
INTERFACE CARDS FOR PERSONAL COMPUTERS

DAQDRIVE
Data Acquisition Software

Users Manual

OMEGA ENGINEERING, INC. Tel: (203) 359-1660
One Omega Drive Fax: (203) 359-7700
P.O. Box 4047 Toll free: 1-800-826-6342
Stamford, CT 06907-4047 E-mail: das@omega.com

http://www.dasieee.com

(1*,1((5,1*� ,1&�

http://www.dasieee.com/

WARRANTY/DISCLAIMER
OMEGA ENGINEERING, INC., warrants this unit to be free of defects in materials and workmanship for a period of 13 months from
the date of purchase. OMEGA warranty adds an additional one (1) month grace period to the normal one (1) year product warranty to
cover shipping and handling time. This ensures that OMEGA’s customers receive maximum coverage on each product. If the unit should
malfunction, it must be returned to the factory for evaluation. OMEGA’s Customer Service Department will issue an Authorized Return
(AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective it will be
repaired or replaced at no charge. OMEGA’s warranty does not apply to defects resulting from any action of the purchaser, including but
not limited to mishandling, improper interfacing, operation outside design limits, improper repair or unauthorized modification. This
WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of
excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions
outside of OMEGA’s control. Components which wear are not warranted, including but not limited to contact points, fuses and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for
any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with
information provided from OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be
as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND
WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES
INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the
total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict
liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall
OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR
21 (NRC), used in or with any nuclear installation or activity, medical application or used on humans. Should any Product(s) be used in
or with any nuclear installation or activity, medical application, used on humans or misused in any way, OMEGA assumes no
responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify OMEGA and
hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY
PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA’S
CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). THE ASSIGNED NUMBER SHOULD
THEN BE MARKED ON THE OUTSIDE OF THE RETURN PACKAGE AND ON ANY CORRESPONDENCE. THE PURCHASER
IS RESPONSIBLE FOR SHIPPING CHARGES, FREIGHT, INSURANCE AND PROPER PACKAGING TO PREVENT BREAKAGE
IN TRANSIT.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:
(1) P.O. Number under which the product was purchased,
(2) Model and serial number of the product under warranty, and
(3) Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE
contacting OMEGA:
(1) P.O. Number to cover the cost of the repair,
(2) Model and serial number of the product, and
(3) Repair instructions relative to the product.

OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the
latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC. © Copyright 1999 OMEGA ENGINEERING, INC. All
rights reserved. This document may not be copied, photocopied, reproduced, translated or reduced to any electronic
medium or machine readable form, in whole or in part, without prior written consent of OMEGA ENGINEERING, INC.

DAQDRIVE Users Manual 2

OMEGAnet On-line Service: Internet e-mail:
 http://www.omega.com info@omega.com

Servicing North America:

USA: One Omega Drive, Box 4047 E-mail: info@omega.com
ISO 9001 Certified Stamford, CT 06907-0047

Tel: (203) 359-1660 FAX: (203) 359-7700

Canada: 976 Bergar E-mail: info@omega.com
Laval (Quebec) H7L 5A1
Tel: (514) 856-6928 FAX: (514) 856-6886

For immediate technical or application assistance:

USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGASM

Customer Service: 1-800-622-2378/ 1-800-622-BESTSM

Engineering Service: 1-800-872-9436 / 1-800-USA-WHENSM

TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA

Mexico and Latin America: Tel: (001) 800-826-6342 FAX: (001) 203-359-7807
En Espanol: (001) 203-359-7803 E-mail: espanol@omega.com

Servicing Europe:

Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands
Tel: (31) 20 6418405
Toll Free in Benelux: 0800 0993344
E-mail: nl@omega.com

Czech Republic: ul.Rude armady 1868, 733 01 Karvina-Hraniee
Tel: 42 (69) 6311899 FAX: 42 (69) 6311114
Toll Free: 0800-1-66342 E-mail: czech@omega.com

France: 9, rue Denis Papin, 78190 Trappes
Tel: (33) 130-621-400
Toll Free in France: 0800-4-06342
E-mail: france@omega.com

Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
Tel: 49 (07056) 3017
Toll Free in Germany: 0130 11 21 66
E-mail: germany@omega.com

DAQDRIVE Users Manual 3

http://www.omega.com/

United Kingdom: One Omega Drive, River Bend Technology Drive
ISO 9002 Certified Northbank, Irlam, Manchester

M44 5EX, England
Tel: 44 (161) 777-6611
FAX: 44 (161) 777-6622
Toll Free in England: 0800-488-488
E-mail: info@omega.co.uk

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that
apply. OMEGA is constantly pursuing certification of it’s products to the European New
Approach Directives. OMEGA will add the CE mark to every appropriate device upon
certification.

The information contained in this document is believed to be correct but OMEGA Engineering,
Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications
without notice. WARNING: These products are not designed for use in, and should not be
used for, patient connected applications.

DAQDRIVE Users Manual 4

Table of Contents

452.4.6 Visual Basic for DOS .
442.4.5.6 Dynamic memory allocation .
442.4.5.5 Storing a variable's address in a data structure .
432.4.5.4 The DaqOpenDevice Command .
422.4.5.3 Adjusting the size of Quick Basic's stack and heap .
422.4.5.2 Quick Basic and the under-score character .
422.4.5.1 Quick Basic's on-line help .
422.4.5 Quick Basic .
412.4.4.2 Program optimization .
412.4.4.1 Creating byte-aligned data structures .
412.4.4 Borland C/C++ and Turbo C .
402.4.3.1 Creating byte-aligned data structures .
402.4.3 Microsoft C/C++ .
392.4.2 Removing The TSRs From Memory .
382.4.1 Loading The TSRs Into Memory .
382.4 Creating DOS Applications Using The TSR Drivers
372.3.2.3 Program optimization .
362.3.2.2 Creating byte-aligned data structures .
362.3.2.1 The hardware dependent include file .
362.3.2 Borland C/C++ .
352.3.1.2 Creating byte-aligned data structures .
352.3.1.1 The hardware dependent include file .
352.3.1 Microsoft Visual C/C++ .
352.3 Creating DOS Applications Using The C Libraries
322.2.4 Signal Conditioner Database Utility .
302.2.3 A/D Expansion Board Database Utility .
292.2.2.10 Viewing the Report File .
292.2.2.9 Saving The New Configuration .
292.2.2.8 Configuration Help .
282.2.2.7 Timer Configuration .
272.2.2.6 Digital I/O Configuration .
272.2.2.5 D/A Converter Configuration .
262.2.2.4 A/D Signal Conditioners .
252.2.2.3 A/D Converter Expansion Configuration .
242.2.2.2 A/D Converter Configuration .
232.2.2.1 General Configuration .
232.2.2 Generating A DAQDRIVE Configuration File .
222.2.1 Installation .
222.2 DAQDRIVE Configuration Utilities .

212.1 Software Installation

212 Before Beginning .

181 Introduction .

DAQDRIVE Users Manual 5

794 Performing An Acquisition .

773.4.2 DaqSingleDigitalOutputScan .
753.4.1 DaqSingleDigitalOutput .
753.4 Digital Output .
733.3.2 DaqSingleDigitalInputScan .
713.3.1 DaqSingleDigitalInput .
713.3 Digital Input .
693.2.2 DaqSingleAnalogOutputScan .
673.2.1 DaqSingleAnalogOutput .
673.2 Analog Output .
653.1.2 DaqSingleAnalogInputScan .
633.1.1 DaqSingleAnalogInput .
633.1 Analog Input .

623 Quick Start Procedures .

602.6.3.4 DaqWriteBufferFlagVB .
592.6.3.3 DaqWriteBufferVB .
572.6.3.2 DaqReadBufferFlagVB .
572.6.3.1 DaqReadBufferVB .
562.6.3 32-bit Visual Basic .
552.6.2.2 Program optimization .
552.6.2.1 Creating dword-aligned data structures .
552.6.2 Borland C/C++ .
542.6.1.1 Creating dword-aligned data structures .
542.6.1 Microsoft Visual C/C++ .
532.6 Creating 32-bit Windows 95/98 Applications .
522.5.4.2 Turbo Pascal for Windows and floating-point math
522.5.4.1 Using other Turbo Pascal for Windows / Delphi versions
522.5.4 Turbo Pascal for Windows / Borland Delphi .
522.5.3 Visual Basic for Windows .
512.5.2.2 Program optimization .
512.5.2.1 Creating byte-aligned data structures .
512.5.2 Borland C/C++ .
502.5.1.1 Creating byte-aligned data structures .
502.5.1 Microsoft Visual C/C++ .
492.5 Creating 16-bit Windows 3.x/95/98 Applications
482.4.7.3 Using other Turbo Pascal versions .
482.4.7.2 Adjusting the size of the Turbo Pascal heap .
482.4.7.1 Turbo Pascal and floating-point math .
482.4.7 Turbo Pascal .
472.4.6.5 Dynamic memory allocation .
472.4.6.4 Storing a variable's address in a data structure .
462.4.6.3 The DaqOpenDevice Command .
452.4.6.2 Adjusting the size of the Visual Basic's stack and heap
452.4.6.1 Visual Basic for DOS and the under-score character

DAQDRIVE Users Manual 6

916.2.9 Scan Events .
916.2.8 Number Of Scans .
916.2.7 Sampling Rate .
916.2.6.2 External Clock .
916.2.6.1 Internal Clock .
916.2.6 Clock Sources .
916.2.5.4 Background DMA mode .
916.2.5.3 Foreground DMA mode .
906.2.5.2 Background IRQ mode .
906.2.5.1 Foreground CPU mode .
906.2.5 Data Transfer Modes .
906.2.4 Trigger Selections .
906.2.3 Data Buffers .
906.2.2 Channel Selections .
906.2.1 Reserved Fields .
896.2 The Analog Output Request Structure .

886.1 DaqAnalogOutput .

886 Analog Output Requests .

875.3.2 Example 2 - Multiple Channel Input .
865.3.1 Example 1 - Single Channel Input .
865.3 Analog Input Examples .
855.2.12 Request Status .
855.2.11 Time-out .
855.2.10.2 Auto-zero .
855.2.10.1 Auto-calibration .
855.2.10 Calibration Selections .
845.2.9 Scan Events .
845.2.8 Number Of Scans .
845.2.7 Sampling Rate .
845.2.6.2 External Clock .
845.2.6.1 Internal Clock .
845.2.6 Clock Sources .
845.2.5.4 Background DMA mode .
845.2.5.3 Foreground DMA mode .
835.2.5.2 Background IRQ mode .
835.2.5.1 Foreground CPU mode .
835.2.5 Data Transfer Modes .
835.2.4 Trigger Selections .
835.2.3 Data Buffers .
835.2.2 Channel Selections / Gain Settings .
835.2.1 Reserved Fields .
825.2 The Analog Input Request Structure .

815.1 DaqAnalogInput .

815 Analog Input Requests .

DAQDRIVE Users Manual 7

1058.2.6 Clock Sources .
1058.2.5.4 Background DMA mode .
1058.2.5.3 Foreground DMA mode .
1048.2.5.2 Background IRQ mode .
1048.2.5.1 Foreground CPU mode .
1048.2.5 Data Transfer Modes .
1048.2.4 Trigger Selections .
1048.2.3 Data Buffers .
1048.2.2 Channel Selections .
1048.2.1 Reserved Fields .
1038.2 The Digital Output Request Structure .

1028.1 DaqDigitalOutput .

1028 Digital Output Requests .

1017.3.2 Example 2 - Multiple Value Input .
1007.3.1 Example 1 - Single Value Input .
1007.3 Digital Input Examples .
997.2.11 Request Status .
997.2.10 Time-out .
987.2.9 Scan Events .
987.2.8 Number Of Scans .
987.2.7 Sampling Rate .
987.2.6.2 External Clock .
987.2.6.1 Internal Clock .
987.2.6 Clock Sources .
987.2.5.4 Background DMA mode .
987.2.5.3 Foreground DMA mode .
977.2.5.2 Background IRQ mode .
977.2.5.1 Foreground CPU mode .
977.2.5 Data Transfer Modes .
977.2.4 Trigger Selections .
977.2.3 Data Buffers .
977.2.2 Channel Selections .
977.2.1 Reserved Fields .
967.2 The Digital Input Request Structure .

957.1 DaqDigitalInput .

957 Digital Input Requests .

946.3.2 Example 2 - Simple Waveform Generation .
936.3.1 Example 1 - DC Voltage Level Output .
936.3 Analog Output Examples .
926.2.12 Request Status .
926.2.11 Time-out .
926.2.10.2 Auto-zero .
926.2.10.1 Auto-calibration .
926.2.10 Calibration Selections .

DAQDRIVE Users Manual 8

13011.1.8 Run-time Error Event .
13011.1.7 Time-out Event .
13011.1.6 User Break Event .
12911.1.5 Scan Event .
12911.1.4 Buffer Full Event .
12911.1.3 Buffer Empty Event .
12911.1.2 Complete Event .
12911.1.1 Trigger Event .
12911.1 Event Descriptions .

12911 DAQDRIVE Events .

12810.2.2 Continuous Trigger Mode .
12810.2.1 One-shot Trigger Mode .
12810.2 Trigger Modes .
12810.1.4 Digital Trigger .
12710.1.3 Analog Trigger .
12710.1.2 TTL Trigger .
12710.1.1 Internal Trigger .
12710.1 Trigger Sources .

12710 Trigger Selections .

1259.3.6 Example 6: Outputting Large Amounts Of Data .
1239.3.5 Example 5: Creating Complex Output Patterns .
1229.3.4 Example 4: Using Multiple Data Buffers .
1219.3.3 Example 3: Multi-Channel Analog Output .
1209.3.2 Example 2: Creating Repetitive Signals .
1199.3.1 Example 1: Single Channel Analog Output .
1199.3 Output Operation Examples .
1179.2.4 Example 4: Acquiring Large Amounts Of Data .
1169.2.3 Example 3: Using Multiple Data Buffers .
1159.2.2 Example 2: Multi-Channel Analog Input .
1149.2.1 Example 1: Single Channel Analog Input .
1149.2 Input Operation Examples .

1119.1 Multiple Channel Operations .

1099 Defining Data Buffers .

1088.3.2 Example 2 - Simple Pattern Generation .
1078.3.1 Example 1 - Single Value Output .
1078.3 Digital Output Examples .
1068.2.11 Request Status .
1068.2.10 Time-out .
1058.2.9 Scan Events .
1058.2.8 Number Of Scans .
1058.2.7 Sampling Rate .
1058.2.6.2 External Clock .
1058.2.6.1 Internal Clock .

DAQDRIVE Users Manual 9

20813.19 DaqGetADGainInfo .

20713.18 DaqGetAddressOf .

20413.17 DaqGetADCfgInfo .

20213.16 DaqFreeRequest .

20013.15 DaqFreeMemory32 (32-bit DAQDRIVE only)

19813.14 DaqFreeMemory (16-bit DAQDRIVE only) .

19313.13 DaqDigitalOutput .

18813.12 DaqDigitalInput .

18613.11 DaqConvertScan .

18413.10 DaqConvertPoint .

18213.9 DaqConvertBuffer .

18113.8 DaqCloseDevice .

17913.7 DaqBytesToWords .

17813.6 DaqArmRequest .

17313.5 DaqAnalogOutput .

16813.4 DaqAnalogInput .

16513.3 DaqAllocateRequest .

16313.2 DaqAllocateMemory32 (32-bit DAQDRIVE only)

16113.1 DaqAllocateMemory (16-bit DAQDRIVE only)

16013 Command Reference .

15812.4.2 Example 2 .
15712.4.1 Example 1 .
15712.4 Output Examples .
15512.3.2 Example 2 .
15412.3.1 Example 1 .
15412.3 Digital Input Examples .
15212.2.4 Example 4 .
15012.2.3 Example 3 .
14812.2.2 Example 2 .
14712.2.1 Example 1 .
14712.2 Analog Output (D/A) Examples .
14412.1.5 Example 5 .
14212.1.4 Example 4 .
14012.1.3 Example 3 .
13812.1.2 Example 2 .
13712.1.1 Example 1 .
13712.1 Analog Input (A/D) Examples .

13612 Common Application Examples .

13511.4 Monitoring Events Using Messages In Windows

13211.3 Monitoring Events Using Event Notification .

13011.2 Monitoring Events Using The Request Status

DAQDRIVE Users Manual 10

282A.1.2 Creating DOS Applications Using The TSR Drivers
282A.1.1 Creating DOS Applications Using the C Libraries .
282A.1 Distribution Software .

282Appendix A: PXB-241 .

27414 Error Messages .

27213.49 DaqWordsToBytes .

27013.48 DaqVersionNumber .

26813.47 DaqUserBreak .

26613.46 DaqTriggerRequest .

26413.45 DaqStopRequest .

26213.44 DaqSingleSigConInputScan .

26013.43 DaqSingleSigConInput .

25813.42 DaqSingleDigitalOutputScan .

25613.41 DaqSingleDigitalOutput .

25413.40 DaqSingleDigitalInputScan .

25213.39 DaqSingleDigitalInput .

25013.38 DaqSingleAnalogOutputScan .

24813.37 DaqSingleAnalogOutput .

24613.36 DaqSingleAnalogInputScan .

24413.35 DaqSingleAnalogInput .

24313.34 DaqResetDevice .

24213.33 DaqReleaseRequest .
24113.32.1 The Event Message .
24113.32 DaqPostMessageEvent (Windows Versions Only)
23913.31.3 DaqOpenDevice - TSR Version .
23713.31.2 DaqOpenDevice - Windows Version .
23513.31.1 DaqOpenDevice - C Library Version .
23513.31 DaqOpenDevice .
23313.30.1 The user-defined event procedure .
23213.30 DaqNotifyEvent .

23013.29 DaqGetTimerCfgInfo .

22813.28 DaqGetSigConParamInfo .

22513.27 DaqGetSigConCfgInfo .

22313.26 DaqGetRuntimeError .

22113.25 DaqGetExpGainInfo .

21913.24 DaqGetExpCfgInfo .

21713.23 DaqGetDigioCfgInfo .

21513.22 DaqGetDeviceCfgInfo .

21313.21 DaqGetDAGainInfo .

21013.20 DaqGetDACfgInfo .

DAQDRIVE Users Manual 11

303D.1.1 Creating DOS Applications Using the C Libraries .
303D.1 Distribution Software .

303Appendix D: IOP-241 .

302C.5 Digital Output .

302C.4 Digital Input .
301C.3.3 Using the PIO-241 with Windows .
300C.3.2 Using the PIO-241 with the TSR drivers .
299C.3.1 Using the PIO-241 with the C libraries .
299C.3 Opening The PIO-241 .
298C.2.2 Digital I/O Configuration .
298C.2.1 General Configuration .
298C.2 Configuring The PIO-241 .
297C.1.3 Creating Windows Applications .
296C.1.2 Creating DOS Applications Using The TSR Drivers
296C.1.1 Creating DOS Applications Using the C Libraries .
296C.1 Distribution Software .

296Appendix C: PIO-241 .

295B.5 Digital Output .

295B.4 Digital Input .
294B.3.3 Using the PXB-721 with Windows .
293B.3.2 Using the PXB-721 with the TSR drivers .
292B.3.1 Using the PXB-721 with the C libraries .
292B.3 Opening The PXB-721 .
291B.2.2 Digital I/O Configuration .
291B.2.1 General Configuration .
291B.2 Configuring The PXB-721 .
290B.1.3 Creating Windows Applications .
289B.1.2 Creating DOS Applications Using The TSR Drivers
289B.1.1 Creating DOS Applications Using the C Libraries .
289B.1 Distribution Software .

289Appendix B: PXB-721 .

288A.5 Digital Output .

288A.4 Digital Input .
287A.3.3 Using the PXB-241 with Windows .
286A.3.2 Using the PXB-241 with the TSR drivers .
285A.3.1 Using the PXB-241 with the C libraries .
285A.3 Opening The PXB-241 .
284A.2.2 Digital I/O Configuration .
284A.2.1 General Configuration .
284A.2 Configuring The PXB-241 .
283A.1.3 Creating Windows Applications .

DAQDRIVE Users Manual 12

321F.3 Opening The DAQ-16 .
320F.2.5 Timer Configuration .
320F.2.4 Digital I/O Configuration .
320F.2.3 D/A Converter Configuration .
320F.2.2 A/D Converter Configuration .
320F.2.1 General Configuration .
320F.2 Configuring The DAQ-16 .
319F.1.3 Creating Windows Applications .
318F.1.2 Creating DOS Applications Using The TSR Drivers .
318F.1.1 Creating DOS Applications Using the C Libraries .
318F.1 Distribution Software .

318Appendix F: DAQ-16 .

317E.7 Digital Output .

317E.6 Digital Input .

316E.5 Analog Output .

316E.4 Analog Input .
315E.3.3 Using the DAQ-12 with Windows .
314E.3.2 Using the DAQ-12 with the TSR drivers .
313E.3.1 Using the DAQ-12 with the C libraries .
313E.3 Opening The DAQ-12 .
312E.2.5 Timer Configuration .
312E.2.4 Digital I/O Configuration .
312E.2.3 D/A Converter Configuration .
312E.2.2 A/D Converter Configuration .
312E.2.1 General Configuration .
312E.2 Configuring The DAQ-12 .
311E.1.3 Creating Windows Applications .
310E.1.2 Creating DOS Applications Using The TSR Drivers
310E.1.1 Creating DOS Applications Using the C Libraries .
310E.1 Distribution Software .

310Appendix E: DAQ-12 .

309D.5 Digital Output .

309D.4 Digital Input .
308D.3.3 Using the IOP-241 with Windows .
307D.3.2 Using the IOP-241 with the TSR drivers .
306D.3.1 Using the IOP-241 with the C libraries .
306D.3 Opening The IOP-241 .
305D.2.2 Digital I/O Configuration .
305D.2.1 General Configuration .
305D.2 Configuring The IOP-241 .
304D.1.3 Creating Windows Applications .
303D.1.2 Creating DOS Applications Using The TSR Drivers

DAQDRIVE Users Manual 13

340H.4 Analog Input .
339H.3.3 Using the DAQ-1201/1202 with Windows .
338H.3.2 Using the DAQ-1201/1202 with the TSR drivers .
337H.3.1 Using the DAQ-1201/1202 with the C libraries .
337H.3 Opening The DAQ-1201/1202 .
336H.2.5 Timer Configuration .
336H.2.4 Digital I/O Configuration .
336H.2.3 D/A Converter Configuration .
336H.2.2 A/D Converter Configuration .
336H.2.1 General Configuration .
336H.2 Configuring The DAQ-1201/1202 .
335H.1.3 Creating Windows Applications .
334H.1.2 Creating DOS Applications Using The TSR Drivers
334H.1.1 Creating DOS Applications Using the C Libraries .
334H.1 Distribution Software .

334Appendix H: DAQ-1201/1202 .

333G.7 Digital Output .

333G.6 Digital Input .

332G.5 Analog Output .

332G.4 Analog Input .
331G.3.3 Using the DAQ-801/802 with Windows .
330G.3.2 Using the DAQ-801/802 with the TSR drivers .
329G.3.1 Using the DAQ-801/802 with the C libraries .
329G.3 Opening The DAQ-801/802 .
328G.2.5 Timer Configuration .
328G.2.4 Digital I/O Configuration .
328G.2.3 D/A Converter Configuration .
328G.2.2 A/D Converter Configuration .
328G.2.1 General Configuration .
328G.2 Configuring The DAQ-801/802 .
327G.1.3 Creating Windows Applications .
326G.1.2 Creating DOS Applications Using The TSR Drivers
326G.1.1 Creating DOS Applications Using The C Libraries .
326G.1 Distribution Software .

326Appendix G: DAQ-801/802 .

325F.7 Digital Output .

325F.6 Digital Input .

324F.5 Analog Output .

324F.4 Analog Input .
323F.3.3 Using the DAQ-16 with Windows .
322F.3.2 Using the DAQ-16 with the TSR drivers .
321F.3.1 Using the DAQ-16 with the C libraries .

DAQDRIVE Users Manual 14

358J.7 Digital Output .

358J.6 Digital Input .

357J.5 Analog Output .

356J.4 Analog Input .
355J.3.3 Using the DAQP-208 / DAQP-208H / DAQP-308 with Windows
354J.3.2 Using the DAQP-208 / DAQP-308 with the DOS TSR Driver
353J.3.1 Using the DAQP-208 / DAQP-308 with the C libraries
353J.3 Opening The DAQP-208 / DAQP-308 .
352J.2.5 Timer Configuration .
352J.2.4 Digital I/O Configuration .
352J.2.3 D/A Converter Configuration .
352J.2.2 A/D Converter Configuration .
352J.2.1 General Configuration .
352J.2 Configuring The DAQP-208 / DAQP-308 / DAQP-308
351J.1.3 Creating Windows Applications .
350J.1.2 Creating DOS Applications Using the TSR Driver .
350J.1.1 Creating DOS Applications Using the C Libraries .
350J.1 Distribution Software .

350Appendix J: DAQP-208 / DAQP-208H / DAQP-308

349I.7 Digital Output .

349I.6 Digital Input .

349I.5 Analog Output .

348I.4 Analog Input .
347I.3.3 Using the DAQP-12 / DAQP-12H / DAQP-16 with Windows

346I.3.2 Using the DAQP-12 / DAQP-12H / DAQP-16 with the DOS TSR
Driver .

345I.3.1 Using the DAQP-12 / DAQP-12H / DAQP-16 with the C libraries
345I.3 Opening The DAQP-12 / DAQP-12H / DAQP-16
344I.2.4 Timer Configuration .
344I.2.3 Digital I/O Configuration .
344I.2.2 A/D Converter Configuration .
344I.2.1 General Configuration .
344I.2 Configuring The DAQP-12 / DAQP-12H / DAQP-16
343I.1.3 Creating Windows Applications .
342I.1.2 Creating DOS Applications Using the TSR Driver .
342I.1.1 Creating DOS Applications Using the C Libraries .
342I.1 Distribution Software .

342Appendix I: DAQP-12 / DAQP-12H / DAQP-16

341H.7 Digital Output .

341H.6 Digital Input .

340H.5 Analog Output .

DAQDRIVE Users Manual 15

366K.7 Digital Output .

366K.6 Digital Input .

365K.5 Analog Output .

365K.4 Analog Input .
364K.3.3 Using the DA8P-12 with Windows .
363K.3.2 Using the DA8P-12 with the TSR drivers .
362K.3.1 Using the DA8P-12 with the C libraries .
362K.3 Opening The DA8P-12 .
361K.2.4 Timer Configuration .
361K.2.3 Digital I/O Configuration .
361K.2.2 D/A Converter Configuration .
361K.2.1 General Configuration .
361K.2 Configuring The DA8P-12 .
360K.1.3 Creating Windows Applications .
359K.1.2 Creating DOS Applications Using The TSR Drivers
359K.1.1 Creating DOS Applications Using The C Libraries .
359K.1 Distribution Software .

359Appendix K: DA8P-12 .

DAQDRIVE Users Manual 16

List of Figures

250Figure 27. output_array data types as a function of analog output channel type.
246Figure 26. input_array data types as a function of analog input channel type.
230Figure 25. Counter/timer configuration structure definition. .
226

Figure 24. Analog input signal conditioner board configuration structure
definition. .

220Figure 23. Analog input expansion board configuration structure definition.
217Figure 22. Digital I/O configuration structure definition. .
215Figure 21. Device configuration structure definition. .
211Figure 20. D/A converter configuration structure definition. .
205Figure 19. A/D converter configuration structure definition. .
195Figure 18. Digital output request structure definition. .
194Figure 17. Digital output request structure. .
190Figure 16. Digital input request structure definition. .
189Figure 15. Digital input request structure. .
175Figure 14. Analog output request structure definition. .
174Figure 13. Analog output request structure. .
170Figure 12. Analog input request structure definition. .
169Figure 11. Analog input request structure. .
166Figure 10. Analog input request structure. .
133Figure 9. event_mask bit definitions. .
132Figure 8. event_type definition. .
130Figure 7. request_status bit definitions. .
127Figure 6. Summary of DAQDRIVE trigger sources and parameters.
111

Figure 5. buffer_status definition for output operations (D/A and digital
output). .

111Figure 4. buffer_status definition for input operations (A/D and digital input).
20

Figure 3. DAQDRIVE interface between an application program and multiple
devices of different families. .

19
Figure 2. DAQDRIVE interface between an application program and multiple
devices of the same family. .

19
Figure 1. DAQDRIVE interface between an application program and one
hardware device. .

DAQDRIVE Users Manual 17

1 Introduction

DAQDRIVE is Omega's universal data acquisition interface for the "DAQ" series of ISA bus
and PCMCIA data acquisition adapters. DAQDRIVE goes beyond the drivers normally
distributed with data acquisition adapters by isolating the application programmer from the
hardware.

DAQDRIVE provides support for application programs written in the following languages:

y Microsoft C/C++
y Borland C/C++
y Visual Basic for DOS
y Quick Basic version 4.5
y Turbo Pascal for DOS version 7.0 and newer
y Most Windows languages supporting Dynamic Link Libraries (DLLs) including Visual

C/C++, Borland C/C++, Turbo Pascal for Windows, and Borland Delphi

DAQDRIVE uses a "data defined" rather than a "function defined" interface. What this means
is that each data acquisition operation is defined by a series of configuration parameters and
requires very few function calls to implement. Because of this approach, DAQDRIVE may
seem a little unusual; even intimidating at times. However, after writing a few example
programs, we feel the user will discover the power behind this type of interface.

DAQDRIVE supports high speed data I/O by providing support for foreground (CPU
software polled) and background (DMA and interrupt driven) operation. For increased
flexibility, DAQDRIVE also supports software (internal) and hardware (external) clock and
trigger sources.

DAQDRIVE supports multiple data acquisition adapters in a single system. In fact, the
number of adapters is limited only by the amount of available system memory. DAQDRIVE
also supports multiple tasks from one or more applications operating on one or more
hardware devices. This multi-tasking support is accomplished by tracking all system and
data acquisition resources and rejecting any request for which all of the necessary resources
are not available.

In order to minimize the code size of the application programs, DAQDRIVE is distributed as a
two-part driver. The first part contains the application program interface (API) and is also
responsible for memory management, file I/O, and other hardware independent functions.
Regardless of the number of hardware devices installed, only one copy of the hardware
independent driver is required.

The second part of the driver is hardware dependent and is responsible for implementing the
requested operations on the target hardware device. These drivers are supplied with the data

DAQDRIVE Users Manual 18

acquisition adapter and generally support only one family of hardware devices. Only one
hardware dependent driver is required for each family of hardware installed in the system.

Hardware dependent driver

Application Program

Hardware independent driver

Figure 1. DAQDRIVE interface between an application program and one hardware device.

Hardware dependent driver

Application Program

Hardware independent driver

Figure 2. DAQDRIVE interface between an application program and multiple
devices of the same family.

DAQDRIVE Users Manual 19

Application Program

Hardware dependent driver Hardware dependent driver

Hardware independent driver

Figure 3. DAQDRIVE interface between an application program and multiple
devices of different families.

DAQDRIVE Users Manual 20

2 Before Beginning

2.1 Software Installation

The DAQDRIVE distribution CD contains a Setup program that allows the user to quickly and
easily install the necessary DAQDRIVE components onto the host computer. The Setup
program is compatible with Windows 3.x and Windows 95/98 and allows the user to install
DAQDRIVE for DOS, Windows 3.x, and/or Windows 95/98.

From Windows 3.x:

1. Insert the compact disk into the computer's CD-ROM drive.

2. From the Windows program manager, select File then Run.

3. Assuming the CD-ROM drive is drive D, enter "D:\SETUP" in the command line
text box and click OK.

From Windows 95, Windows 98, and Windows NT 4.0:

1. Insert the compact disk into the computer's CD-ROM drive.

2. Click the Start button, point to Settings, then click Control Panel.

3. Double-click on Add/Remove Programs.

4. On the Install/Uninstall tab, click Install.

5. Click Next.

6. If the correct Setup program is found, click Finish. If not, click Browse and select
the Setup program in the root directory of the CD.

Follow the on-screen instructions to select the DAQDRIVE components to be installed. When
the Setup program is complete, one or more of the following subdirectories will have been
created in the target directory:

...\DAQDRIVE\CONFIG DAQDRIVE Configuration Utility

...\DAQDRIVE\DAQEZ DaqEZ

...\DAQDRIVE\C_LIBS C library support for DOS applications

...\DAQDRIVE\TSR TSR driver support for DOS applications

...\DAQDRIVE\WINDLL Support for Windows 3.x and 16-bit Windows 95 applications

...\DAQDRIVE\VISDAQLT Support for 16-bit Visual Basic applications

...\DAQDRIVE\WIN32 Support for 32-bit Windows 95 applications

DAQDRIVE Users Manual 21

2.2 DAQDRIVE Configuration Utilities

Before DAQDRIVE can operate an adapter, a configuration file must be generated to specify
the hardware configuration. Three separate Windows based utility programs are provided to
generate these configuration files:

1. DAQCFGW.EXE utility to edit DAQDRIVE hardware adapter configuration files

2. EXPBOARD.EXE utility to edit the data base defining available A/D expansion
boards and their parameters

3. SIGCON.EXE utility to edit the data base defining available A/D channel signal
conditioners and their parameters

IMPORTANT:
The DAQDRIVE configuration utilities must be used to edit the
DAQDRIVE hardware configuration files. Under no circumstances
should the user attempt to create and/or edit DAQDRIVE hardware
configuration files directly.

2.2.1 Installation

The DAQDRIVE configuration utilities are automatically installed into the
..\DAQDRIVE\CONFIG subdirectory whenever the Setup program is executed. In addition,
the Setup program installs sample hardware configuration data files (.DAT), and their
associated report files (.RPT). These sample configuration files must be modified to create the
user’s configuration as DAQCFGW does not allow the creation of new hardware
configuration data files, but instead requires all files to be a modified version of an existing
file.

DAQCFGW does not allow the creation of new hardware configuration data files, but instead
requires all files to be a modified version of an existing data file. The DAQDRIVE installation
program installs the necessary sample hardware configuration data files (.DAT), and their
associated report files (.RPT), into the ..\DAQDRIVE\CONFIG directory along with the
configuration utilities.

CAUTION:
Older versions of DAQDRIVE may not be compatible with
files generated by the latest configuration utilities.

DAQDRIVE Users Manual 22

2.2.2 Generating A DAQDRIVE Configuration File

DAQCFGW does not allow the creation of new data files but instead requires all files to be a
modified version of an existing data file (*.DAT). For this reason, one or more sample data
files are provided on the DAQDRIVE installation diskettes. To view and/or edit a
configuration data file:

1. Execute DAQCFGW by double-clicking on the DAQDRIVE configuration utility
icon located in the DAQDRIVE program group

2. Select File, Open

3. Select the drive and directory in the corresponding list boxes.

4. Type the name of an existing configuration data file (.DAT) in the file name text box
or select the file from the corresponding list box.

5. Choose OK.

Some or all of the following configuration options will appear in the Hardware Setup menu:
y General
y A/D Converter
y A/D Expansion Boards
y A/D Signal Conditioners
y D/A converter
y Timer
y Digital I/O
y Configuration Help

To select a subsystem for configuration, select it from the Hardware Setup menu or click the
associated toolbar icon. If a specific subsystem is not available on the adapter or if there are
no user-definable options within that subsystem, the option will be disabled. The hardware
specific appendix for the adapter being configured lists the available options.

2.2.2.1 General Configuration
The general configuration window is used to define the interface between the adapter and the
host system. All adapters require the general configuration options:

Base Address
The base I/O address of the adapter must be specified using the base address text box. If the
adapter is PCMCIA, or PCI compatible, the user may specify a base address of 0. Setting the
base address to 0 instructs DAQDRIVE to determine the adapter's base address, interrupt, and
DMA settings automatically each time the device is opened.

IRQ Level
The adapter's interrupt level (IRQ) must be selected from the corresponding drop-down list
box. If the adapter does not support interrupts or if the base I/O address is set to 0, the
interrupt list box is not displayed.

DAQDRIVE Users Manual 23

DMA Channel 1
The adapter's primary DMA channel must be selected from the corresponding drop-down list
box. If the adapter does not support DMA or if the base I/O address is set to 0, the primary
DMA list box is not displayed.

DMA Channel 2
The adapter's secondary DMA channel must be selected from the corresponding drop-down
list box. If the adapter does not support two DMA channels, or if the base I/O address is set
to 0, the secondary DMA list box is not displayed.

2.2.2.2 A/D Converter Configuration
The A/D converter window is used to define the configuration of the adapter's analog input
channels. When these parameters define a specific jumper setting on the adapter, it is the
user's responsibility to assure the adapter is configured properly. The Configuration Help
window provides information regarding hardware modification requirements (see page 29).

The number and type of user-definable options available in this window is dependent on the
hardware installed and is discussed in the hardware specific appendix for the adapter being
configured.

A/D Converters
Select the analog-to-digital (ADC) device on the A/D adapter to be configured from this list
box. Most A/D adapters have only one ADC device (ADC 0).

Channels
Dialog box shows the number of A/D input channels available on the adapter in its current
configuration. A multiplexer (mux) feeds multiple analog inputs back into the actual ADC
device(s). The number of channels may be affected by the Input Mode.

Input Mode
Select the A/D input mode from the list box.

y Single Ended: A/D converter measures the voltage from one input to ground. All
A/D channels normally share common ground.

y Differential: A/D converter measures the voltage difference between two inputs that
are isolated from ground.

Signal Type
Select the signal type from the list box.

y Unipolar: A/D converter measures only positive voltages.
y Bipolar: A/D converter measures both positive and negative voltages.

Gain
This list box provides optional signal amplifier settings. Note that this option is only available
on devices with hardware selectable gain settings. Devices with software programmable gains
are configured at run-time.

DAQDRIVE Users Manual 24

2.2.2.3 A/D Converter Expansion Configuration
The A/D converter expansion window is used to define the configuration of any analog input
expansion adapters connected to the analog input channels. To assign an expansion board to
a main A/D channel click in the Expansion Board Names column and a choose from the drop
down list box. The first analog input expansion board must always be connected to A/D
channel 0, and additional expansion boards then connect to the next lowest channel.

Expansion adapters are defined in a data base using the EXPBOARD utility. The expansion
board data base may be viewed from the DataBase menu. However, to add or edit the
expansion board data base this utility must be run independently (see page 22).

The number and type of user-definable options available in this window is dependent on the
hardware installed and the configuration of the expansion board as defined by the
EXPBOARD utility. When these parameters define a specific jumper setting on the expansion
board adapter, it is the user's responsibility to assure the adapter is configured properly.

The parameters in this window refer only to the expansion board adapter and do not effect the
A/D converter configuration of the main board. In most cases however, these two sets of
parameters must be examined together. For example, a gain of 2 in the A/D converter
configuration combined with a gain of 10 on the analog input expansion board results in an
overall gain of 20.

Channels
Dialog box shows the number of analog input channels available on the expansion board in its
current configuration. The values in this box are defined in the EXPBOARD utility. The
number of channels may be effected by the Input Mode.

Input Mode
Select the input mode from the list box.

y Single Ended: input signals are measured from one input to ground. All inputs
normally share a common ground.

y Differential: input signals are measured as the difference between two inputs that are
isolated from ground.

Signal Type
Select the signal type from the list box.

y Unipolar: expansion board accepts only positive voltages.
y Bipolar: expansion board accepts both positive and negative voltages.

Gain
This list box provides optional signal amplifier settings. Note that this option is only available
on devices with hardware selectable gain settings. Devices with software programmable
gains are configurable at run-time.

DAQDRIVE Users Manual 25

2.2.2.4 A/D Signal Conditioners
A signal conditioner may be connected to any A/D main channel, and/or to any A/D
expansion channel marked “Signal Conditioner Connectable” in the EXPBOARD utility (see
page 24). Expansion boards are normally used in conjunction with signal conditioners, but
are not required. To assign a signal conditioner to an A/D channel click in the Signal
Conditioner Name column and a choose from the drop down list box.

Signal conditioners are defined in a data base using the SIGCON utility. The signal
conditioner data base may be viewed from the DataBase menu. However, to add or edit the
signal conditioner data base this utility must be run independently (see page 24).

Mux CHC H

0-00-00
0-00-01
0 - 0 1
0 - 0 2

0
1
2
3

Main ADC Channel

ADC Dev ice

Expansion Channel

Logical Channel

Figure 1. A/D Channel Numbering

To help understand the A/D channel numbering system the following terms are defined:
y Logical Channel: The CH column designates the logical number that software

should use to access the analog input channel. When using
expansion boards you may have up to 256 logical channels.

y ADC Device: The ADC device number. Most A/D adapters have only one
ADC device (ADC 0).

y Main ADC Channel: Analog input channel on the A/D adapter board. A multiplexer
(mux) on the A/D adapter feeds multiple analog inputs back into
the actual ADC device(s).

y Expansion Channel: Analog input channel provided by an expansion board
connection to a single main analog channel. Expansion boards
use digital I/O to address multiple expansion channels from a
single main channel through a multiplexer.

DAQDRIVE Users Manual 26

2.2.2.5 D/A Converter Configuration
The D/A converter window is used to define the configuration of the adapter's analog output
channels. When these parameters define a specific jumper setting on the adapter, it is the
user's responsibility to assure the adapter is configured properly. The Configuration Help
window provides information regarding hardware modification requirements (see page 20).

The number and type of user-definable options available in this window is dependent on the
hardware installed and is discussed in the hardware specific appendix for the adapter being
configured.

D/A Channels
Select the D/A channel to configure from the list. Each D/A channel typically has its own
digital-to-analog converter (DAC).

Signal Type
Select the signal type from the list box.

y Unipolar: DAC device outputs only positive voltages.
y Bipolar: DAC device outputs both positive and negative voltages.

Ref. Source
Analog output from DAC is proportional to a reference voltage. Select the voltage source
from the list box.

y Internal: Reference voltage generated by adapter board.
y External: Reference voltage supplied by an external source.

Ref. Voltage
The reference voltage is used as scaling multiplier for DAC output. For example, on a 12-bit
unipolar operation the analog output can be calculated from the equation:

VOUT = VREF * (Digital_Count / 4096) * Gain

Gain
This list box provides optional signal amplifier settings. Note that this option is only available
on devices with hardware selectable gain settings. Devices with software programmable
gains are configurable at run-time.

2.2.2.6 Digital I/O Configuration
The digital I/O window is used to define the configuration of the adapter's digital input /
output channels. When these parameters define a specific jumper setting on the adapter, it is
the user's responsibility to assure the adapter is configured properly. The Configuration Help
window provides information regarding hardware modification requirements (see page 20).

The number and type of user-definable options available in this window is dependent on the
hardware installed and is discussed in the hardware specific appendix for the adapter being
configured.

DAQDRIVE Users Manual 27

Channel Configuration
Each digital I/O bit on an adapter can be individually accessed though the connector for
control/monitoring of external digital devices. The digital I/O bits on each adapter must be
configured into logical channels. Digital I/O channels can be set only 1 bit wide to access
single I/O lines at the connector, or logical channels that access multiple I/O bits
simultaneously are configurable.

Assign a logical channel number to the target digital I/O bit by clicking on the current logical
channel number. A drop down channel selection box will appear with the possible channel
configurations for this I/O bit (see Figure 2). The rest of the digital I/O bits will be
automatically updated with correct channel numbers reflecting any changes. Repeat this step
for each digital I/O bit.

Port 0

bit

CH

7 6 5 4 3 2 1 0

000 01233

3
4

InInInInInIn OutOut

Logical Channel

Direction Control

Channel Select

Figure 2. Digital I/O Configuration Display

Input/Output Configuration
After all of the logical channels have been defined, they may be configured for input, output,
or input/output (I/O) by clicking on the direction control button for each logical channel. All
bits defined as a member of that logical channel will toggle between the available settings.

2.2.2.7 Timer Configuration
The timer configuration window is used to define the adapter's onboard counter / timer
circuits. Examples of settings found in this section include counter size and input clock
frequency. When these parameters define a specific jumper setting on the adapter, it is the
user's responsibility to assure the adapter is configured properly. The Configuration Help
window provides information regarding hardware modification requirements (see page 20).

The number and type of user-definable options available in this window is dependent on the
hardware installed and is discussed in the hardware specific appendix for the adapter being
configured.

DAQDRIVE Users Manual 28

2.2.2.8 Configuration Help
The hardware configuration of the adapter is the responsibility of the user. Some of these
hardware configuration settings may be handled through software, while others may require
switches or jumper blocks to be modified. The configuration help window provides the user
with the jumper block or switch numbers to modify if required.

It is the responsibility of the user to determine the correct settings for the current hardware
configuration. This help window is only a tool to assist the user in determining if and/or
where hardware modifications are required. The amount and type of information available in
this window is dependent on the hardware installed. No information is provided for
configuration options handled through software.

2.2.2.9 Saving The New Configuration
After the adapter configuration is complete, the user may overwrite the current configuration
file or a new configuration file can be generated. To overwrite the existing configuration,
simply select File, Save from the menu. To generate a new configuration file:

1. Select File, Save As

2. Select the drive and directory in the corresponding list boxes.

3. Type the name of the new configuration data file in the file name text box.

4. Choose OK.

When the user saves an adapter configuration, a corresponding report file is generated using
the same file name with the extension .RPT. This report file provides an ASCII description of
the hardware configuration and may be viewed using any ASCII text editor.

2.2.2.10 Viewing the Report File
DAQCFGW also provides a utility for viewing the configuration report file (.RPT) generated
when the data file was saved.

1. Select File, View Report

2. Select the drive and directory in the corresponding list boxes.

3. Type the name of a report file (.RPT) in the file name text box or select a report from
the corresponding list box.

4. Choose OK.

5. Review the adapter's configuration using the Page-Up, Page-Down, and arrow keys
as well as the vertical and horizontal scroll bars.

6. When done, close the report viewer utility by selecting Close.

DAQDRIVE Users Manual 29

2.2.3 A/D Expansion Board Database Utility

DAQCFGW uses a database of analog input expansion boards to assist the user in the
configuration of a complete data acquisition system. Omega expansion boards are predefined
in the database and may not be modified by the user. New adapters may be added to the
database using the EXPBOARD utility. Any modification to an expansion board
configuration is automatically updated in the database file and made available to the
DAQDRIVE configuration utility. To create and/or edit a user-defined analog input
expansion board:

1. Execute EXPBOARD by double-clicking on the expansion board utility icon located
in the DAQDRIVE program group.

2. Select ADD NEW, EDIT, or DELETE to update the expansion board database.

The parameters for each expansion board in the database refer only to the expansion board
adapter and do not effect the A/D converter configuration of the main board. In most cases
however, these two sets of parameters must be examined together. For example, a gain of 2 in
the A/D converter configuration combined with a gain of 10 on the expansion board results in
an overall gain of 20.

When these parameters define a specific jumper setting on the expansion board adapter, it is
the user's responsibility to assure the adapter is configured properly. Refer to the expansion
board documentation for details and parameter values.

Long Device Name
Each expansion adapter must have a unique Long Device Name of 1 - 30 characters. The long
device name used only for descriptive purposes.

Device Name
Each expansion adapter must have a unique Device Name of 14 characters or less.

Input Mode
Select the A/D input mode from the list box.

y Single Ended: A/D converter measures voltage from one input to ground. All A/D
channels normally share common ground.

y Differential: A/D converter measures voltage across two inputs that are isolated from
ground.

y DI/SE Selectable

Signal Type
Select the signal type from the list box.

y Unipolar: Expansion device reads only positive voltage.
y Bipolar: Device reads both positive and negative voltages.
y Selectable: Either of the signal types is available.

DAQDRIVE Users Manual 30

Num Gains
The Num Gains box refers to the number of gains available to the programmer at run-time.
Therefore, if the expansion board has 4 software selectable gains this field should be set to 4.
But, if the expansion board has 4 hardware (jumper or switch) selectable gains, the Num
Gains field should be set to 1. In both cases fill in Gains list with all available gains.

Differential
Specify the number of differential A/D Expansion channels available on the expansion board.
 A typical expansion board will connect to one A/D main channel on the A/D adapter and
provide up to 8 differential expansion inputs.

Single Ended
Specify the number of Single Ended A/D Expansion channels available on the expansion
board. A typical expansion board will connect to one A/D main channel on the A/D adapter
and provide up to 16 single ended expansion inputs.

Gains List
List all analog input amplier gains available on expansion board. When the DAQDRIVE
Configuration utility is run, the A/D expansion board configuration section will include a
Gains list box to select the expansion board gain setting if the expansion board has hardware
selectable gains. Otherwise, the programmer may select any of the available expansion board
gains through software at run-time.

Maximum One Channel Frequency
Maximum sampling rate for a single A/D input.

Maximum Multi-Channel Frequency
Maximum scan rate for multiple A/D inputs. Normally slower than the one channel
maximum frequency since the multiplexer must switch between A/D inputs.

Channel Signal Type
Select the channel signal type from the list box. Selection determines whether the DAQDRIVE
Configuration utility will allow the use of signal conditioners.

y Direct Analog Signal Connection: Expansion device supports only direct analog
 signal inputs.
y Signal Conditioner Connectable: Expansion device supports the use of signal

conditioners.

DAQDRIVE Users Manual 31

2.2.4 Signal Conditioner Database Utility

DAQCFGW uses a database of analog input signal conditioners to assist the user in the
configuration of a complete data acquisition system. Many standard signal conditioners are
predefined in the database and may not be modified by the user. New conditioners may be
added to the database using the SIGCON utility. Any modification to a signal conditioner’s
parameters are automatically updated in the database file and made available to the
DAQDRIVE configuration utility. To create and/or edit a user-defined analog input signal
conditioner:

1. Execute SIGCON by double-clicking on the signal conditioner utility icon located in
the DAQDRIVE program group.

2. Select ADD NEW, EDIT, or DELETE to update the signal conditioner database.

The parameters for each signal conditioner in the database refer only to the signal conditioner
and do not effect the A/D converter configuration or the expansion board configuration. In
most cases however, these sets of parameters must be examined together to determine the
overall configuration. Refer to the signal conditioner documentation for details and parameter
values.

Long Device Name
Each device must have a unique Long Device Name of 1 - 30 characters. The long device
name used only for descriptive purposes.

Device Name
Each device must have a unique Device Name of 14 characters or less.

Device Type
Select the device type from the list box.

y Linear
y Nonlinear

Minimum Input
Minimum value the signal conditioner is capable of reading. Type of signal is specified by
Input Units.

Maximum Input
Maximum value the signal conditioner is capable of reading. Type of signal is specified by
Input Units.

DAQDRIVE Users Manual 32

Input Units
Select the measurement units for the signal type from the list box. Below is a sample of the
choices.

y V (volts)
y A (amps)
y Degree C (temperature)
y Kg (kilogram)
y Hz (frequency)
y m/sec2 (acceleration)

Minimum Output
Minimum value the signal conditioner returns to the A/D input . Type of signal is specified
by Output Units.

Maximum Output
Maximum value the signal conditioner returns to the A/D input . Type of signal is specified
by Output Units.

Output Units
Specifies the measurement units for the signal type returned to the A/D converter. Currently
signal is always of type volts.

Bandwidth
Maximum frequency at which the signal conditioner can process data.

Maximum Scan Rate
Maximum frequency at which multiple devices may be scanned. This rate is normally slower
than the bandwidth rating due to switching and settling times.

DAQDRIVE Users Manual 33

Number of Coefficients
The functional operation of a signal conditioner is defined by a polynomial equation (see
Figure 3). Refer to the signal conditioner documentation for the polynomial coefficients
defining the polynomial equation. The number of coefficients specified for the equation is
manufacturer dependent. Specify the Number of Coefficients to be used in the polynomial
equation in this text box.

Signal
ConditionerSensor

Digital
CountInput

A/DVx0CTemp ()

0 1 2

2

3

3

n

n
Vy = A + A Vx + A Vx + A Vx + ...A Vx

where A = Polynomial Coefficientsn

Temp ()0C

Figure 3. The Polynomial Equation

Polynomial Coefficients
Up to 12 polynomial coefficients in the polynomial equation for the signal conditioner may be
specified. Fill in the Number of Coefficients text box to match the number of coefficient
values in the Polynomial Coefficients list.

DAQDRIVE Users Manual 34

2.3 Creating DOS Applications Using The C Libraries

2.3.1 Microsoft Visual C/C++

To generate application programs using Microsoft Visual C/C++, the applications must be
linked to one of the following DAQDRIVE libraries AND one or more hardware dependent
libraries. These libraries MUST match the memory model selected for the application
program. The DAQDRIVE installation program installs the following files into the
DAQDRIVE\C_LIBS directory:

DAQDRVCS.LIB - small model DAQDRIVE library
DAQDRVCM.LIB - medium model DAQDRIVE library
DAQDRVCC.LIB - compact model DAQDRIVE library
DAQDRVCL.LIB - large model DAQDRIVE library

Three additional files are installed in the DAQDRIVE\C_LIBS directory for the programmer's
convenience. These files contain the prototypes of all the DAQDRIVE procedures, data
structure definitions, and constants mentioned throughout this document. These files must be
included in all application programs.

DAQDRIVE.H - procedure prototypes
DAQOPENC.H - DaqOpenDevice definition for C
USERDATA.H - data structures and pre-defined constants

2.3.1.1 The hardware dependent include file
The C library version of the DaqOpenDevice procedure is implemented as a macro using the
"token-pasting" operator to create a unique open command for each hardware device.
Application programs must include the file DAQOPENC.H and the hardware dependent
include file defined in the target hardware's appendix. The DAQDRIVE installation program
installs these files into the DAQDRIVE\C_LIBS directory.

2.3.1.2 Creating byte-aligned data structures
Because DAQDRIVE supports multiple languages, all data structures are byte-aligned
(packed). The application program must also set structure packing to byte-aligned for proper
operation.

IMPORTANT:
For proper operation, all application programs must be compiled using
byte- aligned data structures.

To select byte aligned structures within the Visual C/C++ environment, first select Options,
Project, Compiler, then set the structure member alignment field to 1 byte. For byte aligned
structures from the Visual C/C++ command line, use the '/Zp1' option.

DAQDRIVE Users Manual 35

2.3.2 Borland C/C++

To generate application programs using Borland C/C++, the applications must be linked to
one of the following DAQDRIVE libraries AND one or more hardware dependent libraries.
These libraries MUST match the memory model selected for the application program. The
DAQDRIVE installation program installs the following files into the DAQDRIVE\C_LIBS
directory:

DAQDRVBS.LIB - small model DAQDRIVE library
DAQDRVBM.LIB - medium model DAQDRIVE library
DAQDRVBC.LIB - compact model DAQDRIVE library
DAQDRVBL.LIB - large model DAQDRIVE library

Three additional files are installed in the DAQDRIVE\C_LIBS directory for the programmer's
convenience. These files contain the prototypes of all the DAQDRIVE procedures, data
structure definitions, and constants mentioned throughout this document. These files must be
included in all application programs.

