned short DaqSi ngl eDi gital Qut put (unsigned short | ogical _device,
unsi gned short channel _nunber ,

void far *out put _val ue)

logical device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DagOpenDevice command.

channel_number - This unsigned short integer value is used to specify
which digital output channel on logical_device is to
receive the output data.

output_value - This void pointer specifies the address of the data to
be written to the digital output channel. output_value
is declared as a void to allow it to point to data of any
type. Itis the application program's responsibility to
ensure the data pointed to by output_value is the
correct type for the target hardware as listed in the

table below.
Channel size (in bits) data type
1 to 8 bits unsigned char
9 to 16 bits unsigned short
17 to 32 bits unsigned long

DAQDRIVE User's Manual 13-90

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i nclude "da8p-12.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

unsi gned short digi o_channel ;
short out put_val ue;

char far *device_type
char far *config_file

" DA8P- 12B";
"c:\\ da8p-12b\\ da8p- 12b. dat ";

[***** (Cpen the DA8P-12B. ****x/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DA8P-12, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** Qutput one value to digital output channel 3. *kk kx|

di gi o_channel =
out put _value = 1;
status = DaqSingl eD gital Qut put (I ogi cal _devi ce, di gi o_channel, &output_val ue);
if (status !'= 0)

printf("Error witing to digital output. Status code %l.\n",status);

3;

[***** (] ose the DA8BP-12B. ****x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)
printf("Error closing device. Status code 9%l.\n"),status);
return(status);
t

13-91

13.32 DagSingleDigitalOutputScan

The DagSingleDigitalOutputScan procedure provides a simplified
interface for outputting a single point to multiple digital output channels.
The format of the command is shown below. The values specified by the
array output_array are output to the digital output channels specified by
channel_array on the adapter defined by logical_device. Thereis a
one-to-one correspondence between the number of digital output
channels and the number of output values. Therefore, array_length
specifies the length of both channel_array and output_array. This
procedure executes the DAQDRIVE. procedures DagDigitalinput,
DagArmRequest, DagTriggerRequest, and DagReleaseRequest before
returning to the calling application.

unsi gned short DaqSi ngl eDi gi t al Qut put Scan (unsi gned short | ogical _device,
unsi gned short far *channel _array,

unsi gned short array_l engt h,
void far *out put _array)

logical device - This unsigned short integer value is used to define the
target hardware device. This is the value returned to
the application by the DagOpenDevice command.

channel_array - This pointer specifies the address of an unsigned short
integer array containing the digital output channels on
logical_device to be written.

array_length - This unsigned short integer value defines the length of
channel_array and output_array.

output_array - This void pointer specifies the address of an array
containing the values to be output to the channels
specified by channel_array. output_array is declared
as a void to allow it to point to data of any type. Itis
the application program's responsibility to ensure the
data pointed to by output_array is the correct type for
the target hardware as listed in the table below.

Channel size (in bits) data type

1 to 8 bits unsigned char
9 to 16 bits unsigned short
17 to 32 bits unsigned long

DAQDRIVE User's Manual 13-92

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#include "iop24l1l.h"

unsi gned short mai n()

unsi gned short | ogical _device;
unsi gned short status;

unsi gned short channel _array[4]
short output_array[4]
unsi gned short array_length = 4;

o
oo

char far *device_type
char far *config_file

"1 OP-241",
"c:\\ iop-241\\iop-241.dat ";

[***** (Cpen the |OP-241. ****x/

devi ce_nunber = 0;
status = DaqQpenDevi ce(|1 OP241, &l ogical _device, device_ type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** Qutput one value to digital output channel 3. *Rk kx|

status = DaqSi ngl eD gital Qut put Scan(| ogi cal _devi ce, channel _array,
array_l ength, output_array);
if (status !'= 0)
printf("Error witing to digital output. Status code %l.\n",status);

[***x* (CJose the |OP-241. ****x/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n"),status);
return(status);