DAQDRIVE. H - procedure prototypes
DAQOPENC.H - DaqOpenDevice definition for C
USERDATA.H - data structures and pre-defined constants

2.3.2.1 The hardware dependent include file
The C library version of the DaqOpenDevice procedure is implemented as a macro using the
"token-pasting" operator to create a unique open command for each hardware device.
Application programs must include the file DAQOPENC.H and the hardware dependent
include file defined in the target hardware's appendix. The DAQDRIVE installation program
installs these files into the DAQDRIVE\C_LIBS directory.

2.3.2.2 Creating byte-aligned data structures
Because DAQDRIVE supports multiple languages, all data structures are byte-aligned
(packed). The application program must also set structure packing to byte-aligned for proper
operation.

IMPORTANT:
For proper operation, all application programs must be compiled using
byte- aligned data structures.

To guarantee structures are byte aligned within the Borland C/C++ environment, select
Options, Compiler, Code Generation, then confirm the Word alignment box is not checked.
For byte aligned structures from the Borland C/C++ command line, use the '-a-' option.

DAQDRIVE Users Manual 36

2.3.2.3 Program optimization
When selecting the optimization options for the Borland C/C++ compiler, problems may arise
if the 'Invariant code motion' option is selected and DAQDRIVE is operated in one of the
background modes (IRQ or DMA). To disable the 'Invariant code motion' optimization within
the Borland C/C++ environment, select Options, Compiler, Optimizations, then confirm the
'Invariant code motion' box is not checked. From the Borland C/C++ command line, make
sure the '-Om' and '-O2' options are not used.

IMPORTANT:
It is strongly recommended that the 'Invariant code motion' optimization
option be disabled when using the Borland C/C++ compiler.

DAQDRIVE Users Manual 37

2.4 Creating DOS Applications Using The TSR Drivers

DAQDRIVE provides a TSR (Terminate-and-Stay-Resident) driver for creating DOS
applications in any language that supports software interrupt (int) calls. In addition, libraries
are provided to interface the following high-level languages to the DAQDRIVE TSR: Visual
Basic for DOS, Quick Basic version 4.5, Turbo Pascal version 7.0 and newer, and most C
compilers.

Although the interface to each of these languages is similar, the methods for generating
application programs varies with the application language. The following sections describe
the steps required to load the TSRs into memory and generate an application in each of the
supported languages.

2.4.1 Loading The TSRs Into Memory

The DAQDRIVE installation program installs the TSR driver into the DAQDRIVE\TSR
directory: The first step in creating applications which use the DAQDRIVE TSR is to load the
driver into memory using the command line:

DAQDRIVE

In this mode, DAQDRIVE searches software interrupts 60H through 64H for an available
interrupt. If an unused interrupt is located, DAQDRIVE takes control of this interrupt and
displays a message indicating the installation was successful and which software interrupt is
being used. If there are no available interrupts in this range, an error message is displayed
and the DAQDRIVE TSR is not installed.

If the user wants to control the software interrupt number, or if all of the software interrupts
between 60H and 64H are used, the user may specify a software interrupt with the following
command line:

DAQDRIVE [/I=interrupt]

where interrupt specifies the software interrupt number in hexadecimal format. If the
user-specified interrupt is not available, an error message is displayed and the DAQDRIVE
TSR is not installed.

Examples:
DAQDRIVE /I=63 installs DAQDRIVE on interrupt 63H
DAQDRIVE /I=4F installs DAQDRIVE on interrupt 4FH
DAQDRIVE /I=b9 installs DAQDRIVE on interrupt B9H

DAQDRIVE Users Manual 38

After the DAQDRIVE TSR has been loaded, the user must load one or more TSRs for the
hardware device(s) to be accessed. The DAQDRIVE installation program installs the TSR
driver(s) for the selected hardware device(s) into the DAQDRIVE\TSR directory. For this
discussion, we will assume the hardware driver's TSR name is HARDWARE.EXE. To load
this TSR simply execute the command:

HARDWARE

The hardware TSR will search for the DAQDRIVE TSR in memory and, if it is located, will
install itself using the same software interrupt. If DAQDRIVE was not previously installed,
the hardware TSR will respond with an error message and will not be installed.

Multiple TSR drivers may be installed for multiple devices by repeating the above process for
each hardware driver.

2.4.2 Removing The TSRs From Memory

The DAQDRIVE and hardware device TSR(s) may be removed from memory using the '/R'
option to make additional memory available to other applications. The only restriction is that
the TSRs must be removed in the reverse order of their installation. Consider an example
where the following TSRs have been loaded:

DAQDRIVE - installs the DAQDRIVE TSR
DAQPTSR - installs the DAQP-208 TSR
IOP-241 - installs the IOP-241 TSR

To remove these TSRs from memory, the user simply reverses the installation order and adds
the '/R' option to each command line:

IOP-241 /R - removes the IOP-241 TSR
DAQPTSR /R - removes the DAQP-208 TSR
DAQDRIVE /R - removes the DAQDRIVE TSR

DAQDRIVE Users Manual 39

2.4.3 Microsoft C/C++

To generate application programs using the DAQDRIVE TSR with Microsoft C/C++, the
application must be linked with the DAQDRIVE library DAQTSRC.LIB installed in the
DAQDRIVE\TSR\C directory by the DAQDRIVE installation program. This library is model
independent and should work with most C compilers for DOS.

Three additional files are installed in the DAQDRIVE\TSR\C directory for the programmer's
convenience. These files contain the prototypes of all the DAQDRIVE procedures, data
structure definitions, and constants mentioned throughout this document. These files must be
included in all application programs.

DAQDRIVE. H - procedure prototypes
DAQOPENT.H - DaqOpenDevice prototype
USERDATA.H - data structures and pre-defined constants

2.4.3.1 Creating byte-aligned data structures
Because DAQDRIVE supports multiple languages, all data structures are byte-aligned
(packed). The application program must also set structure packing to byte-aligned for proper
operation.

IMPORTANT:
For proper operation, all application programs must be compiled using
byte- aligned data structures.

To define byte aligned structures with Microsoft C use the '/Zp1' command line option.
Within the Microsoft Visual C/C++ environment, select Options, Project, Compiler and set the
structure member alignment field to 1 byte.

DAQDRIVE Users Manual 40

2.4.4 Borland C/C++ and Turbo C

To generate application programs using the DAQDRIVE TSR with Borland C/C++ or Turbo
C, the application must be linked with the DAQDRIVE library DAQTSRC.LIB installed in the
DAQDRIVE\TSR\C directory by the DAQDRIVE installation program. This library is model
independent and should work with most C compilers for DOS.

Three additional files are installed in the DAQDRIVE\TSR\C directory for the programmer's
convenience. These files contain the prototypes of all the DAQDRIVE procedures, data
structure definitions, and constants mentioned throughout this document. These files must be
included in all application programs.

DAQDRIVE. H - procedure prototypes
DAQOPENT.H - DaqOpenDevice prototype
USERDATA.H - data structures and pre-defined constants

2.4.4.1 Creating byte-aligned data structures
Because DAQDRIVE supports multiple languages, all data structures are byte-aligned
(packed). The application program must also set structure packing to byte-aligned for proper
operation.

IMPORTANT:
For proper operation, all application programs must be compiled using
byte- aligned data structures.

To guarantee structures are byte aligned within the Borland C/C++ environment, select
Options, Compiler, Code Generation, then confirm the Word alignment box is not checked.
Within the Turbo C environment, select Options, Compiler, Code Generation, then set the
Alignment option to byte. For byte aligned structures from the Borland C/C++ or Turbo C
command lines, use the '-a-' option.

2.4.4.2 Program optimization
When selecting the optimization options for the Borland C/C++ compiler, problems may arise
if the 'Invariant code motion' option is selected and DAQDRIVE is operated in one of the
background modes (IRQ or DMA). To disable the 'Invariant code motion' optimization within
the Borland C/C++ environment, select Options, Compiler, Optimizations, then confirm the
'Invariant code motion' box is not checked. From the Borland C/C++ command line, make
sure the '-Om' and '-O2' options are not used.

IMPORTANT:
It is strongly recommended that the 'Invariant code motion' optimization
option be disabled when using the Borland C/C++ compiler.

DAQDRIVE Users Manual 41

2.4.5 Quick Basic

To generate application programs using the DAQDRIVE TSR with Quick Basic 4.5, the Quick
Library DAQQB45.QLB must be loaded from the Quick Basic command line using the /L
option. DAQQB45.QLB is installed into the DAQDRIVE\TSR\QB45 directory by the
DAQDRIVE installation program. A standard library, DAQQB45.LIB, is also installed in this
directory for creating stand-alone executable programs (.EXE) using Quick Basic.

Two additional files are installed into the DAQDRIVE\TSR\QB45 directory for the
programmer's convenience. These files contain the prototypes of all the DAQDRIVE
procedures, data structure definitions, and constants mentioned throughout this document.
These files must be included in all application programs.

DAQQB45.INC - procedure declarations
USERDATA.INC - data structures and pre-defined constants

2.4.5.1 Quick Basic's on-line help
Although undocumented, the Quick Basic 4.5 on-line help appears to use software interrupt
60H and may interfere with the DAQDRIVE TSR. If suspicious errors occur while using
Quick Basic, users are advised to install DAQDRIVE on software interrupt 61H, 62H, 63H, or
64H.

IMPORTANT:
Although undocumented, the Quick Basic 4.5 on-line help appears to use
software interrupt 60H and may interfere with DAQDRIVE.

2.4.5.2 Quick Basic and the under-score character
One difference between the Quick Basic version and other versions of DAQDRIVE is that
Quick Basic reserves the underscore character (_). The underscore character appears in data
declarations and constants throughout this document but has been removed from the Quick
Basic version of DAQDRIVE.

2.4.5.3 Adjusting the size of Quick Basic's stack and heap
DAQDRIVE uses the application program's stack for storing local variables and for passing
variables between DAQDRIVE procedures. By default, Quick Basic 4.5 only allocates 2K of
memory for the application's stack which may be insufficient under come circumstances. It is
recommended that the user increase the size of the application's stack by at least 2K using the
CLEAR command. Note that the CLEAR command also clears all data memory and should
therefore be used at the beginning of the application program.

In addition, application programs written using Quick Basic 4.5 allocate all available DOS
memory for use as a local heap. This causes DAQDRIVE to report an error 300 (memory
allocation error) when the application attempts to open a device. The application must reduce

DAQDRIVE Users Manual 42

the size of the heap using Quick Basic's SETMEM function before executing DaqOpenDevice.
As a guide, the application should reduce the heap by 10,000 bytes for each hardware device
opened and once the DaqOpenDevice procedure has been executed, the allocated heap space
must not be returned to Quick Basic until the DaqCloseDevice procedure has been completed.

'**
' Increase the size of the Quick Basic stack by 2K
'**

CLEAR ,,2048

'**
' Decrease the size of the heap so DAQDRIVE can allocate required memory
'**

HeapSize = SETMEM(-10000)

'**
' Perform all DAQDRIVE functions
'**

DaqOpenDevice

DaqCloseDevice

'**
' Optionally restore heap
'**

HeapSize = SETMEM (+10000)

2.4.5.4 The DaqOpenDevice Command
DAQDRIVE's DaqOpenDevice command requires two null-terminated string variables:
DeviceType and ConfigFile. Because Quick Basic does not support null-terminated strings,
the user must create these strings by appending a null character, CHR$(0), to the end of each
string before passing it to DAQDRIVE. For example:

A$ = "FILENAME.DAT" normal Quick Basic string
B$ = "FILENAME.DAT" + CHR$(0) null-terminated string

Furthermore, Quick Basic is unable to pass the address of a string variable as a far pointer. To
overcome this problem, the DaqOpenDevice procedure is declared differently for the Quick
Basic version of DAQDRIVE:

DaqOpenDevice (BYVAL TSRNumber AS Integer,
SEG LogicalDevice AS Integer,
BYVAL DeviceTypeSegment AS Integer,
BYVAL DeviceTypeOffset AS Integer,
BYVAL ConfigFileSegment AS Integer,
BYVAL ConfigFileOffset AS Integer)

DAQDRIVE Users Manual 43

The string variables normally found in the DaqOpenDevice command have been replaced by
integer values which contain the segment and offset address of the string. The application
program can obtain these addresses using the VARSEG and SADD functions as shown in the
following example.

'**
' Step 1: Open the device
'**

LogicalDevice% = 0
DeviceType$ = "DA8P-12B" + CHR$(0)
ConfigFile$ = "da8p-12b.dat" + CHR$(0)
Status% = DaqOpenDevice(&HF006, LogicalDevice%,
 VARSEG(DeviceType$), SADD(DeviceType$),
 VARSEG(ConfigFile$), SADD(ConfigFile$))

2.4.5.5 Storing a variable's address in a data structure
Another short-coming of Quick Basic is its inability to easily operate on a variable's address.
Because of this limitation, all of the variables declared as 'far pointers' in the DAQDRIVE data
structures have been divided into two integer values: a segment address and an offset
address. An example of this is the channel array variable in the ADCRequest structure

unsigned short far *channel_array_ptr;

which becomes

ChannelArrayPtrOffset AS Integer
ChannelArrayPtrSegment AS Integer

For an array named Channel, the application fills in the array's address using the VARSEG
and VARPTR procedures as follows:

DIM Channel[10] AS Integer

ADCRequest.ChannelArrayPtrOffset = VARPTR(Channel[0])
ADCRequest.ChannelArrayPtrSegment = VARSEG(Channel[0])

2.4.5.6 Dynamic memory allocation
To prevent Quick Basic from dynamically relocating variables, it is good practice to declare all
variables before the first instruction of the application program.

DAQDRIVE Users Manual 44

2.4.6 Visual Basic for DOS

To generate application programs using the DAQDRIVE TSR with Visual Basic for DOS, the
Quick Library DAQVBDOS.QLB must be loaded from the Visual Basic command line using
the /L option. DAQVBDOS.QLB is installed into the DAQDRIVE\TSR\VBDOS directory by
the DAQDRIVE installation program. A standard object library, DAQVBDOS.LIB, is also
installed in this directory for creating executable programs (.EXE) using Visual Basic for DOS.

Two additional files are installed into the DAQDRIVE\TSR\VBDOS directory for the
programmer's convenience. These files contain the prototypes of all the DAQDRIVE
procedures, data structure definitions, and constants mentioned throughout this document.
These files must be included in all application programs.

DAQVBDOS.INC - procedure declarations
USERDATA.INC - data structures and pre-defined constants

2.4.6.1 Visual Basic for DOS and the under-score character
One difference between the Visual Basic for DOS version and other versions of DAQDRIVE is
that Visual Basic reserves the underscore character (_). The underscore character appears in
data declarations and constants throughout this document but has been removed from the
Visual Basic for DOS version of DAQDRIVE.

2.4.6.2 Adjusting the size of the Visual Basic's stack and heap
DAQDRIVE uses the application program's stack for storing local variables and for passing
variables between DAQDRIVE procedures. By default, Visual Basic for DOS only allocates 2K
of memory for the application's stack which may be insufficient under come circumstances. It
is recommended that the user increase the size of the application's stack by at least 2K using
the CLEAR command. Note that the CLEAR command also clears all data memory and
should therefore be used at the beginning of the application program.

In addition, application programs written using Visual Basic for DOS allocate all available
DOS memory for use as a local heap. This causes DAQDRIVE to report an error 300 (memory
allocation error) when the application attempts to open a device. The application program
must reduce the size of the heap using Visual Basic's SETMEM function before executing
DaqOpenDevice. As a guide, the application should reduce the heap by 10,000 bytes for each
hardware device to be opened and once the DaqOpenDevice procedure has been executed, the
allocated heap space must not be returned to Visual Basic until the DaqCloseDevice procedure
has been completed.

DAQDRIVE Users Manual 45

'**
' Increase the size of the Visual Basic stack by 2K
'**

CLEAR ,,2048

'**
' Decrease the size of the heap so DAQDRIVE can allocate required memory
'**

HeapSize = SETMEM(-10000)

'**
' Perform all DAQDRIVE functions
'**

DaqOpenDevice

DaqCloseDevice

'**
' Optionally restore heap
'**

HeapSize = SETMEM(+10000)

2.4.6.3 The DaqOpenDevice Command
DAQDRIVE's DaqOpenDevice command requires two null-terminated string variables:
DeviceType and ConfigFile. Because Visual Basic does not support null-terminated strings,
the user must create these strings by appending a null character, CHR$(0), to the end of each
string before passing it to DAQDRIVE. For example:

A$ = "FILENAME.DAT" normal Visual Basic string
B$ = "FILENAME.DAT" + CHR$(0) null-terminated string

Furthermore, Visual Basic for DOS is unable to pass the address of a string variable as a far
pointer. To overcome this problem, the DaqOpenDevice procedure is declared differently for
the Visual Basic for DOS version of DAQDRIVE:

DaqOpenDevice (BYVAL TSRNumber AS Integer,
SEG LogicalDevice AS Integer,
BYVAL DeviceTypePtr AS Long,
BYVAL ConfigFilePtr AS Long)

The string variables normally found in the DaqOpenDevice command have been replaced by
long integer values which contain the string's address. The application program can obtain
the string address using the SSEGADD function as shown in the following example.

DAQDRIVE Users Manual 46

'**
' Step 1: Open the device
'**

LogicalDevice% = 0
DeviceType$ = "DA8P-12B" + CHR$(0)
ConfigFile$ = "da8p-12b.dat" + CHR$(0)
Status% = DaqOpenDevice(&HF006, LogicalDevice%,
 SSEGADD(DeviceType$),
 SSEGADD(ConfigFile$))

2.4.6.4 Storing a variable's address in a data structure
Another short-coming of Visual Basic for DOS is its inability to easily operate on a variable's
address. Because of this limitation, all of the variables declared as 'far pointers' in the
DAQDRIVE data structures have been divided into two integer values: a segment address and
an offset address. An example of this is the channel array variable in the ADCRequest
structure

unsigned short far *channel_array_ptr;

which becomes

ChannelArrayPtrOffset AS Integer
ChannelArrayPtrSegment AS Integer

For an array named Channel, the application fills in the array's address using the VARSEG
and VARPTR procedures as follows:

DIM Channel[10] AS Integer

ADCRequest.ChannelArrayPtrOffset = VARPTR(Channel[0])
ADCRequest.ChannelArrayPtrSegment = VARSEG(Channel[0])

2.4.6.5 Dynamic memory allocation
To prevent Visual Basic for DOS from dynamically relocating variables, it is good practice to
declare all variables before the first instruction of the application program.

DAQDRIVE Users Manual 47

2.4.7 Turbo Pascal

DAQDRIVE supports applications written with Turbo Pascal version 7.0 and newer through
the unit files DAQDRIVE.TPU and DAQDATA.TPU installed by the DAQDRIVE installation
program into the DAQDRIVE\TSR\PASCAL directory. DAQDRIVE.TPU defines the Turbo
Pascal interface to the DAQDRIVE functions while DAQDATA.TPU defines the data
structures (Pascal 'records') and constants mentioned throughout this document.

In order to access DAQDRIVE's functions, data structures, and constants, all application
programs must include the following statement:

USES DAQDRIVE, DAQDATA;

2.4.7.1 Turbo Pascal and floating-point math
The Turbo Pascal floating-point emulation library only supports variables of type 'real'. To
use the single and double precision variables required by DAQDRIVE, the 8087 floating-point
math mode must be enabled by selecting Options, Compiler, 8087/80287 or by defining the
numeric coprocessor switch {$N+}.

2.4.7.2 Adjusting the size of the Turbo Pascal heap
By default, application programs written using Turbo Pascal allocate all available DOS
memory for use as a local heap. This causes DAQDRIVE to report an error 300 (memory
allocation error) when the application attempts to open a device. The user must reduce the
size of the application's heap by selecting Options, Memory sizes and setting the 'High heap
limit' option to a value less than 655,360 (640K). As a guide, reduce the heap by 10,000 bytes
for each hardware device to be opened by the application.

IMPORTANT:
The user must modify the default Turbo Pascal heap settings to prevent
the application from allocating all available DOS memory at start-up.

2.4.7.3 Using other Turbo Pascal versions
When using a version of Turbo Pascal other than 7.0, the user must create new unit files
(.TPUs) by re-compiling the source files DAQDRIVE.PAS and DAQDATA.PAS. These files,
along with the interface library DAQTSR.OBJ, are also installed into the
DAQDRIVE\TSR\PASCAL directory by the DAQDRIVE installation program.

DAQDRIVE Users Manual 48

2.5 Creating 16-bit Windows 3.x/95/98 Applications

DAQDRIVE supports 16-bit Windows application programs written in most languages which
support the Windows DLL (Dynamic Link Library) interface. When the Windows application
programs are executed, they must be able to dynamically link to DAQDRIVE.DLL and one or
more hardware dependent DLLs. Windows searches for any necessary DLLs in the following
locations:

1. the current directory

2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing GDI.EXE)

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program installs the DAQDRIVE DLL and the DLLs for any
selected hardware device into the Windows\System directory. In addition, an import library,
DAQDRIVE.LIB, is installed into the DAQDRIVE\WINDLL directory. This import library
can be used by many Windows compilers to simplify the linking of application programs to
the APIs available within the DAQDRIVE DLL.

DAQDRIVE has been tested with application programs written in Microsoft Visual C/C++,
Borland C/C++, Turbo Pascal for Windows, and Borland Delphi. The following sections
provide additional information about producing Windows applications in the languages
above.

DAQDRIVE Users Manual 49

2.5.1 Microsoft Visual C/C++

To generate application programs using the DAQDRIVE DLL with Microsoft Visual C/C++,
the application must be linked with the import library, DAQDRIVE.LIB, installed in the
DAQDRIVE\WINDLL directory. This library is model independent and should work with
most C compilers for Windows.

Three additional files are installed into the DAQDRIVE\WINDLL\C directory for the
programmer's convenience. These files contain the prototypes of the DAQDRIVE procedures,
data structure definitions, and constants mentioned throughout this document. These files
must be included in all application programs.

DAQDRIVE. H - procedure prototypes
DAQOPENW.H - DaqOpenDevice definition for Windows
USERDATA.H - data structures and pre-defined constants

2.5.1.1 Creating byte-aligned data structures
Because DAQDRIVE supports multiple languages, all data structures are byte-aligned
(packed). The application program must also set structure packing to byte-aligned for proper
operation.

IMPORTANT:
For proper operation, all application programs must be compiled using
byte- aligned data structures.

To select byte aligned structures within the Microsoft Visual C/C++ environment, first select
Options, Project, Compiler, then set the structure member alignment field to 1 byte. For byte
aligned structures from the Visual C/C++ command line, use the '/Zp1' option.

DAQDRIVE Users Manual 50

2.5.2 Borland C/C++

To generate application programs using the DAQDRIVE DLL with Borland C/C++, the
application must be linked with the import library DAQDRIVE.LIB installed in the
DAQDRIVE\WINDLL directory. This library is model independent and should work with
most C compilers for Windows.

Three additional files are installed into the DAQDRIVE\WINDLL\C directory for the
programmer's convenience. These files contain the prototypes of the DAQDRIVE procedures,
data structure definitions, and constants mentioned throughout this document. These files
must be included in all application programs.

DAQDRIVE. H - procedure prototypes
DAQOPENW.H - DaqOpenDevice definition for Windows
USERDATA.H - data structures and pre-defined constants

2.5.2.1 Creating byte-aligned data structures
Because DAQDRIVE supports multiple languages, all data structures are byte-aligned
(packed). The application program must also set structure packing to byte-aligned for proper
operation.

IMPORTANT:
For proper operation, all application programs must be compiled using
byte- aligned data structures.

Borland C/C++ defines structures as byte aligned by default. To guarantee structures are
byte aligned within the Borland C/C++ environment, select Options, Compiler, Code
Generation, then confirm the Word alignment box is not checked. For byte aligned structures
from the Borland C/C++ command line, use the '-a-' option.

2.5.2.2 Program optimization
When selecting the optimization options for the Borland C/C++ compiler, problems may arise
if the 'Invariant code motion' option is selected and DAQDRIVE is operated in one of the
background modes (IRQ or DMA). To disable the 'Invariant code motion' optimization within
the Borland C/C++ environment, select Options, Compiler, Optimizations, then confirm the
'Invariant code motion' box is not checked. From the Borland C/C++ command line, make
sure the '-Om' and '-O2' options are not used.

IMPORTANT:
It is strongly recommended that the 'Invariant code motion' optimization
option be disabled when using the Borland C/C++ compiler.

DAQDRIVE Users Manual 51

2.5.3 Visual Basic for Windows

16-bit Visual Basic programming support is provided by the "VisualDAQ" and "VisualDAQ
Light" software packages. VisualDAQ is a set of Visual Basic custom controls for Omega’s
data acquistion hardware. The VisualDAQ controls provide an easy interface to interact with
Omega’s data acquisition product line.

VisualDAQ Light, which is included free with the purchase of any data aquisition product,
provides a simple interface to perform single point data aquisition I/O. On-line
documentation is included with VisualDAQ Light.

VisualDAQ provides Visual Basic programmers with custom controls to configure all
parameters of the data aquisition board. VisualDAQ is sold seperately and includes a
complete programming reference manual.

2.5.4 Turbo Pascal for Windows / Borland Delphi

DAQDRIVE supports applications written with Turbo Pascal for Windows version 1.5 and
newer through the unit files DAQDRVW.TPU and DAQDATA.TPU while Borland Delphi
applications are supported with the unit files DAQDRVW.DCU and DAQDATA.DCU. The
unit DAQDRVW defines the interface to the DAQDRIVE DLL functions while DAQDATA
defines the data structures (Pascal 'records') and constants mentioned throughout this
document. All of these files are installed into the DAQDRIVE\WINDLL\PASCAL directory
by the DAQDRIVE installation program.

In order to access DAQDRIVE's functions, data structures, and constants, all Turbo Pascal for
Windows and Borland Delphi application programs must include the following statement:

USES DAQDRVW, DAQDATA;

2.5.4.1 Using other Turbo Pascal for Windows / Delphi versions
When using versions other than Turbo Pascal for Windows 1.5 or Borland Delphi 1.0, the user
must create new unit files by re-compiling the source files DAQDRVW.PAS and
DAQDATA.PAS. These files are also installed into the DAQDRIVE\WINDLL\PASCAL
directory by the DAQDRIVE installation program.

2.5.4.2 Turbo Pascal for Windows and floating-point math
The Turbo Pascal for Windows floating-point emulation library only supports variables of
type 'real'. To use the single and double precision variables required by DAQDRIVE, the 8087
floating-point math mode must be enabled by selecting Options, Compiler, 08x87 code or by
defining the numeric coprocessor switch {$N+}.

DAQDRIVE Users Manual 52

2.6 Creating 32-bit Windows 95/98 Applications

DAQDRIVE supports 32-bit Windows 95/98 application programs written in most languages
which support the Windows DLL (Dynamic Link Library) interface. When the Windows
application programs are executed, they must be able to dynamically link to DDRIVE32.DLL,
DDRIVE32.VXD, and one or more hardware dependent DLLs and VxDs. Windows searches
for any necessary DLLs and VxDs in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program installs DDRIVE32.DLL, DDRIVE32.VXD and the DLLs
and VxDs for any selected hardware devices into the Windows\System directory.

DAQDRIVE has been tested with application programs written in Microsoft Visual C/C++,
Borland C/C++, and Microsoft Visual Basic. The following sections provide additional
information about producing Windows applications in the languages above.

DAQDRIVE Users Manual 53

2.6.1 Microsoft Visual C/C++

To generate 32-bit application programs using the DAQDRIVE DLL with Microsoft Visual
C/C++, the application must be linked with the import library, DDRIVE32.LIB, installed in
the DAQDRIVE\WIN32 directory by the DAQDRIVE installation program.

Three additional files are installed into the DAQDRIVE\WIN32\C directory for the
programmer's convenience. These files contain the prototypes of the DAQDRIVE procedures,
the DAQDRIVE data structure definitions, and the DAQDRIVE constants mentioned
throughout this document. These files must be included in all application programs.

DAQDRIVE.H - procedure prototypes
DAQOPENW.H - DaqOpenDevice definition for Windows
USERDATA.H - data structures and pre-defined constants

2.6.1.1 Creating dword-aligned data structures
Unlike the 16-bit versions of DAQDRIVE, the 32-bit DAQDRIVE data structures are
dword-aligned (4-byte alignment). The application program must also set structure packing
to dword-aligned for proper operation.

IMPORTANT:
For proper operation, all application programs must be compiled using
dword- aligned (4-byte aligned) data structures.

To select dword-aligned structures within the Microsoft Visual C/C++ environment, first
select Options, Project, Compiler, then set the structure member alignment field to 4 bytes.
For byte aligned structures from the Visual C/C++ command line, use the '/Zp4' option.

DAQDRIVE Users Manual 54

2.6.2 Borland C/C++

To generate 32-bit application programs using the DAQDRIVE DLL with Borland C/C++, the
application must be linked with the DAQDRIVE import library DDRV32BC.LIB installed in
the DAQDRIVE\WIN32 directory by the DAQDRIVE installation program.

Three additional files are installed into the DAQDRIVE\WIN32\C directory for the
programmer's convenience. These files contain the prototypes of the DAQDRIVE procedures,
the DAQDRIVE data structure definitions, and the DAQDRIVE constants mentioned
throughout this document. These files must be included in all application programs.

DAQDRIVE.H - procedure prototypes
DAQOPENW.H - DaqOpenDevice definition for Windows
USERDATA.H - data structures and pre-defined constants

2.6.2.1 Creating dword-aligned data structures
Unlike the 16-bit versions of DAQDRIVE, the 32-bit DAQDRIVE data structures are
dword-aligned (4-byte alignment). The application program must also set structure packing
to dword-aligned for proper operation.

IMPORTANT:
For proper operation, all application programs must be compiled using
dword- aligned (4-byte aligned) data structures.

Borland C/C++ defines structures as byte aligned by default. To guarantee structures are
byte aligned within the Borland C/C++ environment, select Options, Compiler, Code
Generation, then confirm the Word alignment box is not checked. For byte aligned
structures from the Borland C/C++ command line, use the '-a-' option.

2.6.2.2 Program optimization
When selecting the optimization options for the Borland C/C++ compiler, problems may arise
if the 'Invariant code motion' option is selected and DAQDRIVE is operated in one of the
background modes (IRQ or DMA). To disable the 'Invariant code motion' optimization within
the Borland C/C++ environment, select Options, Compiler, Optimizations, then confirm the
'Invariant code motion' box is not checked. From the Borland C/C++ command line, make
sure the '-Om' and '-O2' options are not used.

IMPORTANT:
It is strongly recommended that the 'Invariant code motion' optimization
option be disabled when using the Borland C/C++ compiler.

DAQDRIVE Users Manual 55

2.6.3 32-bit Visual Basic

Because of Visual Basic's inability to lock memory and represent variables as pointers, a new
DLL, DAQDRVVB.DLL, was created to simplify the interface between the application
program and the standard DAQDRIVE drivers. This DLL is copied into the
Windows\System directory whenever 32-bit Visual Basic support is selected in the
DAQDRIVE setup program.

Two additional files are installed into the DAQDRIVE\WIN32\VB directory for the
programmer's convenience. These files contain the prototypes of the DAQDRIVE procedures,
the DAQDRIVE data structure definitions, and the DAQDRIVE constants mentioned
throughout this document. These files must be included in all application programs.

DAQDRVB.BAS - procedure prototypes
USERDATA.BAS - data structures and pre-defined constants

Differences between Visual Basic and other supported languages
Although the functionality of the DAQDRIVE APIs has been maintained for Visual Basic,
some of the implementations had to be changed. To minimize the impact on Visual Basic
programmers, all of the DAQDRIVE APIs have been modified to append a 'VB' extension onto
the function name. For example, DaqOpenDevice becomes DaqOpenDeviceVB,
DaqAllocateRequest becomes DaqAllocateRequestVB, and DaqAnalogInput becomes
DaqAnalogInputVB.

DAQDRIVE data buffers, structures, and locked memory
Because Visual Basic cannot lock memory, application programs MUST use the
DaqAllocateRequestVB function to allocate the required request and data structures.
Furthermore, since Visual Basic cannot directly access the locked memory allocated by
DaqAllocateRequestVB, four additional APIs have been added to the Visual Basic version of
DAQDRIVE:

DaqReadBufferVB - Copy data from a locked DAQDRIVE data buffer to a Visual
Basic array.

DaqReadBufferFlagVB - Check the current status of a DAQDRIVE data buffer
DaqWriteBufferVB - Copy data from a Visual Basic array to a locked DAQDRIVE

data buffer.
DaqWriteBufferFlagVB - Set the current status of a DAQDRIVE data buffer

Each of these functions is discussed in the following sections.

Visual Basic programmer are encouraged to read and understand the use and operation of
DAQDRIVE data buffers and data buffer structures as discussed in chapter 9 and the
DAQDRIVE event processes as discussed in chapter 11.

DAQDRIVE Users Manual 56

2.6.3.1 DaqReadBufferVB
DaqReadBufferVB is a DAQDRIVE Visual Basic utility function used to transfer data from a
DAQDRIVE input data buffer to a Visual Basic array. DaqReadBufferVB will copy the data
from the DAQDRIVE buffer specified by buffer_number to the Visual Basic array specified by
memory_pointer. DaqReadBufferVB will also reset the associated DAQDRIVE_buffer
structure's buffer_status field to BUFFER_EMPTY to prepare it for the next acquisition.

unsigned short DaqReadBufferVB (unsigned short request_handle ,
 unsigned short buffer_number ,
 void *memory_pointer)

request_handle - This unsigned short integer variable is used to specify the request
containing the target data buffer. This is the value returned to the
application by the configuration procedures DaqAnalogInput,
DaqAnalogOutput, DaqDigitalInput, or DaqDigitalOutput.

buffer_number - This unsigned short integer variable is used to specify which DAQDRIVE
data buffer is to be returned to the application program.

memory_pointer - This void pointer defines the address of a Visual Basic data array where
the input data will be copied. memory_pointer is declared as type void to
allow it to point to data of any type

2.6.3.2 DaqReadBufferFlagVB
DaqReadBufferFlagVB is a DAQDRIVE Visual Basic utility function used to inspect the
current status of the DAQDRIVE data buffer flags. DaqReadBufferFlagVB will copy the
buffer_status field of the DAQDRIVE_buffer structure specified by buffer_number to the
Visual Basic variable specified by buffer_status.

unsigned short DaqReadBufferFlagVB (unsigned short request_handle ,
 unsigned short buffer_number ,
 unsigned short *buffer_status)

request_handle - This unsigned short integer variable is used to specify the request
containing the target data buffer. This is the value returned to the
application by the configuration procedures DaqAnalogInput,
DaqAnalogOutput, DaqDigitalInput, or DaqDigitalOutput.

buffer_number - This unsigned short integer variable is used to specify which DAQDRIVE
data buffer's status is to be returned to the application program.

buffer_status - This pointer defines the address of an unsigned short integer value where
the DAQDRIVE_buffer structure's buffer_status field will be stored.

DAQDRIVE Users Manual 57

'***** Open the DAQP-12(see DaqOpenDevice). *****

'***** Allocate and lock memory for the Analog Input. *****

AllocateRequest.request_type = ADC_TYPE_REQUEST
AllocateRequest.channel_array_length = 1
AllocateRequest.number_of_buffers = 4
AllocateRequest.buffer_length = 1000
AllocateRequest.buffer_Attributes = SEQUENTIAL_BUFFER

gStatus = DaqAllocateRequestVB(iLogicalDevice, AllocateRequest)
If gStatus <> 0 Then GoTo ErrorExit

'***** Request A/D input (See DaqAnalogInput). *****

'***** Arm the request. *****

gStatus = Call DaqArmRequestVB(iRequestHandle)
If gStatus <> 0 Then Goto ErrorExit

'***** Trigger the request. *****

gStatus = Call DaqTriggerRequestVB(iRequestHandle)
If gStatus <> 0 Then Goto ErrorExit

'***** Wait for completion or error. *****

lEventMask = CompleteEvent OR RuntimeErrorEvent
while(ADCUserRequest.RequestStatus AND lEventMask) = 0

 '***** Check for buffer full event. *****

 If(ADCUserRequest.RequestStatus AND BufferFullEvent) <> 0 Then

 '***** Loop to find all full buffers. *****

 For iIndex = 0 to 3
 gStatus = Call DaqReadBufferFlagVB(iRequestHandle, iIndex, iBufferStatus)

 '***** If buffer full, copy to local array. *****

 If(gStatus = 0) AND (iBufferStatus = BufferFull) Then
 gStatus = Call DaqReadBufferVB(iRequestHandle, iIndex, iADCData(iIndex))
 End If
 Next iIndex
 End If
Wend

'***** Check for run-time errors. *****

If(ADCUserRequest.RequestStatus AND RuntimeErrorEvent) <> 0 Then
 gStatus = Call DaqGetRuntimeErrorVB(iRequestHandle, iRuntimeErrorCode)
 Goto RuntimeErrorExit
End If

'***** Release the request. *****

'***** Close the device. *****

DAQDRIVE Users Manual 58

2.6.3.3 DaqWriteBufferVB
DaqWriteBufferVB is a DAQDRIVE Visual Basic utility function used to transfer data from a
Visual Basic array to a DAQDRIVE output data buffer. DaqWriteBufferVB copies the data
from the Visual Basic array specified by memory_pointer to the DAQDRIVE buffer specified
by buffer_number, sets the associated DAQDRIVE_buffer structure's buffer_cycles field to the
value specified by buffer_cycles, and initializes the DAQDRIVE_buffer structure's
buffer_status field to BUFFER_FULL to prepare it for the pending operation.

unsigned short DaqWriteBufferVB (unsigned short request_handle ,
 unsigned short buffer_number ,
 unsigned long buffer_cycles ,
 void *memory_pointer)

request_handle - This unsigned short integer variable is used to specify the request
containing the target data buffer. This is the value returned to the
application by the configuration procedures DaqAnalogInput,
DaqAnalogOutput, DaqDigitalInput, or DaqDigitalOutput.

buffer_number - This unsigned short integer variable is used to specify which DAQDRIVE
data buffer is to be written.

buffer_cycles - This unsigned long integer value is placed in the buffer_cycles field of the
DAQDRIVE buffer structure and specifies the number of times the data in
this structure is processed before continuing on to the next_structure. See
Chapter 9 for further details.

memory_pointer - This void pointer defines the address of a Visual Basic array containing
the data to be copied to the DAQDRIVE data buffer. memory_pointer is
declared as type void to allow it to point to data of any type.

DAQDRIVE Users Manual 59

2.6.3.4 DaqWriteBufferFlagVB
DaqWriteBufferFlagVB is a DAQDRIVE Visual Basic utility function used to set the status of a
DAQDRIVE data buffer's flags. DaqWriteBufferFlagVB will set the buffer_status field of the
DAQDRIVE_buffer structure specified by buffer_number to the value of the Visual Basic
variable specified by buffer_status. Generally, DaqWriteBufferFlagVB is only required to
'clean-up' the buffer_status flags after a run-time error has occurred.

unsigned short DaqWriteBufferFlagVB (unsigned short request_handle ,
 unsigned short buffer_number ,
 unsigned short buffer_status)

request_handle - This unsigned short integer variable is used to specify the request
containing the buffer which needs modified. This is the value returned to
the application by the configuration procedures DaqAnalogInput,
DaqAnalogOutput, DaqDigitalInput, or DaqDigitalOutput.

buffer_number - This unsigned short integer variable is used to specify which DAQDRIVE
data buffer's status is to be modified.

buffer_status - This unsigned short integer variable specifies the new value for the
DAQDRIVE_buffer structure's buffer_status field.

DAQDRIVE Users Manual 60

'***** Open the DA8P-12(see DaqOpenDevice). *****

'***** Allocate and lock memory for the Analog Output. *****

AllocateRequest.request_type = DAC_TYPE_REQUEST
AllocateRequest.channel_array_length = 1
AllocateRequest.number_of_buffers = 1
AllocateRequest.buffer_length = 100
AllocateRequest.buffer_Attributes = SEQUENTIAL_BUFFER

gStatus = DaqAllocateRequestVB(iLogicalDevice, AllocateRequest)
If gStatus <> 0 Then GoTo ErrorExit

'***** Prepare the D/a request structure. *****
DacUserRequest.ChannelArrayPtr = DaqGetAddressOfVB(channel)
DacUserRequest.ArrayLength = 1
DacUserRequest.TriggerSource = InternalTrigger
DacUserRequest.TriggerMode = ContinuousTrigger
DacUserRequest.TriggerChannel = 0
DacUserRequest.TriggerVoltage = 0
DacUserRequest.IOMode = BackgroundIRQ
DacUserRequest.ClockSource = InternalClock
DacUserRequest.SampleRate = 1000
DacUserRequest.NumberOfScans = 1
DacUserRequest.ScanEventLevel = 0
DacUserRequest.Calibration = NoCalibration
DacUserRequest.TimeoutInterval = 0
DacUserRequest.RequestStatus = 0

'***** Send request to DAQDRIVE for analog input *****
gStatus = DaqAnalogOutputVB(iLogicalDevice, DacUserRequest, iRequestHandle)
If gStatus <> 0 Then GoTo ErrorExit

'***** Copy output data to the daqdrive allocated buffer. *****
gStatus = DaqWriteBufferVB(iRequestHandle, 0, 1, Outputdata(0))
If gStatus <> 0 Then GoTo ErrorExit

DAQDRIVE Users Manual 61

3 Quick Start Procedures

DAQDRIVE's "data defined" interface may be considerably different from "normal" data
acquisition drivers and for simple operations may seem to result in more work for the
application programmer. For this reason, DAQDRIVE provides a set of procedures to
perform simple operations in the "normal" way. These procedures act as DAQDRIVE macros,
configuring all of the necessary data structures and executing all of the routines required to
complete the pre-defined function. To use any of these functions, the application need only
follow the steps listed below.

Step 1: Define The Hardware Configuration

DAQDRIVE determines the configuration of a device from the data file specified when the
device is opened. These configuration files are created using the DAQDRIVE configuration
utility as described in section 2.2.

Step 2: Open The Hardware Device

Before the application program can use an adapter, it must first open the device using the
DaqOpenDevice command. The application must provide the open command with the
adapter type and specify the name of a configuration file (generated in step 1) which describes
the target hardware's configuration. If the open command completes successfully,
DAQDRIVE assigns a logical device number to be used for all future references to the adapter.

Step 3: Execute The Quick-Start Procedure(s)

These procedures are discussed on the following pages.

Step 4: Close The Hardware Device

When all operations on the hardware are complete, the device should be closed using
DaqCloseDevice to free any resources used by that device. System integrity can not be
guaranteed if the application program exits without closing the hardware device.

DAQDRIVE Users Manual 62

3.1 Analog Input

For analog input, DAQDRIVE provides two special purpose procedures:
DaqSingleAnalogInput and DaqSingleAnalogInputScan. The intent of this section is to
provide an overview of these procedures. For details on the implementation of the
procedures, consult the alphabetical listing of commands in chapter 13.

3.1.1 DaqSingleAnalogInput

One of the simplest cases of analog input is to input a single sample from a single A/D
channel under CPU control. DAQDRIVE provides a simplified interface for this operation
through the DaqSingleAnalogInput procedure. The format of this command is shown below.

unsigned short DaqSingleAnalogInput (unsigned short logical_device ,
 unsigned short channel_number ,
 float gain_setting ,
 void far *input_value)

DaqSingleAnalogInput sets the gain of the A/D channel specified by channel_number on the
adapter specified by logical_device to the value specified by gain_setting. A single sample is
then input from this analog channel and stored in the memory location specified by
input_value. The following example shows the usage of DaqSingleAnalogInput.

/*** Input a single sample from A/D channel 0 ***/

unsigned short main()
{
unsigned short logical_device;
unsigned short status;
short input_value;
char far *device_type = "DAQP-16";
char far *config_file = "daqp-16.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Input value from channel 0, gain of 1 ***/

status = DaqSingleAnalogInput(logical_device, 0, 1, &input_value);
if (status != 0)
 printf("\n\nA/D input error. Status code %d.\n\n", status);
else
 printf("Channel 0: %d\n\n", input_value);

/*** Step 3: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 63

DaqSingleAnalogInput is a very basic interface without any allowance for multiple channels,
multiple input values, trigger sources, etc. It acts as a DAQDRIVE macro defining the
necessary data structures, executing the analog input configuration procedure
(DaqAnalogInput), arming the requested configuration (DaqArmRequest), and triggering the
operation (DaqTriggerRequest).

For users interested in learning more about DAQDRIVE's analog input interface, the following
example program creates the equivalent of the DaqSingleAnalogInput procedure.

unsigned short MySingleAnalogInput(unsigned short logical_device,
 unsigned short channel_number,
 float gain_setting,
 void far *input_value)
{
struct ADC_request my_request;
struct DAQDRIVE_buffer my_data;
unsigned short request_handle;
unsigned short status;

/***** Construct the request structure *****/

my_request.channel_array_ptr = &channel_number;
my_request.gain_array_ptr = &gain_setting;
my_request.array_length = 1;
my_request.ADC_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.calibration = NO_CALIBRATION;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = (void huge*)input_value;
my_data.buffer_length = 1;
my_data.next_structure = NULL;
my_data.buffer_status = BUFFER_EMPTY;

/***** Execute the request *****/

request_handle = 0;
status = DaqAnalogInput(logical_device, &my_request, &request_handle);
if (status != 0)
 return(status);

/***** If no errors, arm the request *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, software trigger the request *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, release the request and return *****/

status = DaqReleaseRequest(request_handle);
return(status);
}

DAQDRIVE Users Manual 64

3.1.2 DaqSingleAnalogInputScan

Another simple case of analog input is to input one value each from multiple A/D channels
under CPU control. This allows multiple analog inputs to be sampled simultaneously (or
nearly simultaneously depending on the data acquisition hardware). A simplified interface
for this operation is provided through the DaqSingleAnalogInputScan procedure. The format
of this command is shown below.

unsigned short DaqSingleAnalogInputScan (unsigned short logical_device ,
 unsigned short far *channel_array ,
 float far *gain_array,
 unsigned short array_length ,
 void far *input_array)

DaqSingleAnalogInputScan inputs a single sample from each of the A/D channels specified
by channel_array using the corresponding gain setting in the gain_array. The A/D channels
are located on the adapter specified by logical_device and the samples are stored in the array
specified by input_array. A one-to-one correspondence is required between the number of
analog input channels, the gain settings, and the number of samples. Therefore, array_length
specifies the length of channel_array, gain_array, and input_array. The following example
shows the usage of DaqSingleAnalogInputScan.

/*** Input a single sample from A/D channels 0, 3, and 7 ***/

unsigned short main()
{
unsigned short logical_device;
unsigned short channel_array[3] = { 0, 3, 7 };
unsigned short gain_array[3] = { 1, 1, 2 };
unsigned short status;
short input_array[3];
char far *device_type = "DAQP-208";
char far *config_file = "daqp-208.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Input one sample from each channel ***/

status = DaqSingleAnalogInputScan(logical_device, channel_array,
 gain_array, 3, input_array);
if (status != 0)
 printf("\n\nA/D input error. Status code %d.\n\n", status);
else
 {
 printf("Channel 0: %d\n\n", input_array[0]);
 printf("Channel 3: %d\n\n", input_array[1]);
 printf("Channel 7: %d\n\n", input_array[2]);
 }

/*** Step 3: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 65

DaqSingleAnalogInputScan is a very basic interface without any allowance for timing
information, trigger sources, etc. It acts as a DAQDRIVE macro defining the necessary data
structures, executing the analog input configuration procedure (DaqAnalogInput), arming the
requested configuration (DaqArmRequest), and triggering the operation (DaqTriggerRequest).

For users interested in learning more about DAQDRIVE's analog input interface, the following
example program creates the equivalent of the DaqSingleAnalogInputScan procedure.

unsigned short MySingleAnalogInputScan(unsigned short logical_device,
 unsigned short far *channel_array,
 float far *gain_array,
 unsigned short array_length,
 void far *input_array)
{
struct ADC_request my_request;
struct DAQDRIVE_buffer my_data;
unsigned short request_handle;
unsigned short status;

/***** Construct the request structure *****/

my_request.channel_array_ptr = channel_array;
my_request.gain_array_ptr = gain_array;
my_request.array_length = array_length;
my_request.ADC_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.calibration = NO_CALIBRATION;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = (void huge*)input_array;
my_data.buffer_length = array_length;
my_data.next_buffer = NULL;
my_data.buffer_status = BUFFER_EMPTY;

/***** Execute the request *****/

request_handle = 0;
status = DaqAnalogInput(logical_device, &my_request, &request_handle);
if (status != 0)
 return(status);

/***** If no errors, arm the request *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, software trigger the request *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, release the request and return *****/

status = DaqReleaseRequest(request_handle);
return(status);
}

DAQDRIVE Users Manual 66

3.2 Analog Output

For analog output, DAQDRIVE provides two special purpose procedures:
DaqSingleAnalogOutput and DaqSingleAnalogOutputScan. The intent of this section is to
provide an overview of these procedures. For details on the implementation of the
procedures, consult the alphabetical listing of commands in chapter 13.

3.2.1 DaqSingleAnalogOutput

One of the simplest cases of analog output is to output a single value to a single D/A
converter under CPU control. DAQDRIVE provides a simplified interface for this function
through the DaqSingleAnalogOutput procedure. The format of this command is shown
below.

unsigned short DaqSingleAnalogOutput (unsigned short logical_device ,
 unsigned short channel_number ,
 void far *output_value)

DaqSingleAnalogOutput outputs the value specified by output_value to the D/A converter
specified by channel_number on the adapter specified by logical_device. The following
example shows the usage of DaqSingleAnalogOutput.

/*** Output a single sample to D/A channel 1 ***/

unsigned short main()
{
unsigned short logical_device;
unsigned short status;
short output_value;
char far *device_type = "DAQ-1201";
char far *config_file = "daq-1201.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Output the value to channel 1 ***/

output_value = 512;
status = DaqSingleAnalogOutput(logical_device, 1, &output_value);
if (status != 0)
 printf("\n\nD/A output error. Status code %d.\n\n", status);
else
 printf("\n\nComplete. No errors.);

/*** Step 3: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 67

DaqSingleAnalogOutput is a very basic interface without any allowance for multiple
channels, multiple output values, trigger sources, etc. It acts as a DAQDRIVE macro defining
the necessary data structures, executing the analog output configuration procedure
(DaqAnalogOutput), arming the requested configuration (DaqArmRequest), and triggering
the operation (DaqTriggerRequest).

For users interested in learning more about DAQDRIVE's analog output interface, the
following example program creates the equivalent of the DaqSingleAnalogOutput procedure.

unsigned short MySingleAnalogOutput(unsigned short logical_device,
 unsigned short channel_number,
 void far *output_value)
{
struct DAC_request my_request;
struct DAQDRIVE_buffer my_data;
unsigned short request_handle;
unsigned short status;

/***** Construct the request structure *****/

my_request.channel_array_ptr = &channel_number;
my_request.array_length = 1;
my_request.DAC_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.calibration = NO_CALIBRATION;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = (void huge*)output_value;
my_data.buffer_length = 1;
my_data.buffer_cycles = 1;
my_data.next_structure = NULL;
my_data.buffer_status = BUFFER_FULL;

/***** Execute the request *****/

request_handle = 0;
status = DaqAnalogOutput(logical_device, &my_request, &request_handle);
if (status != 0)
 return(status);

/***** If no errors, arm the request *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, software trigger the request *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, release the request and return *****/

status = DaqReleaseRequest(request_handle);
return(status);
}

DAQDRIVE Users Manual 68

3.2.2 DaqSingleAnalogOutputScan

Another simple case of analog output is to output one value each to multiple D/A converters
under CPU control. This allows multiple analog outputs to be updated simultaneously (or
nearly simultaneously depending on the data acquisition hardware). A simplified interface
for this operation is provided through the DaqSingleAnalogOutputScan procedure. The
format of this command is shown below.

unsigned short DaqSingleAnalogOutputScan (unsigned short logical_device ,
 unsigned short far *channel_array ,
 unsigned short array_length ,
 void far *output_array)

DaqSingleAnalogOutputScan outputs the values in the array specified by output_array to the
D/A converter channels in the array specified by channel_array on the adapter specified by
logical_device. A D/A channel may appear in channel_array only once and a one-to-one
correspondence is required between the number of D/A converter channels and the number
of output values. Therefore, array_length specifies the length of both channel_array and
output_array. The following example shows the usage of DaqSingleAnalogOutputScan.

/*** Output a single sample to D/A channels 1, 5, and 2 ***/

unsigned short main()
{
unsigned short logical_device;
unsigned short status;
unsigned short channel_array[3] = { 1, 5, 2 };
short output_array[3] = { 413, 3781, -1468 };
char far *device_type = "DA8P-12B";
char far *config_file = "da8p-12b.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DA8P-12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Output the D/A values ***/

status = DaqSingleAnalogOutputScan(logical_device, channel_array,
 3, output_array);
if (status != 0)
 printf("\n\nD/A output error. Status code %d.\n\n", status);
else
 printf("\n\nComplete. No errors.);

/*** Step 3: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 69

DaqSingleAnalogOutputScan is a very basic interface without any allowance for timing
information, trigger sources, etc. It acts as a DAQDRIVE macro defining the necessary data
structures, executing the analog output configuration procedure (DaqAnalogOutput), arming
the requested configuration (DaqArmRequest), and triggering the operation
(DaqTriggerRequest).

For users interested in learning more about DAQDRIVE's analog output interface, the
following example program creates the equivalent of the DaqSingleAnalogOutputScan
procedure.

unsigned short MySingleAnalogOutputScan(unsigned short logical_device,
 unsigned short far *channel_array,
 unsigned short array_length,
 void far *output_array)
{
struct DAC_request my_request;
struct DAQDRIVE_buffer my_data;
unsigned short request_handle, status;

/***** Construct the request structure *****/

my_request.channel_array_ptr = channel_array;
my_request.array_length = array_length;
my_request.DAC_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.calibration = NO_CALIBRATION;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = (void huge*)output_array;
my_data.buffer_length = array_length;
my_data.buffer_cycles = 1;
my_data.next_buffer = NULL;
my_data.buffer_status = BUFFER_FULL;

/***** Execute the request *****/

request_handle = 0;
status = DaqAnalogOutput(logical_device, &my_request, &request_handle);
if (status != 0)
 return(status);

/***** If no errors, arm the request *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, software trigger the request *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, release the request and return *****/

status = DaqReleaseRequest(request_handle);
return(status);
}

DAQDRIVE Users Manual 70

3.3 Digital Input

DAQDRIVE provides two special purpose procedures for digital input: DaqSingleDigitalInput
and DaqSingleDigitalInputScan. The intent of this section is to provide an overview of these
procedures. For details on the implementation of the procedures, consult the alphabetical
listing of commands in chapter 13.

3.3.1 DaqSingleDigitalInput

One of the simplest cases of digital input is to input a single sample from a single digital I/O
channel under CPU control. DAQDRIVE provides a simplified interface for this operation
through the DaqSingleDigitalInput procedure. The format of this command is shown below.

unsigned short DaqSingleDigitalInput (unsigned short logical_device ,
 unsigned short channel_number ,
 void far *input_value)

DaqSingleDigitalInput inputs a single sample from the digital I/O specified by
channel_number on the adapter specified by logical_device. The sample is stored in the
memory location specified by input_value. The following example shows the usage of
DaqSingleDigitalInput.

/*** Input a single sample from digital I/O channel 3 ***/

unsigned short main()
{
unsigned short logical_device;
unsigned short status;
unsigned char input_value;
char far *device_type = "DAQP-16";
char far *config_file = "daqp-16.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Input one value from channel 3 ***/

status = DaqSingleDigitalInput(logical_device, 3, &input_value);
if (status != 0)
 printf("\n\nDigital input error. Status code %d.\n\n", status);
else
 printf("Channel 3: %d\n\n", (int)input_value);

/*** Step 3: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 71

DaqSingleDigitalInput is a very basic interface without any allowance for multiple channels,
multiple input values, trigger sources, etc. It acts as a DAQDRIVE macro defining the
necessary data structures, executing the digital input configuration procedure
(DaqDigitalInput), arming the requested configuration (DaqArmRequest), and triggering the
operation (DaqTriggerRequest).

For users interested in learning more about DAQDRIVE's digital input interface, the following
example program creates the equivalent of the DaqSingleDigitalInput procedure.

unsigned short MySingleDigitalInput(unsigned short logical_device,
 unsigned short channel_number,
 void far *input_value)
{
struct digio_request my_request;
struct DAQDRIVE_buffer my_data;
unsigned short request_handle;
unsigned short status;

/***** Construct the request structure *****/

my_request.channel_array_ptr = &channel_number;
my_request.array_length = 1;
my_request.digio_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = (void huge*)input_value;
my_data.buffer_length = 1;
my_data.next_structure = NULL;
my_data.buffer_status = BUFFER_EMPTY;

/***** Execute the request *****/

request_handle = 0;
status = DaqDigitalInput(logical_device, &my_request, &request_handle);
if (status != 0)
 return(status);

/***** If no errors, arm the request *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, software trigger the request *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, release the request and return *****/

status = DaqReleaseRequest(request_handle);
return(status);
}

DAQDRIVE Users Manual 72

3.3.2 DaqSingleDigitalInputScan

Another simple case of digital input is to input one value each from multiple digital I/O
channels under CPU control. This allows multiple digital inputs to be sampled simultaneously
(or nearly simultaneously depending on the data acquisition hardware). A simplified
interface for this operation is provided through the DaqSingleDigitalInputScan procedure.
The format of this command is shown below.

unsigned short DaqSingleDigitalInputScan (unsigned short logical_device ,
 unsigned short far *channel_array ,
 unsigned short array_length ,
 void far *input_array)

DaqSingleDigitalInputScan inputs a single sample from each of the digital I/O channels
specified by channel_array on the adapter specified by logical_device. The samples are stored
in the array specified by input_array. A one-to-one correspondence is required between the
number of digital input channels and the number of samples. Therefore, array_length
specifies the length of channel_array and input_array. The following example shows the
usage of DaqSingleDigitalInputScan.

/*** Input a single sample from digital I/O channels 3, 2, and 1 ***/

unsigned short main()
{
unsigned short logical_device;
unsigned short channel_array[3] = { 3, 2, 1 };
unsigned short status;
unsigned char input_array[3];
char far *device_type = "IOP-241";
char far *config_file = "iop-241.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(IOP241, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Input one sample from each channel ***/

status = DaqSingleDigitalInputScan(logical_device, channel_array,
 3, input_array);
if (status != 0)
 printf("\n\nA/D input error. Status code %d.\n\n", status);
else
 {
 printf("Channel 3: %d\n\n", (int)input_array[0]);
 printf("Channel 2: %d\n\n", (int)input_array[1]);
 printf("Channel 1: %d\n\n", (int)input_array[2]);
 }

/*** Step 3: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 73

DaqSingleDigitalInputScan is a very basic interface without any allowance for timing
information, trigger sources, etc. It acts as a DAQDRIVE macro defining the necessary data
structures, executing the digital input configuration procedure (DaqDigitalInput), arming the
requested configuration (DaqArmRequest), and triggering the operation (DaqTriggerRequest).

For users interested in learning more about DAQDRIVE's digital input interface, the following
example program creates the equivalent of the DaqSingleDigitalInputScan procedure.

unsigned short MySingleDigitalInputScan(unsigned short logical_device,
 unsigned short far *channel_array,
 unsigned short array_length,
 void far *input_array)
{
struct digio_request my_request;
struct DAQDRIVE_buffer my_data;
unsigned short request_handle;
unsigned short status;

/***** Construct the request structure *****/

my_request.channel_array_ptr = channel_array;
my_request.array_length = array_length;
my_request.ADC_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = (void huge*)input_array;
my_data.buffer_length = array_length;
my_data.next_buffer = NULL;
my_data.buffer_status = BUFFER_EMPTY;

/***** Execute the request *****/

request_handle = 0;
status = DaqDigitalInput(logical_device, &my_request, &request_handle);
if (status != 0)
 return(status);

/***** If no errors, arm the request *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, software trigger the request *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, release the request and return *****/

status = DaqReleaseRequest(request_handle);
return(status);
}

DAQDRIVE Users Manual 74

3.4 Digital Output

DAQDRIVE provides two special purpose procedures for digital output:
DaqSingleDigitalOutput and DaqSingleDigitalOutputScan. The intent of this section is to
provide an overview of these procedures. For details on the implementation of the
procedures, consult the alphabetical listing of commands in chapter 13.

3.4.1 DaqSingleDigitalOutput

One of the simplest cases of digital output is to output a single value to a single digital I/O
channel under CPU control. DAQDRIVE provides a simplified interface for this function
through the DaqSingleDigitalOutput procedure. The format of this command is shown
below.

unsigned short DaqSingleDigitalOutput (unsigned short logical_device ,
 unsigned short channel_number ,
 void far *output_value)

DaqSingleDigitalOutput outputs the value specified by output_value to the digital I/O
channel specified by channel_number on the adapter specified by logical_device. The
following example shows the usage of DaqSingleDigitalOutput.

/*** Output a single sample to digital I/O channel 2 ***/

unsigned short main()
{
unsigned short logical_device;
unsigned short status;
unsigned char output_value;
char far *device_type = "DAQ-1201";
char far *config_file = "daq-1201.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Output the value to channel 2 ***/

output_value = 1;
status = DaqSingleDigitalOutput(logical_device, 2, &output_value);
if (status != 0)
 printf("\n\nDigital I/O output error. Status code %d.\n\n", status);
else
 printf("\n\nComplete. No errors.);

/*** Step 3: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 75

DaqSingleDigitalOutput is a very basic interface without any allowance for multiple channels,
multiple output values, trigger sources, etc. It acts as a DAQDRIVE macro defining the
necessary data structures, executing the digital output configuration procedure
(DaqDigitalOutput), arming the requested configuration (DaqArmRequest), and triggering the
operation (DaqTriggerRequest).

For users interested in learning more about DAQDRIVE's digital output interface, the
following example program creates the equivalent of the DaqSingleDigitalOutput procedure.

unsigned short MySingleDigitalOutput(unsigned short logical_device,
 unsigned short channel_number,
 void far *output_value)
{
struct digio_request my_request;
struct DAQDRIVE_buffer my_data;
unsigned short request_handle;
unsigned short status;

/***** Construct the request structure *****/

my_request.channel_array_ptr = &channel_number;
my_request.array_length = 1;
my_request.digio_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = (void huge*)output_value;
my_data.buffer_length = 1;
my_data.buffer_cycles = 1;
my_data.next_structure = NULL;
my_data.buffer_status = BUFFER_FULL;

/***** Execute the request *****/

request_handle = 0;
status = DaqDigitalOutput(logical_device, &my_request, &request_handle);
if (status != 0)
 return(status);

/***** If no errors, arm the request *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, software trigger the request *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, release the request and return *****/

status = DaqReleaseRequest(request_handle);
return(status);
}

DAQDRIVE Users Manual 76

3.4.2 DaqSingleDigitalOutputScan

Another simple case of digital output is to output one value each to multiple digital I/O
channels under CPU control. This allows multiple digital outputs to be updated
simultaneously (or nearly simultaneously depending on the data acquisition hardware). A
simplified interface for this operation is provided through the DaqSingleDigitalOutputScan
procedure. The format of this command is shown below.

unsigned short DaqSingleDigitalOutputScan (unsigned short logical_device ,
 unsigned short far *channel_array ,
 unsigned short array_length ,
 void far *output_array)

DaqSingleDigitalOutputScan outputs the values in the array specified by output_array to the
digital I/O channels in the array specified by channel_array on the adapter specified by
logical_device. A digital I/O channel may appear in channel_array only once and a one-to-one
correspondence is required between the number of digital output channels and the number of
output values. Therefore, array_length specifies the length of both channel_array and
output_array. The following example shows the usage of DaqSingleDigitalOutputScan.

/*** Output a single sample to digital I/O channels 1, 2, 3, 4, and 5 ***/

unsigned short main()
{
unsigned short logical_device;
unsigned short status;
unsigned short channel_array[5] = { 1, 2, 3, 4, 5 };
unsigned char output_array[5] = { 3, 0, 0, 1, 3 };
char far *device_type = "DA8P-12B";
char far *config_file = "da8p-12b.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DA8P-12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Output the digital I/O values ***/

status = DaqSingleDigitalOutputScan(logical_device, channel_array,
 5, output_array);
if (status != 0)
 printf("\n\nDigital I/O output error. Status code %d.\n\n", status);
else
 printf("\n\nComplete. No errors.);

/*** Step 3: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 77

DaqSingleDigitalOutputScan is a very basic interface without any allowance for timing
information, trigger sources, etc. It acts as a DAQDRIVE macro defining the necessary data
structures, executing the digital output configuration procedure (DaqDigitalOutput), arming
the requested configuration (DaqArmRequest), and triggering the operation
(DaqTriggerRequest).

For users interested in learning more about DAQDRIVE's digital output interface, the
following example program creates the equivalent of the DaqSingleDigitalOutputScan
procedure.

unsigned short MySingleDigitalOutputScan(unsigned short logical_device,
 unsigned short far *channel_array,
 unsigned short array_length,
 void far *output_array)
{
struct digio_request my_request;
struct DAQDRIVE_buffer my_data;
unsigned short request_handle;
unsigned short status;

/***** Construct the request structure *****/

my_request.channel_array_ptr = channel_array;
my_request.array_length = array_length;
my_request.digio_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = (void huge*)output_array;
my_data.buffer_length = array_length;
my_data.buffer_cycles = 1;
my_data.next_buffer = NULL;
my_data.buffer_status = BUFFER_FULL;

/***** Execute the request *****/

request_handle = 0;
status = DaqDigitalOutput(logical_device, &my_request, &request_handle);
if (status != 0)
 return(status);

/***** If no errors, arm the request *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, software trigger the request *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 return(status);
 }

/***** If no errors, release the request and return *****/

status = DaqReleaseRequest(request_handle);
return(status);

DAQDRIVE Users Manual 78

4 Performing An Acquisition

DAQDRIVE uses a "data defined" rather than a "function defined" interface. What this means
is that each data acquisition operation is defined by a series of configuration parameters and
requires very few function calls to implement. These parameters, which are contained in a
data structure, are hereafter referred to as a request structure or simply a request and define
such parameters as channel numbers, sampling rate, number of scans, trigger source, etc. The
key to unlocking the power and flexibility of DAQDRIVE lies in the understanding of these
request structures.

Another parameter which the user needs to become familiar with is DAQDRIVE's use of
request handles which are used to identify valid request structures. When a request structure
is passed into one of the configuration routines, DAQDRIVE verifies the contents of the
structure and confirms that the target hardware can perform the type of operation requested.
If the request structure is valid, a request handle is assigned to the structure and all future
operations on this request are referenced using its request handle.

The following steps define the sequence required to perform an operation using DAQDRIVE's
data defined interface.

Step 1: Define The Hardware Configuration
DAQDRIVE determines the configuration of a device from the data file specified when the
device is opened. These configuration files are created using the DAQDRIVE configuration
utility as described in section 2.2.

Step 2: Open The Hardware Device
Before the application program can use an adapter, it must first open the device using the
DaqOpenDevice command. The application must provide the open command with the
adapter type and specify the name of a configuration file (generated in step 1) which describes
the target hardware's configuration. If the open command completes successfully,
DAQDRIVE assigns a logical device number to be used for all future references to the adapter.

Step 3: Define The Request Structure And Data Buffers
With the device successfully opened, the application must now allocate and define all of the
parameters associated with the operation to be performed. These parameters include such
variables as the channel number(s), trigger source, and sampling rate. DAQDRIVE's request
structures are covered in detail in chapters 5 through 8. In addition to the request structure,
the application must define one or more data buffer structures where the request's data is
stored. These data buffer structures are discussed in chapter 9.

DAQDRIVE Users Manual 79

Step 4: Request The Operation
The next step is to request the operation. The configuration procedures serves to validate the
contents of the request structure and to determine if the target hardware can support the type
of operation requested. If the request is not valid, an error is returned and the application
must redefine the request. If the request is valid and the operation is supported by the
hardware, a request handle is issued to identify this configuration. Once the request handle is
issued, the channel(s) specified in the request structure's channel list are allocated for use by
this request. Any other hardware resources required to execute the request (timers, triggers,
etc.) remain available until the request is armed. Chapters 5 through 8 contain detailed
descriptions of each type of DAQDRIVE request.

Step 5: Arm The Request
With a valid configuration requested, the application must now arm the request in order to
prepare the hardware for the impending trigger. It is during the arm procedure,
DaqArmRequest, that the hardware is programmed and any system resources required for the
request (i.e. IRQ levels, DMA channels, timers, etc.) are allocated and assigned to the request.
An error will occur during the arm process if any of the required resources are not available.

Step 6: Trigger The Request
After the request is armed, the next step is to trigger the request and start the operation. If the
request specified an internal (software) trigger, the application must now issue the trigger
using DaqTriggerRequest. If the request specified any of the hardware trigger sources, the
application may wait for the trigger event to occur or it may continue to step 7.

Step 7: Wait For Completion
With the operation in progress, the application must wait for the request to be completed
before any further action can be taken on this request. If necessary, the application can
terminate the request using the DaqStopRequest procedure. When the operation is completed
or otherwise terminated, any system resources allocated by the request are freed for use by
other requests. However, the channel(s) specified in the request structure's channel list
remain allocated to the request until the request is released by the DaqReleaseRequest
procedure.

Step 8: Release The Configuration
After the operation is complete (or otherwise terminated), the request may be released using
DaqReleaseRequest. Releasing the request frees the channel(s) used by the request making
them available for future requests.

Step 9: Close The Hardware Device
The final step, after all operations on the hardware are complete, is to close the device using
DaqCloseDevice to free any remaining resources used by that device. System integrity can not
be guaranteed if the application program exits without closing the hardware device.

DAQDRIVE Users Manual 80

5 Analog Input Requests

In chapter 3, some special purpose procedures were presented to help the user get familiar
with DAQDRIVE's A/D converter interface. The key to understanding and utilizing
DAQDRIVE, however, is to understand its request structures. This chapter will present the
analog input request structure and provide examples to illustrate how this structure is
configured for some common applications.

5.1 DaqAnalogInput

DaqAnalogInput is DAQDRIVE's A/D converter interface. Any analog input operation is
possible with the proper configuration of the request structure. The format of the command is
shown below.

unsigned short DaqAnalogInput (unsigned short logical_device ,
 struct ADC_request far *user_request ,
 unsigned short far *request_handle)

DaqAnalogInput performs the configuration portion of an analog input request. For a new
configuration, the application program sets request_handle to 0 before calling
DaqAnalogInput. DaqAnalogInput then analyzes the data structure specified by user_request
to determine if all of the parameters are valid and if the requested operation can be performed
by the device specified by logical_device. If the requested operation is valid, DaqAnalogInput
assigns request_handle a unique non-zero value. This request handle is used to identify this
request in all future operations.

If the application program modifies the contents of user_request after executing
DaqAnalogInput, the structure must be verified again. To request re-verification of a
previously approved request, the application executes DaqAnalogInput with request_handle
set to the value returned by DaqAnalogInput when the request was first approved. All
parameters except the channel list may be modified after the initial configuration. To modify
the channel list, the existing request must be released (using DaqReleaseRequest) and a new
configuration requested.

DAQDRIVE Users Manual 81

5.2 The Analog Input Request Structure

The power of DaqAnalogInput lies in the application's ability to modify a single data structure
and execute a single procedure to perform multiple analog input operations. The elements of
the analog input request structure are discussed on the following pages.

struct ADC_request
 {
 unsigned short far *channel_array_ptr ;
 float far *gain_array_ptr;
 unsigned short reserved1[4];
 unsigned short array_length ;
 struct DAQDRIVE_buffer far *ADC_buffer ;
 unsigned short reserved2[4];
 unsigned short trigger_source ;
 unsigned short trigger_mode ;
 unsigned short trigger_slope ;
 unsigned short trigger_channel ,
 double trigger_voltage;
 unsigned long trigger_value ,
 unsigned short reserved3[4];
 unsigned short IO_mode ;
 unsigned short clock_source ;
 double clock_rate ;
 double sample_rate ;
 unsigned short reserved4[4];
 unsigned long number_of_scans ;
 unsigned long scan_event_level ;
 unsigned short reserved5[8];
 unsigned short calibration ;
 unsigned short timeout_interval;
 unsigned long request_status ;
 };

IMPORTANT:
1. If the application program modifies the contents of the request structure after

executing DaqAnalogInput, the updated structure must be re-verified by
DaqAnalogInput before the request is armed.

2. Once the request is armed using DaqArmRequest, the only field the application can
modify is request_status. All other fields in the request structure must remain
constant until the operation is completed or otherwise terminated.

3. If the request structure is dynamically allocated by the application, it MUST NOT
be de-allocated until the request has been released by the DaqReleaseRequest
procedure. In addition, applications using the Windows version of DAQDRIVE
should use DaqAllocateMemory, DaqAllocateMemory32, or DaqAllocateRequest if
dynamically allocated request structures are required.

DAQDRIVE Users Manual 82

5.2.1 Reserved Fields

The fields reserved1 through reserved5 are provided for expansion of the analog input request
structure in future releases of DAQDRIVE. To maintain maximum compatibility, the
application program should initialize all reserved fields to 0.

5.2.2 Channel Selections / Gain Settings

The analog input request structure begins with a list of one or more analog input channels to
be operated on by this request. The application provides the memory address of the first
channel in the list using the channel_array_ptr field. In addition to the channel list, the
application must provide a gain setting for each channel in the channel list. The application
provides the memory address of the first gain setting in the gain list using the gain_array_ptr
field. For each channel in the channel list there must be one and only one setting in the gain
list. Therefore, the lengths of both lists are specified by the array_length field.

5.2.3 Data Buffers

ADC_buffer defines the request's data buffer structure(s) to be used for storing the data input
from the specified channel(s). The application program must define these buffers within the
guidelines provided in chapter 9.

5.2.4 Trigger Selections

The trigger selection determines how the requested operation will be initiated after being
armed. Six fields are required to define and configure the trigger for the request:
trigger_source, trigger_mode, trigger_slope, trigger_channel, trigger_voltage, and
trigger_value. Because the trigger selection is an integral part of the operation and is common
to all of DAQDRIVE's request structures. trigger configurations are discussed separately in
chapter 10.

5.2.5 Data Transfer Modes

The request structure field IO_mode determines the mechanism that will be used to input the
data from the hardware device. In general, the foreground modes provide the highest data
transfer rates at the expense of requiring 100% of the CPU time. In contrast, background
mode operations generally provide lower data transfer rates while allowing the CPU to
perform other tasks.

5.2.5.1 Foreground CPU mode
This mode uses the CPU to input the data from the hardware device. From the moment the
request is triggered, DAQDRIVE uses all of the CPU time and will not return control to the
application program until the request is completed or otherwise terminated.

5.2.5.2 Background IRQ mode
This mode uses interrupts generated by the hardware device to gain control of the CPU to
input the data to the hardware device. DAQDRIVE does not require all of the CPU time in
this mode and returns control of the CPU to the application after the request is triggered.

DAQDRIVE Users Manual 83

5.2.5.3 Foreground DMA mode
This mode uses the DMA controller to input the data from the hardware device while using
the CPU to monitor and control the DMA operation. From the moment the request is
triggered, DAQDRIVE uses all of the CPU time and will not return control to the application
program until the request is completed or otherwise terminated.

5.2.5.4 Background DMA mode
This mode uses the DMA controller to input the data from the hardware device while using
interrupts generated by the hardware device to gain control of the CPU to monitor and control
the DMA operation. DAQDRIVE does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

5.2.6 Clock Sources

The clock_source field is used to define the source of the timing signal for requests acquiring
multiple samples.

5.2.6.1 Internal Clock
When the clock source field is set for an internal clock, the timing for the request is provided
by the adapter's on-board timer circuitry. The clock_rate field is unused with the internal
clock source and any value provided in the clock_rate field is ignored.

5.2.6.2 External Clock
Setting the clock_source field to external indicates the timing for the request is provided by a
signal input to the adapter as defined by the hardware device. The clock_rate field must be
used to define the frequency of the external clock signal in Hertz.

5.2.7 Sampling Rate

The sampling rate specifies the number of samples / second (Hz) to be input from the
hardware device. The application specifies a desired sampling rate in the sample_rate field of
the request structure. On most hardware devices, only a finite number of sampling rates are
achievable. When DaqAnalogInput configures a request, the closest available sampling rate is
selected and the sample_rate field is updated with the actual rate at which the data will be
input.

5.2.8 Number Of Scans

The number_of_scans field determines the number of times the channel(s) specified in the
channel list are processed. For example, to input 100 samples from a single A/D channel,
number_of_scans must be set to 100. To input 50 samples each from 6 A/D channels (300
points total), number_of_scans is set to 50.

5.2.9 Scan Events

DAQDRIVE generates a scan event each time the number of scans specified by
scan_event_level are completed. For example, if scan_event_level is set to 50, a scan event is

DAQDRIVE Users Manual 84

generated every time the channel array is processed 50 times. DAQDRIVE events are
discussed in detail in chapter 11.

5.2.10 Calibration Selections

The calibration field allows the application to specify the type of calibration to be performed
(if any) by the hardware device(s) during the requested operation. In general, enabling
calibration results in lower throughput rates while providing greater accuracy.

5.2.10.1 Auto-calibration
Enabling auto-calibration instructs the hardware device to perform one or more calibration
cycles on the A/D converter(s) specified by this request. The results of auto-calibration vary
with different hardware devices. Consult the hardware user's manual and the appendices in
the back of this document for details about how auto-calibration operates on the device in use.

5.2.10.2 Auto-zero
Enabling auto-zero instructs the hardware device to perform one or more zero offset
adjustment cycles on the A/D converter(s) specified by this request. The results of
auto-zeroing vary with different hardware devices. Consult the hardware user's manual and
the appendices in the back of this document for details about how auto-zero operates on the
device in use.

5.2.11 Time-out

The timeout_interval field is used primarily during foreground mode operations to instruct
DAQDRIVE when to abandon the processing of a request. When DAQDRIVE has control of
the CPU and is waiting for an event to occur (i.e. waiting for a trigger or waiting for the A/D
to complete a conversion), DAQDRIVE will wait timeout_interval seconds and if the event has
not occurred, the request will be aborted.

5.2.12 Request Status

The request_status field provides a mechanism for the application to monitor the state of a
request. The request status is an integral part of DAQDRIVE's event mechanisms and is
discussed in detail in chapter 11.

DAQDRIVE Users Manual 85

5.3 Analog Input Examples

5.3.1 Example 1 - Single Channel Input

Purpose: Input 1000 samples from a single analog input channel at a 10KHz sampling rate.

unsigned short channel_list = 0;
 float gain_list = 2;
unsigned short input_values[1000];

struct ADC_request my_request;
struct DAQDRIVE_buffer my_data;

/***** Construct the request structure *****/

my_request.channel_array_ptr = &channel_list;
my_request.gain_array+ptr = &gain_list;
my_request.array_length = 1;
my_request.ADC_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = BACKGROUND_IRQ;
my_request.clock_source = INTERNAL_CLOCK;
my_request.sample_rate = 10000;
my_request.number_of_scans = 1000;
my_request.scan_event_level = 0;
my_request.calibration = NO_CALIBRATION;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = input_values;
my_data.buffer_length = 1000;
my_data.next_structure = NULL;
my_data.buffer_status = BUFFER_EMPTY;

Variations on example 1:

1. To change the operating mode from background mode with interrupts to
foreground mode using DMA, set

my_request.IO_mode = FOREGROUND_DMA

2. To change the trigger mode to an analog trigger, set
my_request.trigger_source = ANALOG_TRIGGER
my_request.trigger_channel = 0
my_request.trigger_voltage = 3.0
my_request.trigger_slope = RISING_EDGE

3. To enable calibration for the request, set
my_request.calibration = AUTO_CALIBRATE or
my_request.calibration = AUTO_ZERO or
my_request.calibration = AUTO_CALIBRATE | AUTO_ZERO

DAQDRIVE Users Manual 86

5.3.2 Example 2 - Multiple Channel Input

Purpose: Input 1000 sample from each of 4 analog input channels at a rate of 500Hz.

unsigned short channel_number[4] = {0, 1, 14, 6};
 float gain_settings[4] = {1, 1, 10, 100};
unsigned short input_values[4 * 1000];

struct ADC_request my_request;
struct DAQDRIVE_buffer my_data;

/***** Construct the request structure *****/

my_request.channel_array_ptr = channel_number;
my_request.gain_array_ptr = gain_settings;
my_request.array_length = 4;
my_request.ADC_buffer = &my_data;
my_request.trigger_source = TTL_TRIGGER;
my_request.trigger_slope = RISING_EDGE;
my_request.IO_mode = FOREGROUND_CPU;
my_request.clock_source = INTERNAL_CLOCK;
my_request.sample_rate = 500;
my_request.number_of_scans = 1000;
my_request.scan_event_level = 0;
my_request.calibration = NO_CALIBRATION;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = input_values;
my_data.buffer_length = 4 * 1000;
my_data.next_buffer = NULL;
my_data.buffer_status = BUFFER_EMPTY;

Variations on example 2:

1. To change the number of points from 1000 per channel to 5000 per channel,
re-define input_values[] and then set

my_request.number_of_scans = 5000
my_data.buffer_length = 4 * 5000

2. To notify the application every time 100 scans are complete, set
my_request.scan_event_level = 100

3. To enable a time-out if no data is available for a period of 3 seconds, set
my_request.timeout_interval = 3

DAQDRIVE Users Manual 87

6 Analog Output Requests

In chapter 3, some special purpose procedures were presented to help the user get familiar
with DAQDRIVE's D/A converter interface. The key to understanding and utilizing
DAQDRIVE, however, is to understand its request structures. This chapter will present the
analog output request structure and provide examples to illustrate how this structure is
configured for some common applications.

6.1 DaqAnalogOutput

DaqAnalogOutput is DAQDRIVE's D/A converter interface. Any analog output operation is
possible with the proper configuration of the request structure. The format of the command is
shown below.

unsigned short DaqAnalogOutput (unsigned short logical_device ,
 struct DAC_request far *user_request ,
 unsigned short far *request_handle)

DaqAnalogOutput performs the configuration portion of an analog output request. For a new
configuration, the application program sets request_handle to 0 before calling
DaqAnalogOutput. DaqAnalogOutput then analyzes the data structure specified by
user_request to determine if all of the parameters are valid and if the requested operation can
be performed by the device specified by logical_device. If the requested operation is valid,
DaqAnalogOutput assigns request_handle a unique non-zero value. This request handle is
used to identify this request in all future operations.

If the application program modifies the contents of user_request after executing
DaqAnalogOutput, the structure must be verified again. To request re-verification of a
previously approved request, the application executes DaqAnalogOutput with request_handle
set to the value returned by DaqAnalogOutput when the request was first approved. All
parameters except the channel list may be modified after the initial configuration. To modify
the channel list, the existing request must be released (using DaqReleaseRequest) and a new
configuration requested.

DAQDRIVE Users Manual 88

6.2 The Analog Output Request Structure

The power of DaqAnalogOutput lies in the application's ability to modify a single data
structure and execute a single procedure to perform multiple analog output operations. The
elements of the analog output request structure are discussed on the following pages.

struct DAC_request
 {
 unsigned short far *channel_array_ptr ;
 unsigned short reserved1[4];
 unsigned short array_length ;
 struct DAQDRIVE_buffer far *DAC_buffer ;
 unsigned short reserved2[4];
 unsigned short trigger_source ;
 unsigned short trigger_mode ;
 unsigned short trigger_slope ;
 unsigned short trigger_channel ,
 double trigger_voltage;
 unsigned long trigger_value ;
 unsigned short reserved3[4];
 unsigned short IO_mode ;
 unsigned short clock_source ;
 double clock_rate ;
 double sample_rate ;
 unsigned short reserved4[4];
 unsigned long number_of_scans ;
 unsigned long scan_event_level ;
 unsigned short reserved5[8];
 unsigned short calibration ;
 unsigned short timeout_interval;
 unsigned long request_status ;
 };

IMPORTANT:
1. If the application program modifies the contents of the request structure after

executing DaqAnalogOutput, the updated structure must be re-verified by
DaqAnalogOutput before the request is armed.

2. Once the request is armed using DaqArmRequest, the only field the application can
modify is request_status. All other fields in the request structure must remain
constant until the operation is completed or otherwise terminated.

3. If the request structure is dynamically allocated by the application, it MUST NOT
be de-allocated until the request has been released by the DaqReleaseRequest
procedure. In addition, applications using the Windows version of DAQDRIVE
should use DaqAllocateMemory, DaqAllocateMemory32, or DaqAllocateRequest if
dynamically allocated request structures are required.

DAQDRIVE Users Manual 89

6.2.1 Reserved Fields

The fields reserved1 through reserved5 are provided for expansion of the analog output
request structure in future releases of DAQDRIVE. To maintain maximum compatibility, the
application program should initialize all reserved fields to 0.

6.2.2 Channel Selections

The analog output request structure begins with a list of one or more analog output channels
to be operated on by this request. The application provides the memory address of the first
channel in the list using the channel_array_ptr field and must specify the length of the list in
the array_length field.

6.2.3 Data Buffers

DAC_buffer defines the request's data buffer structure(s) containing the data to be output to
the specified channel(s). The application program must define these buffers within the
guidelines provided in chapter 9.

6.2.4 Trigger Selections

The trigger selection determines how the requested operation will be initiated after being
armed. Six fields are required to define and configure the trigger for the request:
trigger_source, trigger_mode, trigger_slope, trigger_channel, trigger_voltage, and
trigger_value. Because the trigger selection is an integral part of the operation and is common
to all of DAQDRIVE's request structures. trigger configurations are discussed separately in
chapter 10.

6.2.5 Data Transfer Modes

The request structure field IO_mode determines the mechanism that will be used to output the
data to the hardware device. In general, the foreground modes provide the highest data
transfer rates at the expense of requiring 100% of the CPU time. In contrast, background
mode operations generally provide lower data transfer rates while allowing the CPU to
perform other tasks.

6.2.5.1 Foreground CPU mode
This mode uses the CPU to output the data to the hardware device. From the moment the
request is triggered, DAQDRIVE uses all of the CPU time and will not return control to the
application program until the request is completed or otherwise terminated.

6.2.5.2 Background IRQ mode
This mode uses interrupts generated by the hardware device to gain control of the CPU to
output the data to the hardware device. DAQDRIVE does not require all of the CPU time in
this mode and returns control of the CPU to the application after the request is triggered.

DAQDRIVE Users Manual 90

6.2.5.3 Foreground DMA mode
This mode uses the DMA controller to output the data to the hardware device while using the
CPU to monitor and control the DMA operation. From the moment the request is triggered,
DAQDRIVE uses all of the CPU time and will not return control to the application program
until the request is completed or otherwise terminated.

6.2.5.4 Background DMA mode
This mode uses the DMA controller to output the data to the hardware device while using
interrupts generated by the hardware device to gain control of the CPU to monitor and control
the DMA operation. DAQDRIVE does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

6.2.6 Clock Sources

The clock_source field is used to define the source of the timing signal for requests containing
multiple data values.

6.2.6.1 Internal Clock
When the clock source field is set for an internal clock, the timing for the request is provided
by the adapter's on-board timer circuitry. The clock_rate field is unused with the internal
clock source and any value provided in the clock_rate field is ignored.

6.2.6.2 External Clock
Setting the clock_source field to external indicates the timing for the request is provided by a
signal input to the adapter as defined by the hardware device. The clock_rate field must be
used to define the frequency of the external clock signal in Hertz.

6.2.7 Sampling Rate

The sampling rate specifies the number of samples / second (Hz) to be output to the hardware
device. The application specifies a desired sampling rate in the sample_rate field of the
request structure. On most hardware devices, only a finite number of sampling rates are
achievable. When DaqAnalogOutput configures a request, the closest available sampling rate
is selected and the sample_rate field is updated with the actual rate at which the data will be
output.

6.2.8 Number Of Scans

The number_of_scans field determines the number of times the channel(s) specified in the
channel list are processed. For example, to output 100 samples to a single D/A channel,
number_of_scans must be set to 100. To output 50 samples each to two D/A channels (100
points total), number_of_scans is set to 50.

6.2.9 Scan Events

DAQDRIVE generates a scan event each time the number of scans specified by
scan_event_level are completed. For example, if scan_event_level is set to 50, a scan event is

DAQDRIVE Users Manual 91

generated every time the channel array is processed 50 times. DAQDRIVE events are
discussed in detail in chapter 11.

6.2.10 Calibration Selections

The calibration field allows the application to specify the type of calibration to be performed
(if any) by the hardware device(s) during the requested operation. In general, enabling
calibration results in lower throughput rates while providing greater accuracy.

6.2.10.1 Auto-calibration
Enabling auto-calibration instructs the hardware device to perform one or more calibration
cycles on the D/A converter(s) specified by this request. The results of auto-calibration vary
with different hardware devices. Consult the hardware user's manual and the appendices in
the back of this document for details about how auto-calibration operates on the device in use.

6.2.10.2 Auto-zero
Enabling auto-zero instructs the hardware device to perform one or more zero offset
adjustment cycles on the D/A converter(s) specified by this request. The results of
auto-zeroing vary with different hardware devices. Consult the hardware user's manual and
the appendices in the back of this document for details about how auto-zero operates on the
device in use.

6.2.11 Time-out

The timeout_interval field is used primarily during foreground mode operations to instruct
DAQDRIVE when to abandon the processing of a request. When DAQDRIVE has control of
the CPU and is waiting for an event to occur (i.e. waiting for a trigger or waiting for the D/A
to become ready), DAQDRIVE will wait timeout_interval seconds and if the event has not
occurred, the request will be aborted.

6.2.12 Request Status

The request_status field provides a mechanism for the application to monitor the state of a
request. The request status is an integral part of DAQDRIVE's event mechanisms and is
discussed in detail in chapter 11.

DAQDRIVE Users Manual 92

6.3 Analog Output Examples

6.3.1 Example 1 - DC Voltage Level Output

Purpose: Output a single value to each of three analog output channels.

unsigned short channel_list[] = { 4, 0, 1 };
unsigned short output_values[] = { -1024, 0, 512 };

struct DAC_request my_request;
struct DAQDRIVE_buffer my_data;

/***** Construct the request structure *****/

my_request.channel_array_ptr = channel_list;
my_request.array_length = 3;
my_request.DAC_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.calibration = NO_CALIBRATION;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = output_values;
my_data.buffer_length = 3;
my_data.buffer_cycles = 1;
my_data.next_structure = NULL;
my_data.buffer_status = BUFFER_FULL;

Variations on example 1:

1. To change the number of channels from three to five, re-define channel_list[] and
output_values[] then set

my_request.array_length = 5
my_data.buffer_length = 5

2. To change the trigger mode to a TTL trigger, set
my_request.trigger_source = TTL_TRIGGER
my_request.trigger_slope = RISING_EDGE

3. To enable calibration for the request, set
my_request.calibration = AUTO_CALIBRATE or
my_request.calibration = AUTO_ZERO or
my_request.calibration = AUTO_CALIBRATE | AUTO_ZERO.

DAQDRIVE Users Manual 93

6.3.2 Example 2 - Simple Waveform Generation

Purpose: Output 300 cycles of a 60 Hz sinewave defined with 180 points per cycle.

unsigned short channel_number;
unsigned short sinewave[180];

struct DAC_request my_request;
struct DAQDRIVE_buffer my_data;

/***** Assume data values have been calculated *****/
/***** and stored in sinewave[] *****/

/***** Construct the request structure *****/

my_request.channel_array_ptr = &channel_number;
my_request.array_length = 1;
my_request.DAC_buffer = &my_data;
my_request.trigger_source = TTL_TRIGGER;
my_request.trigger_slope = RISING_EDGE;
my_request.IO_mode = FOREGROUND_DMA;
my_request.clock_source = INTERNAL_CLOCK;
my_request.sample_rate = 60 * 180;
my_request.number_of_scans = 300 * 180;
my_request.scan_event_level = 0;
my_request.calibration = NO_CALIBRATION;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = sinewave;
my_data.buffer_length = 180;
my_data.buffer_cycles = 300;
my_data.next_buffer = NULL;
my_data.buffer_status = BUFFER_FULL;

Variations on example 2:

1. To change the number of points from 180 to 360, re-define sinewave[] and then set
my_request.sample_rate = 60 * 360
my_request.number_of_scans = 300 * 360
my_data.buffer_length = 360

2. To change the number of cycles from 300 to 15,000, set
my_request.number_of_scans = 15000
my_data.buffer_cycles = 15000

3. To enable a time-out if the trigger does not occur within 15 seconds after the request
is armed, set

my_request.timeout_interval = 15

DAQDRIVE Users Manual 94

7 Digital Input Requests

In chapter 3, some special purpose procedures were presented to help the user get familiar
with DAQDRIVE's digital input interface. The key to understanding and utilizing
DAQDRIVE, however, is to understand its request structures. This chapter will present the
digital input request structure and provide examples to illustrate how this structure is
configured for some common applications.

7.1 DaqDigitalInput

DaqDigitalInput is DAQDRIVE's digital input interface. Any digital input operation is
possible with the proper configuration of the request structure. The format of the command is
shown below.

unsigned short DaqDigitalInput (unsigned short logical_device ,
 struct digio_request far *user_request ,
 unsigned short far *request_handle)

DaqDigitalInput performs the configuration portion of a digital input request. For a new
configuration, the application program sets request_handle to 0 before calling
DaqDigitalInput. DaqDigitalInput then analyzes the data structure specified by user_request
to determine if all of the parameters are valid and if the requested operation can be performed
by the device specified by logical_device. If the requested operation is valid, DaqDigitalInput
assigns request_handle a unique non-zero value. This request handle is used to identify this
request in all future operations.

If the application program modifies the contents of user_request after executing
DaqDigitalInput, the structure must be verified again. To request re-verification of a
previously approved request, the application executes DaqDigitalInput with request_handle
set to the value returned by DaqDigitalInput when the request was first approved. All
parameters except the channel list may be modified after the initial configuration. To modify
the channel list, the existing request must be released (using DaqReleaseRequest) and a new
configuration requested.

DAQDRIVE Users Manual 95

7.2 The Digital Input Request Structure

The power of DaqDigitalInput lies in the application's ability to modify a single data structure
and execute a single procedure to perform multiple digital input operations. The elements of
the digital input request structure are discussed on the following pages.

struct digio_request
 {
 unsigned short far *channel_array_ptr ;
 unsigned short reserved1[4];
 unsigned short array_length ;
 struct DAQDRIVE_buffer far *digio_buffer ;
 unsigned short reserved2[4];
 unsigned short trigger_source ;
 unsigned short trigger_mode ;
 unsigned short trigger_slope ;
 unsigned short trigger_channel ,
 double trigger_voltage;
 unsigned long trigger_value ;
 unsigned short reserved3[4];
 unsigned short IO_mode ;
 unsigned short clock_source ;
 double clock_rate ;
 double sample_rate ;
 unsigned short reserved4[4];
 unsigned long number_of_scans ;
 unsigned long scan_event_level ;
 unsigned short reserved5[8];
 unsigned short timeout_interval;
 unsigned long request_status ;
 };

IMPORTANT:
1. If the application program modifies the contents of the request structure after

executing DaqDigitalInput, the updated structure must be re-verified by
DaqDigitalInput before the request is armed.

2. Once the request is armed using DaqArmRequest, the only field the application can
modify is request_status. All other fields in the request structure must remain
constant until the operation is completed or otherwise terminated.

3. If the request structure is dynamically allocated by the application, it MUST NOT
be de-allocated until the request has been released by the DaqReleaseRequest
procedure. In addition, applications using the Windows version of DAQDRIVE
should use DaqAllocateMemory, DaqAllocateMemory32, or DaqAllocateRequest if
dynamically allocated request structures are required.

DAQDRIVE Users Manual 96

7.2.1 Reserved Fields

The fields reserved1 through reserved5 are provided for expansion of the digital input request
structure in future releases of DAQDRIVE. To maintain maximum compatibility, the
application program should initialize all reserved fields to 0.

7.2.2 Channel Selections

The digital input request structure begins with a list of one or more digital input channels to
be operated on by this request. The application provides the memory address of the first
channel in the list using the channel_array_ptr field and must specify the length of the list in
the array_length field.

7.2.3 Data Buffers

digio_buffer defines the request's data buffer structure(s) to be used for storing the data input
from the specified channel(s). The application program must define these buffers within the
guidelines provided in chapter 9.

7.2.4 Trigger Selections

The trigger selection determines how the requested operation will be initiated after being
armed. Six fields are required to define and configure the trigger for the request:
trigger_source, trigger_mode, trigger_slope, trigger_channel, trigger_voltage, and
trigger_value. Because the trigger selection is an integral part of the operation and is common
to all of DAQDRIVE's request structures. trigger configurations are discussed separately in
chapter 10.

7.2.5 Data Transfer Modes

The request structure field IO_mode determines the mechanism that will be used to input the
data from the hardware device. In general, the foreground modes provide the highest data
transfer rates at the expense of requiring 100% of the CPU time. In contrast, background
mode operations generally provide lower data transfer rates while allowing the CPU to
perform other tasks.

7.2.5.1 Foreground CPU mode
This mode uses the CPU to input the data from the hardware device. From the moment the
request is triggered, DAQDRIVE uses all of the CPU time and will not return control to the
application program until the request is completed or otherwise terminated.

7.2.5.2 Background IRQ mode
This mode uses interrupts generated by the hardware device to gain control of the CPU to
input the data to the hardware device. DAQDRIVE does not require all of the CPU time in
this mode and returns control of the CPU to the application after the request is triggered.

DAQDRIVE Users Manual 97

7.2.5.3 Foreground DMA mode
This mode uses the DMA controller to input the data from the hardware device while using
the CPU to monitor and control the DMA operation. From the moment the request is
triggered, DAQDRIVE uses all of the CPU time and will not return control to the application
program until the request is completed or otherwise terminated.

7.2.5.4 Background DMA mode
This mode uses the DMA controller to input the data from the hardware device while using
interrupts generated by the hardware device to gain control of the CPU to monitor and control
the DMA operation. DAQDRIVE does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

7.2.6 Clock Sources

The clock_source field is used to define the source of the timing signal for requests acquiring
multiple samples.

7.2.6.1 Internal Clock
When the clock source field is set for an internal clock, the timing for the request is provided
by the adapter's on-board timer circuitry. The clock_rate field is unused with the internal
clock source and any value provided in the clock_rate field is ignored.

7.2.6.2 External Clock
Setting the clock_source field to external indicates the timing for the request is provided by a
signal input to the adapter as defined by the hardware device. The clock_rate field must be
used to define the frequency of the external clock signal in Hertz.

7.2.7 Sampling Rate

The sampling rate specifies the number of samples / second (Hz) to be input from the
hardware device. The application specifies a desired sampling rate in the sample_rate field of
the request structure. On most hardware devices, only a finite number of sampling rates are
achievable. When DaqDigitalInput configures a request, the closest available sampling rate is
selected and the sample_rate field is updated with the actual rate at which the data will be
output.

7.2.8 Number Of Scans

The number_of_scans field determines the number of times the channel(s) specified in the
channel list are processed. For example, to input 100 samples from a single digital input
channel, number_of_scans must be set to 100. To input 50 samples each from four digital
input channels (200 points total), number_of_scans is set to 50.

7.2.9 Scan Events

DAQDRIVE generates a scan event each time the number of scans specified by
scan_event_level are completed. For example, if scan_event_level is set to 50, a scan event is

DAQDRIVE Users Manual 98

generated every time the channel array is processed 50 times. DAQDRIVE events are
discussed in detail in chapter 11.

7.2.10 Time-out

The timeout_interval field is used primarily during foreground mode operations to instruct
DAQDRIVE when to abandon the processing of a request. When DAQDRIVE has control of
the CPU and is waiting for an event to occur (i.e. waiting for a trigger or waiting for the
digital input channel to become ready), DAQDRIVE will wait timeout_interval seconds and if
the event has not occurred, the request will be aborted.

7.2.11 Request Status

The request_status field provides a mechanism for the application to monitor the state of a
request. The request status is an integral part of DAQDRIVE's event mechanisms and is
discussed in detail in chapter 11.

DAQDRIVE Users Manual 99

7.3 Digital Input Examples

7.3.1 Example 1 - Single Value Input

Purpose: Input a single value from each of three digital input channels.

unsigned short channel_list[] = { 0, 1, 2 };
unsigned char input_values[3];

struct digio_request my_request;
struct DAQDRIVE_buffer my_data;

/***** Construct the request structure *****/

my_request.channel_array_ptr = channel_list;
my_request.array_length = 3;
my_request.digio_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = input_values;
my_data.buffer_length = 3;
my_data.next_structure = NULL;
my_data.buffer_status = BUFFER_EMPTY;

Variations on example 1:

1. To change the number of channels from three to eight, re-define channel_list[] and
input_values[] then set

my_request.array_length = 8
my_data.buffer_length = 8

2. To change the trigger mode to a TTL trigger, set
my_request.trigger_source = TTL_TRIGGER
my_request.trigger_slope = RISING_EDGE

3. To enable a time-out if no data is available after 5 seconds, set
my_request.timeout_interval = 5

DAQDRIVE Users Manual 100

7.3.2 Example 2 - Multiple Value Input

Purpose: Input 500 points from a single digital input channel at 1 second intervals.

unsigned short channel_number;
unsigned char input_values[500];

struct digio_request my_request;
struct DAQDRIVE_buffer my_data;

/***** Construct the request structure *****/

my_request.channel_array_ptr = &channel_number;
my_request.array_length = 1;
my_request.digio_buffer = &my_data;
my_request.trigger_source = TTL_TRIGGER;
my_request.trigger_slope = RISING_EDGE;
my_request.IO_mode = BACKGROUND_IRQ;
my_request.clock_source = INTERNAL_CLOCK;
my_request.sample_rate = 1;
my_request.number_of_scans = 500;
my_request.scan_event_level = 0;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = input_values;
my_data.buffer_length = 500;
my_data.next_buffer = NULL;
my_data.buffer_status = BUFFER_EMPTY;

Variations on example 2:

1. To change the number of points from 500 to 650, re-define input_values[] and then
set

my_request.number_of_scans = 650
my_data.buffer_length = 650

2. To notify the application every time 100 scans are complete, set
my_request.scan_event_level = 100

DAQDRIVE Users Manual 101

8 Digital Output Requests

In chapter 3, some special purpose procedures were presented to help the user get familiar
with DAQDRIVE's digital output interface. The key to understanding and utilizing
DAQDRIVE, however, is to understand its request structures. This chapter will present the
digital output request structure and provide examples to illustrate how this structure is
configured for some common applications.

8.1 DaqDigitalOutput

DaqDigitalOutput is DAQDRIVE's digital output interface. Any digital output operation is
possible with the proper configuration of the request structure. The format of the command is
shown below.

unsigned short DaqDigitalOutput (unsigned short logical_device ,
 struct digio_request far *user_request ,
 unsigned short far *request_handle)

DaqDigitalOutput performs the configuration portion of a digital output request. For a new
configuration, the application program sets request_handle to 0 before calling
DaqDigitalOutput. DaqDigitalOutput then analyzes the data structure specified by
user_request to determine if all of the parameters are valid and if the requested operation can
be performed by the device specified by logical_device. If the requested operation is valid,
DaqDigitalOutput assigns request_handle a unique non-zero value. This request handle is
used to identify this request in all future operations.

If the application program modifies the contents of user_request after executing
DaqDigitalOutput, the structure must be verified again. To request re-verification of a
previously approved request, the application executes DaqDigitalOutput with request_handle
set to the value returned by DaqDigitalOutput when the request was first approved. All
parameters except the channel list may be modified after the initial configuration. To modify
the channel list, the existing request must be released (using DaqReleaseRequest) and a new
configuration requested.

DAQDRIVE Users Manual 102

8.2 The Digital Output Request Structure

The power of DaqDigitalOutput lies in the application's ability to modify a single data
structure and execute a single procedure to perform multiple digital output operations. The
elements of the digital output request structure are discussed on the following pages.

struct digio_request
 {
 unsigned short far *channel_array_ptr ;
 unsigned short reserved1[4];
 unsigned short array_length ;
 struct DAQDRIVE_buffer far *digio_buffer ;
 unsigned short reserved2[4];
 unsigned short trigger_source ;
 unsigned short trigger_mode ;
 unsigned short trigger_slope ;
 unsigned short trigger_channel ,
 double trigger_voltage;
 unsigned long trigger_value ;
 unsigned short reserved3[4];
 unsigned short IO_mode ;
 unsigned short clock_source ;
 double clock_rate ;
 double sample_rate ;
 unsigned short reserved4[4];
 unsigned long number_of_scans ;
 unsigned long scan_event_level ;
 unsigned short reserved5[8];
 unsigned short timeout_interval;
 unsigned long request_status ;
 };

IMPORTANT:
1. If the application program modifies the contents of the request structure after

executing DaqDigitalOutput, the updated structure must be re-verified by
DaqDigitalOutput before the request is armed.

2. Once the request is armed using DaqArmRequest, the only field the application can
modify is request_status. All other fields in the request structure must remain
constant until the operation is completed or otherwise terminated.

3. If the request structure is dynamically allocated by the application, it MUST NOT
be de-allocated until the request has been released by the DaqReleaseRequest
procedure. In addition, applications using the Windows version of DAQDRIVE
should use DaqAllocateMemory, DaqAllocateMemory32, or DaqAllocateRequest if
dynamically allocated request structures are required.

DAQDRIVE Users Manual 103

8.2.1 Reserved Fields

The fields reserved1 through reserved5 are provided for expansion of the digital output
request structure in future releases of DAQDRIVE. To maintain maximum compatibility, the
application program should initialize all reserved fields to 0.

8.2.2 Channel Selections

The digital output request structure begins with a list of one or more digital output channels
to be operated on by this request. The application provides the memory address of the first
channel in the list using the channel_array_ptr field and must specify the length of the list in
the array_length field.

8.2.3 Data Buffers

digio_buffer defines the request's data buffer structure(s) containing the data to be output to
the specified channel(s). The application program must define these buffers within the
guidelines provided in chapter 9.

8.2.4 Trigger Selections

The trigger selection determines how the requested operation will be initiated after being
armed. Six fields are required to define and configure the trigger for the request:
trigger_source, trigger_mode, trigger_slope, trigger_channel, trigger_voltage, and
trigger_value. Because the trigger selection is an integral part of the operation and is common
to all of DAQDRIVE's request structures. trigger configurations are discussed separately in
chapter 10.

8.2.5 Data Transfer Modes

The request structure field IO_mode determines the mechanism that will be used to output the
data to the hardware device. In general, the foreground modes provide the highest data
transfer rates at the expense of requiring 100% of the CPU time. In contrast, background
mode operations generally provide lower data transfer rates while allowing the CPU to
perform other tasks.

8.2.5.1 Foreground CPU mode
This mode uses the CPU to output the data to the hardware device. From the moment the
request is triggered, DAQDRIVE uses all of the CPU time and will not return control to the
application program until the request is completed or otherwise terminated.

8.2.5.2 Background IRQ mode
This mode uses interrupts generated by the hardware device to gain control of the CPU to
output the data to the hardware device. DAQDRIVE does not require all of the CPU time in
this mode and returns control of the CPU to the application after the request is triggered.

DAQDRIVE Users Manual 104

8.2.5.3 Foreground DMA mode
This mode uses the DMA controller to output the data to the hardware device while using the
CPU to monitor and control the DMA operation. From the moment the request is triggered,
DAQDRIVE uses all of the CPU time and will not return control to the application program
until the request is completed or otherwise terminated.

8.2.5.4 Background DMA mode
This mode uses the DMA controller to output the data to the hardware device while using
interrupts generated by the hardware device to gain control of the CPU to monitor and control
the DMA operation. DAQDRIVE does not require all of the CPU time in this mode and
returns control of the CPU to the application after the request is triggered.

8.2.6 Clock Sources

The clock_source field is used to define the source of the timing signal for requests containing
multiple data values.

8.2.6.1 Internal Clock
When the clock source field is set for an internal clock, the timing for the request is provided
by the adapter's on-board timer circuitry. The clock_rate field is unused with the internal
clock source and any value provided in the clock_rate field is ignored.

8.2.6.2 External Clock
Setting the clock_source field to external indicates the timing for the request is provided by a
signal input to the adapter as defined by the hardware device. The clock_rate field must be
used to define the frequency of the external clock signal in Hertz.

8.2.7 Sampling Rate

The sampling rate specifies the number of samples / second (Hz) to be output to the hardware
device. The application specifies a desired sampling rate in the sample_rate field of the
request structure. On most hardware devices, only a finite number of sampling rates are
achievable. When DaqDigitalOutput configures a request, the closest available sampling rate
is selected and the sample_rate field is updated with the actual rate at which the data will be
output.

8.2.8 Number Of Scans

The number_of_scans field determines the number of times the channel(s) specified in the
channel list are processed. For example, to output 100 samples to a single digital output
channel, number_of_scans must be set to 100. To output 50 samples each to two digital output
channels (100 points total), number_of_scans is set to 50.

8.2.9 Scan Events

DAQDRIVE generates a scan event each time the number of scans specified by
scan_event_level are completed. For example, if scan_event_level is set to 50, a scan event is

DAQDRIVE Users Manual 105

generated every time the channel array is processed 50 times. DAQDRIVE events are
discussed in detail in chapter 11.

8.2.10 Time-out

The timeout_interval field is used primarily during foreground mode operations to instruct
DAQDRIVE when to abandon the processing of a request. When DAQDRIVE has control of
the CPU and is waiting for an event to occur (i.e. waiting for a trigger or waiting for the
digital output channel to become ready), DAQDRIVE will wait timeout_interval seconds and
if the event has not occurred, the request will be aborted.