}

13-93

13.33 DagStopRequest

The DaqgStopRequest halts a request that is currently armed and / or
triggered (see DagArmRequest and DaqTriggerRequest). When
DagStopRequest is complete, the request is in the same state it was in after
the configuration procedure (DagAnaloglnput, DagAnalogOutput,
DaqgDigitallnput, or DagDigitalOutput) procedures.

unsi gned short DaqStopRequest (unsigned short request_handl e) '

request_handle - This unsigned short integer variable is used to define
which request is to be halted. This is the value returned
to the application by the configuration procedures
DagAnaloglnput, DagAnalogOutput, DagDigitalInput,
or DagDigitalOutput.

DAQDRIVE User's Manual 13-94

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/**/

/* 1nput 1000 points fromthe A/Din background node using interrupts. */

/**/

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short request_handl e;
unsi gned short status;

short data_array[1000];

struct ADC_request user _request;
struct DAQDRIVE. _buffer data_structure;

[***** (Cpen the DAQP-16 (See DagQpenDevice). *kk kx|
[***** Prepare data structure for anal og input. *Rk kx|
[***** Prepare the A/ D request structure. *Rk kx|
[***** Request A/'D input (See DagAnal ogl nput). *kk kx|
[***** Armthe request. *kk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

printf("Arm request error. Status code %l.\n",status);
DagRel easeRequest (request _handl e) ;

DaqC oseDevi ce(l ogi cal _devi ce);

exit(status);

[***** Trjgger the request. *kk kx|

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

printf("Trigger request error. Status code 9%dl.\n",status);
DaqSt opRequest (request _handl e) ;

DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

[***** Abort the request. *kk kx|

status = DaqSt opRequest (request _handl e);
if (status !'= 0)
printf("Request failed to stop. Status code 9%l.\n",status);

[***** Re| ease the request. *kk kx|

status = DagRel easeRequest (request _handl e);
if (status !'= 0)
printf("Could not release configuration. Status code %l.\n"),status);

[***** (Jose the DAQP-16. ****%/

status = Daqd oseDevi ce(l ogi cal _devi ce);
if (status !'= 0)

printf("Error closing device. Status code 9%l.\n"),status);
return(status);

13-95

13.34 DaqgTriggerRequest

When an operation has been configured for an internal trigger,
DaqTriggerRequest is executed after the DagArmRequest function to start
the operation.

An error is returned to the application if DagTriggerRequest is executed
for an operation not configured for internal trigger. This error is non-fatal
and program execution may continue.

unsi gned short DaqTri gger Request (unsi gned short request_handle) '

request_handle - This unsigned short integer variable is used to define
which request is to be triggered. This is the value
returned to the application by the configuration
procedures DagAnaloginput, DagAnalogOutput,
DaqgDigitallnput, or DagDigitalOutput.

DAQDRIVE User's Manual 13-96

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

/**/

/* CQutput 5 points to 5 digital output channels.

/**/

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short request_handl e;
unsi gned short status;

short data_array[5];

struct DI GOUT_request user _request;
struct DAQDRIVE. _buffer data_structure;

[***** (pen the device (see DagQpenDevice). *kk kx|

[***** Prepare data structure for digital output. *kk kx|
[***** Prepare the digital 1/0O request structure. *kk kx|
[***** Request digital output. *Rk kx|

request _handle = 0;
status = DaqDi gital Qut put (| ogi cal _devi ce, &user _request, &request_handl e);
if (status !'= 0)

printf("Digital |/Orequest error. Status code 9%l.\n",status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

[***** Armthe request. *kk kx|

status = DagArnRequest (request _handl e);
if (status !'= 0)

printf("Arm request error. Status code 9%l.\n",status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

[***** Trjgger the request. *kk kx|

status = DaqTri gger Request (request _handl e);
if (status !'= 0)

printf("Trigger error. Status code %l.\n",status);
DagRel easeRequest (request _handl e) ;