8.2.11 Request Status

The request_status field provides a mechanism for the application to monitor the state of a
request. The request status is an integral part of DAQDRIVE's event mechanisms and is
discussed in detail in chapter 11.

DAQDRIVE Users Manual 106

8.3 Digital Output Examples

8.3.1 Example 1 - Single Value Output

Purpose: Output a single value to each of two digital output channels.

unsigned short channel_list[] = { 1, 0 };
unsigned char output_values[] = { 0, 255 };

struct digio_request my_request;
struct DAQDRIVE_buffer my_data;

/***** Construct the request structure *****/

my_request.channel_array_ptr = channel_list;
my_request.array_length = 2;
my_request.digio_buffer = &my_data;
my_request.trigger_source = INTERNAL_TRIGGER;
my_request.IO_mode = FOREGROUND_CPU;
my_request.number_of_scans = 1;
my_request.scan_event_level = 0;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = output_values;
my_data.buffer_length = 2;
my_data.buffer_cycles = 1;
my_data.next_structure = NULL;
my_data.buffer_status = BUFFER_FULL;

Variations on example 1:

1. To change the number of channels from two to three, re-define channel_list[] and
output_values[] then set

my_request.array_length = 3
my_data.buffer_length = 3

2. To change the trigger mode to a TTL trigger, set
my_request.trigger_source = TTL_TRIGGER
my_request.trigger_slope = FALLING_EDGE

DAQDRIVE Users Manual 107

8.3.2 Example 2 - Simple Pattern Generation

Purpose: Output 100 cycles of a digital pattern defined with 128 points per cycle with 10ms
between samples.

unsigned short channel_number;
unsigned char pattern[128];

struct digio_request my_request;
struct DAQDRIVE_buffer my_data;

/***** Assume data values have been calculated *****/
/***** and stored in pattern[] *****/

/***** Construct the request structure *****/

my_request.channel_array_ptr = &channel_number;
my_request.array_length = 1;
my_request.digio_buffer = &my_data;
my_request.trigger_source = EXTERNAL_TRIGGER;
my_request.trigger_slope = RISING_EDGE;
my_request.IO_mode = BACKGROUND_IRQ;
my_request.clock_source = INTERNAL_CLOCK;
my_request.sample_rate = 100;
my_request.number_of_scans = 100 * 128;
my_request.scan_event_level = 0;
my_request.timeout_interval = 0;
my_request.request_status = NO_EVENTS;

/***** Construct the data buffer structure *****/

my_data.data_buffer = pattern;
my_data.buffer_length = 128;
my_data.buffer_cycles = 100;
my_data.next_buffer = NULL;
my_data.buffer_status = BUFFER_FULL;

Variations on example 2:

1. To change the number of points from 128 to 64, re-define pattern[] and then set
my_request.number_of_scans = 100 * 64
my_data.buffer_length = 64

2. To change the number of cycles from 100 to 800, set
my_request.number_of_scans = 800 * 128
my_data.buffer_cycles = 800

DAQDRIVE Users Manual 108

9 Defining Data Buffers

DAQDRIVE's data buffers are defined as structures containing the buffer configuration and a
pointer to the data storage area. This allows multiple data buffers to be defined as each buffer
is completely self-contained.

struct DAQDRIVE_buffer
 {
 unsigned short buffer_status ;
 void huge *data_buffer ;
 unsigned long buffer_length ;
 unsigned long buffer_cycles ;
 struct DAQDRIVE_buffer far *next_structure ;
 };

buffer_status - This unsigned short integer value is used to monitor / control the current
state of the data buffer. buffer_status is defined for both input operations
(see figure 4) and output operations (see figure 5).

data_buffer - This void huge pointer specifies the address of the actual input / output data
buffer. data_buffer is declared as a void to allow it to point to data of any
type. It is the application program's responsibility to ensure the data pointed
to by data_buffer is correct for the request type and the target hardware as
listed in the tables below.

signed longbipolar

unsigned longunipolar17 to 32 bits

signed shortbipolar

unsigned shortunipolar9 to 16 bits

signed charbipolar

unsigned charunipolar1 to 8 bitsA/D or D/A

data typeConfigurationResolutionRequest type

unsigned long17 to 32 bits

unsigned short9 to 16 bits

unsigned char1 to 8 bitsdigital input or
digital output

data typeChannel size (in bits)Request type

buffer_length - This unsigned long integer value defines the length of data_buffer in units of
"number-of-points". Each data buffer must be large enough to hold at least 1
point for every channel in the channel list. Therefore buffer_length must be
greater than 0.

DAQDRIVE Users Manual 109

buffer_cycles - This unsigned long integer value is used during output operations (D/A,
digital output) only to define the number of times the data in this structure is
processed before continuing on to the next_structure. Setting buffer_cycles =
0 causes the data in this buffer to be processed continuously (next_structure
will never be accessed). buffer_cycles is undefined for input operations and
any value in this field will be ignored.

next_structure - This structure pointer is used to connect multiple data buffers for larger
acquisition requests. When the data buffer associated with this structure has
been filled (or emptied), DAQDRIVE will switch to the structure pointed to
by next_structure and continue the operation using the new structure's data
buffer. next_buffer is set to NULL if there are no more structures in the
chain.

IMPORTANT:
1. Once the request is armed using DaqArmRequest, the application program must

obey the rules defined in figures 4 and 5 for accessing the buffer structures and data
buffers at run-time. These rules apply until the operation is completed or otherwise
terminated.

2. If the buffer structures or the data buffers are dynamically allocated by the
application, they MUST NOT be de-allocated until the request is completed or
otherwise terminated. In addition, applications using the Windows version of
DAQDRIVE should use DaqAllocateMemory, DaqAllocateMemory32 or
DaqAllocateRequest if dynamically allocated buffer structures or data buffers are
required.

DAQDRIVE Users Manual 110

BUFFER_EMPTY indicates the data buffer associated with this structure is empty.

The application must set BUFFER_EMPTY to 1 to inform DAQDRIVE that the data buffer
is ready for input. After the application sets BUFFER_EMPTY and arms the request, it
MUST NOT modify the contents of the DAQDRIVE_buffer structure or the associated
data buffer until DAQDRIVE sets BUFFER_FULL to 1 or until the operation is halted
(this includes modifying BUFFER_EMPTY).

DAQDRIVE clears BUFFER_EMPTY to 0 when the first data value is transferred into the
buffer and will report a buffer over-run error if a data buffer is encountered that does not
have the BUFFER_EMPTY bit set. DAQDRIVE will never set BUFFER_EMPTY during
input operations.

BUFFER_EMPTY0x00021

BUFFER_FULL indicates the data buffer associated with this structure is full.

DAQDRIVE sets BUFFER_FULL to 1 after the last value is transferred into the data
buffer. Once BUFFER_FULL is set, DAQDRIVE will not operate on this buffer again
unless BUFFER_EMPTY is re-set to 1 by the application program. DAQDRIVE will never
clear BUFFER_FULL during input operations.

The application program may use BUFFER_FULL to determine when a data buffer may
be safely accessed. After the application sets BUFFER_EMPTY and arms the request, it
MUST NOT modify the contents of the DAQDRIVE_buffer structure or the associated
data buffer until DAQDRIVE sets BUFFER_FULL to 1 or until the operation is halted.
The application may clear BUFFER_FULL at any time.

BUFFER_FULL0x00010

DescriptionDAQDRIVE constantValueBit

buffer_status - INPUT OPERATIONS

Figure 4. buffer_status definition for input operations (A/D and digital input).

BUFFER_EMPTY indicates the data buffer associated with this structure is empty.

DAQDRIVE sets BUFFER_EMPTY to 1 after the last value is removed from the data
buffer. Once BUFFER_EMPTY is set, DAQDRIVE will not operate on this buffer again
unless BUFFER_FULL is re-set to 1 by the application program. DAQDRIVE will never
clear BUFFER_EMPTY during output operations.

The application program may use BUFFER_EMPTY to determine when a data buffer may
be safely accessed. After the application sets BUFFER_FULL and arms the request, it
MUST NOT modify the contents of the DAQDRIVE_buffer structure or the associated
data buffer until DAQDRIVE sets BUFFER_EMPTY to 1 or until the operation is halted.
The application may clear BUFFER_EMPTY at any time.

BUFFER_EMPTY0x00021

BUFFER_FULL indicates the data buffer associated with this structure is full.

The application must set BUFFER_FULL to 1 to inform DAQDRIVE that the data buffer is
ready for output. After the application sets BUFFER_FULL and arms the request, it
MUST NOT modify the contents of the DAQDRIVE_buffer structure or the associated
data buffer until DAQDRIVE sets BUFFER_EMPTY to 1 or until the operation is halted
(this includes modifying BUFFER_FULL).

DAQDRIVE clears BUFFER_FULL to 0 when the first data value is removed from the
buffer and will report a buffer under-run error if a data buffer is encountered that does
not have BUFFER_FULL bit set. DAQDRIVE will never set BUFFER_FULL during output
operations.

BUFFER_FULL0x00010

DescriptionDAQDRIVE constantValueBit

buffer_status - OUTPUT OPERATIONS

Figure 5. buffer_status definition for output operations (D/A and digital output).

DAQDRIVE Users Manual 111

9.1 Multiple Channel Operations

When defining a data buffer for single channel operations, the data buffer is simply an array
of values and is stored in system memory in continuous, increasing memory locations. For
example, if an application requests 10 samples from a single analog input channel, the
application must declare an array to hold the ten values

short array[10];

This array appears in system memory as

array[0], array[1], array[2], ..., array[9]

When DAQDRIVE is acquiring the data, however, it does not view this memory as an array
but simply as a data buffer. For this single channel example, DAQDRIVE would place the
following information in the data buffer

sample1, sample2, sample3, ..., sample10

which the application views as

array[0] = sample1
array[1] = sample2
array[2] = sample3

:
:

array[9] = sample10

As mentioned above, DAQDRIVE views the memory as a data buffer and not as an array. If
this same buffer was used to acquire 5 samples from each of two A/D channels, DAQDRIVE
would place the following data in the buffer

chan1, chan2, chan1, chan2, ..., chan1, chan2

which the application would view as

array[0] = chan1 (sample #1)
array[1] = chan2 (sample #1)
array[2] = chan1 (sample #2)
array[3] = chan2 (sample #2)

:
:

array[8] = chan1 (sample #5)
array[9] = chan2 (sample #5)

Obviously, as the number of channels increases, it becomes more difficult to determine the
correlation between the channel number and the value.

DAQDRIVE Users Manual 112

One solution to this problem is to use two-dimensional arrays. Re-defining the array of the
previous example to

short array[5][2];

does not change the size of the data buffer. The array now appears in memory as

array[0][0], array[0][1], ..., array[4][0], array[4][1]

and after DAQDRIVE loads the data into the buffer, the application views the data as

array[0][0] = chan1 (sample #1)
array[0][1] = chan2 (sample #1)
array[1][0] = chan1 (sample #2)
array[1][1] = chan2 (sample #2)

:
:

array[4][0] = chan1 (sample #5)
array[4][1] = chan2 (sample #5)

In general terms, the array may be defined as

array[sample_number][channel_number];

Although the previous examples only illustrated the definition of data buffers for input
operations, it should be noted that all DAQDRIVE requests implement the same buffer
structure and therefore all output data buffers must be defined accordingly.

DAQDRIVE Users Manual 113

9.2 Input Operation Examples

9.2.1 Example 1: Single Channel Analog Input

An example of a simple input operation is to acquire 100 samples from a single A/D channel.
To perform this operation, the application must first allocate enough memory to hold 100
samples. Assuming a 12-bit A/D converter operating in bipolar mode, the samples are each
size "short". Therefore, the memory allocation may be done as simply as

short input_data[100];

The next step is to allocate and configure a DAQDRIVE_buffer structure. data_buffer is set to
point to the array defined above. Its length is 100 points and there are no other structures so
next_structure is set to NULL.

struct DAQDRIVE_buffer my_ADC_data;

my_ADC_data.data_buffer = input_data;
my_ADC_data.buffer_length = 100;
my_ADC_data.next_structure = NULL;

The next step is to allocate and configure an ADC_request structure. The ADC_request
structure is beyond the scope of this chapter and will not be discussed here except for the
ADC_buffer and number_of_scans fields which directly relate to the data structure
configuration. For this example, ADC_buffer is set to point to our DAQDRIVE_buffer
structure and the number_of_scans is set to 100 scans (1 channel / scan).

struct ADC_request my_ADC_request;

my_ADC_request.ADC_buffer = my_ADC_data;
my_ADC_request.number_of_scans = 100;

The final step is to set the BUFFER_EMPTY status in the buffer_status field. Once
BUFFER_EMPTY is set and the request is armed, the application must not modify
my_ADC_data or input_data until BUFFER_FULL is set or until the operation is terminated.

my_ADC_data.buffer_status = BUFFER_EMPTY;

DAQDRIVE Users Manual 114

9.2.2 Example 2: Multi-Channel Analog Input

The purpose of this example is to input 500 samples each from three analog input channels.
To perform this operation, the application must first allocate enough memory to hold 1500 (3 *
500) samples. Assuming a 16-bit A/D converter operating in unipolar mode, the samples are
each size "unsigned short". Therefore, the memory allocation may be done as simply as

unsigned short input_data[1500];

The next step is to allocate and configure a DAQDRIVE_buffer structure. data_buffer is set to
point to the array defined above. Its length is 1500 points and there are no other structures so
next_structure is set to NULL.

struct DAQDRIVE_buffer my_ADC_data;

my_ADC_data.data_buffer = input_data;
my_ADC_data.buffer_length = 1500;
my_ADC_data.next_structure = NULL;

The next step is to allocate and configure an ADC_request structure. The ADC_request
structure is beyond the scope of this chapter and will not be discussed here except for the
ADC_buffer and number_of_scans fields which directly relate to the data structure
configuration. For this example, ADC_buffer is set to point to our DAQDRIVE_buffer
structure and the number_of_scans is set to 500 scans (3 channels / scan).

struct ADC_request my_ADC_request;

my_ADC_request.ADC_buffer = my_ADC_data;
my_ADC_request.number_of_scans = 500;

The final step is to set the BUFFER_EMPTY status in the buffer_status field. Once
BUFFER_EMPTY is set and the request is armed, the application must not modify
my_ADC_data or input_data until BUFFER_FULL is set or until the operation is terminated.

my_ADC_data.buffer_status = BUFFER_EMPTY;

DAQDRIVE Users Manual 115

9.2.3 Example 3: Using Multiple Data Buffers

The purpose of this example is to use multiple data buffers to input 25,000 samples from a
single analog input channel. The application could allocate a single 25,000 sample buffer but
for this example will allocate one 10,000 sample buffer and one 15,000 sample buffer.
Assuming a 12-bit A/D converter operating in unipolar mode, the samples are each size
"unsigned short".

unsigned short input_data0[10000];
unsigned short input_data1[15000];

The next step is to allocate and configure two DAQDRIVE_buffer structures. The data_buffer
fields are set to point to the arrays defined above and the buffer_length fields are set
accordingly. The first structure has its next_structure field set to point to the second structure.
The second structure has its next_structure field set to NULL.

struct DAQDRIVE_buffer my_ADC_data[2];

my_ADC_data[0].data_buffer = input_data0;
my_ADC_data[0].buffer_length = 10000;
my_ADC_data[0].next_structure = &my_ADC_data[1];

my_ADC_data[1].data_buffer = input_data1;
my_ADC_data[1].buffer_length = 15000;
my_ADC_data[1].next_structure = NULL;

The next step is to allocate and configure an ADC_request structure. The ADC_request
structure is beyond the scope of this chapter and will not be discussed here except for the
ADC_buffer and number_of_scans fields which directly relate to the data structure
configuration. For this example, ADC_buffer is set to point to our first DAQDRIVE_buffer
structure and the number_of_scans is set to 25,000 scans (1 channel / scan).

struct ADC_request my_ADC_request;

my_ADC_request.ADC_buffer = my_ADC_data;
my_ADC_request.number_of_scans = 25000;

The final step is to set the BUFFER_EMPTY status in the buffer_status fields. Once
BUFFER_EMPTY is set and the request is armed, the application must not modify the
DAQDRIVE_buffer structures or the associated input data buffers until BUFFER_FULL is set
or until the operation is terminated.

my_ADC_data[0].buffer_status = BUFFER_EMPTY;

my_ADC_data[1].buffer_status = BUFFER_EMPTY;

DAQDRIVE Users Manual 116

9.2.4 Example 4: Acquiring Large Amounts Of Data

The purpose of example 4 is to illustrate one way to acquire large amounts of data using
relatively small amounts of memory. If, for example, an application wants to input 100,000
samples from each of 5 analog input channels using a 12-bit A/D converter operating in
unipolar mode, the samples are each size "unsigned short" and 500,000 samples would require
1 Megabyte of memory. This example will acquire the 500,000 samples using only 40K of
memory. The first step is to allocate two buffers with 10,000 points each.

unsigned short input_data0[10000];
unsigned short input_data1[10000];

The next step is to allocate and configure two DAQDRIVE_buffer structures. The data_buffer
fields are set to point to the arrays defined above and the buffer_length fields are set
accordingly. The first structure has its next_structure field set to point to the second structure.
The second structure has its next_structure field set to point to the first structure forming a
circular buffer.

struct DAQDRIVE_buffer my_ADC_data[2];

my_ADC_data[0].data_buffer = input_data0;
my_ADC_data[0].buffer_length = 10000;
my_ADC_data[0].next_structure = &my_ADC_data[1];

my_ADC_data[1].data_buffer = input_data1;
my_ADC_data[1].buffer_length = 10000;
my_ADC_data[1].next_structure = &my_ADC_data[0];

The next step is to allocate and configure an ADC_request structure. The ADC_request
structure is beyond the scope of this chapter and will not be discussed here except for the
ADC_buffer and number_of_scans fields which directly relate to the data structure
configuration. For this example, ADC_buffer is set to point to our first DAQDRIVE_buffer
structure and the number_of_scans is set to 100,000 scans (5 channel / scan).

struct ADC_request my_ADC_request;

my_ADC_request.ADC_buffer = my_ADC_data;
my_ADC_request.number_of_scans = 100000;

The key to acquiring 500,000 samples with only enough buffer space to hold 20,000 samples is
in the use of the BUFFER_FULL and BUFFER_EMPTY bits. Before arming the request, the
BUFFER_EMPTY bits in the buffer_status fields are set

my_ADC_data[0].buffer_status = BUFFER_EMPTY;
my_ADC_data[1].buffer_status = BUFFER_EMPTY;

The application may not modify the DAQDRIVE_buffer structures or the data buffers until the
operation is halted or until DAQDRIVE sets the BUFFER_FULL bit. If this is a background
operation, the application may sit in a loop waiting for BUFFER_FULL and processing each
buffer as it becomes available.

DAQDRIVE Users Manual 117

 // wait in dead loop until buffer 0 is full

 while((my_ADC_data[0].buffer_status & BUFFER_FULL) == 0);

 // buffer 0 is full. process data, clear BUFFER_FULL, and re-set BUFFER_EMPTY

 my_ADC_data[0].buffer_status = BUFFER_EMPTY;

 // wait in dead loop until buffer 1 is full

 while((my_ADC_data[1].buffer_status & BUFFER_FULL) == 0);

 // buffer 1 is full. process data, clear BUFFER_FULL, and re-set BUFFER_EMPTY

 my_ADC_data[1].buffer_status = BUFFER_EMPTY;

 // repeat until 500,000 samples are processed

Another option for background mode operations is to monitor the BUFFER_FULL_EVENT bit
in the request_status field of the ADC_request structure. The application may assume the
BUFFER_FULL bit is set before the BUFFER_FULL_EVENT is generated and that the
application may safely access the data buffer.

 // wait in dead loop until a buffer is full

 while((my_ADC_request.request_status & BUFFER_FULL_EVENT)==0);

 // a buffer is full. determine which buffer, process the
 // data, clear BUFFER_FULL, and re-set BUFFER_EMPTY

 if((my_ADC_data[0].buffer_status & BUFFER_FULL) != 0)
 {
 // process buffer 0

 my_ADC_data[0].buffer_status = BUFFER_EMPTY;
 }
 else
 {
 // process buffer 1

 my_ADC_data[1].buffer_status = BUFFER_EMPTY;
 }

 // repeat until 500,000 samples are processed

Another option for background mode operations, and the only option available for
foreground mode operations, is to use the event notification procedure DaqNotifyEvent. The
idea of event notification is that DAQDRIVE will execute a user-supplied procedure each time
an event occurs. This mechanism can be used to process a data buffer on each occurrence of
the BUFFER_FULL_EVENT. The details of event notification are beyond the scope of this
chapter but are discussed in chapter 11.

The methods shown in example 4 will work only if the application can process the data and
re-set BUFFER_EMPTY before DAQDRIVE tries to access that buffer again. If DAQDRIVE

DAQDRIVE Users Manual 118

tries to access a buffer in which the BUFFER_EMPTY bit has not been set, a buffer over-run
error will occur.

9.3 Output Operation Examples

9.3.1 Example 1: Single Channel Analog Output

An example of a simple output operation is to write 100 samples to a single D/A channel. To
perform this operation, the application must first allocate enough memory to hold 100
samples. Assuming a 12-bit D/A converter operating in bipolar mode, the samples are each
size "short". Therefore, the memory allocation may be done as simply as

short output_data[100];

The next step is to allocate and configure a DAQDRIVE_buffer structure. data_buffer is set to
point to the array defined above. Its length is 100 points, the buffer will be processed only
once (buffer_cycles = 1), and there are no other structures so next_structure is set to NULL.

struct DAQDRIVE_buffer my_DAC_data;

my_DAC_data.data_buffer = output_data;
my_DAC_data.buffer_length = 100;
my_DAC_data.buffer_cycles = 1;
my_DAC_data.next_structure = NULL;

The next step is to allocate and configure a DAC_request structure. The DAC_request
structure is beyond the scope of this chapter and will not be discussed here except for the
DAC_buffer and number_of_scans fields which directly relate to the data structure
configuration. For this example, DAC_buffer is set to point to our DAQDRIVE_buffer
structure and the number_of_scans is set to 100 scans (1 channel / scan).

struct DAC_request my_DAC_request;

my_DAC_request.DAC_buffer = my_DAC_data;
my_DAC_request.number_of_scans = 100;

The final step is to set the BUFFER_FULL status in the buffer_status field. Once
BUFFER_FULL is set and the request is armed, the application must not modify
my_DAC_data or output_data until BUFFER_EMPTY is set or until the operation is
terminated.

my_DAC_data.buffer_status = BUFFER_FULL;

DAQDRIVE Users Manual 119

9.3.2 Example 2: Creating Repetitive Signals

In example 1, 100 samples were output to a single D/A channel. If these 100 points represent
a sinewave and the desired output is 250 cycles of this sinewave, the application could allocate
25,000 (250 * 100) points, calculate 250 cycles of the sinewave, and output 25,000 points to the
D/A. A simpler approach is to change the configuration as shown below (the original values
from example 1 are shown in the comments).

short output_data[100];

struct DAQDRIVE_buffer my_DAC_data;

my_DAC_data.data_buffer = output_data;
my_DAC_data.buffer_length = 100;
my_DAC_data.buffer_cycles = 250; /* was = 1 */
my_DAC_data.next_structure = NULL;

struct DAC_request my_DAC_request;

my_DAC_request.DAC_buffer = my_DAC_data;
my_DAC_request.number_of_scans = 25000; /* was = 100 */

my_DAC_data.buffer_status = BUFFER_FULL;

By changing the number_of_scans to 25,000, the application is instructing DAQDRIVE to
output 25,000 samples to the D/A channel. In order to generate these 25,000 points, however,
the application is also instructing DAQDRIVE to process the data buffer 250 times
(buffer_cycles = 250). The result is that the 100 points contained in the data buffer will be
output to the D/A converter 250 times producing the equivalent of a 25,000 point data buffer
containing 250 cycles of the sinewave.

NOTE:
In this example, setting buffer_cycles = 250 effectively created a
25,000 point data buffer. Setting buffer_cycles = 300 would
have effectively created a 30,000 point data buffer. Had a
30,000 point data buffer been used with number_of_scans set to
25,000, the result would be the same except the
BUFFER_EMPTY bit would not have been set since all 30,000
points were not output to the D/A.

DAQDRIVE Users Manual 120

9.3.3 Example 3: Multi-Channel Analog Output

The purpose of this example is to output 500 samples each to three analog output channels.
To perform this operation, the application must first allocate enough system memory to hold
1500 (3 * 500) samples. Assuming a 12-bit D/A converter operating in unipolar mode, the
samples are each size "unsigned short". Therefore, the memory allocation may be done as
simply as

unsigned short output_data[1500];

The next step is to allocate and configure a DAQDRIVE_buffer structure. data_buffer is set to
point to the array defined above. Its length is 1500 points, the buffer will be processed only
once (buffer_cycles = 1), and there are no other structures so next_structure is set to NULL.

struct DAQDRIVE_buffer my_DAC_data;

my_DAC_data.data_buffer = output_data;
my_DAC_data.buffer_length = 1500;
my_DAC_data.buffer_cycles = 1;
my_DAC_data.next_structure = NULL;

The next step is to allocate and configure a DAC_request structure. The DAC_request
structure is beyond the scope of this chapter and will not be discussed here except for the
DAC_buffer and number_of_scans fields which directly relate to the data structure
configuration. For this example, DAC_buffer is set to point to our DAQDRIVE_buffer
structure and the number_of_scans is set to 500 scans (3 channels / scan).

struct DAC_request my_DAC_request;

my_DAC_request.DAC_buffer = my_DAC_data;
my_DAC_request.number_of_scans = 500;

The final step is to set the BUFFER_FULL status in the buffer_status field. Once
BUFFER_FULL is set and the request is armed, the application must not modify
my_DAC_data or output_data until BUFFER_EMPTY is set or until the operation is
terminated.

my_DAC_data.buffer_status = BUFFER_FULL;

DAQDRIVE Users Manual 121

9.3.4 Example 4: Using Multiple Data Buffers

The purpose of this example is to use multiple data buffers to output 4,000 points each to two
analog output channels. The application could allocate a single 8,000 (2* 4000) sample buffer
but for this example will allocate one 5,000 sample buffer and one 3,000 sample buffer.
Assuming a 12-bit D/A converter operating in unipolar mode, the samples are each size
"unsigned short".

unsigned short output_data0[5000];
unsigned short output_data1[3000];

The next step is to allocate and configure two DAQDRIVE_buffer structures. The data_buffer
fields are set to point to the arrays defined above and the buffer_length fields are set
accordingly. The first structure has its next_structure field set to point to the second structure.
The second structure has its next_structure field set to NULL.

struct DAQDRIVE_buffer my_DAC_data[2];

my_DAC_data[0].data_buffer = output_data0;
my_DAC_data[0].buffer_length = 5000;
my_DAC_data[0].buffer_cycles = 1;
my_DAC_data[0].next_structure = &my_DAC_data[1];

my_DAC_data[1].data_buffer = output_data1;
my_DAC_data[1].buffer_length = 3000;
my_DAC_data[1].buffer_cycles = 1;
my_DAC_data[1].next_structure = NULL;

The next step is to allocate and configure a DAC_request structure. The DAC_request
structure is beyond the scope of this chapter and will not be discussed here except for the
DAC_buffer and number_of_scans fields which directly relate to the data structure
configuration. For this example, DAC_buffer is set to point to our first DAQDRIVE_buffer
structure and number_of_scans is set to 4,000 scans (2 channels / scan).

struct DAC_request my_DAC_request;

my_DAC_request.DAC_buffer = my_DAC_data;
my_DAC_request.number_of_scans = 4000;

The final step is to set the BUFFER_EMPTY status in the buffer_status fields. Once
BUFFER_EMPTY is set and the request is armed, the application must not modify the
DAQDRIVE_buffer structures or the associated input data buffers until BUFFER_FULL is set
or until the operation is terminated.

my_DAC_data[0].buffer_status = BUFFER_EMPTY;
my_DAC_data[1].buffer_status = BUFFER_EMPTY;

DAQDRIVE Users Manual 122

9.3.5 Example 5: Creating Complex Output Patterns

Combining the ideas of example 2 and example 4, the application of example 5 wants to
output 50 cycles of a sinewave containing 360 samples, 45 cycles of a square wave containing 2
samples, and 75 cycles of a triangle wave containing 30 samples. Assuming a 12-bit D/A
converter operating in bipolar mode, the following arrays are defined

short sine[360];
short square[2];
short triangle[30];

The next step is to allocate and configure three DAQDRIVE_buffer structures. The
data_buffer fields are set to point to the arrays defined above and the buffer_length fields are
set accordingly. The first structure has its next_structure field set to point to the second
structure. The second structure has its next_structure field set to point to the third structure,
and the third structure has its next_structure field set to NULL since it is the last structure in
the chain.

struct DAQDRIVE_buffer my_DAC_data[3];

my_DAC_data[0].data_buffer = sine;
my_DAC_data[0].buffer_length = 360;
my_DAC_data[0].buffer_cycles = 50;
my_DAC_data[0].next_structure = &my_DAC_data[1];

my_DAC_data[1].data_buffer = square;
my_DAC_data[1].buffer_length = 2;
my_DAC_data[1].buffer_cycles = 45;
my_DAC_data[1].next_structure = &my_DAC_data[2];

my_DAC_data[2].data_buffer = triangle;
my_DAC_data[2].buffer_length = 30;
my_DAC_data[2].buffer_cycles = 75;
my_DAC_data[2].next_structure = NULL;

The next step is to allocate and configure a DAC_request structure. The DAC_request
structure is beyond the scope of this chapter and will not be discussed here except for the
DAC_buffer and number_of_scans fields which directly relate to the data structure
configuration. For this example, DAC_buffer is set to point to our first DAQDRIVE_buffer
structure and the number_of_scans is defined as follows

number_of_scans = number_of_samples / samples_per_scan
= 50 cycles * 360 samples / cycle (sine)
+ 45 cycles * 2 samples / cycle (square)
+ 75 cycles * 30 samples / cycle (triangle)
= 20,340 samples / (1 sample / scan)
= 20,340 scans

struct DAC_request my_DAC_request;

my_DAC_request.DAC_buffer = my_DAC_data;
my_DAC_request.number_of_scans = 20340;

DAQDRIVE Users Manual 123

The final step is to set the BUFFER_EMPTY status in the buffer_status fields. Once
BUFFER_EMPTY is set and the request is armed, the application must not modify the
DAQDRIVE_buffer structures or the associated input data buffers until BUFFER_FULL is set
or until the operation is terminated.

my_DAC_data[0].buffer_status = BUFFER_EMPTY;
my_DAC_data[1].buffer_status = BUFFER_EMPTY;
my_DAC_data[2].buffer_status = BUFFER_EMPTY;

Variations on example 5
1. To execute only the sinewave portion of the buffers, simply change

number_of_scans to 50 * 360
my_DAC_request.number_of_scans = 18000;

2. To change the square wave portion of the output from 45 cycles to 300 cycles,
change the corresponding buffer_cycles to 300 and number_of_scans to
(50 * 360) + (300 * 2) + (30 * 75)

my_DAC_data[1].buffer_cycles = 300;
my_DAC_request.number_of_scans = 20850;

3. If the triangle wave is redefined to have 60 samples, change the corresponding
buffer_length to 60 and number_of_scans to (50 * 360) + (45 * 2) + (75 * 60)

my_DAC_data[2].buffer_length = 60;

my_DAC_request.number_of_scans = 22590;

DAQDRIVE Users Manual 124

9.3.6 Example 6: Outputting Large Amounts Of Data

The multiple buffer operation of example 4 can be extended for the application that needs to
output large numbers of points. Assume 500,000 points need to be read from a file and output
to a 12-bit D/A converter. If all of the samples are input from the file at once, 1 Megabyte of
memory would be required to hold the data. An alternative solution may be to allocate two
buffers with 25,000 points each.

unsigned short output_data0[25000];
unsigned short output_data1[25000];

The next step is to allocate and configure two DAQDRIVE_buffer structures. The data_buffer
fields are set to point to the arrays defined above and the buffer_length fields are set
accordingly. The first structure has its next_structure field set to point to the second structure.
The second structure has its next_structure field set to point to the first structure forming a
circular buffer.

struct DAQDRIVE_buffer my_DAC_data[2];

my_DAC_data[0].data_buffer = output_data0;
my_DAC_data[0].buffer_length = 25000;
my_DAC_data[0].buffer_cycles = 1;
my_DAC_data[0].next_structure = &my_DAC_data[1];

my_DAC_data[1].data_buffer = output_data1;
my_DAC_data[1].buffer_length = 25000;
my_DAC_data[1].buffer_cycles = 1;
my_DAC_data[1].next_structure = &my_DAC_data[0];

The next step is to allocate and configure a DAC_request structure. The DAC_request
structure is beyond the scope of this chapter and will not be discussed here except for the
DAC_buffer and number_of_scans fields which directly relate to the data structure
configuration. For this example, DAC_buffer is set to point to our first DAQDRIVE_buffer
structure and number_of_scans is set to 500,000 scans (1 channel / scan).

struct DAC_request my_DAC_request;

my_DAC_request.DAC_buffer = my_DAC_data;
my_DAC_request.number_of_scans = 500000;

The key to processing 500,000 samples with only enough buffer space to hold 50,000 samples
is in the use of the BUFFER_FULL and BUFFER_EMPTY bits. Before arming the request, the
BUFFER_FULL bits in the buffer_status fields are set

my_DAC_data[0].buffer_status = BUFFER_FULL;
my_DAC_data[1].buffer_status = BUFFER_FULL;

The application may not modify the DAQDRIVE_buffer structures or the data buffers until the
operation is halted or until DAQDRIVE sets the BUFFER_EMPTY bit. If this is a background
operation, the application may sit in a loop waiting for BUFFER_EMPTY and re-filling each
buffer as it becomes available.

DAQDRIVE Users Manual 125

 // wait in dead loop until buffer 0 is empty

 while((my_DAC_data[0].buffer_status & BUFFER_EMPTY) == 0);

 // buffer 0 is empty. re-fill buffer, clear BUFFER_EMPTY and re-set BUFFER_FULL

 my_DAC_data[0].buffer_status = BUFFER_FULL;

 // wait in dead loop until buffer 1 is empty

 while((my_DAC_data[1].buffer_status & BUFFER_EMPTY) == 0);

 // buffer 1 is empty. re-fill buffer, clear BUFFER_EMPTY and re-set BUFFER_FULL

 my_DAC_data[1].buffer_status = BUFFER_FULL;

 // repeat until 500,000 samples are processed

Another option for background mode operations is to monitor the BUFFER_EMPTY_EVENT
bit in the DAC_request structure's request_status field. The application may assume the
BUFFER_EMPTY bit is set before the BUFFER_EMPTY_EVENT is generated and that the
application may safely access the data buffer.

 // wait in dead loop for BUFFER_EMPTY_EVENT

 while((my_DAC_request.request_status & BUFFER_EMPTY_EVENT)==0);

 // a buffer is empty. determine which buffer, re-fill the
 // buffer, clear BUFFER_EMPTY, and re-set BUFFER_FULL

 if((my_DAC_data[0].buffer_status & BUFFER_EMPTY) != 0)
 {
 // re-fill buffer 0

 my_DAC_data[0].buffer_status = BUFFER_FULL;
 }
 else
 {
 // re-fill buffer 1

 my_DAC_data[1].buffer_status = BUFFER_FULL;
 }

 // repeat until 500,000 samples are processed

Another option for background mode operations, and the only option available for
foreground mode operations, is to use the event notification procedure DaqNotifyEvent. The
idea of event notification is that DAQDRIVE will execute a user-supplied procedure each time
an event occurs. This mechanism can be used to re-fill the data buffers on each occurrence of
the BUFFER_EMPTY_EVENT. The details of event notification are beyond the scope of this
chapter but are discussed in chapter 11. The methods shown in example 5 will work only if
the application can process the data and re-set BUFFER_FULL before DAQDRIVE tries to
access that buffer again. If DAQDRIVE tries to access a buffer in which the BUFFER_FULL bit
has not been set, a buffer under-run error will occur.

DAQDRIVE Users Manual 126

10 Trigger Selections

Once a request has been configured and armed, the trigger determines when the requested
operation will begin. A summary of available trigger sources and their required parameters is
shown in figure 6 below.

xxdigital

xxxanalog

xTTL

internal

ValueVoltageChannelSlopeSource

Figure 6. Summary of DAQDRIVE trigger sources and parameters.

10.1 Trigger Sources

When a request is configured, the application program must specify a trigger source in the
request structure. Depending on which trigger is specified, additional trigger related fields in
the structure may also be required (see figure 6). When these additional settings are not
required, any value provided in the field is ignored.

10.1.1 Internal Trigger

The simplest trigger source is an internal trigger, also referred to as a software trigger. To
generate an internal trigger, the application program must execute the DaqTriggerRequest
procedure. The internal trigger source does not require any additional configuration
parameters and any values provided in these fields are ignored.

10.1.2 TTL Trigger

The TTL trigger is a specific TTL input to the hardware device that is designated by the
adapter as a trigger input. When the TTL trigger source is selected, the trigger slope must also
be defined as either rising edge, requiring a low-to-high transition of the trigger signal, or
falling edge, requiring a high-to-low transition of the trigger signal. The trigger channel,
trigger voltage, and trigger value settings are not required and any values provided in these
fields is ignored.

10.1.3 Analog Trigger

The analog trigger source allows a request to be initiated by an analog input voltage level.
When the analog trigger is selected, the application must specify the voltage required to
generate the trigger and the analog input channel to be monitored for this trigger voltage. In
addition, the trigger slope must be specified as either rising edge, the voltage must transition
from below the trigger voltage to above the trigger voltage, or falling edge, the voltage must

DAQDRIVE Users Manual 127

transition from above the trigger voltage to below the trigger voltage. The trigger value
setting is not required for an analog trigger and any value provided in this field is ignored.

10.1.4 Digital Trigger

The digital trigger allows a request to be initiated when a specific value is detected on a
digital input channel. When the digital trigger is selected, the application must specify the
digital input channel to be monitored and the value that must be received to generate the
trigger. The trigger slope and trigger voltage settings are not required for a digital trigger and
any value provided in these fields is ignored.

10.2 Trigger Modes

DAQDRIVE supports two trigger modes, one-shot and continuous. When the application
configures a request, the trigger mode must be specified along with the trigger source.

10.2.1 One-shot Trigger Mode

When a request is configured for one-shot trigger mode, a separate occurrence of the trigger is
required for each scan of the channel list. For example, if a single digital output channel is
configured for an internal trigger in one-shot mode, each call to DaqTriggerRequest will
output one sample to the specified digital channel. If a request is configured to input data
from six analog inputs with a rising edge TTL trigger in one-shot mode, then each low-to-high
transition of the TTL trigger input will cause six samples to be input (one sample from each of
the six channels in the channel list).

10.2.2 Continuous Trigger Mode

When a request is configured for continuous trigger mode, only one trigger occurrence is
required to initiate the request; the remainder of the operation is executed periodically at time
intervals specified by the sample rate. For example, if a request is configured to output data
to an analog output channel with a falling edge TTL trigger in continuous mode at a sample
rate of 1KHz, then a high-to-low transition of the TTL trigger will output the first sample with
additional samples following at 1ms intervals (1KHz). If a request is configured to input data
from ten digital inputs with a continuous mode internal trigger at a 50Hz sample rate, then
ten samples will be input when the DaqTriggerRequest procedure is executed and ten more
samples will be input at each 20ms (50Hz) interval thereafter.

DAQDRIVE Users Manual 128

11 DAQDRIVE Events

DAQDRIVE uses events to keep the application program informed of the progress of a
request. The following sections provide descriptions of DAQDRIVE events and methods of
monitoring these events from the application program.

11.1 Event Descriptions

11.1.1 Trigger Event

The trigger event is generated when a valid trigger is received. If the request was configured
for continuous trigger mode, only one trigger event will occur when the operation is initiated.
If the request was configured for one-shot trigger mode, a trigger event is generated with each
occurrence of the trigger.

11.1.2 Complete Event

The complete event is generated when a request has completed successfully. If the complete
event occurs at the same time as the buffer full event, the buffer empty event, and/or the scan
event, the events are reported in the following sequence: scan event, buffer full or buffer
empty event, complete event. A request will never report any events after the complete event.

11.1.3 Buffer Empty Event

The buffer empty event is generated during output operations each time one of the specified
output data buffers has been completely emptied. If a buffer empty event occurs at the same
time as the complete event, the buffer full event is reported before the complete event. If a
buffer empty event and a scan event occur simultaneously, the scan event is reported before
the buffer empty event.

11.1.4 Buffer Full Event

The buffer full event is generated during input operations each time one of the specified input
data buffers has been completely filled. If a buffer full event occurs at the same time as the
complete event, the buffer full event is reported before the complete event. If a buffer full
event and a scan event occur simultaneously, the scan event is reported before the buffer full
event.

11.1.5 Scan Event

The scan event is generated each time the number of scans specified by the scan_event_level
have been completed. If a scan event occurs at the same time as the complete event, the scan
event is reported before the complete event. If a scan event and a buffer full or buffer empty
event occur simultaneously, the scan event is reported before the buffer full or buffer empty
event.

DAQDRIVE Users Manual 129

11.1.6 User Break Event

The user-break event is generated when a request is aborted as a result of the user-break
procedure. The user-break procedure is discussed in section 13.35. A request will never
report any events after the user-break event.

11.1.7 Time-out Event

The time-out event is generated when a request is aborted because the specified time-out
interval was exceeded. A request will never report any events after the time-out event.

11.1.8 Run-time Error Event

The run-time error event is generated when an error occurs during the processing of the
request. The application can determine the source of the error using the DaqGetRuntimeError
procedure. A request will never report any events after the time-out event.

11.2 Monitoring Events Using The Request Status

One method of monitoring DAQDRIVE events is through the request_status field in the
request structure. When an event occurs during the processing of a request, DAQDRIVE sets
the corresponding bit to 1 in the request's request_status field as shown in figure 7.
DAQDRIVE does not rely on the information contained in this field nor does it ever clear any
of the event bits to 0. Therefore, the application should initialize request_status during the
configuration process and may modify its contents at any time.

When set to 1, this bit indicates the request has terminated because of an error
during processing. The application can determine the source of the error using
the DaqGetRuntimeError procedure.

0x80000000RUNTIME_ERROR_EVENT

When set to 1, this bit indicates the request has terminated because the specified
time-out interval was exceeded.

0x40000000TIMEOUT_EVENT

When set to 1, this bit indicates the request has terminated due to a user-break.0x20000000USER_BREAK_EVENT

When set to 1, this bit indicates the number of scans specified by
scan_event_level have been completed at least once.

0x00000010SCAN_EVENT

When set to 1, this bit indicates at least one of the input data buffers has been
filled.

0x00000008BUFFER_FULL_EVENT

When set to 1, this bit indicates at least one of the output data buffers has been
emptied.

0x00000004BUFFER_EMPTY_EVENT

When set to 1, this bit indicates the request has completed successfully.0x00000002COMPLETE_EVENT

When set to 1, this bit indicates the specified trigger has been received.0x00000001TRIGGER_EVENT

This constant does not represent an event status. It is provided to the
application for convenience.

0x00000000NO_EVENTS

DescriptionValueDAQDRIVE constant

Figure 7. request_status bit definitions.

DAQDRIVE Users Manual 130

#include "daqdrive.h"
#include "userdata.h"

unsigned short exit_program;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare a background request. *****/

my_request.IO_mode = BACKGROUND_IRQ;
my_request.request_status = NO_EVENTS;

/***** Request the operation. *****/

/***** Arm the request (See DaqArmRequest). *****/

/***** Trigger the request (See DaqTriggerRequest). *****/

/***** Define events which will make execution stop. *****/

exit_program = COMPLETE_EVENT | RUNTIME_ERROR_EVENT | TIMEOUT_EVENT;

/***** Wait for "exit" event. *****/

while((my_request.request_status & exit_program) == 0)
 {
 /***** Wait in dead loop for any event. *****/

 while(my_request.request_status == NO_EVENTS);

 /***** Process trigger event. *****/

 if ((my_request.request_status & TRIGGER_EVENT) != 0)
 {
 printf("Trigger received.\n");
 my_request.request_status &= (~TRIGGER_EVENT);
 }

 /***** Process scan event. *****/

 if ((my_request.request_status & SCAN_EVENT) != 0)
 {
 printf("Scan Event.\n");
 my_request.request_status &= (~SCAN_EVENT);
 }
 }

/***** Indicate time-out error. *****/

if ((my_request.request_status & TIMEOUT_EVENT) != 0)
 printf("Request aborted. Time-out error.\n");

/***** Indicate run-time error. *****/

if ((my_request.request_status & RUNTIME_ERROR_EVENT) != 0)
 printf("Request aborted. Run-time error.\n");

/***** Indicate complete - no errors. *****/

if ((my_request.request_status & COMPLETE_EVENT) != 0)
 printf("Request completed.\n");

/***** Release the request (See DaqReleaseRequest). *****/

/***** Close the device (See DaqCloseDevice). *****/

DAQDRIVE Users Manual 131

11.3 Monitoring Events Using Event Notification

Event notification allows the user to define a procedure that DAQDRIVE will execute each
time an event occurs. Event notification is especially useful during foreground mode
operations when DAQDRIVE has control of the CPU. The event notification procedure is
installed using DaqNotifyEvent and should be installed before the request is armed.

unsigned short DaqNotifyEvent (unsigned short request_handle ,
 void (far pascal *event_procedure)
 (unsigned short,
 unsigned short,
 unsigned short),
 unsigned long event_mask)

The event procedure defined by the application program must be a 'far' pascal compatible
procedure of type void. When executed, DAQDRIVE provides the event procedure with the
request's request_handle, the type of event which has occurred as shown in figure 8, and an
event error code. This error code is set to 0 for all events except the run-time error event
where it is used to specify the type of error encountered as defined in chapter 14. Since the
request_handle is provided to the event procedure, a single event procedure may service
events from multiple requests.

void far pascal event_procedure (unsigned short request_handle ,
 unsigned short event_type ,
 unsigned short error_code)

The following restrictions apply to the event procedure:

1. only one event procedure may be installed per request.

2. the event procedure can not call any DAQDRIVE procedures.

3. Because the event procedure may be called from within an interrupt service routine
(ISR), the event procedure should avoid using BIOS, DOS or Windows system calls.

This call to the notification procedure is the result of a run-time error event.31EVENT_TYPE_RUNTIME_ERROR

This call to the notification procedure is the result of a time-out event.30EVENT_TYPE_TIMEOUT

This call to the notification procedure is the result of a user break event.29EVENT_TYPE_USER_BREAK

This call to the notification procedure is the result of a scan event.4EVENT_TYPE_SCAN

This call to the notification procedure is the result of a buffer full event.3EVENT_TYPE_BUFFER_FULL

This call to the notification procedure is the result of a buffer empty event.2EVENT_TYPE_BUFFER_EMPTY

This call to the notification procedure is the result of a complete event.1EVENT_TYPE_COMPLETE

This call to the notification procedure is the result of a trigger event.0EVENT_TYPE_TRIGGER

DescriptionValueDAQDRIVE constant

Figure 8. event_type definition.

DAQDRIVE Users Manual 132

The application may enable or disable the notification of specific events using the bits of the
event_mask variable as defined in figure 9. To enable notification of an event, the application
need only set the corresponding bit in the event_mask to 1. To disable the notification, the
event_mask bit is cleared to 0. Because event_mask is a bit mask, multiple events may be
enabled by ORing specific event notification bits.

IMPORTANT:
event_mask only controls the notification of events. The request_status field
in the request structure is updated regardless of the event_mask settings.

Enable notification of run-time error events.0x80000000RUNTIME_ERROR_EVENT

Enable notification of time-out events.0x40000000TIMEOUT_EVENT

Enable notification of user break events.0x20000000USER_BREAK_EVENT

Enable notification of scan events.0x00000010SCAN_EVENT

Enable notification of buffer full events.0x00000008BUFFER_FULL_EVENT

Enable notification of buffer empty events.0x00000004BUFFER_EMPTY_EVENT

Enable notification of complete events.0x00000002COMPLETE_EVENT

Enable notification of trigger events.0x00000001TRIGGER_EVENT

Disable all event notification.0x00000000NO_EVENTS

DescriptionValueDAQDRIVE constant

Figure 9. event_mask bit definitions.

DAQDRIVE Users Manual 133

#include "daqdrive.h"
#include "userdata.h"

void far pascal my_event_procedure(unsigned short request_handle,
 unsigned short event_type,
 unsigned short error_code)
{
switch(event_type)
 {
 case EVENT_TYPE_TRIGGER:
 /***** process trigger event *****/
 break;
 case EVENT_TYPE_COMPLETE:
 /***** process complete event *****/
 break;
 }
}

void main()
{
unsigned short request_handle;
unsigned short status;
unsigned long event_mask;

/***** Open the device (see DaqOpenDevice). *****/

/***** Request an operation. (gets a request_handle) *****/

/***** Define events to be notified. *****/

event_mask = TRIGGER_EVENT | COMPLETE_EVENT;

/***** Install notification procedure. *****/

status = DaqNotifyEvent(request_handle, my_event_procedure, event_mask);
if (status != 0)
 printf("Error installing notification.\n");

/***** Arm the request (See DaqArmRequest). *****/

/***** Trigger the request (See DaqTriggerRequest). *****/

DAQDRIVE Users Manual 134

11.4 Monitoring Events Using Messages In Windows

DAQDRIVE provides an additional procedure for Windows applications which provides
event notification by posting messages to the application window. This procedure,
DaqPostMessageEvent, installs a pre-defined messaging procedure using the DaqNotifyEvent
mechanism discussed in the previous section. Therefore, DaqPostMessageEvent and
DaqNotifyEvent can not both be used on the same request.

unsigned short DaqPostMessageEvent (unsigned short request_handle ,
 unsigned long event_mask ,
 unsigned short window_handle)

When an event occurs, DAQDRIVE uses the Windows PostMessage procedure to send an
event message to the window specified by window_handle. The message number (uMsg) is
the sum of the event value specified in figure 8 and the Windows message constant
WM_USER. The two message specific arguments, LPARAM and WPARAM, are used to
specify the request's request_handle and an event error_code respectively. The error code is
set to 0 for all events except the run-time error event where it is used to specify the type of
error encountered as defined in chapter 14.

The application may enable or disable the notification of certain events using the bits of the
event_mask variable as defined in figure 9. To enable notification of an event, the application
need only set the corresponding bit in the event_mask to 1. To disable the notification, the
event_mask bit is cleared to 0. Because event_mask is a bit mask, multiple events may be
enabled by ORing specific event notification bits.

IMPORTANT:
event_mask only controls the notification of events. The
request_status field in the request structure is updated
regardless of the event_mask settings.

DAQDRIVE Users Manual 135

12 Common Application Examples

This chapter is dedicated to providing working example programs for some common data
acquisition applications. In each of these examples, one data acquisition adapter was selected
for the purpose of illustration. All of these examples are written in C using the DOS C-library
version of DAQDRIVE. Additional example programs are also provided on the distribution
diskette(s) supplied with the data acquisition hardware.

DAQDRIVE Users Manual 136

12.1 Analog Input (A/D) Examples

12.1.1 Example 1

This example inputs a single value to a single A/D channel .

// Input a single sample from a single A/D channel

#include <conio.h>
#include <graph.h>
#include <stdlib.h>
#include <stdio.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short channel;
unsigned short status;
short input_value;
float gain;
char far *device_type = "DAQP-16";
char far *config_file = "daqp-16.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }
do
 {
 /*** Step 2: Get A/D channel and gain ***/

 _clearscreen(_GCLEARSCREEN);
 printf("\n\nEnter a channel number between 0 and 7 or \"99\" to quit: ");
 scanf("%d", &channel);
 if(channel != 99)
 {
 printf("\n\nEnter a gain of 1, 2, 4, or 8: ");
 scanf("%f", &gain);

 /*** Step 3: Input value from channel ***/

 status = DaqSingleAnalogInput(logical_device,channel,gain,&input_value);
 if(status != 0)
 printf("\n\nA/D input error. Status code %d.\n\n", status);
 else
 printf("Channel %d: %d\n\n",channel, input_value);
 printf(" Press <ESC> to continue.\n");
 while(getch() != 0x1b);
 }
 }
while(channel != 99);

/*** Step 4: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 137

12.1.2 Example 2

This example inputs 1000 samples from A/D channel 0 at 100Hz .

/*** Input 1000 samples from A/D channel 0 ***/

#include <conio.h>
#include <graph.h>
#include <stdlib.h>
#include <stdio.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "daq1200.h"

/*** When defined global or static, structures are ***/
/*** automatically initialized to all 0 ***/

struct DAQDRIVE_buffer my_data;
struct ADC_request user_request;

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel;
unsigned short status;
unsigned short i, j;
short input_data[1000];
float gain;
unsigned long event_mask;
char far *device_type = "DAQ-1201";
char far *config_file = "daq-1201.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Input data ***/

channel = 0;
gain = 1;

/*** Prepare Buffer Structure ***/

my_data.data_buffer = input_data; /* set pointer to data array */
my_data.buffer_length = 1000; /* number of points in buffer */
my_data.next_structure = NULL; /* indicate no more buffers */
my_data.buffer_status = BUFFER_EMPTY; /* indicate buffer empty (ready) */

/*** Prepare the A/D request structure ***/

user_request.channel_array_ptr = &channel; /* array of channels */
user_request.gain_array_ptr = &gain; /* array of gains */
user_request.array_length = 1; /* number of channels */
user_request.ADC_buffer = &my_data; /* pointer to data */
user_request.trigger_source = INTERNAL_TRIGGER; /* internal trigger */
user_request.trigger_mode = CONTINUOUS_TRIGGER; /* input all points */
user_request.IO_mode = BACKGROUND_IRQ; /* background mode */
user_request.clock_source = INTERNAL_CLOCK; /* use on-board clock */
user_request.sample_rate = 100; /* 100 Hz input rate */
user_request.number_of_scans = 1000; /* 1000 scans */
user_request.scan_event_level = 0; /* no scan events */
user_request.calibration = NO_CALIBRATION; /* no calibration */

t ti t i t l 0 /* di bl ti t */

DAQDRIVE Users Manual 138

request_handle = 0; /* new request */
status = DaqAnalogInput(logical_device, &user_request, &request_handle);
if(status != 0)
 {
 printf("A/D request error. Status code %d.\n", status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 3: Arm the Request ***/

status = DaqArmRequest(request_handle);
if(status != 0)
 {
 printf("Arm request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 4: Trigger the Request ***/

printf("Acquiring data. This will take 10 seconds. Please wait.\n");
status = DaqTriggerRequest(request_handle);
if(status != 0)
 {
 printf("Trigger request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 5: Wait for completion or error ***/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0); /* wait for event */
if((user_request.request_status & COMPLETE_EVENT) != 0)
 {
 /*** if successful, display data ***/

 for(i = 0; i < 50; i++)
 {
 _clearscreen(_GCLEARSCREEN);
 for(j = 0; j < 20; j++)
 printf("sample #%4d: value = %6d\n",((i*20)+j),input_data[(i*20)+j]);
 printf("\n Press <ESC> to continue");
 while(getch() != 0x1b);
 }
 }
else
 {
 printf("Run-time error. Operation aborted.\n");
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 6: Release the Request ***/

status = DaqReleaseRequest(request_handle);
if(status != 0)
 {
 printf("Could not release configuration. Status code %d.\n", status);
 exit(status);
 }

/*** Step 7: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);

DAQDRIVE Users Manual 139

12.1.3 Example 3

This example inputs 200 samples each from five A/D channels at 100Hz .

/*** Input 200 samples each from A/D channels 0 to 4 ***/

#include <conio.h>
#include <graph.h>
#include <stdlib.h>
#include <stdio.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "daqp.h"

/*** When defined global or static, structures are ***/
/*** automatically initialized to all 0 ***/

struct DAQDRIVE_buffer my_data;
struct ADC_request user_request;

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel[5] = { 0, 1, 2, 3, 4 };
float gain[5] = { 1.0, 1.0, 2.0, 4.0, 1.0 };
unsigned short status;
unsigned short i, j, k;
short input_data[200][5];
unsigned long event_mask;
char far *device_type = "DAQP-208";
char far *config_file = "daqp-208.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Input data ***/

/*** Prepare Buffer Structure ***/

my_data.data_buffer = input_data; /* set pointer to data array */
my_data.buffer_length = 1000; /* number of points in buffer */
my_data.next_structure = NULL; /* indicate no more buffers */
my_data.buffer_status = BUFFER_EMPTY; /* indicate buffer empty (ready) */

/*** Prepare the A/D request structure ***/

user_request.channel_array_ptr = channel; /* array of channels */
user_request.gain_array_ptr = gain; /* array of gains */
user_request.array_length = 5; /* number of channels */
user_request.ADC_buffer = &my_data; /* pointer to data */
user_request.trigger_source = INTERNAL_TRIGGER; /* internal trigger */
user_request.trigger_mode = CONTINUOUS_TRIGGER; /* input all points */
user_request.IO_mode = BACKGROUND_IRQ; /* background mode */
user_request.clock_source = INTERNAL_CLOCK; /* use on-board clock */
user_request.sample_rate = 100; /* 100 Hz input rate */
user_request.number_of_scans = 200; /* 200 scans */
user_request.scan_event_level = 0; /* no scan events */
user_request.calibration = NO_CALIBRATION; /* no calibration */
user_request.timeout_interval = 0; /* disable time-out */
user_request.request_status = 0; /* initialize status */

t h dl 0 /* t */

DAQDRIVE Users Manual 140

status = DaqAnalogInput(logical_device, &user_request, &request_handle);
if(status != 0)
 {
 printf("A/D request error. Status code %d.\n", status);
 DaqCloseDevice(logical_device);
 exit(status);
 }
/*** Step 3: Arm the Request ***/

status = DaqArmRequest(request_handle);
if(status != 0)
 {
 printf("Arm request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }
/*** Step 4: Trigger the Request ***/

printf("Acquiring data. This will take 2 seconds. Please wait.\n");
status = DaqTriggerRequest(request_handle);
if(status != 0)
 {
 printf("Trigger request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }
/*** Step 5: Wait for completion or error ***/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0); /* wait for event */
if((user_request.request_status & COMPLETE_EVENT) != 0)
 {
 /*** if successful, display data ***/

 for(i = 0; i < 10; i++)
 {
 _clearscreen(_GCLEARSCREEN);
 for(j = 0; j < 20; j++)
 {
 printf("sample #%4d: ", ((i * 20) + j));
 for(k = 0; k < 5; k++)
 printf(" %6d", input_data[(i * 20) + j][k];
 printf("\n");
 }
 printf("\n Press <ESC> to continue");
 while(getch() != 0x1b);
 }
 }
else
 {
 printf("Run-time error. Operation aborted.\n");
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }
/*** Step 6: Release the Request ***/

status = DaqReleaseRequest(request_handle);
if(status != 0)
 {
 printf("Could not release configuration. Status code %d.\n", status);
 exit(status);
 }
/*** Step 7: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 141

12.1.4 Example 4

This example simulates a volt meter operation reading 20 samples from A/D channel 0 s at
1Hz using only one data memory location .

/*** Input 20 samples from A/D channel 0 ***/

#include <conio.h>
#include <graph.h>
#include <stdlib.h>
#include <stdio.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "daqp.h"

/*** When defined global or static, structures are ***/
/*** automatically initialized to all 0 ***/

struct DAQDRIVE_buffer my_data;
struct ADC_request user_request;

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel;
unsigned short status;
short current_sample;
float gain;
unsigned long event_mask;
char far *device_type = "DAQP-16";
char far *config_file = "daqp-16.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Input data ***/

channel = 0;
gain = 2;

/*** Prepare Buffer Structure ***/

my_data.data_buffer = ¤t_sample; /* set pointer to data storage */
my_data.buffer_length = 1; /* number of points in buffer */
my_data.next_structure = NULL; /* indicate no more buffers */
my_data.buffer_status = BUFFER_EMPTY; /* indicate buffer empty (ready) */

/*** Prepare the A/D request structure ***/

user_request.channel_array_ptr = &channel; /* array of channels */
user_request.gain_array_ptr = &gain; /* array of gains */
user_request.array_length = 1; /* number of channels */
user_request.ADC_buffer = &my_data; /* pointer to data */
user_request.trigger_source = INTERNAL_TRIGGER; /* internal trigger */
user_request.trigger_mode = CONTINUOUS_TRIGGER; /* input all points */
user_request.IO_mode = BACKGROUND_IRQ; /* background mode */
user_request.clock_source = INTERNAL_CLOCK; /* use on-board clock */
user_request.sample_rate = 1; /* 1 Hz input rate */
user_request.number_of_scans = 20; /* 20 scans */
user_request.scan_event_level = 0; /* no scan events */
user request calibration = NO CALIBRATION; /* no calibration */

DAQDRIVE Users Manual 142

user_request.timeout_interval = 0; /* disable time-out */
user_request.request_status = 0; /* initialize status */
request_handle = 0; /* new request */
status = DaqAnalogInput(logical_device, &user_request, &request_handle);
if(status != 0)
 {
 printf("A/D request error. Status code %d.\n", status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 3: Arm the Request ***/

status = DaqArmRequest(request_handle);
if(status != 0)
 {
 printf("Arm request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 4: Trigger the Request ***/

status = DaqTriggerRequest(request_handle);
if(status != 0)
 {
 printf("Trigger request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 5: Wait for completion or error ***/

_clearscreen(_GCLEARSCREEN);
event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
do
 {
 if((user_request.request_status & BUFFER_FULL_EVENT) != 0)
 {
 _settextposition(10,10);
 printf("The current value is %6d", current_sample);
 my_data.buffer_status = BUFFER_EMPTY; /* buffer empty (ready) */
 user_request.request_status &= (~BUFFER_FULL_EVENT);
 }
 }
while((user_request.request_status & event_mask) == 0); /* wait for event */

if((user_request.request_status & RUNTIME_ERROR_EVENT) != 0)
 {
 DaqGetRuntimeError(request_handle, &status)
 printf("\n\n\nRun-time error. Error code %d. Operation aborted.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 6: Release the Request ***/

status = DaqReleaseRequest(request_handle);
if(status != 0)
 {
 printf("Could not release configuration. Status code %d.\n", status);
 exit(status);
 }

/*** Step 7: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);

DAQDRIVE Users Manual 143

12.1.5 Example 5

This example inputs 100,000 samples from A/D channel 0 and stores the data in a disk file.

/*** Input 100,000 samples from A/D channel 0 and write to disk ***/

#include <conio.h>
#include <graph.h>
#include <stdlib.h>
#include <stdio.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "daqp.h"

/*** When defined global or static, structures are ***/
/*** automatically initialized to all 0 ***/

struct DAQDRIVE_buffer my_data[4];
struct ADC_request user_request;

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel;
unsigned short status;
unsigned short current_buffer;
unsigned short i;
short buffer[4][1000];
float gain;
unsigned long event_mask;
char far *device_type = "DAQP-208";
char far *config_file = "daqp-208.dat";
FILE *output_file;

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Input data ***/

channel = 0;
gain = 2;

/*** Prepare Buffer Structures ***/

my_data[0].data_buffer = &buffer[0][0]; /* set pointer to data array */
my_data[0].buffer_length = 1000; /* number of points in buffer */
my_data[0].next_structure = &my_data[1]; /* point to next buffer */
my_data[0].buffer_status = BUFFER_EMPTY; /* buffer empty (ready) */

my_data[1].data_buffer = &buffer[1][0]; /* set pointer to data array */
my_data[1].buffer_length = 1000; /* number of points in buffer */
my_data[1].next_structure = &my_data[2]; /* point to next buffer */
my_data[1].buffer_status = BUFFER_EMPTY; /* buffer empty (ready) */

my_data[2].data_buffer = &buffer[2][0]; /* set pointer to data array */
my_data[2].buffer_length = 1000; /* number of points in buffer */
my_data[2].next_structure = &my_data[3]; /* point to next buffer */
my_data[2].buffer_status = BUFFER_EMPTY; /* buffer empty (ready) */

DAQDRIVE Users Manual 144

my_data[3].data_buffer = &buffer[3][0]; /* set pointer to data array */
my_data[3].buffer_length = 1000; /* number of points in buffer */
my_data[3].next_structure = &my_data[0]; /* point to next buffer */
my_data[3].buffer_status = BUFFER_EMPTY; /* buffer empty (ready) */

/*** Prepare the A/D request structure ***/

user_request.channel_array_ptr = &channel; /* array of channels */
user_request.gain_array_ptr = &gain; /* array of gains */
user_request.array_length = 1; /* number of channels */
user_request.ADC_buffer = &my_data[0]; /* pointer to data */
user_request.trigger_source = INTERNAL_TRIGGER; /* internal trigger */
user_request.trigger_mode = CONTINUOUS_TRIGGER; /* input all points */
user_request.IO_mode = BACKGROUND_IRQ; /* background mode */
user_request.clock_source = INTERNAL_CLOCK; /* use on-board clock */
user_request.sample_rate = 1000; /* 1 KHz input rate */
user_request.number_of_scans = 100000; /* 100000 scans */
user_request.scan_event_level = 0; /* no scan events */
user_request.calibration = NO_CALIBRATION; /* no calibration */
user_request.timeout_interval = 0; /* disable time-out */
user_request.request_status = 0; /* initialize status */

request_handle = 0; /* new request */
status = DaqAnalogInput(logical_device, &user_request, &request_handle);
if(status != 0)
 {
 printf("A/D request error. Status code %d.\n", status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 3: Arm the Request ***/

status = DaqArmRequest(request_handle);
if(status != 0)
 {
 printf("Arm request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 4: Open a data file ***/

output_file = fopen("ADC_DATA.ASC","w");

/*** Step 5: Trigger the Request ***/

printf("Acquiring data. This will take 100 seconds. Please wait.\n");
status = DaqTriggerRequest(request_handle);
if(status != 0)
 {
 printf("Trigger request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 fclose(output_file);
 exit(status);
 }

/*** Step 6: Wait for completion or error ***/

current_buffer = 0;
event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
do
 {
 if((my_data[current_buffer].buffer_status == BUFFER_FULL)
 {
 for(i = 0; i < 1000; i++)
 fprintf(output_file,"%6d\n",buffer[current_buffer][i]);
 m y data [current buffer] .buffer status = BUFFER EMPTY ; / * buffer em pt y * /

DAQDRIVE Users Manual 145

 if(current_buffer == 3)
 current_buffer = 0;
 else
 current_buffer++;
 }
 }
while((user_request.request_status & event_mask) == 0); /* wait for event */

/*** Exit if error ***/

if((user_request.request_status & RUNTIME_ERROR_EVENT) != 0)
 {
 DaqGetRuntimeError(request_handle, &status);
 printf("\n\n\nRun-time error. Error code %d. Operation aborted.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 fclose(output_file);
 exit(status);
 }

/*** Write any remaining buffers and close file ***/

do
 {
 if (my_data[current_buffer].buffer_status == BUFFER_FULL)
 {
 for(i = 0; i < 1000; i++)
 fprintf(output_file,"%6d\n",buffer[current_buffer][i]);
 my_data[current_buffer].buffer_status = BUFFER_EMPTY; /* buffer empty */
 }
 if(current_buffer == 3)
 current_buffer = 0;
 else
 current_buffer++;
 }
while(current_buffer != 0);
fclose(output_file);

/*** Step 6: Release the Request ***/

status = DaqReleaseRequest(request_handle);
if(status != 0)
 {
 printf("Could not release configuration. Status code %d.\n", status);
 exit(status);
 }

/*** Step 7: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 146

12.2 Analog Output (D/A) Examples

12.2.1 Example 1

This example outputs a single value to a single D/A channel .

/*** Output a single point to a single D/A channel. ***/

#include <conio.h>
#include <graph.h>
#include <stdio.h>
#include <stdlib.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;
unsigned short channel;
short output_value;
char far *device_type = "DAQ-1201";
char far *config_file = "daq-1201.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

do
 {
 /*** Step 2: Get D/A channel and output value ***/

 _clearscreen(_GCLEARSCREEN);
 printf("\n\nEnter a channel number between 0 and 7 or \"99\" to quit: ");
 scanf("%d", &channel);
 if(channel != 99)
 {
 printf("\n\nEnter the output value between -2048 and 2047: ");
 scanf("%d", &output_value);

 /*** Step 3: Output value to channel ***/

 status = DaqSingleAnalogOutput(logical_device, channel, &output_value);
 if(status != 0)
 {
 printf("\n\n D/A output error. Status code %d.\n\n", status);
 printf(" Press <ESC> to continue.\n");
 while(getch() != 0x1b);
 }
 }
 }
while(channel != 99);

/*** Step 4: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 147

12.2.2 Example 2

This example outputs a single value to a single D/A channel using a TTL trigger.

/*** Output a single point to a single D/A channel on an external trigger ***/

#include <graph.h>
#include <stdlib.h>
#include <stdio.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "da8p-12.h"

/*** When defined global or static, structures are ***/
/*** automatically initialized to all 0 ***/

struct DAQDRIVE_buffer my_data;
struct DAC_request user_request;

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short status;
unsigned short channel;
short output_value;
unsigned long event_mask;
char far *device_type = "DA8P-12B";
char far *config_file = "da8p-12b.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DA8P-12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

do
 {
 /*** Step 2: Get D/A channel and output value ***/

 _clearscreen(_GCLEARSCREEN);
 printf("\n\nEnter a channel number between 0 and 7 or \"99\" to quit: ");
 scanf("%d", &channel);

 if(channel != 99)
 {
 printf("\n\nEnter the output value between -2048 and 2047: ");
 scanf("%d", &output_value);

 /*** Step 3: Output data ***/

 /*** Prepare Buffer Structure ***/

 my_data.data_buffer = &output_value; /* point to output data */
 my_data.buffer_length = 1; /* number of points */
 my_data.buffer_cycles = 1; /* cycle buffer once */
 my_data.next_structure = NULL; /* no more buffers */
 my_data.buffer_status = BUFFER_FULL; /* buffer full (ready) */

 /*** Prepare the D/A request structure ***/

 user_request.channel_array_ptr = &channel; /* array of channels */

user request array length = 1; /* number of channels */

DAQDRIVE Users Manual 148

 user_request.DAC_buffer = &my_data; /* pointer to data */
 user_request.trigger_source = TTL_TRIGGER; /* select TTL trigger */
 user_request.trigger_slope = RISING_EDGE; /* rising edge trigger*/
 user_request.IO_mode = BACKGROUND_IRQ; /* background mode */
 user_request.number_of_scans = 1; /* scan channela once */
 user_request.scan_event_level = 0; /* no scan events */
 user_request.calibration = NO_CALIBRATION; /* no calibration */
 user_request.timeout_interval = 0; /* disable time-out */
 user_request.request_status = 0; /* initialize status */

 request_handle = 0; /* new request */
 status = DaqAnalogOutput(logical_device,&user_request,&request_handle);
 if(status != 0)
 {
 printf("D/A request error. Status code %d.\n", status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

 /*** Step 4: Arm the Request ***/

 status = DaqArmRequest(request_handle);
 if(status != 0)
 {
 printf("Arm request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

 /*** Step 5: Wait for completion or error ***/

 printf("\n\n\n Waiting for trigger ...");
 event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
 while((user_request.request_status & event_mask) == 0); /* wait for */
 /* event */
 if((user_request.request_status & COMPLETE_EVENT) != 0)
 printf("\n\n D/A Output Request complete.\n");
 else
 {
 printf("Run-time error. Operation aborted.\n");
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

 /*** Step 6: Release the Request ***/

 status = DaqReleaseRequest(request_handle);
 if(status != 0)
 {
 printf("Could not release configuration. Status code %d.\n", status);
 exit(status);
 }
 }
 }
while(channel != 99);

/*** Step 7: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 149

12.2.3 Example 3

This example outputs 1000 cycles of a 60 Hz sinewave to D/A channel 0. The sinewave
contains 60 points per cycle.

/*** Output a sinewave to D/A channel 0 ***/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "daqp.h"

/*** When defined global or static, structures are ***/
/*** automatically initialized to all 0 ***/

struct DAQDRIVE_buffer my_data;
struct DAC_request user_request;

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel;
unsigned short status;
unsigned short i;
short sinewave[60];
unsigned long event_mask;
char far *device_type = "DAQP-208";
char far *config_file = "daqp-208.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Get D/A channel and output values ***/

channel = 0;
for(i = 0; i < 60; i++)
 sinewave[i] = (short)(2047 * sin((2 * 3.1416 * i) / 60));

/*** Step 3: Output data ***/

/*** Prepare Buffer Structure ***/

my_data.data_buffer = sinewave; /* set pointer to output data */
my_data.buffer_length = 60; /* number of points in buffer */
my_data.buffer_cycles = 1000; /* 1000 cycles through buffer */
my_data.next_structure = NULL; /* indicate no more buffers */
my_data.buffer_status = BUFFER_FULL; /* indicate buffer full (ready) */

/*** Prepare the D/A request structure ***/

user_request.channel_array_ptr = &channel; /* array of channels */
user_request.array_length = 1; /* number of channels */
user_request.DAC_buffer = &my_data; /* pointer to data */
user_request.trigger_source = INTERNAL_TRIGGER; /* internal trigger */
user_request.trigger_mode = CONTINUOUS_TRIGGER; /* output all points */
user_request.IO_mode = BACKGROUND_IRQ; /* background mode */
user_request.clock_source = INTERNAL_CLOCK; /* use on-board clock */

DAQDRIVE Users Manual 150

user_request.number_of_scans = 60l * 1000l; /* 60000 scans */
user_request.scan_event_level = 0; /* no scan events */
user_request.calibration = NO_CALIBRATION; /* no calibration */
user_request.timeout_interval = 0; /* disable time-out */
user_request.request_status = 0; /* initialize status */

request_handle = 0; /* new request */
status = DaqAnalogOutput(logical_device, &user_request, &request_handle);
if(status != 0)
 {
 printf("D/A request error. Status code %d.\n", status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 4: Arm the Request ***/

status = DaqArmRequest(request_handle);
if(status != 0)
 {
 printf("Arm request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 5: Trigger the Request ***/

status = DaqTriggerRequest(request_handle);
if(status != 0)
 {
 printf("Trigger request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 6: Wait for completion or error ***/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0); /* wait for event */
if((user_request.request_status & COMPLETE_EVENT) != 0)
 printf("\n\n D/A Output Request complete.\n");
else
 {
 printf("Run-time error. Operation aborted.\n");
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 7: Release the Request ***/

status = DaqReleaseRequest(request_handle);
if(status != 0)
 {
 printf("Could not release configuration. Status code %d.\n", status);
 exit(status);
 }

/*** Step 8: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)

printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 151

12.2.4 Example 4

This example outputs 600 cycles of a sinewave, 300 cycles of a ramp, and 18000 cycles of a
square wave to D/A channel 0.

/*** Output sine, ramp, and square waves to D/A channel 0 ***/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "da8p-12.h"

/*** When defined global or static, structures are initialized to all 0 ***/

struct DAQDRIVE_buffer my_data[3];
struct DAC_request user_request;

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel;
unsigned short status;
unsigned short i;
short sinewave[60];
short ramp[120];
short square[2];
unsigned long event_mask;
char far *device_type = "DA8P-12B";
char far *config_file = "da8p-12b.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DA8P-12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Define the output channel and data values ***/

channel = 0;
for(i = 0; i < 60; i++)
 sinewave[i] = (short)(2047 * sin((2 * 3.1416 * i) / 60));

for(i = 0; i < 120; i++)
 ramp[i] = (short)((2047.0 * i) / 119);

square[0] = -2048;
square[1] = 2047;

/*** Step 3: Output data ***/
/*** Prepare Buffer Structures ***/

my_data[0].data_buffer = sinewave; /* set pointer to output data */
my_data[0].buffer_length = 60; /* number of points in buffer */
my_data[0].buffer_cycles = 600; /* 600 cycles through buffer */
my_data[0].next_structure = &my_data[1]; /* point to next buffer */
my_data[0].buffer_status = BUFFER_FULL; /* indicate buffer full (ready) */

my_data[1].data_buffer = ramp; /* set pointer to output data */
my_data[1].buffer_length = 120; /* number of points in buffer */
my_data[1].buffer_cycles = 300; /* 300 cycles through buffer */
my_data[1].next_structure = &my_data[2]; /* point to next buffer */
my_data[1].buffer_status = BUFFER_FULL; /* indicate buffer full (ready) */

my_data[2].data_buffer = square; /* set pointer to output data */
my_data[2].buffer_length = 2; /* number of points in buffer */
my_data[2].buffer_cycles = 18000; /* 18000 cycles through buffer */
my_data[2].next_structure = NULL; /* mo more buffers */

DAQDRIVE Users Manual 152

/*** Prepare the D/A request structure ***/

user_request.channel_array_ptr = &channel; /* array of channels */
user_request.array_length = 1; /* number of channels */
user_request.DAC_buffer = &my_data[0]; /* pointer to data */
user_request.trigger_source = INTERNAL_TRIGGER; /* internal trigger */
user_request.trigger_mode = CONTINUOUS_TRIGGER; /* output all points */
user_request.IO_mode = BACKGROUND_IRQ; /* background mode */
user_request.clock_source = INTERNAL_CLOCK; /* use on-board clock */
user_request.sample_rate = 3600; /* 3600 points / second */
user_request.number_of_scans = 60l * 600l /* 36000 scans of sine */
 + 120l * 300l /* 36000 scans of ramp */
 + 2 * 18000l; /* 36000 scans of square*/
user_request.scan_event_level = 0; /* no scan events */
user_request.calibration = NO_CALIBRATION; /* no calibration */
user_request.timeout_interval = 0; /* disable time-out */
user_request.request_status = 0; /* initialize status */

request_handle = 0; /* new request */
status = DaqAnalogOutput(logical_device, &user_request, &request_handle);
if(status != 0)
 {
 printf("D/A request error. Status code %d.\n", status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 4: Arm the Request ***/

status = DaqArmRequest(request_handle);
if(status != 0)
 {
 printf("Arm request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 5: Trigger the Request ***/

status = DaqTriggerRequest(request_handle);
if(status != 0)
 {
 printf("Trigger request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 6: Wait for completion or error ***/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0); /* wait or event */
if((user_request.request_status & COMPLETE_EVENT) != 0)
 printf("\n\n D/A Output Request complete.\n");
else
 {
 printf("Run-time error. Operation aborted.\n");
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }
/*** Step 7: Release the Request ***/

status = DaqReleaseRequest(request_handle);
if(status != 0)
 {
 printf("Could not release configuration. Status code %d.\n", status);
 exit(status);
 }

/*** Step 8: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 153

12.3 Digital Input Examples

12.3.1 Example 1

This example inputs a single value from a single digital input channel .

/*** Input a single point from a single digital input channel ***/

#include <conio.h>
#include <graph.h>
#include <stdio.h>
#include <stdlib.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;
unsigned short channel;
unsigned char input_value;
char far *device_type = "DAQP-16";
char far *config_file = "daqp-16.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

do
 {
 /*** Step 2: Get digital input channel ***/

 _clearscreen(_GCLEARSCREEN);
 printf("\n\nEnter a digital input channel number or \"99\" to quit: ");
 scanf("%d", &channel);

 if(channel != 99)
 {
 /*** Step 3: Input value from channel ***/

 status = DaqSingleDigitalInput(logical_device, channel, &input_value);
 if(status != 0)
 printf("\n\nDigital input error. Status code %d.\n\n", status);
 else
 printf("Channel %d: %xH\n\n",channel, (int)input_value);
 printf(" Press <ESC> to continue.\n");
 while(getch() != 0x1b);
 }
 }
while(channel != 99);

/*** Step 4: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 154

12.3.2 Example 2

This example inputs 1000 samples from digital I/O channel 0.

/*** Input 1000 samples from digital input channel 0 ***/

#include <conio.h>
#include <graph.h>
#include <stdlib.h>
#include <stdio.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "iop241.h"

/*** When defined global or static, structures are ***/
/*** automatically initialized to all 0 ***/

struct DAQDRIVE_buffer my_data;
struct digio_request user_request;

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel;
unsigned short status;
unsigned short i, j;
unsigned char input_data[1000];
unsigned long event_mask;
char far *device_type = "IOP-241";
char far *config_file = "iop-241.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(IOP241, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Input data ***/

channel = 0;

/*** Prepare Buffer Structure ***/

my_data.data_buffer = input_data; /* set pointer to output data */
my_data.buffer_length = 1000; /* number of points in buffer */
my_data.next_structure = NULL; /* indicate no more buffers */
my_data.buffer_status = BUFFER_EMPTY; /* indicate buffer empty (ready) */

/*** Prepare the digital input request structure ***/

user_request.channel_array_ptr = &channel; /* array of channels */
user_request.array_length = 1; /* number of channels */
user_request.digio_buffer = &my_data; /* pointer to data */
user_request.trigger_source = INTERNAL_TRIGGER; /* internal trigger */
user_request.trigger_mode = CONTINUOUS_TRIGGER; /* input all points */
user_request.IO_mode = BACKGROUND_IRQ; /* background mode */
user_request.clock_source = INTERNAL_CLOCK; /* use on-board clock */
user_request.sample_rate = 100; /* 100 Hz input rate */
user_request.number_of_scans = 1000; /* 1000 scans */
user_request.scan_event_level = 0; /* no scan events */
user_request.timeout_interval = 0; /* disable time-out */
user request request status = 0; / * initialize status * /

DAQDRIVE Users Manual 155

request_handle = 0; /* new request */
status = DaqDigitalInput(logical_device, &user_request, &request_handle);
if(status != 0)
 {
 printf("Digital input request error. Status code %d.\n", status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 3: Arm the Request ***/

status = DaqArmRequest(request_handle);
if(status != 0)
 {
 printf("Arm request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 4: Trigger the Request ***/

status = DaqTriggerRequest(request_handle);
if(status != 0)
 {
 printf("Trigger request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 5: Wait for completion or error ***/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0); /* wait for event */
if((user_request.request_status & COMPLETE_EVENT) != 0)
 {
 /*** if successful, display data ***/

 for(i = 0; i < 50; i++)
 {
 _clearscreen(_GCLEARSCREEN);
 for(j = 0; j < 20; j++)
 printf("sample #%4d: value = %2xH\n", ((i*20)+j),
 (int)(input_data[(i*20)+j]));
 printf("\n Press <ESC> to continue");
 while(getch() != 0x1b);
 }
 }
else
 {
 printf("Run-time error. Operation aborted.\n");
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 6: Release the Request ***/

status = DaqReleaseRequest(request_handle);
if(status != 0)
 {
 printf("Could not release configuration. Status code %d.\n", status);
 exit(status);
 }

/*** Step 7: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);

DAQDRIVE Users Manual 156

12.4 Output Examples

12.4.1 Example 1

This example outputs a single value to a single digital output channel .

/*** Output a single point to a single D/A channel ***/

#include <conio.h>
#include <graph.h>
#include <stdio.h>
#include <stdlib.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;
unsigned short channel;
unsigned char output_value;
char far *device_type = "DAQ-1201";
char far *config_file = "daq-1201.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

do
 {
 /*** Step 2: Get digital output channel and output value ***/

 _clearscreen(_GCLEARSCREEN);
 printf("\n\nEnter a digital output channel number or \"99\" to quit: ");
 scanf("%d", &channel);

 if(channel != 99)
 {
 printf("\n\nEnter the output value between 0 and 255: ");
 scanf("%d", &output_value);

 /*** Step 3: Output value to channel ***/

 status = DaqSingleDigitalOutput(logical_device, channel, &output_value);
 if(status != 0)
 {
 printf("\n\n Digital output error. Status code %d.\n\n", status);
 printf(" Press <ESC> to continue.\n");
 while(getch() != 0x1b);
 }
 }
 }
while(channel != 99);

/*** Step 4: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 157

12.4.2 Example 2

This example outputs a 20 point pattern to digital output channel 0.

/*** Output a pattern to digital output channel 0 ***/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "userdata.h"
#include "daqdrive.h"
#include "daqopenc.h"
#include "da8p-12.h"

/*** When defined global or static, structures are ***/
/*** automatically initialized to all 0 ***/

struct DAQDRIVE_buffer my_data;
struct digio_request user_request;

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel;
unsigned short status;
unsigned char pattern[20] = { 0, 1, 1, 0, 1,
 1, 1, 1, 0, 1,
 0, 1, 0, 0, 0,
 1, 1, 0, 1, 1 };
unsigned long event_mask;
char far *device_type = "DA8P-12B";
char far *config_file = "da8p-12b.dat";

/*** Step 1: Initialize Hardware ***/

logical_device = 0;
status = DaqOpenDevice(DA8P-12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening device. Status code %d.\n", status);
 exit(status);
 }

/*** Step 2: Output data ***/

channel = 0;

/*** Prepare Buffer Structure ***/

my_data.data_buffer = pattern; /* set pointer to output data */
my_data.buffer_length = 20; /* number of points in buffer */
my_data.buffer_cycles = 500; /* 500 cycles through buffer */
my_data.next_structure = NULL; /* indicate no more buffers */
my_data.buffer_status = BUFFER_FULL; /* indicate buffer full (ready) */

/*** Prepare the digital output request structure ***/

user_request.channel_array_ptr = &channel; /* array of channels */
user_request.array_length = 1; /* number of channels */
user_request.digio_buffer = &my_data; /* pointer to data */
user_request.trigger_source = INTERNAL_TRIGGER; /* internal trigger */
user_request.trigger_mode = CONTINUOUS_TRIGGER; /* output all points */
user_request.IO_mode = BACKGROUND_IRQ; /* background mode */
user_request.clock_source = INTERNAL_CLOCK; /* use on-board clock */
user_request.sample_rate = 200; /* 10 patterns / second */
user_request.number_of_scans = 20 * 500; /* 10000 scans */
user_request.scan_event_level = 0; /* no scan events */
user_request.timeout_interval = 0; /* disable time-out */

0 /* i i i li */

DAQDRIVE Users Manual 158

request_handle = 0; /* new request */
status = DaqDigitalOutput(logical_device, &user_request, &request_handle);
if(status != 0)
 {
 printf("Digital output request error. Status code %d.\n", status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 4: Arm the Request ***/

status = DaqArmRequest(request_handle);
if(status != 0)
 {
 printf("Arm request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 5: Trigger the Request ***/

status = DaqTriggerRequest(request_handle);
if(status != 0)
 {
 printf("Trigger request error. Status code %d.\n", status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 6: Wait for completion or error ***/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0); /* wait for event */
if((user_request.request_status & COMPLETE_EVENT) != 0)
 printf("\n\n D/A Output Request complete.\n");
else
 {
 printf("Run-time error. Operation aborted.\n");
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/*** Step 7: Release the Request ***/

status = DaqReleaseRequest(request_handle);
if(status != 0)
 {
 printf("Could not release configuration. Status code %d.\n", status);
 exit(status);
 }

/*** Step 8: Close Hardware Device ***/

status = DaqCloseDevice(logical_device);
if(status != 0)
 printf("Error closing device. Status code %d.\n", status);
return(status);
}

DAQDRIVE Users Manual 159

13 Command Reference

DaqFreeRequest
DaqFreeMemory32

DaqWordsToBytesDaqFreeMemory
DaqVersionNumberDaqAllocateRequest
DaqGetAddressOfDaqAllocateMemory32
DaqBytesToWordsDaqAllocateMemory
MiscellaneousMemory Allocation

DaqUserBreak
DaqPostMessageEventDaqConvertScan
DaqNotifyEventDaqConvertPoint
DaqGetRuntimeErrorDaqConvertBuffer
System MonitoringData Processing

DaqGetSigConParamInfo
DaqGetSigConCfgInfo
DaqGetExpGainInfo
DaqGetExpCfgInfoDaqTriggerRequest
DaqGetDigioCfgInfoDaqStopRequest
DaqGetDeviceCfgInfoDaqResetDevice
DaqGetDAGainInfoDaqReleaseRequest
DaqGetDACfgInfoDaqOpenDevice
DaqGetADGainInfoDaqCloseDevice
DaqGetADCfgInfoDaqArmRequest
System ConfigurationProcess Control

DaqSingleDigitalOutputScanDaqSingleDigitalInputScan
DaqSingleDigitalOutputDaqSingleDigitalInput
DaqDigitalOutputDaqDigitalInput
Digital OutputDigital Input

DaqSingleSigConInputScan
DaqSingleSigConInput

DaqSingleAnalogOutputScanDaqSingleAnalogInputScan
DaqSingleAnalogOutputDaqSingleAnalogInput
DaqAnalogOutputDaqAnalogInput
Analog OutputAnalog Input

DAQDRIVE Users Manual 160

13.1 DaqAllocateMemory (16-bit DAQDRIVE only)

DaqAllocateMemory is a DAQDRIVE utility function used to dynamically allocate memory
for use by the application program. All memory is allocated from the global (far) heap and
should be de-allocated using the DaqFreeMemory procedure before the application
terminates. In the 16-bit DLL version of DAQDRIVE, DaqAllocateMemory performs a
GlobalLock and a GlobalPageLock on the allocated memory. This allows the memory to be
used within DAQDRIVE's interrupt service routines.

NOTE:
32-bit application programs must use the DaqAllocateMemory32 procedure.

unsigned short DaqAllocateMemory (unsigned long memory_size ,
 unsigned short far *memory_handle ,
 void far *(far *memory_pointer))

memory_size - This unsigned long integer value is used to specify the amount of memory
required by the application.

memory_handle - This unsigned short integer pointer defines the address of a variable where
the handle associated with this allocation will be stored. The application
must preserve this handle for later use by the DaqFreeMemory procedure.

memory_pointer - This void pointer defines the address of a pointer variable where the
starting address of the newly allocated memory block will be stored. The
memory is allocated in a manner that makes memory_pointer compatible
with all data types including huge. The application must preserve this
pointer for later use by the DaqFreeMemory procedure.

DAQDRIVE Users Manual 161

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 5000 points each from 2 analog input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[2] = { 0, 1 };
 float gain_settings[2] = { 1, 8 };
unsigned long memory_size;
unsigned short memory_handle;
void far *memory_pointer;
unsigned short status;

struct ADC_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Allocate memory for the input data. *****/
/***** 5000 samples/channel * 2 channels * 2 bytes/sample *****/

memory_size = 5000 * 2 * sizeof(short);
status = DaqAllocateMemory(memory_size, &memory_handle, &memory_pointer);
if (status != 0)
 {
 printf("Error allocating data buffer. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Prepare data structure for analog input. *****/

data_structure.data_buffer = memory_pointer;
data_structure.buffer_length = 10000;

/***** Prepare the A/D request structure. *****/

/***** Request A/D input. *****/

request_handle = 0;
status = DaqAnalogInput(logical_device, &user_request, &request_handle);
if (status != 0)
 {
 printf("A/D request error. Status code %d.\n",status);
 DaqFreeMemory(memory_handle, memory_pointer);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Arm the request (See DaqArmRequest). *****/

/***** Trigger the request (See DaqTriggerRequest). *****/

/***** Wait for complete. *****/

/***** Free allocated memory. *****/

status = DaqFreeMemory(memory_handle, memory_pointer);
if (status != 0)
 {
 printf("Error de-allocating memory. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Close the device. (See DaqCloseDevice). *****/
}

DAQDRIVE Users Manual 162

13.2 DaqAllocateMemory32 (32-bit DAQDRIVE only)

DaqAllocateMemory32 is a DAQDRIVE utility function used to dynamically allocate the
locked memory required for use by 32-bit application programs. All memory is allocated
from the global (far) heap and should be de-allocated using the DaqFreeMemory32 procedure
before the application terminates. 32-bit applications that use any of DAQDRIVE's
background modes must use this procedure to allocate the request structure, channel and gain
arrays, data buffer structures, and data buffers.

NOTE:
For 16-bit Windows and all DOS applications, the DaqAllocateMemory function must be used.

unsigned short DaqAllocateMemory32 (unsigned long memory_size ,
 unsigned long far *memory_handle ,
 void far *(far *memory_pointer))

memory_size - This unsigned long integer value is used to specify the amount of memory
required by the application.

memory_handle - This unsigned long integer pointer defines the address of a variable where
the handle associated with this allocation will be stored. The application
must preserve this handle for later use by the DaqFreeMemory32
procedure.

memory_pointer - This void pointer defines the address of a pointer variable where the
starting address of the newly allocated memory block will be stored. The
memory is allocated in a manner that makes memory_pointer compatible
with all data types. The application must preserve this pointer for later
use by the DaqFreeMemory32 procedure.

DAQDRIVE Users Manual 163

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 5000 points each from 2 analog input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned long memory_handle[3]
unsigned short status;

struct ADC_request far *user_request;
struct DAQDRIVE_buffer far *data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Allocate memory for the ADC request and data structures. *****/

status = DaqAllocateMemory32(sizeof(ADC_request),
 &memory_handle[0],
 (void far*)&user_request);
if (status != 0)
 {
 printf("Error allocating data buffer. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

status = DaqAllocateMemory32(sizeof(DAQDRIVE_buffer),
 &memory_handle[1],
 (void far*)&data_structure);
if (status != 0)
 {
 printf("Error allocating data buffer. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Allocate memory for the input data. *****/
/***** 5000 samples/channel * 2 channels * 2 bytes/sample *****/

status = DaqAllocateMemory32(5000 * 2 * sizeof(short),
 &memory_handle[2],
 (void far*)&data_structure->data_buffer);

if (status != 0)
 {
 printf("Error allocating data buffer. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Prepare data structure for analog input. *****/

/***** Prepare the A/D request structure. *****/

/***** Request A/D input. *****/

/***** Arm the request (See DaqArmRequest). *****/

/***** Trigger the request (See DaqTriggerRequest). *****/

/***** Wait for complete. *****/

/***** Free allocated memory. (See DaqFreeMemory32) *****/

/***** Close the device. (See DaqCloseDevice). *****/
}

DAQDRIVE Users Manual 164

13.3 DaqAllocateRequest

DaqAllocateRequest is a DAQDRIVE utility function used to dynamically allocate all of the
structures and buffers required for a standard request. These include the request structure,
channel and gain arrays, data buffer structures, and data buffers. All memory is allocated
from the global (far) heap and should be de-allocated using the DaqFreeRequest procedure
before the application terminates.

unsigned short DaqAllocateRequest (unsigned short logical_device ,
 struct allocate_request far *user_request)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

user_request - This structure pointer defines the address of a memory allocation request
structure containing the desired configuration information for this
operation. This structure is discussed in detail on the following pages.

NOTE:
In addition to allocating the memory required for the request, DaqAllocateRequest initializes
any pointers which reference other fields allocated by the same request. For example, if an
analog input request is allocated, the ADC_request structure's channel_array_ptr field will be
initialized to point to the allocated channel array, its gain_array_ptr field will be initialized to
point to the allocated gain array, and its ADC_buffer field will be initialized to point to the
first data buffer structure. Furthermore, if more than one data buffer is requested, each data
buffer structure will be initialized such that the next_structure field is pointed to the
subsequent data buffer structure to form a 'chain' of data buffers.

DAQDRIVE Users Manual 165

struct allocate_request
 {
 unsigned long request_type ;
 unsigned short channel_array_length ;
 unsigned short number_of_buffers ;
 unsigned long buffer_size;
 unsigned long buffer_attributes ;
 void far *m emory_pointer ;
 unsigned long memory_handle ;
 };

Figure 10. Analog input request structure.

This unsigned long integer variable is used to store the handle associated with this allocation. The application
must preserve this handle for later use by the DaqFreeRequest procedure.

memory_handle

This void pointer defines the address of a pointer variable where the starting address of the newly allocated
memory block will be stored. memory_pointer will specify the address of a request structure of the type specified
by the request_type parameter. The application must preserve this pointer for later use by the DaqFreeRequest
procedure.

memory_pointer

The next structure field in the last DAQDRIVE_buffer structure is
set to point to the first DAQDRIVE_buffer structure thus creating
a ring or circular buffer.

1RING_BUFFER

The next structure field in the last DAQDRIVE_buffer structure is
set to NULL (there are no more structures in the chain).

0SEQUENTIAL_BUFFER

DescriptionValueDAQDRIVE Constant

Specifies how the next_structure field in the last DAQDRIVE_buffer structure is initialized.buffer_attributes

This unsigned short integer value specifies the number of bytes in each of the allocated data buffers. All allocated
data buffers are the same size.

buffer_size

This unsigned short integer value specifies the number of data buffers and data buffer structures to be allocated
for this request. Each buffer structure will have the data_buffer field initialized to point to the actual
input/output data buffer and the next_structure field initialized according to the value of buffer_attribute.

number_of_buffers

This unsigned short integer value defines the required length of the channel and gain arrays (a gain array is only
required for analog input requests). The channel array and gain array pointers in the request structure will be
initialized to point to the allocated arrays.

channel_array_length

allocate memory required for a digital output request3DIGOUT_TYPE_REQUEST

allocate memory required for a digital input request2DIGIN_TYPE_REQUEST

allocate memory required for an analog output request1DAC_TYPE_REQUEST

allocate memory required for an analog input request0ADC_TYPE_REQUEST

DescriptionValueDAQDRIVE Constant

Specifies the type of DAQDRIVE request to allocate memory for.request_type

DAQDRIVE Users Manual 166

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 5000 points each from 2 analog input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short status;

struct ADC_request far *myADCrequest;
struct allocate_request memory_request;

/***** Open the device (see DaqOpenDevice). *****/

/***** Allocate memory for the ADC request and data structures. *****/

memory_request.request_type = ADC_TYPE_REQUEST;
memory_request.channel_array_length = 2;
memory_request.number_of_buffers = 1;
memory_request.buffer_length = 2 * 5000 * sizeof(short);
memory_request.buffer_attributes = SEQUENTIAL_BUFFER;

status = DaqAllocateRequest(logical_device, &memory_request);
if (status != 0)
 {
 printf("Error allocating memory. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

myADCrequest = (ADC_request far *)memory_request.memory_pointer;

myADCrequest->channel_array_pointer[0] = 4;
myADCrequest->channel_array_pointer[1] = 9;
myADCrequest->trigger_source = INTERNAL_TRIGGER;

/***** Prepare remainder of A/D request structure. *****/

/***** Only status needs initialized in DAQDRIVE buffer structure. *****/

myADCrequest->ADC_buffer->buffer_status = BUFFER_EMPTY;

/***** Request A/D input. *****/
/***** Arm the request (See DaqArmRequest). *****/
/***** Trigger the request (See DaqTriggerRequest). *****/
/***** Wait for complete. *****/
/***** Free allocated memory. (See DaqFreeRequest) *****/

status = DaqFreeRequest(logical_device,
 memory_request.memory_handle,
 memory_request.memory_pointer)

if (status != 0)
 printf("Error de-allocating memory. Status code %d.\n",status);

/***** Close the device. (See DaqCloseDevice). *****/
}

DAQDRIVE Users Manual 167

13.4 DaqAnalogInput

DaqAnalogInput is DAQDRIVE's generic A/D converter interface. It does not configure any
hardware but acts simply to confirm that all parameters are valid and that the type of
operation requested is supported by the target hardware.

unsigned short DaqAnalogInput (unsigned short logical_device ,
 struct ADC_request far *user_request ,
 unsigned short far *request_handle)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

user_request - This structure pointer defines the address of an A/D request structure
containing the desired configuration information for this operation. This
structure is discussed in detail on the following pages.

request_handle - This unsigned short integer pointer is used to identify this analog input
request. For a new configuration, request_handle is set to 0 by the
application before calling DaqAnalogInput. If the configuration is
successful request_handle will be assigned a unique non-zero value by the
DaqAnalogInput procedure. If the application modifies a previously
configured request, the application must call DaqAnalogInput using the
previously assigned request_handle. All parameters except the channel list
may be modified using a reconfiguration request. To modify the channel
list, the present request must be released (DaqReleaseRequest) and a new
configuration requested.

DAQDRIVE Users Manual 168

struct ADC_request
 {
 unsigned short far *channel_array_ptr ;
 float far *gain_array_ptr ;
 unsigned short reserved1[4];
 unsigned short array_length ;
 struct DAQDRIVE_buffer far *ADC_buffer ;
 unsigned short reserved2[4];
 unsigned short trigger_source ;
 unsigned short trigger_mode ;
 unsigned short trigger_slope ;
 unsigned short trigger_channel ;
 double trigger_voltage;
 unsigned long trigger_value;
 unsigned short reserved3[4];
 unsigned short IO_mode ;
 unsigned short clock_source ;
 double clock_rate ;
 double sample_rate ;
 unsigned short reserved4[4];
 unsigned long number_of_scans ;
 unsigned long scan_event_level ;
 unsigned short reserved5[8];
 unsigned short calibration;
 unsigned short timeout_interval;
 unsigned long request_status ;
 };

Figure 11. Analog input request structure.

IMPORTANT:
1. Once the request is armed using DaqArmRequest, the only field the application can

modify is request_status. All other fields in the request structure must remain
constant until the operation is completed or otherwise terminated.

2. If the request structure is dynamically allocated by the application, it MUST NOT
be de-allocated until the request has been released by the DaqReleaseRequest
procedure. In addition, applications using the Windows version of DAQDRIVE
should use DaqAllocateMemory, DaqAllocateMemory32, or DaqAllocateRequest if
dynamically allocated request structures are required.

DAQDRIVE Users Manual 169

DMA is used to input the data; interrupts are used to monitor /
control the DMA operation

3BACKGROUND_DMA

DMA is used to input the data; the CPU monitors / controls the
DMA operation

2FOREGROUND_DMA

hardware interrupts are used to gain control of the CPU and input
the data

1BACKGROUND_IRQ

DAQDRIVE takes control of the CPU until the request is complete0FOREGROUND_CPU

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the method of data transfer.IO_mode

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved3[4]

This unsigned long value defines the value required on the digital input for a digital trigger to be generated.
trigger_value is ignored for all other trigger sources. Trigger selections are discussed in chapter 10.

trigger_value

This double precision value defines the trigger voltage level for the analog trigger. trigger_voltage is ignored for all
other trigger sources. Trigger selections are discussed in chapter 10.

trigger_voltage

This unsigned short value specifies the channel to be used as the input for the analog or digital trigger sources.
trigger_channel is undefined for all other trigger sources. Trigger selections are discussed in chapter 10.

trigger_channel

for TTL and analog triggers only, specifies a high-to-low transition is
required.

1FALLING_EDGE

for TTL and analog triggers only, specifies a low-to-high transition is
required.

0RISING_EDGE

DescriptionValueDAQDRIVE Constant

This unsigned short integer value defines the slope for TTL and analog triggers. trigger_slope is ignored for all
other trigger sources. Trigger selections are discussed in chapter 10.

trigger_slope

a trigger is required for each input scan1ONE_SHOT_TRIGGER

only one trigger is required to start the output operation0CONTINUOUS_TRIGGER

DescriptionValueDAQDRIVE Constant

This unsigned short integer value defines the trigger mode. Trigger selections are discussed in chapter 10.trigger_mode

digital value trigger3DIGITAL_TRIGGER

analog trigger2ANALOG_TRIGGER

TTL trigger1TTL_TRIGGER

internal (software) trigger0INTERNAL_TRIGGER

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the trigger source for this request. Trigger selections are discussed in
chapter 10.

trigger_source

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved2[4]

This pointer defines the address of the first data buffer structure. Data buffer structures are discussed in chapter 9.ADC_buffer

This unsigned short integer value defines the length of the arrays pointed to by channel_array_ptr and
gain_array_ptr. The arrays must be of equal length.

array_length

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved1[4]

This pointer defines the address of a floating point array specifying the gain for each channel in the array pointed to
by channel_array_ptr. There must be a one-to-one correspondence between the values specified by
channel_array_ptr and the values specified by gain_array_ptr.

gain_array_ptr

This pointer defines the address of an unsigned short integer array specifying the logical analog input channel(s) to
be operated on by this request.

channel_array_ptr

Figure 12. Analog input request structure definition.

DAQDRIVE Users Manual 170

When set to 1, this bit indicates the request has terminated because
of an error during processing. The application can determine the
source of the error using the DaqGetRuntimeError procedure.

0x80000000RUNTIME_ERROR_EVENT

When set to 1, this bit indicates the request has terminated because
the specified time-out interval was exceeded.

0x40000000TIMEOUT_EVENT

When set to 1, this bit indicates the request has terminated due to a
user-break.

0x20000000USER_BREAK_EVENT

When set to 1, this bit indicates the number of scans specified by
scan_event_level have been completed at least once.

0x00000010SCAN_EVENT

When set to 1, this bit indicates at least one of the specified input
data buffers has been filled.

0x00000008BUFFER_FULL_EVENT

When set to 1, this bit indicates at least one of the specified output
data buffers has been emptied.

0x00000004BUFFER_EMPTY_EVENT

When set to 1, this bit indicates the request has completed
successfully.

0x00000002COMPLETE_EVENT

When set to 1, this bit indicates the specified trigger has been
received.

0x00000001TRIGGER_EVENT

This constant does not represent an event status. It is provided to
the application for convenience.

0x00000000NO_EVENTS

DescriptionValueDAQDRIVE Constant

This unsigned long integer value provides the application with the current status of the request. DAQDRIVE does
not rely on the information contained in this field nor does it ever clear any of the event bits to 0. Therefore, the
application should initialize request_status during the configuration process and may modify its contents at any
time.

request_status

This unsigned short integer value defines a time-out interval, in seconds, for foreground mode processes. The input
operation will abort if the input can not be read every timeout_interval seconds. Setting timeout_interval = 0
disables the time-out function and causes the routine to wait indefinitely.

timeout_interval

Perform auto-zero on this request.0x0002AUTO_ZERO

Perform auto-calibration on this request.0x0001AUTO_CALIBRATE

No calibration requested.0x0000NO_CALIBRATION

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the type of calibration to be performed for this request. The calibration
methods are dependent on the type of hardware installed. Consult the hardware specific appendices for specifics
on adapter calibration.

calibration

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved5[8]

This unsigned long integer value defines the frequency at which scan events are reported to the application. For
example, setting scan_event_level to 100 causes a scan event to be generated each time 100 scans are completed.

scan_event_level

This unsigned long integer value defines the number of times the channels specified in channel_array_ptr will be
input. Setting number_of_cycles = 0 will cause the channels to be scanned continuously.

number_of_scans

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved4[4]

This double precision value specifies the input data rate in samples / second (Hz) for multiple point operations.sample_rate

This double precision value defines the clock frequency of the external clock. clock_rate is ignored for internal clock
sources.

clock_rate

the sampling rate is generated from an external input1EXTERNAL_CLOCK

the sampling rate is generated by the on-board clock circuitry0INTERNAL_CLOCK

DescriptionValueDAQDRIVE Constant

This unsigned short value selects the clock source to provide the timing for multiple point input operations.clock_source

Figure 11 (continued). Analog input request structure definition.

DAQDRIVE Users Manual 171

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 500 points each from 2 analog input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[2] = { 0, 1 };
 float gain_settings[2] = { 1, 8 };
unsigned short status;
 short data_array[1000];

struct ADC_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare data structure for analog input. *****/

/***/
/* put data in data_array data_array is 1000 points long */
/* next_structure = NULL (no more structures) */
/***/

data_structure.data_buffer = data_array;
data_structure.buffer_length = 1000;
data_structure.next_structure = NULL;

/***** Prepare the A/D request structure. *****/

/***/
/* channel list is in channel_num gain list is in gain_settings */
/* channel & gain array length is 2 use data_structure for data */
/* trigger source is internal trigger mode is continuous */
/* input using IRQs (in background) use internal clock */
/* sample at 1 KHz scan channel list 500 times */
/* do not signal buffer scan events do not implement time-out */
/***/

user_request.channel_array_ptr = channel_num;
user_request.gain_array_ptr = gain_settings;
user_request.array_length = 2;
user_request.ADC_buffer = data_structure;
user_request.trigger_source = INTERNAL_TRIGGER
user_request.trigger_mode = CONTINUOUS_TRIGGER;
user_request.IO_mode = BACKGROUND_IRQ;
user_request.clock_source = INTERNAL_CLOCK;
user_request.sample_rate = 1000;
user_request.number_of_scans = 500;
user_request.scan_event_level = 0;
user_request.calibration = NO_CALIBRATION;
user_request.timeout_interval = 0;
user_request.request_status = NO_EVENTS;

/***** Indicate data buffer ready for input. *****/

data_structure.buffer_status = BUFFER_EMPTY;

/***** Request A/D input. *****/

request_handle = 0;
status = DaqAnalogInput(logical_device, &user_request, &request_handle);
if (status != 0)
 {
 printf("A/D request error. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);

DAQDRIVE Users Manual 172

13.5 DaqAnalogOutput

DaqAnalogOutput is DAQDRIVE's generic D/A converter interface. It does not configure any
hardware but acts simply to confirm that all parameters are valid and that the type of
operation requested is supported by the target hardware.

unsigned short DaqAnalogOutput (unsigned short logical_device ,
 struct DAC_request far *user_request ,
 unsigned short far *request_handle)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

user_request - This structure pointer defines the address of a D/A request structure
containing the desired configuration information for this operation. This
structure is discussed in detail on the following pages.

request_handle - This unsigned short integer pointer is used to identify this analog output
request. For a new configuration, request_handle is set to 0 by the
application before calling DaqAnalogOutput. If the configuration is
successful request_handle will be assigned a unique non-zero value by the
DaqAnalogOutput procedure. If the application modifies a previously
configured request, the application must call DaqAnalogOutput using the
previously assigned request_handle. All parameters except the channel list
may be modified using a reconfiguration request. To modify the channel
list, the present request must be released (DaqReleaseRequest) and a new
configuration requested.