Daqd oseDevi ce(l ogi cal _devi ce);

exit(status);

1

*/

13-97

13.35 DagUserBreak

DaqUserBreak allows the application program to install a procedure
(written by the application programmer) that DAQDRIVE. will execute
periodically during foreground mode operations. If the application wants
to terminate the operation, the user-break procedure need only return a
non-zero value. To continue the operation, the user-break procedure
must return zero.

unsi gned short DaqgUser Break (unsigned short request_handl e,
unsi gned short (far pascal *break_procedure)())

request_handle - This unsigned short integer variable is used to define
which request is to use the user-break procedure
defined by break procedure. This is the value
returned to the application by the configuration
procedures DagAnaloginput, DagAnalogOutput,
DaqgDigitallnput, or DagDigitalOutput.

break procedure - This pointer defines the starting address of the
procedure to be executed during foreground mode
operations. break procedure must be a 'far' pascal
compatible procedure of type unsigned short that has
no input parameters. A sample C declaration of this
procedure is shown below.

unsi gned short far pascal break_procedure() '

DAQDRIVE User's Manual 13-98

#i nclude "daqdrive. .h"
#i ncl ude "userdata.h"

[***** Define a global counter variable *kk kx|
gl obal _counter = 0;

[***** Define a user-break procedure *kk kx|
unsi gned short far pascal ny_break_procedure()

gl obal _count er ++
if (global_counter < 10000)

return(0); /* less than 10,000 --> keep goi ng
el se
return(l); /* nore than 10,000 --> abort operation

[***** Define the main procedure *kk kx|
voi d main()

unsi gned short request_handl e;
unsi gned short status;

[***** (pen the device (see DagQpenDevice). *Rk kx|
[***** Request an operation. (gets a request_handle) *Rk kx|
[***** | nstall user-break procedure. *kk kx|
status = DaqUser Break(request_handl e, ny_break_procedure);
if (status !'= 0)
printf("Error installing user-break.\n");

[***** Armthe request (See DagArnRequest). *kk kx|

[***** Trijgger the request (See DaqTriggerRequest). *kk kx|

*/

*/

13-99

13.36 DagVersionNumber

DaqVersionNumber returns the version numbers of the software drivers.

unsi gned short DaqgVer si onNunber (unsi gned short | ogical _device,
float far *DAQDRI VE. _versi on,
float far *sof t ware_version,

float far *firmaare_version)

logical_device - This unsigned short integer value is used to define
the target hardware device. This is the value
returned to the application by the DaqOpenDevice
command.

DAQDRIVE. version -This pointer defines a floating point variable where
the version of DAQDRIVE. will be stored.

software_version - This pointer defines a floating point variable where
the version of the hardware specific software
driver will be stored.

firmware_version - This pointer defines a floating point variable where
the version of the adapter's firmware will be
stored. Adapters which have no firmware will set
this value to 0.

DAQDRIVE User's Manual 13-100

#i nclude "daqdrive. .h"
#i ncl ude "daqopenc. h"
#i ncl ude "userdata. h"
#i ncl ude "daql200.h"

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short status;

float DACDRI VE. _version;
float software_version;
float firmare_version;

char far *device_type
char far *config_file

" DAQ 1201 ";
"c:\\ dag- 1201\\ dag- 1201. dat ";

[***** (pen the DAQ 1201. ****x/

| ogi cal _device = 0;
status = DaqQpenDevi ce(DAQL200, &l ogical _device, device type, config_file);
if (status !'= 0)

printf("Error opening configuration file. Status code %l.\n",status);
exit(status);

[***** Get version nunbers. *okokokok

status = DaqVersi onNunber (devi ce_nunmber, &DAQDRI VE. _versi on,
&software_version, &firnware_version);
if (status !'= 0)
printf("Error reading version nunbers. Status code 9%l.\n",status);