DAQDRIVE Users Manual 173

struct DAC_request
 {
 unsigned short far *channel_array_ptr ;
 unsigned short reserved1[4];
 unsigned short array_length ;
 struct DAQDRIVE_buffer far *DAC_buffer ;
 unsigned short reserved2[4];
 unsigned short trigger_source ;
 unsigned short trigger_mode ;
 unsigned short trigger_slope ;
 unsigned short trigger_channel ;
 double trigger_voltage;
 unsigned long trigger_value ;
 unsigned short reserved3[4];
 unsigned short IO_mode ;
 unsigned short clock_source ;
 double clock_rate ;
 double sample_rate ;
 unsigned short reserved4[4];
 unsigned long number_of_scans ;
 unsigned long scan_event_level ;
 unsigned short reserved5[8];
 unsigned short calibration ;
 unsigned short timeout_interval;
 unsigned long request_status ;
 };

Figure 13. Analog output request structure.

IMPORTANT:
1. Once the request is armed using DaqArmRequest, the only field the application can

modify is request_status. All other fields in the request structure must remain
constant until the operation is completed or otherwise terminated.

2. If the request structure is dynamically allocated by the application, it MUST NOT
be de-allocated until the request has been released by the DaqReleaseRequest
procedure. In addition, applications using the Windows version of DAQDRIVE
should use DaqAllocateMemory, DaqAllocateMemory32, or DaqAllocateRequest if
dynamically allocated request structures are required

DAQDRIVE Users Manual 174

DMA is used to input the data; interrupts are used to monitor /
control the DMA operation

3BACKGROUND_DMA

DMA is used to input the data; the CPU monitors / controls the
DMA operation

2FOREGROUND_DMA

hardware interrupts are used to gain control of the CPU and input
the data

1BACKGROUND_IRQ

DAQDRIVE takes control of the CPU until the request is complete0FOREGROUND_CPU

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the method of data transfer.IO_mode

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved3[4]

This unsigned long value defines the value required on the digital input for a digital trigger to be generated.
trigger_value is ignored for all other trigger sources. Trigger selections are discussed in chapter 10.

trigger_value

This double precision value defines the trigger voltage level for the analog trigger. trigger_voltage is ignored for all
other trigger sources. Trigger selections are discussed in chapter 10.

trigger_voltage

This unsigned short value specifies the channel to be used as the input for the analog or digital trigger sources.
trigger_channel is undefined for all other trigger sources. Trigger selections are discussed in chapter 10.

trigger_channel

for TTL and analog triggers only, specifies a high-to-low transition
is required.

1FALLING_EDGE

for TTL and analog triggers only, specifies a low-to-high transition
is required.

0RISING_EDGE

DescriptionValueDAQDRIVE Constant

This unsigned short integer value defines the slope for TTL and analog triggers. trigger_slope is ignored for all
other trigger sources. Trigger selections are discussed in chapter 10.

trigger_slope

a trigger is required for each output scan1ONE_SHOT_TRIGGER

only one trigger is required to start the output operation0CONTINUOUS_TRIGGER

DescriptionValueDAQDRIVE Constant

This unsigned short integer value defines the trigger mode. Trigger selections are discussed in chapter 10.trigger_mode

digital value trigger3DIGITAL_TRIGGER

analog trigger2ANALOG_TRIGGER

TTL trigger1TTL_TRIGGER

internal (software) trigger0INTERNAL_TRIGGER

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the trigger source for this request. Trigger selections are discussed in
chapter 10.

trigger_source

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved2[4]

This pointer defines the address of the first data buffer structure. Data buffer structures are discussed in chapter 9.DAC_buffer

This unsigned short integer value defines the number of channels contained in the array pointed to by
channel_array_ptr.

array_length

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved1[4]

This pointer defines the address of an unsigned short integer array specifying the logical analog output channel(s) to
be operated on by this request.

channel_array_ptr

Figure 14. Analog output request structure definition.

DAQDRIVE Users Manual 175

When set to 1, this bit indicates the request has terminated because
of an error during processing. The application can determine the
source of the error using the DaqGetRuntimeError procedure.

0x80000000RUNTIME_ERROR_EVENT

When set to 1, this bit indicates the request has terminated because
the specified time-out interval was exceeded.

0x40000000TIMEOUT_EVENT

When set to 1, this bit indicates the request has terminated due to a
user-break.

0x20000000USER_BREAK_EVENT

When set to 1, this bit indicates the number of scans specified by
scan_event_level have been completed at least once.

0x00000010SCAN_EVENT

When set to 1, this bit indicates at least one of the specified input
data buffers has been filled.

0x00000008BUFFER_FULL_EVENT

When set to 1, this bit indicates at least one of the specified output
data buffers has been emptied.

0x00000004BUFFER_EMPTY_EVENT

When set to 1, this bit indicates the request has completed
successfully.

0x00000002COMPLETE_EVENT

When set to 1, this bit indicates the specified trigger has been
received.

0x00000001TRIGGER_EVENT

This constant does not represent an event status. It is provided to
the application for convenience.

0x00000000NO_EVENTS

DescriptionValueDAQDRIVE Constant

This unsigned long integer value provides the application with the current status of the request. DAQDRIVE does
not rely on the information contained in this field nor does it ever clear any of the event bits to 0. Therefore, the
application should initialize request_status during the configuration process and may modify its contents at any
time.

request_status

This unsigned short integer value defines a time-out interval, in seconds, for foreground mode processes. The
operation will abort if the analog output can not be updated every timeout_interval seconds. Setting
timeout_interval = 0 disables the time-out function and causes the routine to wait indefinitely.

timeout_interval

Perform auto-zero on this request.0x0002AUTO_ZERO

Perform auto-calibration on this request.0x0001AUTO_CALIBRATE

No calibration requested.0x0000NO_CALIBRATION

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the type of calibration to be performed for this request. The calibration
methods are dependent on the type of hardware installed. Consult the hardware specific appendices for specifics
on adapter calibration.

calibration

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved5[8]

This unsigned long integer value defines the frequency at which scan events are reported to the application. For
example, setting scan_event_level to 100 causes a scan event to be generated each time 100 scans are completed.

scan_event_level

This unsigned long integer value defines the number of times the channels specified in channel_array_ptr will be
written. Setting number_of_cycles = 0 will cause the channels to be scanned continuously.

number_of_scans

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved4[4]

This double precision value specifies the output data rate in samples / second (Hz) for multiple point operations.sample_rate

This double precision value defines the clock frequency of the external clock. clock_rate is ignored for internal clock
sources.

clock_rate

the sampling rate is generated from an external input1EXTERNAL_CLOCK

the sampling rate is generated by the on-board clock circuitry0INTERNAL_CLOCK

DescriptionValueDAQDRIVE Constant

This unsigned short value selects the clock source to provide the timing for multiple point output operations.clock_source

Figure 13 (continued). Analog output request structure definition.

DAQDRIVE Users Manual 176

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Output a 20 point waveform to a D/A channel. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num = 0;
unsigned short status;
 short data_array[20];

struct DAC_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare data structure for analog output. *****/

/***/
/* data is in data_array data_array is 20 points long */
/* output buffer 1 time next_structure = NULL (no more structures) */
/***/

data_structure.data_buffer = data_array;
data_structure.buffer_length = 20;
data_structure.buffer_cycles = 1;
data_structure.next_structure = NULL;

/***** Prepare the D/A request structure. *****/

/***/
/* channel list is in channel_num channel_num is 1 channel long */
/* data is in data_structure trigger source is internal */
/* trigger mode is continuous output using IRQs (in background) */
/* use internal clock output 1 point every 10ms (100Hz) */
/* repeat all buffers once do not signal buffer scan events */
/* do not implement time-out */
/***/

user_request.channel_array_ptr = &channel_num;
user_request.array_length = 1;
user_request.DAC_buffer = data_structure;
user_request.trigger_source = INTERNAL_TRIGGER
user_request.trigger_mode = CONTINUOUS_TRIGGER;
user_request.IO_mode = BACKGROUND_IRQ;
user_request.clock_source = INTERNAL_CLOCK;
user_request.sample_rate = 100;
user_request.number_of_scans = 1;
user_request.scan_event_level = 0;
user_request.calibration = NO_CALIBRATION;
user_request.timeout_interval = 0;
user_request.request_status = NO_EVENTS;

/***** Indicate data buffer ready for output. *****/

data_structure.buffer_status = BUFFER_FULL;

/***** Request D/A output. *****/

request_handle = 0;
status = DaqAnalogOutput(logical_device, &user_request, &request_handle);
if (status != 0)
 {
 printf("D/A request error. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);

}

DAQDRIVE Users Manual 177

13.6 DaqArmRequest

DaqArmRequest is executed after the DaqAnalogInput, DaqAnalogOutput, DaqDigitalInput,
or DaqDigitalOutput functions to prepare the specified configuration for execution. During
the arming process, any resources required for the request (e.g. IRQs, DMA channels, timers)
are allocated for use by this request and all hardware is prepared for the impending trigger.

unsigned short DaqArmRequest (unsigned short request_handle)

request_handle - This unsigned short integer variable is used to define which request is to be
armed. This is the value returned to the application by the configuration
procedures DaqAnalogInput, DaqAnalogOutput, DaqDigitalInput or
DaqDigitalOutput.

#include "daqdrive.h"
#include "userdata.h"

/**/
/* Input 500 points from an A/D channel. */
/**/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short status;
 short data_array[500];

struct ADC_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare data structure for analog output. *****/

/***** Prepare the A/D request structure. *****/

/***** Request A/D input. *****/

request_handle = 0;
status = DaqAnalogInput(logical_device, &user_request, &request_handle);
if (status != 0)
 {
 printf("A/D request error. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Arm the request. *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 printf("Arm request error. Status code %d.\n",status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

DAQDRIVE Users Manual 178

13.7 DaqBytesToWords

DaqBytesToWords reverses the function of DaqWordsToBytes converting an unsigned short
integer array of 8-bit "packed" values into an unsigned short integer array of 16-bit
"un-packed" values. These function are provided especially for languages that do not support
8-bit variable types.

DaqBytesToWords reads the "packed" 8-bit values in array byte_array, converts these values
to their "un-packed" 16-bit unsigned short integer format, and stores the results in array
word_array. For an array of four values, the packed and un-packed arrays appear as follows:

integerintegerintegerinteger

0F70602E014"un-packed" array

F762E14"packed" array

bytebytebytebyte

void DaqBytesToWords (unsigned short far *byte_array ,
 unsigned short far *word_array ,
 unsigned long array_length)

byte_array - This is a pointer to an unsigned short integer array containing the "packed"
values to be converted. byte_array must be at least 'array_length ÷ 2' short
integers (array_length bytes) in length and may specify the same array as
word_array.

word_array - This is a pointer to an unsigned short integer array where the "un-packed"
values will be stored. word_array must be at least array_length short integers
in length and may specify the same array as byte_array.

array_length - This is an unsigned long integer value defining the number of data points to be
converted. byte_array must be at least 'array_length ÷ 2' short integers
(array_length bytes) in length while word_array must be at least array_length
short integers in length.

DAQDRIVE Users Manual 179

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 100 points each from 4 digital input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[4] = { 0, 1, 6, 3 };
unsigned short status;
unsigned short data_array[400];
unsigned short array_index;
unsigned short error;

unsigned long event_mask;

struct digio_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare the digital input request structure. *****/

/***** Request digital input (see DaqDigitalInput). *****/

/***** Arm the request (see DaqArmRequest). *****/

/***** Trigger the request. *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 printf("Trigger request error. Status code %d.\n",status);
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Wait for completion or error. *****/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0);

if ((user_request.request_status & RUNTIME_ERROR_EVENT) != 0)
 {
 status = DaqGetRuntimeError(request_handle, &error);
 exit(error);
 }

/***** Un-pack the values for display. *****/

DaqBytesToWords(data_array, data_array, 400);

/***** Display the input values as integers. *****/

for (array_index = 0; array_index < 400; array_index++)
 printf("digital input = %4x\n", data_array[array_index]);

DAQDRIVE Users Manual 180

13.8 DaqCloseDevice

DaqCloseDevice informs DAQDRIVE that the specified logical device is no longer required
and any resources required by this device may be freed.

unsigned short DaqCloseDevice (unsigned short logical_device)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char far *device_type = "DAQP-16";
char far *config_file = "daqp-16.dat";

/***** Open the DAQP-16. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Perform any DAQP-16 operations here. *****/

/***** Close the DAQP-16. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 181

13.9 DaqConvertBuffer

DaqConvertBuffer converts a buffer of raw digital readings returned from an analog input
request into a buffer of "real world" floating point values in engineering units.
DaqConvertBuffer uses the hardware configuration information stored within DAQDRIVE to
convert these numbers based on the signal type, gain settings, and signal conditioner
parameters defined for each channel in the system.

void DaqConvertBuffer (unsigned short logical_device ,
 struct sigcon_request far *sigcon_request)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

sigcon_request - This structure pointer defines the address of a signal conditioner data
conversion request structure specifying the parameters to be used during
the conversion process.

struct sigcon_request
 {
 unsigned short far *channel_array_ptr ;
 float far *gain_array_ptr ;
 unsigned short array_length ;
 void huge *raw_data_ptr ;
 double huge *converted_data_ptr ;
 unsigned long number_of_points ;
 };

This unsigned long integer value defines the length of the arrays pointed to by raw_data_ptr and
converted_data_ptr in units of "number-of-samples". The arrays must be of equal length.

number_of_points

This pointer defines the address of a double-precision array where the converted data will be stored.converted_data_ptr

This void huge pointer specifies the address of an array (buffer) containing the raw data to be converted.
raw_data_ptr is declared as a void to allow it to point to data of any type..

raw_data_ptr

This unsigned short integer value defines the length of the arrays pointed to by channel_array_ptr and
gain_array_ptr. The arrays must be of equal length.

array_length

This pointer defines the address of a floating point array specifying the gain for each channel in the array
pointed to by channel_array_ptr. There must be a one-to-one correspondence between the values specified
by channel_array_ptr and the values specified by gain_array_ptr.

gain_array_ptr

This pointer defines the address of an unsigned short integer array specifying the logical analog input
channel(s) from which the raw data was acquired.

channel_array_ptr

DAQDRIVE Users Manual 182

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 100 points each from 4 digital input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[4] = { 0, 1, 6, 3 };
unsigned short status;
unsigned short data_array[400];
unsigned short array_index;
unsigned short error;

unsigned long event_mask;

struct digio_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare the digital input request structure. *****/

/***** Request digital input (see DaqDigitalInput). *****/

/***** Arm the request (see DaqArmRequest). *****/

/***** Trigger the request. *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 printf("Trigger request error. Status code %d.\n",status);
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Wait for completion or error. *****/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0);

if ((user_request.request_status & RUNTIME_ERROR_EVENT) != 0)
 {
 status = DaqGetRuntimeError(request_handle, &error);
 exit(error);
 }

/***** Un-pack the values for display. *****/

DaqBytesToWords(data_array, data_array, 400);

/***** Display the input values as integers. *****/

for (array_index = 0; array_index < 400; array_index++)
 printf("digital input = %4x\n", data_array[array_index]);

DAQDRIVE Users Manual 183

13.10 DaqConvertPoint

DaqConvertPoint converts a single raw digital reading returned from an analog input request
into a "real world" floating point value in engineering units. DaqConvertPoint uses the
hardware configuration information stored within DAQDRIVE to convert the data based on
the signal type, gain settings, and signal conditioner parameters defined for each channel in
the system.

void DaqConvertPoint (unsigned short logical_device ,
 unsigned short ADC_channel ,
 float gain ,
 void far *raw_value ,
 double far *converted_value)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

ADC_channel - This unsigned short integer value is used to define the analog input
channel from which the raw data was acquired.

gain - This floating point value is used to define the gain of the analog input
channel from which the raw data was acquired.

raw_value - This void pointer specifies the address of the raw data to be converted
and is declared as a void to allow it to point to data of any type.

converted_value - This pointer specifies the address of a double-precision floating point
value where the converted value is to be stored.

DAQDRIVE Users Manual 184

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 100 points each from 4 digital input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[4] = { 0, 1, 6, 3 };
unsigned short status;
unsigned short data_array[400];
unsigned short array_index;
unsigned short error;

unsigned long event_mask;

struct digio_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare the digital input request structure. *****/

/***** Request digital input (see DaqDigitalInput). *****/

/***** Arm the request (see DaqArmRequest). *****/

/***** Trigger the request. *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 printf("Trigger request error. Status code %d.\n",status);
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Wait for completion or error. *****/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0);

if ((user_request.request_status & RUNTIME_ERROR_EVENT) != 0)
 {
 status = DaqGetRuntimeError(request_handle, &error);
 exit(error);
 }

/***** Un-pack the values for display. *****/

DaqBytesToWords(data_array, data_array, 400);

/***** Display the input values as integers. *****/

for (array_index = 0; array_index < 400; array_index++)
 printf("digital input = %4x\n", data_array[array_index]);

DAQDRIVE Users Manual 185

13.11 DaqConvertScan

DaqConvertScan converts a single scan of raw digital readings returned from an analog input
request into "real world" floating point values in engineering units. DaqConvertScan uses the
hardware configuration information stored within DAQDRIVE to convert the data based on
the signal type, gain settings, and signal conditioner parameters defined for each channel in
the system.

void DaqConvertScan (unsigned short logical_device ,
 unsigned short far *channel_array_ptr ,
 float far *gain_array_ptr ,
 unsigned short array_length ,
 void far *raw_data_ptr ,
 double far *converted_data_ptr)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

channel_array_ptr - This pointer defines the address of an unsigned short integer array
specifying the logical analog input channel(s) from which the raw data
was acquired.

gain_array_ptr - This pointer defines the address of a floating point array specifying the
gain for each channel in the array pointed to by channel_array_ptr.
There must be a one-to-one correspondence between the values
specified by channel_array_ptr and the values specified by
gain_array_ptr.

array_length - This unsigned short integer value defines the length of the arrays
pointed to by channel_array_ptr, gain_array_ptr, raw_data_ptr, and
converted_data_ptr. The arrays must be of equal length.

raw_data_ptr - This void huge pointer specifies the address of an array (buffer)
containing the raw data to be converted. raw_data_ptr is declared as a
void to allow it to point to data of any type.

converted_data_ptr - This pointer defines the address of a double-precision array where the
converted data will be stored.

DAQDRIVE Users Manual 186

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 100 points each from 4 digital input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[4] = { 0, 1, 6, 3 };
unsigned short status;
unsigned short data_array[400];
unsigned short array_index;
unsigned short error;

unsigned long event_mask;

struct digio_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare the digital input request structure. *****/

/***** Request digital input (see DaqDigitalInput). *****/

/***** Arm the request (see DaqArmRequest). *****/

/***** Trigger the request. *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 printf("Trigger request error. Status code %d.\n",status);
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Wait for completion or error. *****/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0);

if ((user_request.request_status & RUNTIME_ERROR_EVENT) != 0)
 {
 status = DaqGetRuntimeError(request_handle, &error);
 exit(error);
 }

/***** Un-pack the values for display. *****/

DaqBytesToWords(data_array, data_array, 400);

/***** Display the input values as integers. *****/

for (array_index = 0; array_index < 400; array_index++)
 printf("digital input = %4x\n", data_array[array_index]);

DAQDRIVE Users Manual 187

13.12 DaqDigitalInput

DaqDigitalInput is DAQDRIVE's generic digital input interface. DaqDigitalInput does not
configure any hardware but acts simply to confirm that all parameters are valid and that the
type of operation requested is supported by the target hardware.

unsigned short DaqDigitalInput (unsigned short logical_device ,
 struct digio_request far *user_request ,
 unsigned short far *request_handle)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

user_request - This structure pointer defines the address of a digital I/O request structure
containing the desired configuration information for this operation. This
structure is discussed in detail on the following pages.

request_handle - This unsigned short integer pointer is used to identify this digital input
request. For a new configuration, request_handle is set to 0 by the
application before calling DaqDigitalInput. If the configuration is successful
request_handle will be assigned a unique non-zero value by the
DaqDigitalInput procedure. If the application modifies a previously
configured request, the application must call DaqDigitalInput using the
previously assigned request_handle. All parameters except the channel list
may be modified using a reconfiguration request. To modify the channel
list, the present request must be released (DaqReleaseRequest) and a new
configuration requested.

DAQDRIVE Users Manual 188

struct digio_request
 {
 unsigned short far *channel_array_ptr ;
 unsigned short reserved1[4];
 unsigned short array_length ;
 struct DAQDRIVE_buffer far *digio_buffer ;
 unsigned short reserved2[4];
 unsigned short trigger_source ;
 unsigned short trigger_mode ;
 unsigned short trigger_slope ;
 unsigned short trigger_channel ;
 double trigger_voltage;
 unsigned long trigger_value ;
 unsigned short reserved3[4];
 unsigned short IO_mode ;
 unsigned short clock_source ;
 double clock_rate ;
 double sample_rate ;
 unsigned short reserved4[4];
 unsigned long number_of_scans ;
 unsigned long scan_event_level ;
 unsigned short reserved5[8];
 unsigned short timeout_interval;
 unsigned long request_status ;
 };

Figure 15. Digital input request structure.

IMPORTANT:
1. Once the request is armed using DaqArmRequest, the only field the application can

modify is request_status. All other fields in the request structure must remain
constant until the operation is completed or otherwise terminated.

2. If the request structure is dynamically allocated by the application, it MUST NOT
be de-allocated until the request has been released by the DaqReleaseRequest
procedure. In addition, applications using the Windows version of DAQDRIVE
should use DaqAllocateMemory, DaqAllocateMemory32, or DaqAllocateRequest if
dynamically allocated request structures are required.

DAQDRIVE Users Manual 189

DMA is used to input the data; interrupts are used to monitor /
control the DMA operation

3BACKGROUND_DMA

DMA is used to input the data; the CPU monitors / controls the
DMA operation

2FOREGROUND_DMA

hardware interrupts are used to gain control of the CPU and input
the data

1BACKGROUND_IRQ

DAQDRIVE takes control of the CPU until the request is complete0FOREGROUND_CPU

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the method of data transfer.IO_mode

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved3[4]

This unsigned long value defines the value required on the digital input for a digital trigger to be generated.
trigger_value is ignored for all other trigger sources. Trigger selections are discussed in chapter 10.

trigger_value

This double precision value defines the trigger voltage level for the analog trigger. trigger_voltage is ignored for all
other trigger sources. Trigger selections are discussed in chapter 10.

trigger_voltage

This unsigned short value specifies the channel to be used as the input for the analog or digital trigger sources.
trigger_channel is undefined for all other trigger sources. Trigger selections are discussed in chapter 10.

trigger_channel

for TTL and analog triggers only, specifies a high-to-low transition
is required.

1FALLING_EDGE

for TTL and analog triggers only, specifies a low-to-high transition
is required.

0RISING_EDGE

DescriptionValueDAQDRIVE Constant

This unsigned short integer value defines the slope for TTL and analog triggers. trigger_slope is ignored for all
other trigger sources. Trigger selections are discussed in chapter 10.

trigger_slope

a trigger is required for each output scan1ONE_SHOT_TRIGGER

only one trigger is required to start the output operation0CONTINUOUS_TRIGGER

DescriptionValueDAQDRIVE Constant

This unsigned short integer value defines the trigger mode. Trigger selections are discussed in chapter 10.trigger_mode

digital value trigger3DIGITAL_TRIGGER

analog trigger2ANALOG_TRIGGER

TTL trigger1TTL_TRIGGER

internal (software) trigger0INTERNAL_TRIGGER

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the trigger source for this request. Trigger selections are discussed in
chapter 10.

trigger_source

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved2[4]

This pointer defines the address of the first data buffer structure. Data buffer structures are discussed in chapter 9.digio_buffer

This unsigned short integer value defines the number of channels contained in the array pointed to by
channel_array_ptr.

array_length

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved1[4]

This pointer defines the address of an unsigned short integer array specifying the logical digital input channel(s) to
be operated on by this request.

channel_array_ptr

Figure 16. Digital input request structure definition.

DAQDRIVE Users Manual 190

When set to 1, this bit indicates the request has terminated because
of an error during processing. The application can determine the
source of the error using the DaqGetRuntimeError procedure.

0x80000000RUNTIME_ERROR_EVENT

When set to 1, this bit indicates the request has terminated because
the specified time-out interval was exceeded.

0x40000000TIMEOUT_EVENT

When set to 1, this bit indicates the request has terminated due to a
user-break.

0x20000000USER_BREAK_EVENT

When set to 1, this bit indicates the number of scans specified by
scan_event_level have been completed at least once.

0x00000010SCAN_EVENT

When set to 1, this bit indicates at least one of the specified input
data buffers has been filled.

0x00000008BUFFER_FULL_EVENT

When set to 1, this bit indicates at least one of the specified output
data buffers has been emptied.

0x00000004BUFFER_EMPTY_EVENT

When set to 1, this bit indicates the request has completed
successfully.

0x00000002COMPLETE_EVENT

When set to 1, this bit indicates the specified trigger has been
received.

0x00000001TRIGGER_EVENT

This constant does not represent an event status. It is provided to
the application for convenience.

0x00000000NO_EVENTS

DescriptionValueDAQDRIVE Constant

This unsigned long integer value provides the application with the current status of the request. DAQDRIVE does
not rely on the information contained in this field nor does it ever clear any of the event bits to 0. Therefore, the
application should initialize request_status during the configuration process and may modify its contents at any
time.

request_status

This unsigned short integer value defines a time-out interval, in seconds, for foreground mode processes. The
operation will abort if the digital input can not be read every timeout_interval seconds. Setting timeout_interval = 0
disables the time-out function and causes the routine to wait indefinitely.

timeout_interval

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved5[8]

This unsigned long integer value defines the frequency at which scan events are reported to the application. For
example, setting scan_event_level to 100 causes a scan event to be generated each time 100 scans are completed.

scan_event_level

This unsigned long integer value defines the number of times the channels specified in channel_array_ptr will be
input. Setting number_of_cycles = 0 will cause the channels to be scanned continuously.

number_of_scans

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved4[4]

This double precision value specifies the input data rate in samples / second (Hz) for multiple point operations.sample_rate

This double precision value defines the clock frequency of the external clock. clock_rate is ignored for internal clock
sources.

clock_rate

the sampling rate is generated from an external input1EXTERNAL_CLOCK

the sampling rate is generated by the on-board clock circuitry0INTERNAL_CLOCK

DescriptionValueDAQDRIVE Constant

This unsigned short value selects the clock source to provide the timing for multiple point input operations.clock_source

Figure 15 (continued). Digital input request structure definition.

DAQDRIVE Users Manual 191

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 100 points each from 4 digital input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[4] = { 0, 1, 6, 3 };
unsigned short status;
unsigned char data_array[400];

struct digio_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare data structure for digital input. *****/

/***/
/* put data in data_array data_array is 400 points long */
/* next_structure = NULL (no more structures) */
/***/

data_structure.data_buffer = data_array;
data_structure.buffer_length = 1000;
data_structure.next_structure = NULL;

/***** Prepare the digital input request structure. *****/

/***/
/* channel list is in channel_num channel list length is 4 */
/* use data_structure for data trigger source is internal */
/* trigger mode is continuous input using CPU (in foreground) */
/* use internal clock sample at 100 Hz */
/* scan channels list 100 times do not signal buffer scan events */
/* do not implement time-out */
/***/

user_request.channel_array_ptr = channel_num;
user_request.array_length = 4;
user_request.ADC_buffer = data_structure;
user_request.trigger_source = INTERNAL_TRIGGER
user_request.trigger_mode = CONTINUOUS_TRIGGER;
user_request.IO_mode = FOREGROUND_CPU;
user_request.clock_source = INTERNAL_CLOCK;
user_request.sample_rate = 100;
user_request.number_of_scans = 100;
user_request.scan_event_level = 0;
user_request.timeout_interval = 0;
user_request.request_status = NO_EVENTS;

/***** Indicate data buffer ready for input. *****/

data_structure.buffer_status = BUFFER_EMPTY;

/***** Request digital input. *****/

request_handle = 0;
status = DaqDigitalInput(logical_device, &user_request, &request_handle);
if (status != 0)
 {
 printf("Digital input request error. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);

}

DAQDRIVE Users Manual 192

13.13 DaqDigitalOutput

DaqDigitalOutput is DAQDRIVE's generic digital output interface. DaqDigitalOutput does
not configure any hardware but acts simply to confirm that all parameters are valid and that
the type of operation requested is supported by the target hardware.

unsigned short DaqDigitalOutput (unsigned short logical_device ,
 struct digio_request far *user_request ,
 unsigned short far *request_handle)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

user_request - This structure pointer defines the address of a digital I/O request structure
containing the desired configuration information for this operation. This
structure is discussed in detail on the following pages.

request_handle - This unsigned short integer pointer is used to identify this digital output
request. For a new configuration, request_handle is set to 0 by the
application before calling DaqDigitalOutput. If the configuration is
successful request_handle will be assigned a unique non-zero value by the
DaqDigitalOutput procedure. If the application modifies a previously
configured request, the application must call DaqDigitalOutput using the
previously assigned request_handle. All parameters except the channel list
may be modified using a reconfiguration request. To modify the channel
list, the present request must be released (DaqReleaseRequest) and a new
configuration requested.

DAQDRIVE Users Manual 193

struct digio_request
 {
 unsigned short far *channel_array_ptr ;
 unsigned short reserved1[4];
 unsigned short array_length ;
 struct DAQDRIVE_buffer far *digio_buffer ;
 unsigned short reserved2[4];
 unsigned short trigger_source ;
 unsigned short trigger_mode ;
 unsigned short trigger_slope ;
 unsigned short trigger_channel ;
 double trigger_voltage;
 unsigned long trigger_value ;
 unsigned short reserved3[4];
 unsigned short IO_mode ;
 unsigned short clock_source ;
 double clock_rate ;
 double sample_rate ;
 unsigned short reserved4[4];
 unsigned long number_of_scans ;
 unsigned long scan_event_level ;
 unsigned short reserved5[8];
 unsigned short timeout_interval;
 unsigned long request_status ;
 };

Figure 17. Digital output request structure.

IMPORTANT:
1. Once the request is armed using DaqArmRequest, the only field the application can

modify is request_status. All other fields in the request structure must remain
constant until the operation is completed or otherwise terminated.

2. If the request structure is dynamically allocated by the application, it MUST NOT
be de-allocated until the request has been released by the DaqReleaseRequest
procedure. In addition, applications using the Windows version of DAQDRIVE
should use DaqAllocateMemory, DaqAllocateMemory32, or DaqAllocateRequest if
dynamically allocated request structures are required.

DAQDRIVE Users Manual 194

DMA is used to input the data; interrupts are used to monitor /
control the DMA operation

3BACKGROUND_DMA

DMA is used to input the data; the CPU monitors / controls the
DMA operation

2FOREGROUND_DMA

hardware interrupts are used to gain control of the CPU and input
the data

1BACKGROUND_IRQ

DAQDRIVE takes control of the CPU until the request is complete0FOREGROUND_CPU

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the method of data transfer.IO_mode

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved3[4]

This unsigned long value defines the value required on the digital input for a digital trigger to be generated.
trigger_value is ignored for all other trigger sources. Trigger selections are discussed in chapter 10.

trigger_value

This double precision value defines the trigger voltage level for the analog trigger. trigger_voltage is ignored for all
other trigger sources. Trigger selections are discussed in chapter 10.

trigger_voltage

This unsigned short value specifies the channel to be used as the input for the analog or digital trigger sources.
trigger_channel is undefined for all other trigger sources. Trigger selections are discussed in chapter 10.

trigger_channel

for TTL and analog triggers only, specifies a high-to-low transition
is required.

1FALLING_EDGE

for TTL and analog triggers only, specifies a low-to-high transition
is required.

0RISING_EDGE

DescriptionValueDAQDRIVE Constant

This unsigned short integer value defines the slope for TTL and analog triggers. trigger_slope is ignored for all
other trigger sources. Trigger selections are discussed in chapter 10.

trigger_slope

a trigger is required for each output scan1ONE_SHOT_TRIGGER

only one trigger is required to start the output operation0CONTINUOUS_TRIGGER

DescriptionValueDAQDRIVE Constant

This unsigned short integer value defines the trigger mode. Trigger selections are discussed in chapter 10.trigger_mode

digital value trigger3DIGITAL_TRIGGER

analog trigger2ANALOG_TRIGGER

TTL trigger1TTL_TRIGGER

internal (software) trigger0INTERNAL_TRIGGER

DescriptionValueDAQDRIVE Constant

This unsigned short integer value specifies the trigger source for this request. Trigger selections are discussed in
chapter 10.

trigger_source

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved2[4]

This pointer defines the address of the first data buffer structure. Data buffer structures are discussed in chapter 9.digio_buffer

This unsigned short integer value defines the number of channels contained in the array pointed to by
channel_array_ptr.

array_length

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved1[4]

This pointer defines the address of an unsigned short integer array specifying the logical digital output channel(s) to
be operated on by this request.

channel_array_ptr

Figure 18. Digital output request structure definition.

DAQDRIVE Users Manual 195

When set to 1, this bit indicates the request has terminated because
of an error during processing. The application can determine the
source of the error using the DaqGetRuntimeError procedure.

0x80000000RUNTIME_ERROR_EVENT

When set to 1, this bit indicates the request has terminated because
the specified time-out interval was exceeded.

0x40000000TIMEOUT_EVENT

When set to 1, this bit indicates the request has terminated due to a
user-break.

0x20000000USER_BREAK_EVENT

When set to 1, this bit indicates the number of scans specified by
scan_event_level have been completed at least once.

0x00000010SCAN_EVENT

When set to 1, this bit indicates at least one of the specified input
data buffers has been filled.

0x00000008BUFFER_FULL_EVENT

When set to 1, this bit indicates at least one of the specified output
data buffers has been emptied.

0x00000004BUFFER_EMPTY_EVENT

When set to 1, this bit indicates the request has completed
successfully.

0x00000002COMPLETE_EVENT

When set to 1, this bit indicates the specified trigger has been
received.

0x00000001TRIGGER_EVENT

This constant does not represent an event status. It is provided to
the application for convenience.

0x00000000NO_EVENTS

DescriptionValueDAQDRIVE Constant

This unsigned long integer value provides the application with the current status of the request. DAQDRIVE does
not rely on the information contained in this field nor does it ever clear any of the event bits to 0. Therefore, the
application should initialize request_status during the configuration process and may modify its contents at any
time.

request_status

This unsigned short integer value defines a time-out interval, in seconds, for foreground mode processes. The
operation will abort if the digital output can not be updated every timeout_interval seconds. Setting
timeout_interval = 0 disables the time-out function and causes the routine to wait indefinitely.

timeout_interval

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved5[8]

This unsigned long integer value defines the frequency at which scan events are reported to the application. For
example, setting scan_event_level to 100 causes a scan event to be generated each time 100 scans are completed.

scan_event_level

This unsigned long integer value defines the number of times the channels specified in channel_array_ptr will be
written. Setting number_of_cycles = 0 will cause the channels to be scanned continuously.

number_of_scans

This unsigned short integer array is reserved for the future expansion of DAQDRIVE. For maximum compatibility,
the application should initialize all reserved variables to 0.

reserved4[4]

This double precision value specifies the output data rate in samples / second (Hz) for multiple point operations.sample_rate

This double precision value defines the clock frequency of the external clock. clock_rate is ignored for internal clock
sources

clock_rate

the sampling rate is generated from an external input1EXTERNAL_CLOCK

the sampling rate is generated by the on-board clock circuitry0INTERNAL_CLOCK

DescriptionValueDAQDRIVE Constant

This unsigned short value selects the clock source to provide the timing for multiple point output operations.clock_source

Figure 17 (continued). Digital output request structure definition.

DAQDRIVE Users Manual 196

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Output three 50 point patterns to three digital output channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[3] = { 0, 1, 5 };
unsigned short status;
unsigned char data_array[150];

struct digio_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare data structure for digital output. *****/

/***/
/* data is in data_array data_array is 150 points long */
/* output buffer 10 times next_structure = NULL (no more structures) */
/***/

data_structure.data_buffer = data_array;
data_structure.buffer_length = 150;
data_structure.buffer_cycles = 10;
data_structure.next_structure = NULL;

/***** Prepare the digital output request structure. *****/

/***/
/* channel list is in channel_num channel_num is 3 channels long */
/* data is in data_structure trigger source is internal */
/* trigger mode is continuous output using IRQs (in background) */
/* use internal clock output 1 point every 500ms (2Hz) */
/* repeat all buffers once do not signal buffer scan events */
/* do not implement time-out */
/***/

user_request.channel_array_ptr = channel_num;
user_request.array_length = 3;
user_request.DAC_buffer = data_structure;
user_request.trigger_source = INTERNAL_TRIGGER
user_request.trigger_mode = CONTINUOUS_TRIGGER;
user_request.IO_mode = BACKGROUND_IRQ;
user_request.clock_source = INTERNAL_CLOCK;
user_request.sample_rate = 2;
user_request.number_of_scans = 1;
user_request.scan_event_level = 0;
user_request.timeout_interval = 0;
user_request.request_status = NO_EVENTS;

/***** Indicate data buffer ready for output. *****/

data_structure.buffer_status = BUFFER_FULL;

/***** Request digital output. *****/

request_handle = 0;
status = DaqDigitalOutput(logical_device, &user_request, &request_handle);
if (status != 0)
 {
 printf("Digital output request error. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);

}

DAQDRIVE Users Manual 197

13.14 DaqFreeMemory (16-bit DAQDRIVE only)

DaqFreeMemory is a DAQDRIVE utility function used to free memory previously allocated
by the DaqAllocateMemory procedure. All allocated memory should be freed before the
application program terminates.

NOTE:
32-bit application programs must use the DaqFreeMemory32 procedure.

unsigned short DaqFreeMemory (unsigned short memory_handle ,
 void far *memory_pointer)

memory_handle - This unsigned short integer specifies the handle of the allocated memory
block. This is the value returned by the DaqAllocateMemory procedure.

memory_pointer - This void pointer specifies the starting address of the allocated memory
block. This is the value returned by the DaqAllocateMemory procedure.

DAQDRIVE Users Manual 198

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 5000 points each from 2 analog input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[2] = { 0, 1 };
 float gain_settings[2] = { 1, 8 };
unsigned long memory_size;
unsigned short memory_handle;
void far *memory_pointer;
unsigned short status;

struct ADC_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/
/***** Allocate memory for the input data. *****/
/***** 5000 samples/channel * 2 channels * 2 bytes/sample *****/

memory_size = 5000 * 2 * sizeof(short);
status = DaqAllocateMemory(memory_size, &memory_handle, &memory_pointer);
if (status != 0)
 {
 printf("Error allocating data buffer. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Prepare data structure for analog input. *****/

data_structure.data_buffer = memory_pointer;
data_structure.buffer_length = 10000;

/***** Prepare the A/D request structure. *****/
/***** Request A/D input (See DaqAnalogInput). *****/
/***** Arm the request (See DaqArmRequest). *****/
/***** Trigger the request (See DaqTriggerRequest). *****/
/***** Wait for complete. *****/

/***** Free allocated memory. *****/

status = DaqFreeMemory(memory_handle, memory_pointer);
if (status != 0)
 {
 printf("Error de-allocating memory. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Close the device. (See DaqCloseDevice). *****/
}

DAQDRIVE Users Manual 199

13.15 DaqFreeMemory32 (32-bit DAQDRIVE only)

DaqFreeMemory32 is a DAQDRIVE utility function used to free memory previously allocated
by the DaqAllocateMemory32 procedure. All allocated memory should be freed before the
application program terminates.

NOTE:
16-bit application programs must use the DaqFreeMemory procedure.

unsigned short DaqFreeMemory32 (unsigned long memory_handle ,
 void far *memory_pointer)

memory_handle - This unsigned long integer specifies the handle of the allocated memory
block. This is the value returned by the DaqAllocateMemory32 procedure.

memory_pointer - This void pointer specifies the starting address of the allocated memory
block. This is the value returned by the DaqAllocateMemory32 procedure.

DAQDRIVE Users Manual 200

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 5000 points each from 2 analog input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num[2] = { 0, 1 };
 float gain_settings[2] = { 1, 8 };
unsigned long memory_size;
unsigned long memory_handle;
void far *memory_pointer;
unsigned short status;

struct ADC_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/
/***** Allocate memory for the input data. *****/
/***** 5000 samples/channel * 2 channels * 2 bytes/sample *****/

memory_size = 5000 * 2 * sizeof(short);
status = DaqAllocateMemory32(memory_size, &memory_handle, &memory_pointer);
if (status != 0)
 {
 printf("Error allocating data buffer. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Prepare data structure for analog input. *****/
/***** Prepare the A/D request structure. *****/
/***** Request A/D input (See DaqAnalogInput). *****/
/***** Arm the request (See DaqArmRequest). *****/
/***** Trigger the request (See DaqTriggerRequest). *****/
/***** Wait for complete. *****/

/***** Free allocated memory. *****/

status = DaqFreeMemory32(memory_handle, memory_pointer);
if (status != 0)
 {
 printf("Error de-allocating memory. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Close the device. (See DaqCloseDevice). *****/
}

DAQDRIVE Users Manual 201

13.16 DaqFreeRequest

DaqFreeRequest is a DAQDRIVE utility function used to free memory previously allocated by
the DaqAllocateRequest procedure. All allocated memory should be freed before the
application program terminates.

unsigned short DaqFreeRequest (unsigned short logical_device,
 unsigned long memory_handle ,
 void far *memory_pointer)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

memory_handle - This unsigned long integer specifies the handle of the allocated memory
block. This is the value returned by the DaqAllocateRequest procedure.

memory_pointer - This void pointer specifies the starting address of the allocated memory
block. This is the value returned by the DaqAllocateRequest procedure.

DAQDRIVE Users Manual 202

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Input 5000 points each from 2 analog input channels. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short status;

struct ADC_request far *myADCrequest;
struct allocate_request memory_request;

/***** Open the device (see DaqOpenDevice). *****/

/***** Allocate memory for the ADC request and data structures. *****/

memory_request.request_type = ADC_TYPE_REQUEST;
memory_request.channel_array_length = 2;
memory_request.number_of_buffers = 1;
memory_request.buffer_length = 2 * 5000 * sizeof(short);
memory_request.buffer_attributes = SEQUENTIAL_BUFFER;

status = DaqAllocateRequest(logical_device, &memory_request);
if (status != 0)
 {
 printf("Error allocating memory. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

myADCrequest = (ADC_request far *)memory_request.memory_pointer;

myADCrequest->channel_array_pointer[0] = 4;
myADCrequest->channel_array_pointer[1] = 9;
myADCrequest->trigger_source = INTERNAL_TRIGGER;

/***** Prepare remainder of A/D request structure. *****/

/***** Only status needs initialized in DAQDRIVE buffer structure. *****/

myADCrequest->ADC_buffer->buffer_status = BUFFER_EMPTY;

/***** Request A/D input. *****/
/***** Arm the request (See DaqArmRequest). *****/
/***** Trigger the request (See DaqTriggerRequest). *****/
/***** Wait for complete. *****/
/***** Free allocated memory. (See DaqFreeRequest) *****/

status = DaqFreeRequest(logical_device,
 memory_request.memory_handle,
 memory_request.memory_pointer)

if (status != 0)
 printf("Error de-allocating memory. Status code %d.\n",status);

/***** Close the device. (See DaqCloseDevice). *****/
}

DAQDRIVE Users Manual 203

13.17 DaqGetADCfgInfo

DaqGetADCfgInfo returns the configuration of the A/D converter specified by ADC_device
on the adapter specified by logical_device.

unsigned short DaqGetADCfgInfo (unsigned short logical_device ,
 unsigned short ADC_device ,
 struct ADC_configuration far *ADC_info)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

ADC_device - This unsigned short integer value is used to select one of the A/D converters
on the target hardware device.

ADC_info - This structure pointer defines the address of an A/D configuration structure
where the configuration of the specified A/D converter will be stored.

struct ADC_configuration
 {
 unsigned short resolution ;
 unsigned short signal_type ;
 unsigned short input_mode ;
 unsigned short data_coding ;
 long min_digital ;
 long max_digital ;
 long zero_offset ;
 float min_analog ;
 float max_analog ;
 float min_sample_rate ;
 float max_sample_rate ;
 float max_scan_rate ;
 unsigned short num_exp_boards ;
 unsigned short total_channels ;
 unsigned short max_scan_length ;
 unsigned short gain_array_length ;
 unsigned short calibration_modes ;
 };

DAQDRIVE Users Manual 204

When set to 1, this bit indicates the A/D supports auto-zero.0x0002

When set to 1, this bit indicates the A/D supports auto-calibration.0x0001

DescriptionValue

This unsigned short integer value specifies the supported calibration modes of the A/D sub-system.calibration_modes

This unsigned short integer value specifies the number of available A/D gain settings. The application must
allocate an array of length gain_array_length before executing DaqGetADGainInfo.

gain_array_length

This unsigned short integer value defines the maximum scan length of the A/D. This is the maximum length of the
channel list for A/D requests.

max_scan_length

This unsigned short integer value specifies the total number of analog inputs available on the A/D.total_channels

This unsigned short integer value defines the number of analog input expansion boards connected to the A/D.num_exp_boards

This floating point value specifies the maximum multi-channel (scanning) sampling rate supported by the A/D.max_scan_rate

This floating point value specifies the maximum single channel sampling rate supported by the A/D.max_sample_rate

This floating point value specifies the minimum sampling rate supported by the A/D.min_sample_rate

This floating point value defines the maximum analog input to the A/D.max_analog

This floating point value defines the minimum analog input to the A/D.min_analog

This long integer value defines the offset or zero value reading returned by the A/D.zero_offset

This long integer value defines the maximum digital value returned by the A/D.max_digital

This long integer value defines the minimum digital value returned by the A/D.min_digital

Indicates data is in binary format.1

Indicates data is in two's complement format.0

DescriptionValue

This unsigned short integer value specifies the A/D data coding format.data_coding

When set to 1, this bit indicates the A/D input is single-ended.0x0002

When set to 1, this bit indicates the A/D input is differential.0x0001

DescriptionValue

This unsigned short integer value specifies the A/D input mode.input_mode

When set to 1, this bit indicates the A/D input is unipolar.0x0002

When set to 1, this bit indicates the A/D input is bipolar.0x0001

DescriptionValue

This unsigned short integer value specifies the A/D input signal type.signal_type

This unsigned short integer value specifies the resolution of the A/D converter in bits.resolution

Figure 19. A/D converter configuration structure definition.

DAQDRIVE Users Manual 205

#include "daqdrive.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short ADC_devices;
unsigned short status;

struct ADC_configuration ADC_info;

char far *device_type = "DAQ-1201";
char far *config_file = "daq-1201.dat";

/***** Open the DAQ-1201 (see DaqOpenDevice). *****/

/***** Get the A/D configuration. *****/

ADC_device = 0;
status = DaqGetADCfgInfo(logical_device, ADC_device, &ADC_info);
if (status != 0)
 {
 printf("Error getting A/D configuration. Status code %d.\n",status);
 exit(status);
 }

/***** Display the A/D configuration. *****/

printf("A/D number %d ", ADC_device);
printf("has a resolution of %d bits,\n", ADC_info.resolution);
if (ADC_info.signal_type == 1)
 printf("is configured for unipolar and ");
else
 printf("is configured for bipolar and ");
if (ADC_info.input_mode == 1)
 printf("single-ended operation,\n");
else
 printf("differential operation,\n");
switch (ADC_info.calibration_modes)
 {
 case 1: printf("supports auto-calibration,\n");
 break;
 case 2: printf("supports auto-zero,\n");
 break;
 case 3: printf("supports auto-calibration and auto-zero,\n");
 break;
 }
printf("has a max scan length of %d channels,\n", ADC_info.max_scan_length);
printf("supports %d gain settings,\n", ADC_info.gain_array_length);
printf("and has %d expansion boards attached ", ADC_info.num_exp_boards);
printf("for a total of %d analog inputs.\n", ADC_info.total_inputs);
printf("\n");
printf("The A/D returns values in the range %ld ", ADC_info.min_digital);
printf("to %ld\n", ADC_info.max_digitla);
printf("which corresponds to an input range of %f ", ADC_info.min_analog);
printf("to %f volts.\n", ADC_info.max_analog);
printf("\n");
printf("A single input may be sampled up to %f Hz ", ADC_info.max_sample_rate);
printf("and multiple inputs up to %f Hz.\n", ADC_info.max_scan_rate);
printf("The minimum sampling rate is %f Hz\n", ADC_info.min_sample_rate);
}

DAQDRIVE Users Manual 206

13.18 DaqGetAddressOf

DaqGetAddressOf is a DAQDRIVE utility function used to get the address of a variable for
programming language which do not support pointers. The variable's address is returned as
an unsigned long integer suitable for storage in any of the DAQDRIVE structures.

unsigned long DaqGetAddressOf (void far *variable)

variable - This void pointer specifies the variable for which the address is desired. variable
is declared as a void to allow it to point to data of any type.

#include "daqdrive.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{

char far *device_type = "DAQ-1201";
unsigned short channel_array[3] = {0, 1, 2};

unsigned long address_of_string;
unsigned long address_of_array;

address_of_string = DaqAddressOf((void far*)device_type);
address_of_array = DaqAddressOf((void far*)&channel_array[0]);
}

DAQDRIVE Users Manual 207

13.19 DaqGetADGainInfo

DaqGetADGainInfo returns an array of the gain settings supported by the A/D converter
specified by ADC_device on the adapter specified by logical_device. The length of the array
is determined by the gain_array_length variable returned by the DaqGetADCfgInfo
command.

unsigned short DaqGetADGainInfo (unsigned short logical_device ,
 unsigned short ADC_device ,
 float far *gain_array)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

ADC_device - This unsigned short integer value is used to select one of the A/D converters
on the target hardware device.

gain_array - This pointer defines the first element of an array of floating point values
where the available A/D gain settings will be stored. The application must
allocate the array used to store these gain settings. The length of the array is
determined by the gain_array_length variable returned by the
DaqGetADCfgInfo command.

DAQDRIVE Users Manual 208

#include "daqdrive.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short ADC_device;
unsigned short status;
unsigned short i;

struct ADC_configuration ADC_info;

float far *gain_array;

char far *device_type = "DAQ-1201";
char far *config_file = "daq-1201.dat";

/***** Open the DAQ-1201 (see DaqOpenDevice). *****/

/***** Get the A/D configuration. *****/

ADC_device = 0;
status = DaqGetADCfgInfo(logical_device, ADC_device, &ADC_info);

/***** Create an array to hold the gain settings. *****/

gain_array = _fmalloc(ADC_info.gain_array_length * sizeof(float));

/***** Get the available gain settings. *****/

status = DaqGetADGainInfo(logical_device, ADC_device, gain_array);
if (status != 0)
 {
 printf("Error getting A/D gain settings. Status code %d.\n",status);
 exit(status);
 }

/***** Display the available gain settings. *****/

printf("The DAQ-1201 supports the following A/D gain settings:\n");

for (i = 0; i < ADC_info.gain_array_length; i++)
 printf(" gain[%d] = %f\n", i, gain_array[i]);
}

DAQDRIVE Users Manual 209

13.20 DaqGetDACfgInfo

DaqGetDACfgInfo returns the configuration of the D/A converter specified by DAC_device
on the adapter specified by logical_device.

unsigned short DaqGetDACfgInfo (unsigned short logical_device ,
 unsigned short DAC_device ,
 struct DAC_configuration far *DAC_info)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

DAC_device - This unsigned short integer value is used to select one of the D/A converters
on the target hardware device.

DAC_info - This structure pointer defines the address of a D/A configuration structure
where the configuration of the specified D/A converter will be stored.

struct DAC_configuration
 {
 unsigned short resolution ;
 unsigned short signal_type ;
 unsigned short data_coding ;
 long min_digital ;
 long max_digital ;
 long zero_offset ;
 float min_analog ;
 float max_analog ;
 float min_sample_rate ;
 float max_sample_rate ;
 float max_scan_rate ;
 unsigned short reference_source ;
 float reference_voltage ;
 unsigned short gain_array_length ;
 unsigned short calibration_modes ;
 };

DAQDRIVE Users Manual 210

When set to 1, this bit indicates the D/A supports auto-zero.0x0002

When set to 1, this bit indicates the D/A supports auto-calibration.0x0001

DescriptionValue

This unsigned short integer value specifies the supported calibration modes of the D/A sub-system.calibration_modes

This unsigned short integer value specifies the number of available D/A gain settings. The application must
allocate an array of length gain_array_length before executing DaqGetDAGainInfo.

gain_array_length

This floating point value specifies the value of the D/A's reference voltage.reference_voltage

This unsigned short integer value defines the source of the D/A's reference voltage.reference_source

This floating point value specifies the maximum multi-channel (scanning) sampling rate supported by the D/A.max_scan_rate

This floating point value specifies the maximum single channel sampling rate supported by the D/A.max_sample_rate

This floating point value specifies the minimum sampling rate supported by the D/A.min_sample_rate

This floating point value defines the maximum analog output from the D/A.max_analog

This floating point value defines the minimum analog output from the D/A.min_analog

This long integer value defines the offset or zero value of the D/A.zero_offset

This long integer value defines the maximum digital value accepted by the D/A.max_digital

This long integer value defines the minimum digital value accepted by the D.A.min_digital

Indicates data is in binary format.1

Indicates data is in two's complement format.0

DescriptionValue

This unsigned short integer value specifies the D/A data coding format.data_coding

When set to 1, this bit indicates the D/A output is unipolar.0x0002

When set to 1, this bit indicates the D/A output is bipolar.0x0001

DescriptionValue

This unsigned short integer value specifies the D/A output signal type.signal_type

This unsigned short integer value specifies the resolution of the D/A converter in bits.resolution

Figure 20. D/A converter configuration structure definition.

DAQDRIVE Users Manual 211

#include "daqdrive.h"
#include "userdata.h"
#include "da8p-12.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short DAC_device;
unsigned short status;

struct DAC_configuration DAC_info;
char far *device_type = "DA8P-12B";
char far *config_file = "c:\\da8p-12b\\da8p-12b.dat";

/***** Open the DA8P-12B (see DaqOpenDevice). *****/

/***** Get a D/A configuration. *****/

DAC_device = 6;
status = DaqGetDACfgInfo(logical_device, DAC_device, &DAC_info);
if (status != 0)
 {
 printf("Error getting D/A configuration. Status code %d.\n",status);
 exit(status);
 }

/***** Display the D/A configuration. *****/

printf("D/A number %d ", DAC_device);
printf("has a resolution of %d bits,\n", DAC_info.resolution);
if (DAC_info.signal_type == 1)
 printf("is configured for unipolar operation,\n");
else
 printf("is configured for bipolar operation,\n");
if (DAC_info.reference_source == 0)
 printf("with an internal reference voltage");
else
 printf("with an external reference voltage");
printf("of %2.5f volts.\n", DAC_info.reference_voltage);
printf("It supports digital values from %ld ", DAC_info.min_digital);
printf("to %ld\n", DAC_info.max_digital);
printf("which produce analog voltages from %f ", DAC_info.min_analog);
printf("to %f volts.\n", DAC_info.max_analog);
printf("Data can be output up to %f Hz", DAC_info.max_sample_rate);
printf("for a single channel or up to %f Hz", DAC_info.max_scan_rate);
printf("on multiple channels.");
printf("The D/A supports %d gain settings\n", DAC_info.gain_array_length);
switch (DAC_into.calibration_modes)
 {
 case 0: printf("but does not offer self-calibration.\n");
 break;
 case 1: printf("and an auto-calibration mode.\n");
 break;
 case 2: printf("and an auto-zero mode.\n");
 break;
 case 3: printf("plus auto-calibration and auto-zero modes.\n");
 break;
 }
}

DAQDRIVE Users Manual 212

13.21 DaqGetDAGainInfo

DaqGetDAGainInfo returns an array of the gain settings supported by the D/A converter
specified by DAC_device on the adapter specified by logical_device. The length of the array
is determined by the gain_array_length variable returned by the DaqGetDACfgInfo
command.

unsigned short DaqGetDAGainInfo (unsigned short logical_device ,
 unsigned short DAC_device ,
 float far *gain_array)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

DAC_device - This unsigned short integer value is used to select one of the D/A converters
on the target hardware device.

gain_array - This pointer defines the first element of an array of floating point values
where the available D/A gain settings will be stored. The application must
allocate the array used to store these gain settings. The length of the array is
determined by the gain_array_length variable returned by the
DaqGetDACfgInfo command.

DAQDRIVE Users Manual 213

#include "daqdrive.h"
#include "userdata.h"
#include "da8p-12.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short DAC_device;
unsigned short status;
unsigned short i;

struct DAC_configuration DAC_info;

float ref_voltage;
float far *gain_array;

char far *device_type = "DA8P-12B";
char far *config_file = "c:\\da8p-12b\\da8p-12b.dat";

/***** Open the DA8P-12B (see DaqOpenDevice). *****/

/***** Get the D/A configuration. *****/

DAC_device = 1;
status = DaqGetDACfgInfo(logical_device, DAC_device, &DAC_info);

/***** Create an array to hold the gain settings. *****/

gain_array = _fmalloc(DAC_info.gain_array_length * sizeof(float));

/***** Get the available gain settings. *****/

status = DaqGetDAGainInfo(logical_device, DAC_device, gain_array);
if (status != 0)
 {
 printf("Error getting D/A gain settings. Status code %d.\n",status);
 exit(status);
 }

/***** Display the available gain settings. *****/

printf("The DA8P-12B supports the following D/A gain settings:\n");

for (i = 0; i < DAC_info.gain_array_length; i++)
 printf(" gain[%d] = %f\n", i, gain_array[i]);
}

DAQDRIVE Users Manual 214

13.22 DaqGetDeviceCfgInfo

DaqGetDeviceCfgInfo returns the basic configuration of the adapter specified by
logical_device.

unsigned short DaqGetDeviceCfgInfo (unsigned short logical_device ,
 struct device_configuration far *dev_info)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

dev_info - This structure pointer defines the address of a device configuration structure
where the configuration of the specified logical device will be stored.

struct device_configuration
 {
 unsigned short base_address ;
 short IRQ;
 short DMA1;
 short DMA2;
 unsigned short ADC_devices ;
 unsigned short DAC_devices ;
 unsigned short digio_devices ;
 unsigned short timer_devices ;
 };

This unsigned short integer value specifies the number of counter / timer channels on the device.timer_devices

This unsigned short integer value specifies the number of digital I/O channels on the device.digio_devices

This unsigned short integer value specifies the number of D/A converters on the device.DAC_devices

This unsigned short integer value specifies the number of A/D converters on the device.ADC_devices

This unsigned short integer value specifies the secondary DMA channel for the device. A value of -1
indicates no DMA channel is defined.

DMA2

This unsigned short integer value specifies the primary DMA channel for the device. A value of -1
indicates no DMA channel is defined.

DMA1

This unsigned short integer value specifies the IRQ level for the device. A value of -1 indicates no IRQ
level is defined.

IRQ

This unsigned short integer value specifies the base I/O address of the device.base_address

Figure 21. Device configuration structure definition.

DAQDRIVE Users Manual 215

#include "daqdrive.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

struct device_configuration dev_info;

char far *device_type = "DAQP-208";
char far *config_file = "c:\\daqp-208\\daqp-208.dat";

/***** Open the DAQP-208 (see DaqOpenDevice). *****/

/***** Get the DAQP-208 configuration. *****/

status = DaqGetDeviceCfgInfo(logical_device, &dev_info);
if (status != 0)
 {
 printf("Error getting device configuration. Status code %d.\n",status);
 exit(status);
 }

/***** Display the DAQP-208 configuration. *****/

printf("The DAQP-208 is located at address %4XH,\n", dev_info.base_address);
printf("with interrupt level %d,\n", dev_info.IRQ);
printf("and DMA channels %d and %d.\n\n", dev_info.DMA1, dev_info.DMA2);

printf("The DAQP-208 contains %d A/D converter(s),\n", dev_info.ADC_devices);
printf("%d D/A converter(s),\n", dev_info.DAC_devices);
printf("%d digital I/O device(s),\n", dev_info.digio_devices);
printf("and %d counter/timer channel(s).\n", dev_info.timer_devices);
}

DAQDRIVE Users Manual 216

13.23 DaqGetDigioCfgInfo

DaqGetDigioCfgInfo returns the configuration of the digital I/O channel specified by
digio_device on the adapter specified by logical_device.

unsigned short DaqGetDigioCfgInfo (unsigned short logical_device ,
 unsigned short digio_device ,
 struct digio_configuration far *digio_info)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

digio_device - This unsigned short integer value is used to select one of the digital I/O
channels on the target hardware device.

digio_info - This structure pointer defines the address of a digital I/O configuration
structure where the configuration of the specified digital I/O channel will be
stored.

struct digio_configuration
 {
 unsigned short data_size ;
 unsigned short io_mode ;
 };

When both bits are set to 1, the digital I/O channel can operate in input or output mode
(bi-directional operation).

0x0003

When set to 1, this bit indicates the digital I/O channel is configured for output mode.0x0002

When set to 1, this bit indicates the digital I/O channel is configured for input mode.0x0001

DescriptionValue

This unsigned short integer value specifies the operating mode of the digital I/O channel.io_mode

This unsigned short integer value specifies the size of the digital I/O channel in bits.data_size

Figure 22. Digital I/O configuration structure definition.

DAQDRIVE Users Manual 217

#include "daqdrive.h"
#include "userdata.h"
include "iop241.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short digio_device;
unsigned short status;

struct digio_configuration digio_info;

char far *device_type = "IOP-241";
char far *config_file = "c:\\iop-241\\iop-241.dat";

/***** Open the IOP-241 (see DaqOpenDevice). *****/

/***** Get a digital I/O channel configuration. *****/

digio_device = 0;
status = DaqGetDigioCfgInfo(logical_device, digio_device, &digio_info);
if (status != 0)
 {
 printf("Error getting digital configuration. Status code %d.\n",status);
 exit(status);
 }

/***** Display the digital I/O configuration. *****/

printf("Digital I/O channel %d ", digio_device);
printf("is %d bits wide,\n", digio_info.data_size);
switch(digio_info.io_mode)
 {
 case 1: printf("and is configured for input mode.\n");
 break;
 case 2: printf("and is configured for output mode.\n");
 break;
 case 3: printf("and is configured for bi-directional operation.\n");
 break;
 }
}

DAQDRIVE Users Manual 218

13.24 DaqGetExpCfgInfo

DaqGetExpCfgInfo returns the configuration of the expansion board specified by exp_device
which is connected to the A/D converter specified by ADC_device on the adapter specified by
logical_device.

unsigned short DaqGetExpCfgInfo (unsigned short logical_device ,
 unsigned short ADC_device ,
 unsigned short exp_device ,
 struct exp_configuration far *exp_info)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

ADC_device - This unsigned short integer value is used to select one of the A/D converters
on the target hardware device.

exp_device - This unsigned short integer value is used to select one of the expansion boards
connected to the A/D converter on the target hardware device.

exp_info - This structure pointer defines the address of an expansion board
configuration structure where the configuration of the specified expansion
board will be stored.

struct exp_configuration
 {
 unsigned short signal_type ;
 unsigned short input_mode ;
 unsigned short num_mux_channels ;
 float max_sample_rate ;
 float max_scan_rate ;
 unsigned short gain_array_length ;
 };

DAQDRIVE Users Manual 219

This unsigned short integer value specifies the number of available expansion board gain settings. The
application must allocate an array of length gain_array_length before executing DaqGetExpGainInfo.

gain_array_length

This floating point value specifies the maximum multi-channel (scanning) sampling rate supported by the
expansion board.

max_scan_rate

This floating point value specifies the maximum single channel sampling rate supported by the expansion
board.

max_sample_rate

This unsigned short integer value specifies the number of multiplexer channels on the expansion board.num_mux_channels

When set to 1, this bit indicates the expansion board input is single-ended.0x0002

When set to 1, this bit indicates the expansion board input is differential.0x0001

DescriptionValue

This unsigned short integer value specifies the expansion board input mode.input_mode

When set to 1, this bit indicates the expansion board input is unipolar.0x0002

When set to 1, this bit indicates the expansion board input is bipolar.0x0001

DescriptionValue

This unsigned short integer value specifies the expansion board input signal type.signal_type

Figure 23. Analog input expansion board configuration structure definition.

#include "daqdrive.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short ADC_device;
unsigned short exp_device;
unsigned short status;

struct exp_configuration exp_info;

char far *device_type = "DAQ-1201";
char far *config_file = "c:\\daq-1201\\daq-1201.dat";

/***** Open the DAQ-1201 (see DaqOpenDevice). *****/

/***** Get the expansion board configuration. *****/

ADC_device = 0;
exp_device = 0;
status = DaqGetExpCfgInfo(logical_device, ADC_device, exp_device, &exp_info);
if (status != 0)
 {
 printf("Error getting exp. board configuration. Status code %d.\n",status);
 exit(status);
 }

/***** Display the expansion board configuration. *****/

printf("Expansion board number %d on A/D number %d\n", exp_device, ADC_device);
if (exp_info.signal_type == 1)
 printf("is configured for unipolar and ");
else
 printf("is configured for bipolar and ");
if (exp_info.input_mode == 1)
 printf("single-ended operation,\n");
else
 printf("differential operation,\n");
printf("has %d analog inputs,\n", exp_info.num_mux_channels);
printf("and supports %d gain settings.\n", exp_info.gain_array_length);
}

DAQDRIVE Users Manual 220

13.25 DaqGetExpGainInfo

DaqGetExpGainInfo returns an array of the gain settings supported by the expansion board
specified by exp_device connected to the A/D converter specified by ADC_device on the
adapter specified by logical_device. The length of the array is determined by the
gain_array_length variable returned by the DaqGetExpCfgInfo command.

unsigned short DaqGetExpGainInfo (unsigned short logical_device ,
 unsigned short ADC_device ,
 unsigned short exp_device ,
 float far *gain_array)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

ADC_device - This unsigned short integer value is used to select one of the A/D converters
on the target hardware device.

exp_device - This unsigned short integer value is used to select one of the expansion boards
connected to the A/D converter on the target hardware device.

gain_array - This pointer defines the first element of an array of floating point values
where the available expansion board gain settings will be stored. The
application must allocate the array used to store these gain settings. The
length of the array is determined by the gain_array_length variable returned
by the DaqGetExpCfgInfo command.

DAQDRIVE Users Manual 221

#include "daqdrive.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short ADC_device;
unsigned short exp_device;
unsigned short status;
unsigned short i;

struct exp_configuration exp_info;

float far *gain_array;

char far *device_type = "DAQ-1201";
char far *config_file = "c:\\daq-1201\\daq-1201.dat";

/***** Open the DAQ-1201 (see DaqOpenDevice). *****/

/***** Get the expansion board configuration. *****/

ADC_device = 0;
exp_device = 1;
status = DaqGetExpCfgInfo(logical_device, ADC_device, exp_device, &exp_info);

/***** Create an array to hold the gain settings. *****/

gain_array = _fmalloc(exp_info.gain_array_length * sizeof(float));

/***** Get the available gain settings. *****/

status = DaqGetExpGainInfo(logical_device, ADC_device, exp_device, gain_array);
if (status != 0)
 {
 printf("Error getting expansion board gain settings.\n");
 printf("Status code %d.\n",status);
 exit(status);
 }

/***** Display the available gain settings. *****/

printf("Expansion board #%d supports the following gains:\n", exp_device);

for (i = 0; i < exp_info.gain_array_length; i++)
 printf(" gain[%d] = %f\n", i, gain_array[i]);
}

DAQDRIVE Users Manual 222

13.26 DaqGetRuntimeError

DaqGetRuntimeError returns the last run-time error encountered by the request specified by
request_handle.

unsigned short DaqGetRuntimeError (unsigned short request_handle ,
 unsigned short far *error_code)

request_handle - This unsigned short integer variable is used to define which request's error
status to retrieve. This is the value returned to the application by the
configuration procedures DaqAnalogInput, DaqAnalogOutput,
DaqDigitalInput, or DaqDigitalOutput.

error_code - This pointer defines an unsigned short integer where the error code from the
last run-time error will be stored. Chapter 14 provides an explanation of
these error codes. DAQDRIVE resets the request's error_code to 0 each time
the request is armed.

DAQDRIVE Users Manual 223

#include "daqdrive.h"
#include "userdata.h"

/**/
/* Output a 20 point waveform to a D/A channel. */
/**/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel;
unsigned short status;
unsigned short error_code;
unsigned short i;
 short data_array[20];
unsigned long event_mask;

struct DAC_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** define D/A output channel and calculate output data. *****/

/***** Prepare data structure for analog output. *****/

/***** Prepare the D/A request structure. *****/

/***** Request D/A output (See DaqAnalogOutput). *****/

/***** Arm the request (See DaqArmRequest). *****/

/***** Trigger the request. *****/

/***** Wait for completion or error. *****/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0);

if ((user_request.request_status & COMPLETE_EVENT) != 0)
 printf("Request complete.\n");
else
 {
 status = DaqGetRuntimeError(request_handle, &error_code);
 printf("Run-time error #%d. Request aborted.\n", error_code);
 }

/***** Release the request. *****/

status = DaqReleaseRequest(request_handle);
if (status != 0)
 printf("Could not release configuration. Status code %d.\n"),status);

/***** Close the device. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 224

13.27 DaqGetSigConCfgInfo

DaqGetSigConCfgInfo returns the configuration of the signal conditioner attached to the
analog input channel specified by ADC_channel on the adapter specified by logical_device.

unsigned short DaqGetSigConCfgInfo (unsigned short logical_device ,
 unsigned short ADC_channel ,
 struct sigcon_configuration far *sigcon_info)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

ADC_channel - This unsigned short integer value is used to select one of the analog input
channels on the target hardware device.

sigcon_info - This structure pointer defines the address of a signal conditioner
configuration structure where the configuration of the specified signal
conditioner will be stored.

DAQDRIVE Users Manual 225

struct sigcon_configuration
 {
 unsigned long device_type ;
 float max_sample_rate ;
 float max_scan_rate ;
 float min_analog_input ;
 float max_analog_input ;
 unsigned short input_units ;
 float min_analog_output ;
 float max_analog_output ;
 unsigned short num_parameters ;
 };

This unsigned short integer value specifies the number of parameters required to mathematically model this
signal conditioner. These parameters are the coefficients of a (num_parameters - 1) order equation. The
application must allocate an array of length num_parameters before executing DaqGetSigConParamInfo.

num_parameters

This floating point value specifies the maximum output voltage produced by this signal conditioner. This is the
value produced when the input is max_analog_input.

max_analog_output

This floating point value specifies the minimum output voltage produced by this signal conditioner. This is the
value produced when the input is min_analog_input.

min_analog_output

ft23psi17%11g5

LPM28in22lbs16m/sec210Kg4

GPM27l/sec21ºK15ft/sec29ºF 3

CFM26ft/sec20mA14RPM8ºC2

inch/sec25ppb19mV13ME7A1

mm24ppm18G12Hz6V0

UnitsValueUnitsValueUnitsValueUnitsValueUnitsValue

This unsigned short integer value specifies the expansion board input mode.input_units

This floating point value specifies the maximum value that can be recorded by this signal conditioner. The
input unit of measure is determined by input_units.

max_analog_input

This floating point value specifies the minimum value that can be recorded by this signal conditioner. The input
unit of measure is determined by input_units.

min_analog_input

This floating point value specifies the maximum multi-channel (scanning) sampling rate supported by the
expansion board.

max_scan_rate

This floating point value specifies the maximum single channel sampling rate supported by the signal
conditioner.

max_sample_rate

This unsigned short integer value is currently unused.device_type

Figure 24. Analog input signal conditioner board configuration structure definition.

DAQDRIVE Users Manual 226

#include "daqdrive.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short ADC_device;
unsigned short exp_device;
unsigned short status;

struct exp_configuration exp_info;

char far *device_type = "DAQ-1201";
char far *config_file = "c:\\daq-1201\\daq-1201.dat";

/***** Open the DAQ-1201 (see DaqOpenDevice). *****/

/***** Get the expansion board configuration. *****/

ADC_device = 0;
exp_device = 0;
status = DaqGetExpCfgInfo(logical_device, ADC_device, exp_device, &exp_info);
if (status != 0)
 {
 printf("Error getting exp. board configuration. Status code %d.\n",status);
 exit(status);
 }

/***** Display the expansion board configuration. *****/

printf("Expansion board number %d on A/D number %d\n", exp_device, ADC_device);
if (exp_info.signal_type == 1)
 printf("is configured for unipolar and ");
else
 printf("is configured for bipolar and ");
if (exp_info.input_mode == 1)
 printf("single-ended operation,\n");
else
 printf("differential operation,\n");
printf("has %d analog inputs,\n", exp_info.num_mux_channels);
printf("and supports %d gain settings.\n", exp_info.gain_array_length);
}

DAQDRIVE Users Manual 227

13.28 DaqGetSigConParamInfo

DaqGetSigConParamInfo returns an array of parameters for the signal conditioner attached to
the analog input specified by ADC_channel on the adapter specified by logical_device. These
parameters are the coefficients of a (num_parameters - 1) order equation used to
mathematically model this signal conditioner. The length of the array is determined by the
num_parameters variable returned by the DaqGetSigConCfgInfo command.

unsigned short DaqGetSigConParamInfo (unsigned short logical_device ,
 unsigned short ADC_channel ,
 double far *parameter_array)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

ADC_channel - This unsigned short integer value is used to select one of the analog input
channels on the target hardware device.

parameter_array - This pointer defines the first element of an array of double precision
floating point values where the signal conditioner parameters will be
stored. The application must allocate the array used to store these
parameters. The length of the array is determined by the num_parameters
variable returned by the DaqGetSigConCfgInfo command.

DAQDRIVE Users Manual 228

#include "daqdrive.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short ADC_device;
unsigned short exp_device;
unsigned short status;
unsigned short i;

struct exp_configuration exp_info;

float far *gain_array;

char far *device_type = "DAQ-1201";
char far *config_file = "c:\\daq-1201\\daq-1201.dat";

/***** Open the DAQ-1201 (see DaqOpenDevice). *****/

/***** Get the expansion board configuration. *****/

ADC_device = 0;
exp_device = 1;
status = DaqGetExpCfgInfo(logical_device, ADC_device, exp_device, &exp_info);

/***** Create an array to hold the gain settings. *****/

gain_array = _fmalloc(exp_info.gain_array_length * sizeof(float));

/***** Get the available gain settings. *****/

status = DaqGetExpGainInfo(logical_device, ADC_device, exp_device, gain_array);
if (status != 0)
 {
 printf("Error getting expansion board gain settings.\n");
 printf("Status code %d.\n",status);
 exit(status);
 }

/***** Display the available gain settings. *****/

printf("Expansion board #%d supports the following gains:\n", exp_device);

for (i = 0; i < exp_info.gain_array_length; i++)
 printf(" gain[%d] = %f\n", i, gain_array[i]);
}

DAQDRIVE Users Manual 229

13.29 DaqGetTimerCfgInfo

DaqGetTimerCfgInfo returns the configuration of the counter / timer channel specified by
timer_device on the adapter specified by logical_device.

unsigned short DaqGetTimerCfgInfo (unsigned short logical_device ,
 unsigned short timer_device ,
 struct timer_configuration far *timer_info)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

timer_device - This unsigned short integer value is used to select one of the counter / timer
channels on the target hardware device.

timer_info - This structure pointer defines the address of a counter / timer configuration
structure where the configuration of the specified counter / timer channel will
be stored.

struct timer_configuration
 {
 unsigned short data_size ;
 double internal_clock_rate ;
 double min_rate ;
 double max_rate ;
 };

This double precision floating point value specifies the maximum output frequency of the counter/timer when using
the internal clock source.

max_rate

This double precision floating point value specifies the minimum output frequency of the counter/timer when using
the internal clock source.

min_rate

This double precision floating point value specifies the frequency of the on-board clock input to the counter/timer.internal_clock_rate

This unsigned short integer value specifies the size of the counter/timer channel in bits.data_size

Figure 25. Counter/timer configuration structure definition.

DAQDRIVE Users Manual 230

#include "daqdrive.h"
#include "userdata.h"
#include "iop241.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short timer_device;
unsigned short status;

struct timer_configuration timer_info;

char far *device_type = "IOP-241";
char far *config_file = "c:\\iop-241\\iop-241.dat";

/***** Open the IOP-241 (see DaqOpenDevice). *****/

/***** Get a digital I/O channel configuration. *****/

digio_device = 0;
status = DaqGetTimerCfgInfo(logical_device, timer_device, &timer_info);
if (status != 0)
 {
 printf("Error getting digital configuration. Status code %d.\n",status);
 exit(status);
 }

/***** Display the digital I/O configuration. *****/

printf("Counter timer channel %d ", timer_device);
printf("is %d bits wide,\n", timer_info.data_size);
printf("has an internal clock rate of %f \n", timer_info.internal_clock_rate);
printf("Hz, which can produce output rates between %f", timer_info.min_rate);
printf("and %f Hz.\n", timer_info.max_rate);
}

DAQDRIVE Users Manual 231

13.30 DaqNotifyEvent

DaqNotifyEvent allows the application program to install a procedure that DAQDRIVE will
execute each time an event occurs and should be executed before the request is armed. The
format of the command is shown below.

unsigned short DaqNotifyEvent (unsigned short request_handle ,
 void (far pascal *event_procedure)
 (unsigned short,
 unsigned short,
 unsigned short),
 unsigned long event_mask)

request_handle - This unsigned short integer variable is used to define which request is to
use the event procedure defined by event_procedure. This is the value
returned to the application by the configuration procedures
DaqAnalogInput, DaqAnalogOutput, DaqDigitalInput or
DaqDigitalOutput.

event_procedure - This pointer defines the starting address of the procedure to be executed
when an event occurs. event_procedure is defined in the following
section.

event_mask - This unsigned long integer value is used to specify which events the
application wishes to be notified of. event_mask is defined as a bit mask -
setting a specific bit to logic 1 enables notification of the corresponding
event. The bit definitions of event mask are given below.

Enable notification of run-time error events.0x80000000RUNTIME_ERROR_EVENT

Enable notification of time-out events.0x40000000TIMEOUT_EVENT

Enable notification of user break events.0x20000000USER_BREAK_EVENT

Enable notification of scan events.0x00000010SCAN_EVENT

Enable notification of buffer full events.0x00000008BUFFER_FULL_EVENT

Enable notification of buffer empty events.0x00000004BUFFER_EMPTY_EVENT

Enable notification of complete events.0x00000002COMPLETE_EVENT

Enable notification of trigger events.0x00000001TRIGGER_EVENT

Disable all event notification.0x00000000NO_EVENTS

DescriptionValueDAQDRIVE Constant

DAQDRIVE Users Manual 232

13.30.1 The user-defined event procedure

The application programmer must create the procedure to be executed for event notification.
This procedure must be a far pascal compatible procedure of type void (does not return a
value) and it must accept three unsigned short integer parameters: request_handle,
event_type, and error_code. A sample C declaration of this procedure is shown below.

void far pascal event_procedure (unsigned short request_handle ,
 unsigned short event_type ,
 unsigned short error_code)

When executed, DAQDRIVE provides the event procedure with the request's request_handle,
the type of event which has occurred (see the table below), and an event error code. This error
code is set to 0 for all events except the run-time error event where it is used to specify the
type of error encountered as defined in chapter 14. Since the request_handle is provided to
the event procedure, a single event procedure may be used to service events from multiple
requests.

This call to the notification procedure is the result of a run-time error event.31EVENT_TYPE_RUNTIME_ERROR

This call to the notification procedure is the result of a time-out event.30EVENT_TYPE_TIMEOUT

This call to the notification procedure is the result of a user break event.29EVENT_TYPE_USER_BREAK

This call to the notification procedure is the result of a scan event.4EVENT_TYPE_SCAN

This call to the notification procedure is the result of a buffer full event.3EVENT_TYPE_BUFFER_FULL

This call to the notification procedure is the result of a buffer empty event.2EVENT_TYPE_BUFFER_EMPTY

This call to the notification procedure is the result of a complete event.1EVENT_TYPE_COMPLETE

This call to the notification procedure is the result of a trigger event.0EVENT_TYPE_TRIGGER

DescriptionValueDAQDRIVE Constant

DAQDRIVE Users Manual 233

#include "daqdrive.h"
#include "userdata.h"

/***** Define an event procedure *****/

void far pascal my_event_procedure(unsigned short request_handle,
 unsigned short event_type,
 unsigned short error_code)
{
switch(event_type)
 {
 case EVENT_TYPE_TRIGGER:
 /***** process trigger events *****/
 break;

 case EVENT_TYPE_COMPLETE:
 /***** process complete events *****/
 break;

 case EVENT_TYPE_RUNTIME_ERROR:
 /***** process run-time error events *****/
 break;
 }
}

/***** Define the main procedure *****/

void main()
{
unsigned short request_handle;
unsigned short status;
unsigned long event_mask;

/***** Open the device (see DaqOpenDevice). *****/

/***** Request an operation. (gets a request_handle) *****/

/***** Define events to be notified. *****/

event_mask = TRIGGER_EVENT | COMPLETE_EVENT | RUNTIME_ERROR_EVENT;

/***** Install notification procedure. *****/

status = DaqNotifyEvent(request_handle, my_event_procedure, event_mask);
if (status != 0)
 printf("Error installing notification.\n");

/***** Arm the request (See DaqArmRequest). *****/

/***** Trigger the request (See DaqTriggerRequest). *****/

DAQDRIVE Users Manual 234

13.31 DaqOpenDevice

DaqOpenDevice reads the adapter description file generated by the DAQDRIVE configuration
utilities, initializes the hardware device according to the contents of the file, and prepares
DAQDRIVE for use with the device.

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The following sections
describe the DaqOpenDevice procedure for linking C applications directly to the DAQDRIVE
libraries, for applications using DAQDRIVE under Windows, and for applications using the
DOS memory resident (TSR) version of DAQDRIVE.

13.31.1 DaqOpenDevice - C Library Version

The C library version of DaqOpenDevice is intended for DOS applications that are written in
C and linked directly to the DAQDRIVE libraries. Consult the target hardware's appendix for
the required settings of PROCEDURE, the device_type variable, and the name of the include
file (.h) which defines the open command for the target device.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short far *logical_device ,
 char far *device_type ,
 char far *config_file)

PROCEDURE - This is a constant used by the macro to define the "open" procedure of the
driver to be accessed and must be entered exactly as it is defined in the target
hardware's appendix. PROCEDURE is used with the token pasting operator
to generate a unique "open" procedure for each type of hardware device.

logical_device - This pointer specifies the address of an unsigned short integer where the
logical device number assigned by DAQDRIVE will be stored. The
application should initialize the integer pointed to by logical_device to 0.

device_type - This pointer defines the starting address of a character array (string) which
describes the hardware device to be opened. The target hardware's appendix
 contains the valid settings for device_type.

config_file - This pointer defines the starting address of a character array (string) which
defines the name of the DAQDRIVE configuration file to be used. This
character string must contain the drive, path, filename, and extension of the
desired configuration file.

DAQDRIVE Users Manual 235

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "da8p-12.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char far *device_type = "DA8P-12B";
char far *config_file = "c:\\da8p-12b\\da8p-12b.dat";

/***** Open the DA8P-12B. *****/

logical_device = 0;
status = DaqOpenDevice(DA8P-12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Perform any DA8P-12B operations here. *****/

/***** Close the DA8P-12B. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char far *device_type = "DAQP-16";
char far *config_file = "c:\\daqp-16\\daqp-16.dat";

/***** Open the DAQP-16. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Perform any DAQP-16 operations here. *****/

/***** Close the DAQP-16. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 236

13.31.2 DaqOpenDevice - Windows Version

The Windows version of DaqOpenDevice is intended for Windows applications that interface
to the DAQDRIVE dynamic link libraries (DLLs). Consult the target hardware's appendix for
the required settings of the DLL_name and device_type variables.

unsigned short DaqOpenDevice (char far *DLL_name ,
 unsigned short far *logical_device ,
 char far *device_type ,
 char far *config_file)

DLL_name - This pointer defines the starting address of a character array (string)
specifying the hardware dependent DLL required for the desired adapter.
The name of this DLL is contained in the target hardware's appendix. If
DLL_name does not specify a path, Windows will search for the DLL in the
following order: the current directory, the Windows directory, the Windows
system directory, the application's directory, the system's PATH, and any
mapped network drives.

logical_device - This pointer specifies the address of an unsigned short integer where the
logical device number assigned by DAQDRIVE will be stored. The
application should initialize the integer pointed to by logical_device to 0.

device_type - This pointer defines the starting address of a character array (string) which
describes the hardware device to be opened. The target hardware's appendix
contains the valid settings for device_type.

config_file - This pointer defines the starting address of a character array (string) which
defines the name of the DAQDRIVE configuration file to be used. This
character string must contain the drive, path, filename, and extension of the
desired configuration file.

DAQDRIVE Users Manual 237

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char far *device_type = "DAQP-208";
char far *config_file = "c:\\daqp-208\\daqp-208.dat";
char far *DLL_name = "c:\\daqp-208\\daqpwin.dll";

/***** Open the DAQP-208. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Perform any DAQP-208 operations here. *****/

/***** Close the DAQP-208. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char far *device_type = "IOP-241";
char far *config_file = "c:\\iop-241\\iop-241.dat";
char far *DLL_name = "iop-241.dll";

/***** Open the IOP-241. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Perform any IOP-241 operations here. *****/

/***** Close the IOP-241. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 238

13.31.3 DaqOpenDevice - TSR Version

The TSR version of DaqOpenDevice is intended for DOS applications that interface to the
memory resident version of DAQDRIVE. Consult the target hardware's appendix for the
required settings of the TSR_number and device_type variables.

unsigned short DaqOpenDevice (unsigned short TSR_number ,
 unsigned short far *logical_device ,
 char far *device_type ,
 char far *config_file)

TSR_number - This unsigned short integer variable specifies the interrupt service number
for the desired adapter. TSR_number is defined in the target hardware's
appendix and should not be confused with the software interrupt number
where DAQDRIVE is installed.

logical_device - This pointer specifies the address of an unsigned short integer where the
logical device number assigned by DAQDRIVE will be stored. The
application should initialize the integer pointed to by logical_device to 0.

device_type - This pointer defines the starting address of a character array (string) which
describes the hardware device to be opened. The target hardware's appendix
contains the valid settings for device_type.

config_file - This pointer defines the starting address of a character array (string) which
defines the name of the DAQDRIVE configuration file to be used. This
character string must contain the drive, path, filename, and extension of the
desired configuration file.

DAQDRIVE Users Manual 239

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf005;
char far *device_type = "DAQP-16";
char far *config_file = "c:\\daqp-16\\daqp-16.dat";

/***** Open the DAQP-16. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Perform any DAQP-16 operations here. *****/

/***** Close the DAQP-16. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf006;
char far *device_type = "DA8P-12B";
char far *config_file = "c:\\da8p-12b\\da8p-12b.dat";

/***** Open the DA8P-12B. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Perform any DA8P-12B operations here. *****/

/***** Close the DA8P-12B. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 240

13.32 DaqPostMessageEvent (Windows Versions Only)

DaqPostMessageEvent is available only in the Windows version of DAQDRIVE. It installs a
pre-defined messaging procedure using DaqNotifyEvent to post event messages to the
application's window and should be executed before the request is armed. DaqNotifyEvent
and DaqPostMessageEvent can not both be used on the same request.

unsigned short DaqPostMessageEvent (unsigned short request_handle ,
 unsigned long event_mask ,
 unsigned short window_handle)

request_handle - This unsigned short integer variable is used to define which request is to
use the event procedure defined by event_procedure. This is the value
returned to the application by the configuration procedures
DaqAnalogInput, DaqAnalogOutput, DaqDigitalInput or
DaqDigitalOutput.

event_mask - This unsigned long integer value is used to specify which events the
application wishes to be notified of. event_mask is defined as a bit mask -
setting a specific bit to logic 1 enables notification of the corresponding
event. The bit definitions of event mask are given below.

Enable notification of run-time error events.0x80000000RUNTIME_ERROR_EVENT

Enable notification of time-out events.0x40000000TIMEOUT_EVENT

Enable notification of user break events.0x20000000USER_BREAK_EVENT

Enable notification of scan events.0x00000010SCAN_EVENT

Enable notification of buffer full events.0x00000008BUFFER_FULL_EVENT

Enable notification of buffer empty events.0x00000004BUFFER_EMPTY_EVENT

Enable notification of complete events.0x00000002COMPLETE_EVENT

Enable notification of trigger events.0x00000001TRIGGER_EVENT

Disable all event notification.0x00000000NO_EVENTS

DescriptionValueDAQDRIVE Constant

window_handle - This unsigned short integer value is the handle of the application program
window (HWND).

13.32.1 The Event Message

When an event occurs, DAQDRIVE uses the Windows PostMessage procedure to send an
event message to the window specified by window_handle (HWND). The message number
(uMsg) is the sum of the event value specified in figure 8 and the pre-defined Windows
constant WM_USER. The two message specific arguments, LPARAM and WPARAM, are
used to specify the request's request_handle and an event error_code respectively. The error
code is set to 0 for all events except the run-time error event where it is used to specify the
type of error encountered as defined in chapter 14.

DAQDRIVE Users Manual 241

13.33 DaqReleaseRequest

The DaqReleaseRequest releases a previously defined request allowing the configured
channels to be re-used. This is the reverse of the DaqAnalogInput, DaqAnalogOutput,
DaqDigitalInput, and DaqDigitalOutput procedures. DaqReleaseRequest may be used on
configurations that were never armed (DaqArmRequest), on requests that have been
completed, or on requests that have otherwise been terminated.

unsigned short DaqReleaseRequest (unsigned short request_handle)

request_handle - This unsigned short integer variable is used to define which request is to be
released. This is the value returned to the application by the configuration
procedures DaqAnalogInput, DaqAnalogOutput, DaqDigitalInput or
DaqDigitalOutput.

#include "daqdrive.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel;
unsigned short status;
unsigned short error;
unsigned short i;
 short data_array[20];
unsigned long event_mask;

struct DAC_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the DA8P-12B(see DaqOpenDevice). *****/
/***** Request D/A output (See DaqAnalogOutput). *****/
/***** Arm the request (See DaqArmRequest). *****/
/***** Trigger the request. *****/
/***** Wait for completion or error. *****/

event_mask = COMPLETE_EVENT | RUNTIME_ERROR_EVENT;
while((user_request.request_status & event_mask) == 0);

if ((user_request.request_status & COMPLETE_EVENT) != 0)
 printf("Request complete.\n");
else
 {
 status = GetRuntimeError(request_handle, &error);
 printf("Run-time error #%d. Waveform aborted.\n", error);
 }

/***** Release the request. *****/

status = DaqReleaseRequest(request_handle);
if (status != 0)
 printf("Could not release configuration. Status code %d.\n"),status);

/***** Close the DA8P-12B. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 242

13.34 DaqResetDevice

DaqResetDevice returns the specified hardware device to its power-up state. In situations
where more than one application program is using the target device, performing a reset could
corrupt other tasks. Under these circumstances, DaqResetDevice will return an error
indicating the device could not be reset in a multi-user environment.

unsigned short DaqResetDevice (unsigned short logical_device)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

NOTE:
Not all hardware devices respond to DaqResetDevice in the same manner. Consult the
target hardware's appendix to determine the exact operation of this procedure.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "da8p-12.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char far *device_type = "DA8P-12B";
char far *config_file = "c:\\da8p-12b\\da8p-12b.dat";

/***** Open the DA8P-12B. *****/

logical_device = 0;
status = DaqOpenDevice(DA8P-12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Perform DA8P-12B operations here. *****/

/***** Reset the DA8P-12B. *****/

status = DaqResetDevice(logical_device);
if (status != 0)
 {
 printf("Error resetting device. Status code %d.\n"),status);
 return(status);
 }

/***** Perform additional DA8P-12 operations. *****/

/***** Close the DA8P-12B. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 243

13.35 DaqSingleAnalogInput

The DaqSingleAnalogInput procedure provides a simplified interface for inputting a single
point from a single A/D converter channel. The format of the command is shown below. The
analog input specified by channel_number on the adapter defined by logical_device is
configured for the gain specified by gain_setting. The analog input is converted to a digital
value which is returned to the address specified by input_value. This procedure executes the
DAQDRIVE procedures DaqAnalogInput, DaqArmRequest, DaqTriggerRequest, and
DaqReleaseRequest before returning to the calling application.

unsigned short DaqSingleAnalogInput (unsigned short logical_device ,
 unsigned short channel_number ,
 float gain_setting ,
 void far *input_value)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

channel_number - This unsigned short integer value is used to specify which A/D converter
channel on logical_device is to be converted.

gain_setting - This floating point value defines the gain setting for the channel specified
by channel_number.

input_value - This void pointer specifies the address where the value input from the
A/D converter is to be stored. input_value is declared as a void to allow it
to point to data of any type. It is the application program's responsibility
to ensure the data pointed to by input_value is the correct type for the
target hardware as listed in the table below.

signed longbipolar

unsigned longunipolar17 to 32 bits

signed shortbipolar

unsigned shortunipolar9 to 16 bits

signed charbipolar

unsigned charunipolar1 to 8 bits

data typeConfigurationResolution

DAQDRIVE Users Manual 244

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short ADC_channel;
 short input_value;

 float gain_setting;

char far *device_type = "DAQ-1201";
char far *config_file = "c:\\daq-1201\\daq-1201.dat";

/***** Open the DAQ-1201. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Input one value from A/D channel 7 with a gain of 1. *****/

ADC_channel = 7;
gain_setting = 1.0;
status = DaqSingleAnalogInput(logical_device, ADC_channel,
 gain_setting, &input_value);
if (status != 0)
 printf("Error reading from A/D. Status code %d.\n",status);

/***** Close the DAQ-1201. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n",status);
return(status);
}

DAQDRIVE Users Manual 245

13.36 DaqSingleAnalogInputScan

The DaqSingleAnalogInputScan procedure provides a simplified interface for inputting a
single point from multiple A/D converter channels. The format of the command is shown
below. The analog input channels specified by channel_array on the adapter defined by
logical_device are configured for the gain settings specified by gain_array. The analog inputs
are then converted to digital values which are returned to the array specified by input_array.
There is a one-to-one correspondence between the number of analog input channels, the
number of gain settings, and the number of samples. Therefore, array_length specifies the
length of channel_array, gain_array, and input_array. This procedure executes the
DAQDRIVE procedures DaqAnalogInput, DaqArmRequest, DaqTriggerRequest, and
DaqReleaseRequest before returning to the calling application.

unsigned short DaqSingleAnalogInputScan (unsigned short logical_device ,
 unsigned short far *channel_array ,
 float far *gain_array ,
 unsigned short array_length,
 void far *input_array)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

channel_array - This pointer specifies the address of an unsigned short integer array
containing the analog input channels on logical_device to be sampled.

gain_array - This pointer specifies the address of a floating point array defining the gain
setting for the channels specified by channel_array.

array_length - This unsigned short integer value defines the length of channel_array,
gain_array, and input_array.

input_array - This void pointer specifies the address of an array where the values input
from the A/D converter are to be stored. input_array is declared as a void to
allow it to point to data of any type. It is the application program's
responsibility to ensure the data pointed to by input_array is the correct type
for the target hardware as listed in the table below.

signed longbipolar

unsigned longunipolar17 to 32 bits

signed shortbipolar

unsigned shortunipolar9 to 16 bits

signed charbipolar

unsigned charunipolar1 to 8 bits

data typeConfigurationResolution

Figure 26. input_array data types as a function of analog input channel type.

DAQDRIVE Users Manual 246

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short channel_array[3] = { 0, 1, 2 };
 float gain_array[3] = { 1.0, 1.0, 8.0 };
 short input_array[3];
unsigned short array_length;

char far *device_type = "DAQP-208";
char far *config_file = "c:\\daqp-208\\daqp-208.dat";

/***** Open the DAQP-208. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Input one value from A/D channels 0, 1, and 2. *****/

status = DaqSingleAnalogInputScan(logical_device, channel_array, gain_array,
 array_length, input_array);
if (status != 0)
 printf("Error reading from A/D. Status code %d.\n",status);

/***** Close the DAQP-208. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n",status);
return(status);
}

DAQDRIVE Users Manual 247

13.37 DaqSingleAnalogOutput

The DaqSingleAnalogOutput procedure provides a simplified interface for outputting a single
point to a single D/A converter. The format of the command is shown below. The value
specified by output_value is output to the D/A converter specified by channel_number on the
adapter specified by logical_device. This procedure executes the DAQDRIVE procedures
DaqAnalogOutput, DaqArmRequest, DaqTriggerRequest, and DaqReleaseRequest before
returning to the calling application.

unsigned short DaqSingleAnalogOutput (unsigned short logical_device ,
 unsigned short channel_number ,
 void far *output_value)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

channel_number - This unsigned short integer value is used to specify which D/A converter
channel on logical_device is to receive the output data.

output_value - This void pointer specifies the address of the data to be output to the D/A
converter. output_value is declared as a void to allow it to point to data of
any type. It is the application program's responsibility to ensure the data
pointed to by output_value is the correct type for the target hardware as
listed in the table below.

signed longbipolar

unsigned longunipolar17 to 32 bits

signed shortbipolar

unsigned shortunipolar9 to 16 bits

signed charbipolar

unsigned charunipolar1 to 8 bits

data typeConfigurationResolution

DAQDRIVE Users Manual 248

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short DAC_channel;
 short output_value;

char far *device_type = "DAQ-1201";
char far *config_file = "c:\\daq-1201\\daq-1201.dat";

/***** Open the DAQ-1201. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Output one value to D/A channel 0. *****/

DAC_channel = 0;
output_value = 1024;
status = DaqSingleAnalogOutput(logical_device, DAC_channel, &output_value);
if (status != 0)
 printf("Error writing to D/A. Status code %d.\n",status);

/***** Close the DAQ-1201. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 249

13.38 DaqSingleAnalogOutputScan

The DaqSingleAnalogOutputScan procedure provides a simplified interface for outputting a
single point to multiple D/A converter. The format of the command is shown below. The
values specified by output_array are output to the D/A converters specified by channel_array
on the adapter specified by logical_device. A D/A channel may appear in channel_array only
once. There is a one-to-one correspondence between the number of analog output channels
and the number of output values. Therefore, array_length specifies the length of both
channel_array and output_array. This procedure executes the DAQDRIVE procedures
DaqAnalogOutput, DaqArmRequest, DaqTriggerRequest, and DaqReleaseRequest before
returning to the calling application.

unsigned short DaqSingleAnalogOutputScan (unsigned short logical_device ,
 unsigned short far *channel_array ,
 unsigned short array_length,
 void far *output_array)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

channel_array - This pointer specifies the address of an unsigned short integer array
containing the analog output channels on logical_device to be written.

array_length - This unsigned short integer value defines the length of channel_array and
output_array.

output_array - This void pointer specifies the address of an array containing the data to
be output to the analog output channels. output_array is declared as a
void to allow it to point to data of any type. It is the application program's
responsibility to ensure the data pointed to by output_array is the correct
type for the target hardware as listed in the table below.

signed longbipolar

unsigned longunipolar17 to 32 bits

signed shortbipolar

unsigned shortunipolar9 to 16 bits

signed charbipolar

unsigned charunipolar1 to 8 bits

data typeConfigurationResolution

Figure 27. output_array data types as a function of analog output channel type.

DAQDRIVE Users Manual 250

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short channel_array[2] = { 0, 1 };
 short output_array[2] = { 1024, 2316 };
unsigned short array_length = 2;

char far *device_type = "DAQP-208";
char far *config_file = "c:\\daqp-208\\daqp-208.dat";

/***** Open the DAQP-208. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Output values to D/A channels. *****/

status = DaqSingleAnalogOutputScan(logical_device, channel_array,
 array_length, output_array);
if (status != 0)
 printf("Error writing to D/A. Status code %d.\n",status);

/***** Close the DAQP-208. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 251

13.39 DaqSingleDigitalInput

The DaqSingleDigitalInput procedure provides a simplified interface for inputting a single
point from a single digital input channel. The format of the command is shown below. The
digital input specified by channel_number on the adapter defined by logical_device is
returned to the address specified by input_value. This procedure executes the DAQDRIVE
procedures DaqDigitalInput, DaqArmRequest, DaqTriggerRequest, and DaqReleaseRequest
before returning to the calling application.

unsigned short DaqSingleDigitalInput (unsigned short logical_device ,
 unsigned short channel_number ,
 void far *input_value)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

channel_number - This unsigned short integer value is used to specify which digital input
channel on logical_device is to be read.

input_value - This void pointer specifies the address where the value read from the
digital input channel is to be stored. input_value is declared as a void to
allow it to point to data of any type. It is the application program's
responsibility to ensure the data pointed to by input_value is the correct
type for the target hardware as listed in the table below.

unsigned long17 to 32 bits

unsigned short9 to 16 bits

unsigned char1 to 8 bits

data typeChannel size (in bits)

DAQDRIVE Users Manual 252

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short digio_channel;
 short input_value;

char far *device_type = "DAQP-16";
char far *config_file = "c:\\daqp-16\\daqp-16.dat";

/***** Open the DAQP-16. *****/

device_number = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Input one value from digital input channel 0. *****/

digio_channel = 0;
status = DaqSingleDigitalInput(logical_device, digio_channel, &input_value);
if (status != 0)
 printf("Error reading digital input. Status code %d.\n",status);

/***** Close the DAQP-16. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 253

13.40 DaqSingleDigitalInputScan

The DaqSingleDigitalInputScan procedure provides a simplified interface for inputting a
single point from multiple digital input channels. The format of the command is shown
below. The digital input channels specified by channel_array on the adapter defined by
logical_device are returned to the array specified by input_array. There is a one-to-one
correspondence between the number of digital input channels and the number of input
values. Therefore, array_length specifies the length of both channel_array and input_array.
This procedure executes the DAQDRIVE procedures DaqDigitalInput, DaqArmRequest,
DaqTriggerRequest, and DaqReleaseRequest before returning to the calling application.

unsigned short DaqSingleDigitalInputScan (unsigned short logical_device ,
 unsigned short far *channel_array ,
 unsigned short array_length,
 void far *input_array)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

channel_array - This pointer specifies the address of an unsigned short integer array
containing the digital input channels on logical_device to be input.

array_length - This unsigned short integer value defines the length of channel_array and
input_array.

input_array - This void pointer specifies the address of an array where the values read
from the digital input channels are to be stored. input_array is declared as
a void to allow it to point to data of any type. It is the application
program's responsibility to ensure the data pointed to by input_array is the
correct type for the target hardware as listed in the table below.

unsigned long17 to 32 bits

unsigned short9 to 16 bits

unsigned char1 to 8 bits

data typeChannel size (in bits)

DAQDRIVE Users Manual 254

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "iop241.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short channel_array[3] = { 3, 0, 6 };
 short input_array[3];
unsigned short array_length = 3;

char far *device_type = "IOP-241";
char far *config_file = "c:\\iop-241\\iop-241.dat";

/***** Open the IOP-241. *****/

device_number = 0;
status = DaqOpenDevice(IOP241, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Input values from channels. *****/

status = DaqSingleDigitalInputScan(logical_device, channel_array,
 array_length, input_array);
if (status != 0)
 printf("Error reading digital input. Status code %d.\n",status);

/***** Close the IOP-241. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 255

13.41 DaqSingleDigitalOutput

The DaqSingleDigitalOutput procedure provides a simplified interface for outputting a single
point to a single digital output channel. The format of the command is shown below. The
value specified by output_value is output to the digital output channel specified by
channel_number on the adapter specified by logical_device. This procedure executes the
DAQDRIVE procedures DaqDigitalOutput, DaqArmRequest, DaqTriggerRequest, and
DaqReleaseRequest before returning to the calling application.

unsigned short DaqSingleDigitalOutput (unsigned short logical_device ,
 unsigned short channel_number ,
 void far *output_value)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

channel_number - This unsigned short integer value is used to specify which digital output
channel on logical_device is to receive the output data.

output_value - This void pointer specifies the address of the data to be written to the
digital output channel. output_value is declared as a void to allow it to
point to data of any type. It is the application program's responsibility to
ensure the data pointed to by output_value is the correct type for the target
hardware as listed in the table below.

unsigned long17 to 32 bits

unsigned short9 to 16 bits

unsigned char1 to 8 bits

data typeChannel size (in bits)

DAQDRIVE Users Manual 256

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "da8p-12.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short digio_channel;
 short output_value;

char far *device_type = "DA8P-12B";
char far *config_file = "c:\\da8p-12b\\da8p-12b.dat";

/***** Open the DA8P-12B. *****/

logical_device = 0;
status = DaqOpenDevice(DA8P-12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Output one value to digital output channel 3. *****/

digio_channel = 3;
output_value = 1;
status = DaqSingleDigitalOutput(logical_device, digio_channel, &output_value);
if (status != 0)
 printf("Error writing to digital output. Status code %d.\n",status);

/***** Close the DA8P-12B. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 257

13.42 DaqSingleDigitalOutputScan

The DaqSingleDigitalOutputScan procedure provides a simplified interface for outputting a
single point to multiple digital output channels. The format of the command is shown below.
The values specified by the array output_array are output to the digital output channels
specified by channel_array on the adapter defined by logical_device. There is a one-to-one
correspondence between the number of digital output channels and the number of output
values. Therefore, array_length specifies the length of both channel_array and output_array.
This procedure executes the DAQDRIVE procedures DaqDigitalInput, DaqArmRequest,
DaqTriggerRequest, and DaqReleaseRequest before returning to the calling application.

unsigned short DaqSingleDigitalOutputScan (unsigned short logical_device ,
 unsigned short far *channel_array ,
 unsigned short array_length,
 void far *output_array)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

channel_array - This pointer specifies the address of an unsigned short integer array
containing the digital output channels on logical_device to be written.

array_length - This unsigned short integer value defines the length of channel_array and
output_array.

output_array - This void pointer specifies the address of an array containing the values to
be output to the channels specified by channel_array. output_array is
declared as a void to allow it to point to data of any type. It is the
application program's responsibility to ensure the data pointed to by
output_array is the correct type for the target hardware as listed in the
table below.

unsigned long17 to 32 bits

unsigned short9 to 16 bits

unsigned char1 to 8 bits

data typeChannel size (in bits)

DAQDRIVE Users Manual 258

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "iop241.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short channel_array[4] = { 6, 3, 9, 13 };
 short output_array[4] = { 0, 3, 1, 7 };
unsigned short array_length = 4;

char far *device_type = "IOP-241";
char far *config_file = "c:\\iop-241\\iop-241.dat";

/***** Open the IOP-241. *****/

device_number = 0;
status = DaqOpenDevice(IOP241, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Output one value to digital output channel 3. *****/

status = DaqSingleDigitalOutputScan(logical_device, channel_array,
 array_length, output_array);
if (status != 0)
 printf("Error writing to digital output. Status code %d.\n",status);

/***** Close the IOP-241. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 259

13.43 DaqSingleSigConInput

The DaqSingleSigConInput procedure provides a simplified interface for inputting a single
sample from a single A/D converter channel and returning the result in "real world"
engineering units. The analog input specified by channel_number on the adapter defined by
logical_device is configured for the gain specified by gain_setting. A single sample is read
from the analog input channel, converted to engineering units using the hardware
configuration information stored within DAQDRIVE, and stored in the variable specified by
input_value.

unsigned short DaqSingleSigConInput (unsigned short logical_device ,
 unsigned short channel_number ,
 float gain_setting ,
 double far *input_value)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

channel_number - This unsigned short integer value is used to specify which A/D converter
channel on logical_device is to be converted.

gain_setting - This floating point value defines the gain setting for the channel specified
by channel_number.

input_value - This pointer specifies the address of a double-precision floating point
variable where the value input from the A/D converter is to be stored.

DAQDRIVE Users Manual 260

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short ADC_channel;
 short input_value;

 float gain_setting;

char far *device_type = "DAQ-1201";
char far *config_file = "c:\\daq-1201\\daq-1201.dat";

/***** Open the DAQ-1201. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Input one value from A/D channel 7 with a gain of 1. *****/

ADC_channel = 7;
gain_setting = 1.0;
status = DaqSingleAnalogInput(logical_device, ADC_channel,
 gain_setting, &input_value);
if (status != 0)
 printf("Error reading from A/D. Status code %d.\n",status);

/***** Close the DAQ-1201. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n",status);
return(status);
}

DAQDRIVE Users Manual 261

13.44 DaqSingleSigConInputScan

The DaqSingleSigConInputScan procedure provides a simplified interface for inputting a
single point from multiple A/D converter channels and returning the results in "real world"
engineering units. The analog input channels specified by channel_array on the adapter
defined by logical_device are configured for the gain settings specified by gain_array. A
single sample is read from each analog input channel, converted to engineering units using
the hardware configuration information stored within DAQDRIVE, and stored in the array
specified by input_value. There is a one-to-one correspondence between the number of
analog input channels, the number of gain settings, and the number of samples. Therefore,
array_length specifies the length of channel_array, gain_array, and input_array.

unsigned short DaqSingleSigConInputScan (unsigned short logical_device ,
 unsigned short far *channel_array ,
 float far *gain_array ,
 unsigned short array_length,
 double far *input_array)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the DaqOpenDevice
command.

channel_array - This pointer specifies the address of an unsigned short integer array
containing the analog input channels on logical_device to be sampled.

gain_array - This pointer specifies the address of a floating point array defining the gain
setting for the channels specified by channel_array.

array_length - This unsigned short integer value defines the length of channel_array,
gain_array, and input_array.

input_array - This pointer specifies the address of a double-precision floating point array
where the values input from the A/D converter are to be stored.