[***** DOjsplay version information. *kk kx|
printf(" DAQDRI VE. version: 9%.2f\n", DAQDRI VE. _version);
printf(" DAQ 1201 driver version: 9. 2f\n", software_version);

printf(" DAQ 1201 firnware version: 9. 2f\n", firnware_version);

13-101

13.37 DagWordsToBytes

DaqWordsToBytes performs the reverse of the DagBytesToWords
function, converting an unsigned short integer array of 16-bit "un-packed"
values into an unsigned short integer array of 8-bit "packed" values.
These functions are provided especially for languages that do not support
8-bit variable types.

DagWordsToBytes reads the "un-packed" unsigned short integer values in
array word_array, converts these values to their "packed" 8-bit values,
and stores the results in array byte array. For an array of four values, the
packed and un-packed arrays appear as follows:

integer integer integer integer

"un-packed" array 14 0 2E 0 6 0 F7 0

"packed" array

14 2E 6 F7

byte byte byte byte

voi d DaqWordsToByt es (unsigned short far *word_array,

unsi gned short far *byte_array,

unsigned long array_length)

word_array -

byte array -

array_length -

This is a pointer to an unsigned short integer array where
the "un-packed" values will be stored. word_array must
be at least array_length short integers in length and may
specify the same array as byte array.

This is a pointer to an unsigned short integer array
containing the "packed" values to be converted.

byte_array must be at least 'array_length ;| 2' short integers
(array_length bytes) in length and may specify the same
array as word_array.

This is an unsigned long integer value defining the
number of data points to be converted. word_array must
be at least array_length short integers in length while
byte_array must be at least 'array_length ;| 2' short integers
(array_length bytes) in length.

DAQDRIVE User's Manual 13-102

#i ncl ude "daqdrive. .h"
#i ncl ude "userdata.h"

/***/

/* CQutput 16 points to a digital output channel. */

/***/

unsi gned short main()

unsi gned short | ogical _device;
unsi gned short request_handl e;
unsi gned short channel _num
unsi gned short status;

unsi gned short data_array[16];
unsi gned short array_i ndex;

struct digio_request user _request;
struct DAQDRI VE. _buffer data_structure;

[***** (Cpen the device (see DagQpenDevice). *kk kx|

[***** Prepare output data. *Rk kx|

for (array_index = 0; array_index < 16; array_index++)
data_array[array_i ndex] = array_index;

[***** Pack data for output. *kk kx|

DaqWor dsToByt es(data_array, data_array, 16);

[***** Prepare data structure for digital output. *kk kx|
/***/

/* data is in data_array data_array is 16 points |ong */
/* output buffer 1 tine next _structure = NULL (no nore structures) */

/***/

data_structure. data_buffer = data_array;

data_structure. buffer_length = 16;

data_structure. buffer_cycles =1
data_structure.next_structure = NULL;

[***** Prepare the digital output request structure. *kk kx|
[***** Request digital output. *kk kx|

request _handle = 0;
status = DaqDi gital Qut put (| ogi cal _devi ce, &user _request, &request_handl e);
if (status !'= 0)

printf("Digital output request error. Status code %l.\n",status);
Daqd oseDevi ce(l ogi cal _devi ce);
exit(status);

13-103

(This page intentionally left blank.)

DAQDRIVE User's Manual 13-104

14 Error Messages

00 No Errors.
The procedure completed without error.

10 Error opening configuration file.
The DagOpenDevice procedure could not open the
configuration file specified by config_file. Verify the drive, path,
and file name are correct.

11 Fileis not a valid DAQDRIVE. configuration file.
The file specified as the hardware configuration file is not a
valid DAQDRIVE. configuration file. Select a different
configuration file.

12 Configuration file invalid for specified adapter type.
The adapter specified by the device_type variable does not
match the type of hardware defined by the configuration file.
Select a different configuration file.

13 Error reading configuration file.
An error occurred while reading the adapter configuration file.
If there are no problems with the disk drive, generate a new
configuration file using the DAQDRIVE configuration utility.

14 End-Of-File encountered reading configuration file.
The end of the configuration file was reached unexpectedly. If
there are no problems with the disk drive, generate a new
configuration file using the DAQDRIVE configuration utility.

15 Invalid configuration file version.
The configuration file specified in the DagOpenDevice
procedure is too old for this version of DAQDRIVE.. Create a
new configuration file using the DAQDRIVE configuration
utility.

30 Error loading DLL.
An error occurred while loading the hardware dependent
dynamic link library (DLL). Verify the drive, path, and DLL file
name are correct

14-1

31

35

39

50

o1

60

70

Cannot locate the DAQDRIVE. DLL open command.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

Cannot locate the DAQDRIVE. TSR driver.

This error occurs when the hardware specific TSR is loaded
before the DAQDRIVE. TSR. When using the TSR drivers, the
DAQDRIVE. TSR must be loaded before any hardware TSRs.

DAQDRIVE is out of date.

The hardware specific driver in use requires a newer version of
DAQDRIVE. to operate. If you did not receive the latest version
of DAQDRIVE., contact Omega's technical support department
for assistance.

Auto-configuration support not available.

The required PCMCIA Card and Socket Services or Plug-and-
Play support software is not installed on the system. The user
must specify the hardware configuration in the configuration file
or the required software drivers must be installed on the system.

Invalid device type.

An invalid device type was specified in the configuration file. If
there are no apparent problems reading the file, generate a new
configuration file using the DAQDRIVE configuration utility.

Configuration file error.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

Configuration file error.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

DAQDRIVE User's Manual 14-2

71

72

73

74

100

120

150

Configuration file error.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

Configuration file error.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

Configuration file error.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

Configuration file error.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

Invalid logical device number.

An adapter could not be found with the specified logical device
number. Make sure the DaqOpenDevice procedure executed
successfully and that the logical device number matches the
value returned by the DaqgOpenDevice procedure.

No logical devices defined.

There are no adapters currently "opened”. Make sure the
DagOpenDevice procedure is executed without error before any
other procedures are called.

Invalid request handle.

A request could not be found with the specified request handle.
Make sure the configuration procedure (DagAnaloglinput,
DagAnalogOutput, DagDigitallnput, or DagDigitalOutput)
executed successfully and that the request handle matches the
value returned by the configuration procedure.

14-3

200

201

205

250

251

255

300

No interrupt level defined for adapter.

The requested operation requires a hardware interrupt (IRQ)
and no interrupt level was defined for the adapter in the
hardware configuration file.

Interrupt in-use by another device.

The requested operation requires a hardware interrupt (IRQ)
that is currently in use by another device. This operation must
be requested again after the other device has relinquished
control of the interrupt.

Internal interrupt error.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

No DMA channel defined for adapter.

The requested operation requires one or more DMA channels
and no DMA channels were defined for the adapter in the
hardware configuration file.

DMA channel in-use by another device.

The requested operation requires one or more DMA channels
that are currently in use by other device(s). This operation must
be requested again after the other device(s) have relinquished
control of the DMA channels.

Internal DMA error.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

Memory allocation error.

An error occurred while DAQDRIVE. was attempting to allocate
memory for internal use. Generally this error only occurs when
there is no more memory available in the system. Remove any
unnecessary device drivers and memory resident programs and
execute the application again.

DAQDRIVE User's Manual 14-4

310

400

410

450

500

600

650

700

Memory release error.

An error occurred while DAQDRIVE. was attempting to release
memory previously allocated for internal use. If this error
occurs, the system has become unstable.

Channel in-use by another request.

One or more channels specified by this request are currently in
use by other request(s). This request must wait until the other
request(s) are complete and have made their channels available.

Timer in-use by another request.

One or more timer channels required for the requested operation
are currently in use by other request(s). This request must wait
until the other request(s) are complete and have made their
timer channels available.

Hardware dependent resource in-use by another device.

A hardware specific resource required for the requested
operation is currently in use by another request. This request
must wait until the other request is complete and relinquishes
control of the resource. Consult the target hardware's appendix
in the DAQDRIVE User's Manual Supplement to determine the
cause of this error.

Invalid procedure call for a request that is not configured.
The procedure cannot be executed because the request has not
been configured. Make sure the configuration procedure
(DagAnaloglnput, DagAnalogOutput, DagDigitallnput, or
DaqgDigitalOutput) executed successfully.

Invalid procedure call for a request that is not armed.

The procedure cannot be executed because the request has not
been armed. Make sure the DagArmRequest procedure
executed successfully.

Invalid procedure call for a request that is armed.

The procedure cannot be executed because the request has been
armed. The request may be removed from the arm state by
executing the DagStopRequest procedure.

Trigger command invalid with specified trigger source.

The DaqTriggerRequest procedure was executed on a request
that was not configured for a software trigger. This is not a
critical error and the application program may continue.

14-5

800 Invalid re-configuration request.
The re-configuration request can not be processed because the
channel list was modified. All parameters except the channel
list may be modified by a re-configuration request. To modify
the channel list, the request must be released
(DagReleaseRequest) and a new configuration must be
requested.

1000 Requested function not supported by target hardware.
The requested operation can not be performed on the target
hardware. Consult the target hardware's appendix in the
DAQDRIVE User's Manual Supplement to determine which
parameter(s) are not supported by the adapter.

1050 Invalid operation in multi-user mode.
The procedure could not be executed because more than one
application is currently operating on the adapter. This error is
generally reported by procedures that effect the state of the
hardware (e.g. DagResetDevice).

1100 Invalid channel number.
One or more values in the request's channel list is out of range.

1101 Invalid array length.
The specified array length is 0 or larger than the maximum
allowable array size.

1150 Duplicate entries in channel list.
A logical channel number appears in the channel list more than
once. Each channel may appear in the channel list only once for
the type of operation requested.

1160 Invalid channel sequence.
The sequence of channels specified in the channel list is not
supported by the hardware. Consult the hardware specific
appendices for restrictions on channel lists / sequences.

1280 Invalid gain.
The adapter can not be configured for the gain requested.
Consult the hardware specific appendices for valid gain
selections.

DAQDRIVE User's Manual 14-6

1300

1320

1350

1351

1352

1400

1401

1410

1411

Invalid data buffer length.

The data buffer must be defined to hold an integer number of
scans of the channel list. For example, if the channel list contains
three channels, the data buffer must be defined to hold 3, 6, 9, ...
samples.

Invalid output value.
One or more values specified for output is not in the valid range
for the corresponding channel(s).

DMA mode data buffer crosses page boundary.

One or more data buffers allocated for the DMA mode operation
span a physical page boundary. Data buffers must be contained
in a single memory page for DMA use.

DMA mode data buffer defined on odd address.

One or more data buffers allocated for the DMA mode operation
are aligned on an odd address. When using 16-bit DMA
transfers, all data buffers must reside on even addresses (word
aligned).

Internal DMA error.

This is an internal DAQDRIVE error. If this error is received,
contact Omega's technical support department. If possible, have
the hardware device type and software version numbers
available when calling.

Invalid trigger source.
The trigger source specified is not one of DAQDRIVE.'s trigger
source selections.

Trigger source not supported.

The trigger source specified is not supported by the adapter for
the requested operation. Consult the hardware specific
appendices for supported trigger sources.

Invalid trigger slope.
The trigger slope specified is not one of DAQDRIVE.'s trigger
slope selections.

Trigger slope not supported.

The trigger slope specified is not supported by the adapter for
the requested operation. Consult the hardware specific
appendices for supported trigger slopes.

14-7