DAQDRIVE Users Manual 262

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short channel_array[3] = { 0, 1, 2 };
 float gain_array[3] = { 1.0, 1.0, 8.0 };
 short input_array[3];
unsigned short array_length;

char far *device_type = "DAQP-208";
char far *config_file = "c:\\daqp-208\\daqp-208.dat";

/***** Open the DAQP-208. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Input one value from A/D channels 0, 1, and 2. *****/

status = DaqSingleAnalogInputScan(logical_device, channel_array, gain_array,
 array_length, input_array);
if (status != 0)
 printf("Error reading from A/D. Status code %d.\n",status);

/***** Close the DAQP-208. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n",status);
return(status);
}

DAQDRIVE Users Manual 263

13.45 DaqStopRequest

The DaqStopRequest halts a request that is currently armed and / or triggered (see
DaqArmRequest and DaqTriggerRequest). When DaqStopRequest is complete, the request is
in the same state it was in after the configuration procedure (DaqAnalogInput,
DaqAnalogOutput, DaqDigitalInput, or DaqDigitalOutput) procedures.

unsigned short DaqStopRequest (unsigned short request_handle)

request_handle - This unsigned short integer variable is used to define which request is to be
halted. This is the value returned to the application by the configuration
procedures DaqAnalogInput, DaqAnalogOutput, DaqDigitalInput, or
DaqDigitalOutput.

DAQDRIVE Users Manual 264

#include "daqdrive.h"
#include "userdata.h"

/**/
/* Input 1000 points from the A/D in background mode using interrupts. */
/**/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short status;
 short data_array[1000];

struct ADC_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the DAQP-16 (See DaqOpenDevice). *****/

/***** Prepare data structure for analog input. *****/

/***** Prepare the A/D request structure. *****/

/***** Request A/D input (See DaqAnalogInput). *****/

/***** Arm the request. *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 printf("Arm request error. Status code %d.\n",status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Trigger the request. *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 printf("Trigger request error. Status code %d.\n",status);
 DaqStopRequest(request_handle);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Abort the request. *****/

status = DaqStopRequest(request_handle);
if (status != 0)
 printf("Request failed to stop. Status code %d.\n",status);

/***** Release the request. *****/

status = DaqReleaseRequest(request_handle);
if (status != 0)
 printf("Could not release configuration. Status code %d.\n"),status);

/***** Close the DAQP-16. *****/

status = DaqCloseDevice(logical_device);
if (status != 0)
 printf("Error closing device. Status code %d.\n"),status);
return(status);
}

DAQDRIVE Users Manual 265

13.46 DaqTriggerRequest

When an operation has been configured for an internal trigger, DaqTriggerRequest is executed
after the DaqArmRequest function to start the operation.

An error is returned to the application if DaqTriggerRequest is executed for an operation not
configured for internal trigger. This error is non-fatal and program execution may continue.

unsigned short DaqTriggerRequest (unsigned short request_handle)

request_handle - This unsigned short integer variable is used to define which request is to be
triggered. This is the value returned to the application by the configuration
procedures DaqAnalogInput, DaqAnalogOutput, DaqDigitalInput, or
DaqDigitalOutput.

DAQDRIVE Users Manual 266

#include "daqdrive.h"
#include "userdata.h"

/**/
/* Output 5 points to 5 digital output channels. */
/**/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short status;
 short data_array[5];

struct DIGOUT_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare data structure for digital output. *****/

/***** Prepare the digital I/O request structure. *****/

/***** Request digital output. *****/

request_handle = 0;
status = DaqDigitalOutput(logical_device, &user_request, &request_handle);
if (status != 0)
 {
 printf("Digital I/O request error. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Arm the request. *****/

status = DaqArmRequest(request_handle);
if (status != 0)
 {
 printf("Arm request error. Status code %d.\n",status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);
 }

/***** Trigger the request. *****/

status = DaqTriggerRequest(request_handle);
if (status != 0)
 {
 printf("Trigger error. Status code %d.\n",status);
 DaqReleaseRequest(request_handle);
 DaqCloseDevice(logical_device);
 exit(status);

}

DAQDRIVE Users Manual 267

13.47 DaqUserBreak

DaqUserBreak allows the application program to install a procedure (written by the
application programmer) that DAQDRIVE will execute periodically during foreground mode
operations. If the application wants to terminate the operation, the user-break procedure need
only return a non-zero value. To continue the operation, the user-break procedure must
return zero.

unsigned short DaqUserBreak (unsigned short request_handle ,
 unsigned short (far pascal *break_procedure)())

request_handle - This unsigned short integer variable is used to define which request is to
use the user-break procedure defined by break_procedure. This is the
value returned to the application by the configuration procedures
DaqAnalogInput, DaqAnalogOutput, DaqDigitalInput or
DaqDigitalOutput.

break_procedure - This pointer defines the starting address of the procedure to be executed
during foreground mode operations. break_procedure must be a 'far'
pascal compatible procedure of type unsigned short that has no input
parameters. A sample C declaration of this procedure is shown below.

unsigned short far pascal break_procedure ()

DAQDRIVE Users Manual 268

#include "daqdrive.h"
#include "userdata.h"

/***** Define a global counter variable *****/

global_counter = 0;

/***** Define a user-break procedure *****/

unsigned short far pascal my_break_procedure()
{
global_counter++
if (global_counter < 10000)
 return(0); /* less than 10,000 --> keep going */
else
 return(1); /* more than 10,000 --> abort operation */
}

/***** Define the main procedure *****/

void main()
{
unsigned short request_handle;
unsigned short status;

/***** Open the device (see DaqOpenDevice). *****/

/***** Request an operation. (gets a request_handle) *****/

/***** Install user-break procedure. *****/

status = DaqUserBreak(request_handle, my_break_procedure);
if (status != 0)
 printf("Error installing user-break.\n");

/***** Arm the request (See DaqArmRequest). *****/

/***** Trigger the request (See DaqTriggerRequest). *****/

DAQDRIVE Users Manual 269

13.48 DaqVersionNumber

DaqVersionNumber returns the version numbers of the software drivers.

unsigned short DaqVersionNumber (unsigned short logical_device ,
 float far *DAQDRIVE_version ,
 float far *software_version ,
 float far *firmware_version)

logical_device - This unsigned short integer value is used to define the target hardware
device. This is the value returned to the application by the
DaqOpenDevice command.

DAQDRIVE_version - This pointer defines a floating point variable where the version of
DAQDRIVE will be stored.

software_version - This pointer defines a floating point variable where the version of the
hardware specific software driver will be stored.

firmware_version - This pointer defines a floating point variable where the version of the
adapter's firmware will be stored. Adapters which have no firmware
will set this value to 0.

DAQDRIVE Users Manual 270

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

float DAQDRIVE_version;
float software_version;
float firmware_version;

char far *device_type = "DAQ-1201";
char far *config_file = "c:\\daq-1201\\daq-1201.dat";

/***** Open the DAQ-1201. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

/***** Get version numbers. *****/

status = DaqVersionNumber(device_number, &DAQDRIVE_version,
 &software_version, &firmware_version);
if (status != 0)
 printf("Error reading version numbers. Status code %d.\n",status);

/***** Display version information. *****/

printf("DAQDRIVE version: %5.2f\n", DAQDRIVE_version);
printf("DAQ-1201 driver version: %5.2f\n", software_version);
printf("DAQ-1201 firmware version: %5.2f\n", firmware_version);
}

DAQDRIVE Users Manual 271

13.49 DaqWordsToBytes

DaqWordsToBytes performs the reverse of the DaqBytesToWords function, converting an
unsigned short integer array of 16-bit "un-packed" values into an unsigned short integer array
of 8-bit "packed" values. These functions are provided especially for languages that do not
support 8-bit variable types.

DaqWordsToBytes reads the "un-packed" unsigned short integer values in array word_array,
converts these values to their "packed" 8-bit values, and stores the results in array byte_array.
For an array of four values, the packed and un-packed arrays appear as follows:

bytebytebytebyte

F762E14"packed" array

0F70602E014"un-packed" array

integerintegerintegerinteger

void DaqWordsToBytes (unsigned short far *word_array ,
 unsigned short far *byte_array ,
 unsigned long array_length)

word_array - This is a pointer to an unsigned short integer array where the "un-packed"
values will be stored. word_array must be at least array_length short integers
in length and may specify the same array as byte_array.

byte_array - This is a pointer to an unsigned short integer array containing the "packed"
values to be converted. byte_array must be at least 'array_length ÷ 2' short
integers (array_length bytes) in length and may specify the same array as
word_array.

array_length - This is an unsigned long integer value defining the number of data points to be
converted. word_array must be at least array_length short integers in length
while byte_array must be at least 'array_length ÷ 2' short integers (array_length
bytes) in length.

DAQDRIVE Users Manual 272

#include "daqdrive.h"
#include "userdata.h"

/***/
/* Output 16 points to a digital output channel. */
/***/

unsigned short main()
{
unsigned short logical_device;
unsigned short request_handle;
unsigned short channel_num;
unsigned short status;
unsigned short data_array[16];
unsigned short array_index;

struct digio_request user_request;
struct DAQDRIVE_buffer data_structure;

/***** Open the device (see DaqOpenDevice). *****/

/***** Prepare output data. *****/

for (array_index = 0; array_index < 16; array_index++)
 data_array[array_index] = array_index;

/***** Pack data for output. *****/

DaqWordsToBytes(data_array, data_array, 16);

/***** Prepare data structure for digital output. *****/

/***/
/* data is in data_array data_array is 16 points long */
/* output buffer 1 time next_structure = NULL (no more structures) */
/***/

data_structure.data_buffer = data_array;
data_structure.buffer_length = 16;
data_structure.buffer_cycles = 1;
data_structure.next_structure = NULL;

/***** Prepare the digital output request structure. *****/

/***** Request digital output. *****/

request_handle = 0;
status = DaqDigitalOutput(logical_device, &user_request, &request_handle);
if (status != 0)
 {
 printf("Digital output request error. Status code %d.\n",status);
 DaqCloseDevice(logical_device);
 exit(status);
 }

DAQDRIVE Users Manual 273

14 Error Messages

00 No Errors.
The procedure completed without error.

10 Error opening configuration file.
The DaqOpenDevice procedure could not open the configuration file specified by
config_file. Verify the drive, path, and file name are correct.

11 File is not a valid DAQDRIVE configuration file.
The file specified as the hardware configuration file is not a valid DAQDRIVE
configuration file. Select a different configuration file.

12 Configuration file invalid for specified adapter type.
The adapter specified by the device_type variable does not match the type of
hardware defined by the configuration file. Select a different configuration file.

13 Error reading configuration file.
An error occurred while reading the adapter configuration file. If there are no
problems with the disk drive, generate a new configuration file using the
DAQDRIVE configuration utility.

14 End-Of-File encountered reading configuration file.
The end of the configuration file was reached unexpectedly. If there are no problems
with the disk drive, generate a new configuration file using the DAQDRIVE
configuration utility.

15 Invalid configuration file version.
The configuration file specified in the DaqOpenDevice procedure is too old for this
version of DAQDRIVE. Create a new configuration file using the DAQDRIVE
configuration utility.

30 Error loading DLL.
An error occurred while loading the hardware dependent dynamic link library
(DLL). Verify the drive, path, and DLL file name are correct

31 Cannot locate the DAQDRIVE DLL open command.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

35 Cannot locate the DAQDRIVE TSR driver.
This error occurs when the hardware specific TSR is loaded before the DAQDRIVE
TSR. When using the TSR drivers, the DAQDRIVE TSR must be loaded before any
hardware TSRs.

DAQDRIVE Users Manual 274

39 DAQDRIVE is out of date.
The hardware specific driver in use requires a newer version of DAQDRIVE to
operate. If you did not receive the latest version of DAQDRIVE, contact Omega's
technical support department for assistance.

50 Auto-configuration support not available.
The required PCMCIA Card and Socket Services or Plug-and- Play support software
is not installed on the system. The user must specify the hardware configuration in
the configuration file or the required software drivers must be installed on the
system.

51 Invalid device type.
An invalid device type was specified in the configuration file. If there are no
apparent problems reading the file, generate a new configuration file using the
DAQDRIVE configuration utility.

60 Configuration file error.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

70 Configuration file error.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

71 Configuration file error.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

72 Configuration file error.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

73 Configuration file error.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

74 Configuration file error.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

DAQDRIVE Users Manual 275

100 Invalid logical device number.
An adapter could not be found with the specified logical device number. Make sure
the DaqOpenDevice procedure executed successfully and that the logical device
number matches the value returned by the DaqOpenDevice procedure.

120 No logical devices defined.
There are no adapters currently "opened". Make sure the DaqOpenDevice procedure
is executed without error before any other procedures are called.

150 Invalid request handle.
A request could not be found with the specified request handle. Make sure the
configuration procedure (DaqAnalogInput, DaqAnalogOutput, DaqDigitalInput, or
DaqDigitalOutput) executed successfully and that the request handle matches the
value returned by the configuration procedure.

200 No interrupt level defined for adapter.
The requested operation requires a hardware interrupt (IRQ) and no interrupt level
was defined for the adapter in the hardware configuration file.

201 Interrupt in-use by another device.
The requested operation requires a hardware interrupt (IRQ) that is currently in use
by another device. This operation must be requested again after the other device has
relinquished control of the interrupt.

205 Internal interrupt error.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

250 No DMA channel defined for adapter.
The requested operation requires one or more DMA channels and no DMA channels
were defined for the adapter in the hardware configuration file.

251 DMA channel in-use by another device.
The requested operation requires one or more DMA channels that are currently in
use by other device(s). This operation must be requested again after the other
device(s) have relinquished control of the DMA channels.

255 Internal DMA error.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

DAQDRIVE Users Manual 276

300 Memory allocation error.
An error occurred while DAQDRIVE was attempting to allocate memory for internal
use. Generally this error only occurs when there is no more memory available in the
system. Remove any unnecessary device drivers and memory resident programs
and execute the application again.

310 Memory release error.
An error occurred while DAQDRIVE was attempting to release memory previously
allocated for internal use. If this error occurs, the system has become unstable.

400 Channel in-use by another request.
One or more channels specified by this request are currently in use by other
request(s). This request must wait until the other request(s) are complete and have
made their channels available.

410 Timer in-use by another request.
One or more timer channels required for the requested operation are currently in use
by other request(s). This request must wait until the other request(s) are complete
and have made their timer channels available.

450 Hardware dependent resource in-use by another device.
A hardware specific resource required for the requested operation is currently in use
by another request. This request must wait until the other request is complete and
relinquishes control of the resource. Consult the target hardware's appendix to
determine the cause of this error.

500 Invalid procedure call for a request that is not configured.
The procedure cannot be executed because the request has not been configured.
Make sure the configuration procedure (DaqAnalogInput, DaqAnalogOutput,
DaqDigitalInput, or DaqDigitalOutput) executed successfully.

600 Invalid procedure call for a request that is not armed.
The procedure cannot be executed because the request has not been armed. Make
sure the DaqArmRequest procedure executed successfully.

650 Invalid procedure call for a request that is armed.
The procedure cannot be executed because the request has been armed. The request
may be removed from the arm state by executing the DaqStopRequest procedure.

700 Trigger command invalid with specified trigger source.
The DaqTriggerRequest procedure was executed on a request that was not
configured for a software trigger. This is not a critical error and the application
program may continue.

DAQDRIVE Users Manual 277

800 Invalid re-configuration request.
The re-configuration request can not be processed because the channel list was
modified. All parameters except the channel list may be modified by a
re-configuration request. To modify the channel list, the request must be released
(DaqReleaseRequest) and a new configuration must be requested.

1000 Requested function not supported by target hardware.
The requested operation can not be performed on the target hardware. Consult the
target hardware's appendix to determine which parameter(s) are not supported by
the adapter.

1050 Invalid operation in multi-user mode.
The procedure could not be executed because more than one application is currently
operating on the adapter. This error is generally reported by procedures that effect
the state of the hardware (e.g. DaqResetDevice).

1100 Invalid channel number.
One or more values in the request's channel list is out of range.

1101 Invalid array length.
The specified array length is 0 or larger than the maximum allowable array size.

1150 Duplicate entries in channel list.
A logical channel number appears in the channel list more than once. Each channel
may appear in the channel list only once for the type of operation requested.

1160 Invalid channel sequence.
The sequence of channels specified in the channel list is not supported by the
hardware. Consult the hardware specific appendices for restrictions on channel lists
/ sequences.

1280 Invalid gain.
The adapter can not be configured for the gain requested. Consult the hardware
specific appendices for valid gain selections.

1300 Invalid data buffer length.
The data buffer must be defined to hold an integer number of scans of the channel
list. For example, if the channel list contains three channels, the data buffer must be
defined to hold 3, 6, 9, ... samples.

1320 Invalid output value.
One or more values specified for output is not in the valid range for the
corresponding channel(s).

DAQDRIVE Users Manual 278

1350 DMA mode data buffer crosses page boundary.
One or more data buffers allocated for the DMA mode operation span a physical
page boundary. Data buffers must be contained in a single memory page for DMA
use.

1351 DMA mode data buffer defined on odd address.
One or more data buffers allocated for the DMA mode operation are aligned on an
odd address. When using 16-bit DMA transfers, all data buffers must reside on even
addresses (word aligned).

1352 Internal DMA error.
This is an internal DAQDRIVE error. If this error is received, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

1400 Invalid trigger source.
The trigger source specified is not one of DAQDRIVE's trigger source selections.

1401 Trigger source not supported.
The trigger source specified is not supported by the adapter for the requested
operation. Consult the hardware specific appendices for supported trigger sources.

1410 Invalid trigger slope.
The trigger slope specified is not one of DAQDRIVE's trigger slope selections.

1411 Trigger slope not supported.
The trigger slope specified is not supported by the adapter for the requested
operation. Consult the hardware specific appendices for supported trigger slopes.

1420 Invalid trigger channel.
The trigger channel specified is not supported by the adapter for the requested
operation. Consult the hardware specific appendices for supported trigger channels.

1430 Invalid analog trigger voltage.
The analog trigger voltage is not in the valid range for the adapter. Consult the
hardware specific appendices for the valid analog trigger voltage ranges.

1500 Invalid data transfer mode.
The data transfer mode specified is not one of DAQDRIVE's data transfer mode
selections.

1600 Invalid clock source.
The clock source specified is not one of DAQDRIVE's clock source selections.

1601 Clock source not supported.
The clock source specified is not supported by the adapter for the requested
operation. Consult the hardware specific appendices for supported clock sources.

DAQDRIVE Users Manual 279

1650 Invalid sampling rate.
The sampling rate is not in the valid range for the adapter. Consult the hardware
specific appendices for the valid sampling rate ranges.

1700 Invalid calibration mode.
The calibration mode specified is not one of DAQDRIVE's calibration selections.

1710 Adapter does not support auto-calibration.
Auto-calibration is not supported on the channel or device specified. Consult the
hardware specific appendices for supported calibration modes.

1720 Adapter does not support auto-zero.
Auto-zero is not supported on the channel or device specified. Consult the hardware
specific appendices for supported calibration modes.

3000 Hardware failure.
An unidentified hardware failure has occurred. Check all hardware connections,
switch settings, and jumper settings. If no problems are detected, contact Omega's
technical support department. If possible, have the hardware device type and
software version numbers available when calling.

3010 A/D converter failure.
A hardware failure has occurred in the A/D sub-system of the adapter. Check all
hardware connections, switch settings, and jumper settings. If no problems are
detected, contact Omega's technical support department. If possible, have the
hardware device type and software version numbers available when calling.

3020 D/A converter failure.
A hardware failure has occurred in the D/A sub-system of the adapter. Check all
hardware connections, switch settings, and jumper settings. If no problems are
detected, contact Omega's technical support department. If possible, have the
hardware device type and software version numbers available when calling.

3030 Digital I/O failure.
A hardware failure has occurred in the digital I/O sub-system of the adapter. Check
all hardware connections, switch settings, and jumper settings. If no problems are
detected, contact Omega's technical support department. If possible, have the
hardware device type and software version numbers available when calling.

3040 Counter/timer failure.
A hardware failure has occurred in the counter/timer sub-system of the adapter.
Check all hardware connections, switch settings, and jumper settings. If no
problems are detected, contact Omega's technical support department. If possible,
have the hardware device type and software version numbers available when
calling.

DAQDRIVE Users Manual 280

5000 Buffer over-run.
During the input operation, a sample was input from the adapter that could not be
stored in the data buffer(s) because the data buffer(s) were full. The input operation
was terminated.

5010 Buffer under-run.
During the output operation, a sample could not be output to the adapter because
the data buffer(s) were empty. The output operation was terminated.

5100 FIFO over-run.
During the input operation, a sample was input that could not be transferred into the
adapter's data FIFO because the FIFO was full. The input operation was terminated.

5110 FIFO under-run.
During the output operation, a sample could not be retrieved from the adapter's data
FIFO because the FIFO was empty. The output operation was terminated.

5200 Request time-out.
The requested operation was terminated because the user specified time-out interval
was exceeded while waiting to process the request.

5300 User break.
The requested operation was terminated because a non-zero value was returned
from the user break procedure.

DAQDRIVE Users Manual 281

Appendix A: PXB-241

A.1 Distribution Software

A.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more PXB-241s, the application must be linked
with the appropriate DAQDRIVE library and one of the following PXB-241 libraries:

For Microsoft Visual C/C++

y PXB241MS.LIB - small model PXB-241 library
y PXB241MM.LIB - medium model PXB-241 library
y PXB241MC.LIB - compact model PXB-241 library
y PXB241ML.LIB - large model PXB-241 library

For Borland C/C++

y PXB241BS.LIB - small model PXB-241 library
y PXB241BM.LIB - medium model PXB-241 library
y PXB241BC.LIB - compact model PXB-241 library
y PXB241BL.LIB - large model PXB-241 library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file PXB241.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the PXB-241 driver.

A.1.2 Creating DOS Applications Using The TSR Drivers

Before running a PXB-241 application that uses the TSR drivers, the user must first load the
DAQDRIVE TSR as discussed in section 2.4. Once the DAQDRIVE TSR is installed, the user
can install the PXB-241 TSR with the command line:

PXB-241

This file, PXB-241.EXE, is located in the DAQDRIVE\TSR directory by the DAQDRIVE
installation program.

When the PXB-241 TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the PXB-241 driver will not be installed.

DAQDRIVE Users Manual 282

A.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more PXB-241s is executed, it
must be able to dynamically link to the DAQDRIVE and PXB-241 Dynamic Link Libraries
(DLLs). 32-bit Windows 95/98 applications must also be able to link to the DAQDRIVE and
PXB-241 virtual device drivers (VxDs). Windows searches for any required DLL and/or VxD
files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 283

A.2 Configuring The PXB-241

Before DAQDRIVE can operate the PXB-241, a configuration data file must be generated by
the DAQDRIVE configuration utility program DAQCFGW.EXE for Microsoft Windows. The
DAQDRIVE configuration utility is discussed in section 2.2.

A.2.1 General Configuration

The PXB-241's base address must be defined in the general configuration window of the
configuration utility. The base address range is from 0 to 3f8H with 8 interval. The base
address value should reflect the DIP switch setting of SW1 (refer to the PXB-241 Hardware
Manual).

A.2.2 Digital I/O Configuration

The PXB-241 has 24 bits of digital I/O. The 24 bits are Port A, Port B, and Port C which are
8255A mode 0 equivalent. The 24 bits of digital I/O may be grouped into any combination of
logical channels as long as the channels are in the same group type. The group type are Port
A, Port B, Port C bit 0 to 3, and Port C bit 4 to 7. The logical channel assignments begin with
digital I/O bit 0 and continue through digital I/O bit 23.

DAQDRIVE Users Manual 284

A.3 Opening The PXB-241

A.3.1 Using the PXB-241 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
PXB-241, the application program must include PXB241.H. In addition, the constant
PROCEDURE must be replaced by the PXB241(exactly and without quotes) and the
device_type variable must be defined as "PXB-241" for a PXB-241 adapter.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "pxb241.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "PXB-241";
char *config_file = "PXB-241.dat";

/***** Open the PXB-241. *****/

logical_device = 0;
status = DaqOpenDevice(PXB241, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 285

A.3.2 Using the PXB-241 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The TSR version of
DaqOpenDevice is intended for DOS applications that interface to the memory resident (TSR)
version of the DAQDRIVE drivers.

unsigned short DaqOpenDevice (unsinged short TSR_number,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a unique TSR_number
value to be used with the DaqOpenDevice procedure. In order to open a PXB-241, the
TSR_number variable must be set to the value F008 hexadecimal (61, 448 decimal) and the
device_type variable must be defined as "PXB-241" for a PXB-241 adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf008;
char *device_type = "PXB-241";
char *config_file = "PXB-241.dat";

/***** Open the pxb-241. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 286

A.3.3 Using the PXB-241 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a PXB-241, the DLL_name variable must specify the PXB-241 dynamic link
library (PXB241.DLL) and the device_type variable must be defined as "PXB-241" for a
PXB-241 adapter.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "PXB-241";
char *config_file = "PXB-241.dat";
char *DLL_name = "PXB-241.dll";

/***** Open the PXB-241. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 287

A.4 Digital Input

The PXB-241 supports digital input requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

A.5 Digital Output

The PXB-241 supports digital output requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

DAQDRIVE Users Manual 288

Appendix B: PXB-721

B.1 Distribution Software

B.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more PXB-721s, the application must be linked
with the appropriate DAQDRIVE library and one of the following PXB-721 libraries:

For Microsoft Visual C/C++

y PXB721MS.LIB - small model PXB-721 library
y PXB721MM.LIB - medium model PXB-721 library
y PXB721MC.LIB - compact model PXB-721 library
y PXB721ML.LIB - large model PXB-721 library

For Borland C/C++

y PXB721BS.LIB - small model PXB-721 library
y PXB721BM.LIB - medium model PXB-721 library
y PXB721BC.LIB - compact model PXB-721 library
y PXB721BL.LIB - large model PXB-721 library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file PXB721.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the PXB-721 driver.

B.1.2 Creating DOS Applications Using The TSR Drivers

Before running a PXB-721 application that uses the TSR drivers, the user must first load the
DAQDRIVE TSR as discussed in section 2.4. Once the DAQDRIVE TSR is installed, the user
can install the PXB-721 TSR with the command line:

PXB-721

This file, PXB-721.EXE, is located in the \TSR directory of the PXB-721 distribution diskette.

When the PXB-721 TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the PXB-721 driver will not be installed.

DAQDRIVE Users Manual 289

B.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more PXB-721s is executed, it
must be able to dynamically link to the DAQDRIVE and PXB-721 Dynamic Link Libraries
(DLLs). 32-bit Windows 95/98 applications must also be able to link to the DAQDRIVE and
PXB-721 virtual device drivers (VxDs). Windows searches for any required DLL and/or VxD
files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 290

B.2 Configuring The PXB-721

Before DAQDRIVE can operate the PXB-721, a configuration data file must be generated by
the DAQDRIVE configuration utility program DAQCFGW.EXE for Microsoft Windows. The
DAQDRIVE configuration utility is discussed in section 2.2.

B.2.1 General Configuration

The PXB-721's base address must be defined in the general configuration window of the
configuration utility. The base address range is from 0 to 3f0H with 10H interval. The base
address value should reflect the DIP switch setting of SW1 (refer to the PXB-721 Hardware
Manual).

B.2.2 Digital I/O Configuration

The PXB-721 has 72 bits of digital I/O which derived from three 8255A chips. Each 8255A has
24 bits (Port A, Port B, and Port C, which are 8255A mode 0 equivalent). The 72 bits of digital
I/O may be grouped into any combination of logical channels as long as the channels are in
the same group type. The group type are Port A, Port B, Port C bit 0 to 3, and Port C bit 4 to 7.
The logical channel assignments begin with digital I/O bit 0 and continue through digital I/O
bit 71.

DAQDRIVE Users Manual 291

B.3 Opening The PXB-721

B.3.1 Using the PXB-721 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
PXB-721, the application program must include PXB721.H. In addition, the constant
PROCEDURE must be replaced by the PXB721(exactly and without quotes) and the
device_type variable must be defined as "PXB-721" for a PXB-721 adapter.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "pxb721.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "PXB-721";
char *config_file = "PXB-721.dat";

/***** Open the PXB-721. *****/

logical_device = 0;
status = DaqOpenDevice(PXB721, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 292

B.3.2 Using the PXB-721 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The TSR version of
DaqOpenDevice is intended for DOS applications that interface to the memory resident (TSR)
version of the DAQDRIVE drivers.

unsigned short DaqOpenDevice (unsinged short TSR_number,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a unique TSR_number
value to be used with the DaqOpenDevice procedure. In order to open a PXB-721, the
TSR_number variable must be set to the value F009 hexadecimal (61, 449 decimal) and the
device_type variable must be defined as "PXB-721" for a PXB-721 adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf009;
char *device_type = "PXB-721";
char *config_file = "PXB-721.dat";

/***** Open the PXB-721. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 293

B.3.3 Using the PXB-721 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a PXB-721, the DLL_name variable must specify the PXB-721 dynamic link
library (PXB721.DLL) and the device_type variable must be defined as "PXB-721" for a
PXB-721 adapter.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "PXB-721";
char *config_file = "PXB-721.dat";
char *DLL_name = "PXB-721.dll";

/***** Open the PXB-721. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 294

B.4 Digital Input

The PXB-721 supports digital input requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

B.5 Digital Output

The PXB-721 supports digital output requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

DAQDRIVE Users Manual 295

Appendix C: PIO-241

C.1 Distribution Software

C.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more PIO-241s, the application must be linked
with the appropriate DAQDRIVE library and one of the following PIO-241 libraries:

For Microsoft Visual C/C++

y PIO241MS.LIB - small model PIO-241 library
y PIO241MM.LIB - medium model PIO-241 library
y PIO241MC.LIB - compact model PIO-241 library
y PIO241ML.LIB - large model PIO-241 library

For Borland C/C++

y PIO241BS.LIB - small model PIO-241 library
y PIO241BM.LIB - medium model PIO-241 library
y PIO241BC.LIB - compact model PIO-241 library
y PIO241BL.LIB - large model PIO-241 library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file PIO241.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the PIO-241 driver.

C.1.2 Creating DOS Applications Using The TSR Drivers

Before running a PIO-241 application that uses the TSR drivers, the user must first load the
DAQDRIVE TSR as discussed in section 2.4. Once the DAQDRIVE TSR is installed, the user
can install the PIO-241 TSR with the command line:

PIO-241

This file, PIO-241.EXE, is installed into the DAQDRIVE\TSR directory by the DAQDRIVE
installation program.

When the PIO-241 TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the PIO-241 driver will not be installed.

DAQDRIVE Users Manual 296

C.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more PIO-241s is executed, it
must be able to dynamically link to the DAQDRIVE and PIO-241 Dynamic Link Libraries
(DLLs). 32-bit Windows 95/98 applications must also be able to link to the DAQDRIVE and
PIO-241 virtual device drivers (VxDs). Windows searches for any required DLL and/or VxD
files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 297

C.2 Configuring The PIO-241

Before DAQDRIVE can operate the PIO-241, a configuration data file must be generated by
the DAQDRIVE configuration utility program DAQCFGW.EXE for Microsoft Windows. The
DAQDRIVE configuration utility is discussed in section 2.2.

C.2.1 General Configuration

The PIO-241's base address must be defined in the general configuration window of the
configuration utility. The base address range is from 0 to 3f0H with 10H interval. The base
address value should reflect the DIP switches setting of SW1 and SW2 (refer to the PIO-241
Hardware Manual).

C.2.2 Digital I/O Configuration

The PIO-241 has 24 bits of digital I/O. The 24 bits are grouped into three 8-bit ports. Each bit
may be programmed as either input or output.. The 24 bits of digital I/O may be grouped into
any combination of logical channels as long as the channels are in the same group with the
same input or output type. The logical channel assignments begin with digital I/O bit 0 and
continue through digital I/O bit 23.

DAQDRIVE Users Manual 298

C.3 Opening The PIO-241

C.3.1 Using the PIO-241 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
PIO-241, the application program must include PIO241.H. In addition, the constant
PROCEDURE must be replaced by the PIO241(exactly and without quotes) and the
device_type variable must be defined as "PIO-241" for a PIO-241 adapter.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "pio241.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "PIO-241";
char *config_file = "PIO-241.dat";

/***** Open the PIO-241. *****/

logical_device = 0;
status = DaqOpenDevice(PIO241, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 299

C.3.2 Using the PIO-241 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The TSR version of
DaqOpenDevice is intended for DOS applications that interface to the memory resident (TSR)
version of the DAQDRIVE drivers.

unsigned short DaqOpenDevice (unsinged short TSR_number,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a unique TSR_number
value to be used with the DaqOpenDevice procedure. In order to open a PIO-241, the
TSR_number variable must be set to the value F00A hexadecimal (61, 450 decimal) and the
device_type variable must be defined as "PIO-241" for a PIO-241 adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf00a;
char *device_type = "PIO-241";
char *config_file = "PIO-241.dat";

/***** Open the PIO-241. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 300

C.3.3 Using the PIO-241 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a PIO-241, the DLL_name variable must specify the PIO-241 dynamic link
library (PIO241.DLL) and the device_type variable must be defined as "PIO-241" for a PIO-241
adapter.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "PIO-241";
char *config_file = "PIO-241.dat";
char *DLL_name = "PIO241.dll";

/***** Open the PIO-241. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 301

C.4 Digital Input

The PIO-241 supports digital input requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

C.5 Digital Output

The PIO-241 supports digital output requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

DAQDRIVE Users Manual 302

Appendix D: IOP-241

D.1 Distribution Software

D.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more IOP-241s, the application must be linked
with the appropriate DAQDRIVE library and one of the following IOP-241 libraries:

For Microsoft Visual C/C++

y IOP241MS.LIB - small model IOP-241 library
y IOP241MM.LIB - medium model IOP-241 library
y IOP241MC.LIB - compact model IOP-241 library
y IOP241ML.LIB - large model IOP-241 library

For Borland C/C++

y IOP241BS.LIB - small model IOP-241 library
y IOP241BM.LIB - medium model IOP-241 library
y IOP241BC.LIB - compact model IOP-241 library
y IOP241BL.LIB - large model IOP-241 library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file IOP241.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the IOP-241 driver.

D.1.2 Creating DOS Applications Using The TSR Drivers

Before running an IOP-241 application that uses the TSR drivers, the user must first load the
DAQDRIVE TSR as discussed in section 2.4. Once the DAQDRIVE TSR is installed, the user
can install the IOP-241 TSR with the command line:

IOP-241

This file, IOP-241.EXE, is installed into the DAQDRIVE\TSR directory by the DAQDRIVE
installation program.

When the IOP-241 TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the IOP-241 driver will not be installed.

DAQDRIVE Users Manual 303

D.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more IOP-241s is executed, it
must be able to dynamically link to the DAQDRIVE and IOP-241 Dynamic Link Libraries
(DLLs). 32-bit Windows 95/98 applications must also be able to link to the DAQDRIVE and
IOP-241 virtual device drivers (VxDs). Windows searches for any required DLL and/or VxD
files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 304

D.2 Configuring The IOP-241

Before DAQDRIVE can operate the IOP-241, a configuration data file must be generated by
the DAQDRIVE configuration utility program DAQCFGW.EXE for Microsoft Windows. The
DAQDRIVE configuration utility is discussed in section 2.2.

D.2.1 General Configuration

The IOP-241's base address must be defined in the general configuration window of the
configuration utility. The base address range is from 0 to 3f8H with 8 interval. The defined
card base address should be set using the IOP-241 Enabler or Client Driver (refer to the
IOP-241 Hardware Manual).

D.2.2 Digital I/O Configuration

The IOP-241 has 24 bits of digital I/O. The 24 bits are grouped into three 8-bit ports. Each bit
may be programmed as either input or output.. The 24 bits of digital I/O may be grouped into
any combination of logical channels as long as the channels are in the same group with the
same input or output type. The logical channel assignments begin with digital I/O bit 0 and
continue through digital I/O bit 23.

DAQDRIVE Users Manual 305

D.3 Opening The IOP-241

D.3.1 Using the IOP-241 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
IOP-241, the application program must include IOP241.H. In addition, the constant
PROCEDURE must be replaced by the IOP241(exactly and without quotes) and the
device_type variable must be defined as "IOP-241" for a IOP-241 adapter.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "iop241.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "IOP-241";
char *config_file = "IOP-241.dat";

/***** Open the IOP-241. *****/

logical_device = 0;
status = DaqOpenDevice(IOP241, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 306

D.3.2 Using the IOP-241 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The TSR version of
DaqOpenDevice is intended for DOS applications that interface to the memory resident (TSR)
version of the DAQDRIVE drivers.

unsigned short DaqOpenDevice (unsinged short TSR_number,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a unique TSR_number
value to be used with the DaqOpenDevice procedure. In order to open a IOP-241, the
TSR_number variable must be set to the value F00B hexadecimal (61, 451 decimal) and the
device_type variable must be defined as "IOP-241" for a IOP-241 adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf00b;
char *device_type = "IOP-241";
char *config_file = "IOP-241.dat";

/***** Open the IOP-241. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 307

D.3.3 Using the IOP-241 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a IOP-241, the DLL_name variable must specify the IOP-241 dynamic link
library (IOP241.DLL) and the device_type variable must be defined as "IOP-241" for a IOP-241
adapter.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "IOP-241";
char *config_file = "IOP-241.dat";
char *DLL_name = "IOP-241.dll";

/***** Open the IOP-241. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 308

D.4 Digital Input

The IOP-241 supports digital input requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

D.5 Digital Output

The IOP-241 supports digital output requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

DAQDRIVE Users Manual 309

Appendix E: DAQ-12

E.1 Distribution Software

E.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQ-12s, the application must be linked
with the appropriate DAQDRIVE library and one of the following DAQ-12 libraries:

For Microsoft Visual C/C++

y DAQ12MS.LIB - small model DAQ-12 library
y DAQ12MM.LIB - medium model DAQ-12 library
y DAQ12MC.LIB - compact model DAQ-12 library
y DAQ12ML.LIB - large model DAQ-12 library

For Borland C/C++

y DAQ12BS.LIB - small model DAQ-12 library
y DAQ12BM.LIB - medium model DAQ-12 library
y DAQ12BC.LIB - compact model DAQ-12 library
y DAQ12BL.LIB - large model DAQ-12 library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file DAQ12.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the DAQ-12 driver.

E.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DAQ-12 application that uses the TSR drivers, the user must first load the
DAQDRIVE TSR as discussed in section 2.4. Once the DAQDRIVE TSR is installed, the user
can install the DAQ-12 TSR with the command line:

DAQ12TSR

This file, DAQ12TSR.EXE, is installed into the DAQDRIVE\TSR directory by the DAQDRIVE
installation program.

When the DAQ-12 TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the DAQ-12 driver will not be installed.

DAQDRIVE Users Manual 310

E.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more DAQ-12s is executed, it
must be able to dynamically link to the DAQDRIVE and DAQ-12 Dynamic Link Libraries
(DLLs). 32-bit Windows 95/98 applications must also be able to link to the DAQDRIVE and
DAQ-12 virtual device drivers (VxDs). Windows searches for any required DLL and/or VxD
files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 311

E.2 Configuring The DAQ-12

Before DAQDRIVE can operate the DAQ-12, a configuration data file must be generated by
the DAQDRIVE configuration utility program DAQCFGW.EXE for Microsoft Windows. The
DAQDRIVE configuration utility is discussed in section 2.2.

E.2.1 General Configuration

The DAQ-12's base address, interrupt level and DMA channels must be defined in the general
configuration window of the configuration utility. These selections must reflect the
configuration of switches SW1 and SW2 and jumpers J8, J9, J10, and J11 as defined in the
DAQ-12 Hardware Reference Manual.

E.2.2 A/D Converter Configuration

The DAQ-12's A/D converter must be configured for single-ended or differential input,
bipolar or unipolar operation, and pre-scaler enabled or disabled. These selections must
reflect the configuration of jumpers J1, J6, and J7 as defined in the DAQ-12 Hardware
Reference Manual.

E.2.3 D/A Converter Configuration

The DAQ-12's D/A converter parameters are device type (bipolar or unipolar), reference
source (internal or external), reference voltage, and gain. These selections must reflect the
configuration of jumpers J4 and J5 as defined in the DAQ-12 Hardware Reference Manual.

E.2.4 Digital I/O Configuration

The DAQ-12 contains 8 bits of digital I/O. The first 4 bits are fixed output and last 4 bits are
fixed input. The logical channel assignments begin with digital I/O bit 0 and continue
through to digital I/O bit 7.

E.2.5 Timer Configuration

The DAQ-12 does not have any user-definable timer parameters.

DAQDRIVE Users Manual 312

E.3 Opening The DAQ-12

E.3.1 Using the DAQ-12 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
DAQ-12, the application program must include DAQ12.H. In addition, the constant
PROCEDURE must be replaced by DAQ12 (exactly and without quotes) and the device_type
variable must be defined as "DAQ-12".

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq12.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "daq-12";
char *config_file = "daq-12.dat";

/***** Open the daq-12. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 313

E.3.2 Using the DAQ-12 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The TSR version of
DaqOpenDevice is intended for DOS applications that interface to the memory resident (TSR)
version of the DAQDRIVE drivers.

unsigned short DaqOpenDevice (unsinged short TSR_number,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a unique TSR_number
value to be used with the DaqOpenDevice procedure. In order to open a DAQ-12, the
TSR_number variable must be set to the value F001 hexadecimal (61, 441 decimal) and the
device_type variable must be defined as "DAQ-12" for a DAQ-12 adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf001;
char *device_type = "daq-12";
char *config_file = "daq-12.dat";

/***** Open the daq-12. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 314

E.3.3 Using the DAQ-12 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char far *DLL_name ,
 unsigned short far *logical_device ,
 char far *device_type ,
 char far *config_file)

In order to open a DAQ-12, the DLL_name variable must specify the DAQ-12 dynamic link
library (DAQ12.DLL) and the device_type variable must be defined as "DAQ-12".

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQ-12";
char *config_file = "DAQ-12.dat";
char *DLL_name = "DAQ12.dll";

/***** Open the DAQ12. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 315

E.4 Analog Input

The DAQ-12 supports analog input requests with the following restrictions:

gain_array_ptr - because the DAQ-12 only supports one gain setting per acquisition, all
of the values specified by gain_array_ptr must be the same.

trigger_source - only the INTERNAL_TRIGGER and TTL_TRIGGER selections are
supported.

IO_mode - DMA_FOREGROUND and DMA_BACKGROUND modes are only
supported for single channel operations (i.e. when array_length = 1).

clock_source - only the INTERNAL_CLOCK source is supported.

sample_rate - must be in the range 2.33 mHz (2.33e-3) ≤ sample_rate ≤ 200 kHz (200e3)
for single channel operations or 153 Hz ≤ sample_rate ≤ [1/(10µsec *
array_length)] for multiple channel operations (i.e. array_length > 1)

calibration - only the NO_CALIBRATION selection is supported.

E.5 Analog Output

The DAQ-12 supports analog output requests with the following restrictions:

array_length - only single channel operations are supported. Therefore array_length
must equal 1.

trigger_source - only the INTERNAL_TRIGGER source is supported.

clock_source - only the INTERNAL_CLOCK source is supported.

sample_rate - must be greater than 153Hz. The maximum value of sample_rate is
dependent upon the speed of the computer used.

calibration - only the NO_CALIBRATION selection is supported.

DAQDRIVE Users Manual 316

E.6 Digital Input

The DAQ-12 supports digital input requests with the following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is supported.

number_of_scans - only single point operations are supported. Therefore,
number_of_scans must equal 1.

E.7 Digital Output

The DAQ-12 supports digital output requests with the following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER is supported

IO_mode - only FOREGROUND_CPU mode is supported.

number_of_scans - only single point operations are supported. Therefore, number_of_scans
must equal 1.

DAQDRIVE Users Manual 317

Appendix F: DAQ-16

F.1 Distribution Software

F.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQ-16s, the application must be linked
with the appropriate DAQDRIVE library and one of the following DAQ-16 libraries:

For Microsoft Visual C/C++

y DAQ16MS.LIB - small model DAQ-16 library
y DAQ16MM.LIB - medium model DAQ-16 library
y DAQ16MC.LIB - compact model DAQ-16 library
y DAQ16ML.LIB - large model DAQ-16 library

For Borland C/C++

y DAQ16BS.LIB - small model DAQ-16 library
y DAQ16BM.LIB - medium model DAQ-16 library
y DAQ16BC.LIB - compact model DAQ-16 library
y DAQ16BL.LIB - large model DAQ-16 library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file DAQ16.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the DAQ-16 driver.

F.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DAQ-16 application that uses the TSR drivers, the user must first load the
DAQDRIVE TSR as discussed in section 2.4. Once the DAQDRIVE TSR is installed, the user
can install the DAQ-16 TSR with the command line:

DAQ16TSR

This file, DAQ16TSR.EXE, is installed into the DAQDRIVE\TSR directory by the DAQDRIVE
installation program.

When the DAQ-16 TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the DAQ-16 driver will not be installed.

DAQDRIVE Users Manual 318

F.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more DAQ-16s is executed, it
must be able to dynamically link to the DAQDRIVE and DAQ-16 Dynamic Link Libraries
(DLLs). 32-bit Windows 95/98 applications must also be able to link to the DAQDRIVE and
DAQ-16 virtual device drivers (VxDs). Windows searches for any required DLL and/or VxD
files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 319

F.2 Configuring The DAQ-16

Before DAQDRIVE can operate the DAQ-16, a configuration data file must be generated by
the DAQDRIVE configuration utility program DAQCFGW.EXE for Microsoft Windows. The
DAQDRIVE configuration utility is discussed in section 2.2.

F.2.1 General Configuration

The DAQ-16's base address, interrupt level and DMA channels must be defined in the general
configuration window of the configuration utility. These selections must reflect the
configuration of switches SW1 and SW2 and jumpers J8, J9, J10, and J11 as defined in the
DAQ-16 Hardware Reference Manual.

F.2.2 A/D Converter Configuration

The DAQ-16's A/D converter must be configured for bipolar or unipolar operation and a gain
value must be specified. These selections must reflect the configuration of jumpers J5 and J7
as defined in the DAQ-16 Hardware Reference Manual.

Furthermore, the data format jumper must be configured according to the input mode. If the
A/D is configured for bipolar operation, the data format must be set to 2's complement using
jumper J5. If the A/D is configured for unipolar operation, the data format must be set to
binary using jumper J5. Jumper J6 determines input voltage range, which can be set as 10V,
5V or 2.5V. Once the input range setting is made, one should choose DAQ16_0.DAT (for 10V
), DAQ16_1.DAT (for 5V), or DAQ16_2.DAT (for 2.5V) configuration data file.

F.2.3 D/A Converter Configuration

The DAQ-16's D/A converter parameters are device type (bipolar or unipolar), reference
source (internal or external), and reference voltage. These selections must reflect the
configuration of jumpers J3 and J4 as defined in the DAQ-16 Hardware Reference Manual.

F.2.4 Digital I/O Configuration

The DAQ-16 contains 8 bits of digital I/O. The first 4 bits are fixed output and last 4 bits are
fixed input. The logical channel assignments begin with digital I/O bit 0 and continue
through to digital I/O bit 7.

F.2.5 Timer Configuration

The DAQ-16 does not have any user-definable timer parameters.

DAQDRIVE Users Manual 320

F.3 Opening The DAQ-16

F.3.1 Using the DAQ-16 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
DAQ-16, the application program must include DAQ16.H. In addition, the constant
PROCEDURE must be replaced by DAQ16 (exactly and without quotes) and the device_type
variable must be defined as "DAQ-16".

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq16.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "daq-16";
char *config_file = "daq-16.dat";

/***** Open the DAQ-16. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ16, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 321

F.3.2 Using the DAQ-16 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The TSR version of
DaqOpenDevice is intended for DOS applications that interface to the memory resident (TSR)
version of the DAQDRIVE drivers.

unsigned short DaqOpenDevice (unsinged short TSR_number,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a unique TSR_number
value to be used with the DaqOpenDevice procedure. In order to open a DAQ-16, the
TSR_number variable must be set to the value F002 hexadecimal (61, 442 decimal) and the
device_type variable must be defined as "DAQ-16" for a DAQ-16 adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf002;
char *device_type = "daq-16";
char *config_file = "daq-16.dat";

/***** Open the daq-16. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 322

F.3.3 Using the DAQ-16 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a DAQ-16, the DLL_name variable must specify the DAQ-16 dynamic link
library (DAQ16.DLL) and the device_type variable must be defined as "DAQ-16".

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQ-16";
char *config_file = "DAQ-16.dat";
char *DLL_name = "DAQ16.dll";

/***** Open the DAQ-16. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 323

F.4 Analog Input

The DAQ-16 supports analog input requests with the following restrictions:

gain_array_ptr - because the DAQ-16 only supports one gain setting per acquisition, all
of the values specified by gain_array_ptr must be the same. In addition,
the value specified for the gain must match the value stored in the
DAQ-16 configuration file.

trigger_source - only the INTERNAL_TRIGGER and TTL_TRIGGER sources are
supported.

IO_mode - DMA_FOREGROUND and DMA_BACKGROUND modes are only
supported for single channel operations (i.e. when array_length = 1).

clock_source - only the INTERNAL_CLOCK source is supported.

sample_rate - must be in the range 2.33 mHz (2.33e-3) ≤ sample_rate ≤ 100 kHz (100e3)
for single channel operation or 153 Hz ≤ sample_rate ≤ [1/(10µsec *
array_length)] for multiple channel operations (i.e. array_length > 1)

calibration - only the NO_CALIBRATION selection is supported.

F.5 Analog Output

The DAQ-16 supports analog output requests with the following restrictions:

array_length - only single channel operations are supported. Therefore, array_length
must equal 1.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU and BACKGROUND_IRQ data transfer
modes are supported.

clock_source - only the INTERNAL_CLOCK source is supported.

sample_rate - must be greater than 153Hz. The maximum value of sample_rate is
dependent upon the speed of the computer used.

calibration - only the NO_CALIBRATION selection is supported.

DAQDRIVE Users Manual 324

F.6 Digital Input

The DAQ-16 supports digital input requests with the following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is supported.

number_of_scans - only single point operations are supported. Therefore,
number_of_scans must equal 1.

F.7 Digital Output

The DAQ-16 supports digital output requests with the following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER is supported

IO_mode - only the FOREGROUND_CPU mode is supported.

number_of_scans - only single point operations are supported. Therefore,
number_of_scans must equal 1.

DAQDRIVE Users Manual 325

Appendix G: DAQ-801/802

G.1 Distribution Software

G.1.1 Creating DOS Applications Using The C Libraries

To generate an application that controls one or more DAQ-801/802s, the application must be
linked with the appropriate DAQDRIVE library and one of the following DAQ-801/802
libraries:

For Microsoft Visual C/C++

y DAQ800MS.LIB - small model DAQ-800 library
y DAQ800MM.LIB - medium model DAQ-800 library
y DAQ800MC.LIB - compact model DAQ-800 library
y DAQ800ML.LIB - large model DAQ-800 library

For Borland C/C++

y DAQ800BS.LIB - small model DAQ-800 library
y DAQ800BM.LIB - medium model DAQ-800 library
y DAQ800BC.LIB - compact model DAQ-800 library
y DAQ800BL.LIB - large model DAQ-800 library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file DAQ800.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the DAQ-800 driver.

G.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DAQ-801/802 application that uses the TSR drivers, the user must first load
the DAQDRIVE TSR as discussed in the section 2.4. Once the DAQDRIVE TSR is installed, the
user can install the DAQ-801/802 TSR with the command line:

DAQ-800

This file, DAQ-800.EXE, is installed into the DAQDRIVE\TSR directory by the DAQDRIVE
installation program.

When the DAQ-801/802 TSR driver is executed, it will search for the DAQDRIVE TSR in
memory and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded
in memory, an error will be reported and the DAQ-801/802 driver will not be installed.

DAQDRIVE Users Manual 326

G.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more DAQ-801/802s is executed,
it must be able to dynamically link to the DAQDRIVE and DAQ-800 series Dynamic Link
Libraries (DLLs). 32-bit Windows 95/98 applications must also be able to link to the
DAQDRIVE and DAQ-800 series virtual device drivers (VxDs). Windows searches for any
required DLL and/or VxD files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 327

G.2 Configuring The DAQ-801/802

Before DAQDRIVE can operate the DAQ-801/802, a configuration data file must be generated
by the DAQDRIVE configuration utility. The DAQDRIVE configuration utility is discussed in
section 2.2.

G.2.1 General Configuration

The DAQ-801/802's base address and interrupt level must be defined in the general
configuration window of the configuration utility. The base address range is from 0 to 7FF0H
with 10H interval. The base address value should reflect the DIP switch setting of SW1 and
SW2 (refer to the DAQ-801/802 Hardware Manual).

G.2.2 A/D Converter Configuration

The only A/D converter parameter needed to be set in DAQ-801/802 is device type (Bipolar
or Unipolar).

G.2.3 D/A Converter Configuration

The DAQ-801/802's D/A converter parameters are device type (bipolar or unipolar), reference
source (internal or external), reference voltage, and gain (gain of 1 or 2). These parameters
should reflect the jumper setting of J2 and J4 of the board (refer to the DAQ-801/802
Hardware Manual).

G.2.4 Digital I/O Configuration

The DAQ-801/802 has 32 bits of digital I/O. The first 24 bits are Port A, Port B, and Port C
which are 8255A mode 0 equivalent. In the I/O port portion of the configuration window, the
first 4 bits are fixed output and last 4 bits are fixed input. The 32 bits of digital I/O may be
grouped into any combination of logical channels as long as the channels are in the same
group type. The group type are Port A, Port B, Port C bit 0 to 3, Port C bit 4 to 7, 4-bit fixed
input and 4-bit fixed output. The logical channel assignments begin with digital I/O bit 0 and
continue through digital I/O bit 31.

G.2.5 Timer Configuration

The DAQ-801/802 does not have any user-definable timer parameters.

DAQDRIVE Users Manual 328

G.3 Opening The DAQ-801/802

G.3.1 Using the DAQ-801/802 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
DAQ-801/802, the application program must include DAQ800.H. In addition, the constant
PROCEDURE must be replaced by DAQ800 (exactly and without quotes) and the device_type
variable must be defined as "DAQ-801" for a DAQ-801 adapter or "DAQ-802" for a DAQ-802
adapter.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq800.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "daq-801";
char *config_file = "daq-801.dat";

/***** Open the daq-801. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ800, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 329

G.3.2 Using the DAQ-801/802 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The TSR version of
DaqOpenDevice is intended for DOS applications that interface to the memory resident (TSR)
version of the DAQDRIVE drivers.

unsigned short DaqOpenDevice (unsigned short TSR_number,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a unique TSR_number
value to be used with the DaqOpenDevice procedure. In order to open a DAQ-801/802, the
TSR_number variable must be set to the value F003 hexadecimal (61, 443 decimal) and the
device_type variable must be defined as "DAQ-801" for a DAQ-801 adapter or "DAQ-802" for
a DAQ-802 adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf003;
char *device_type = "DAQ-801";
char *config_file = "daq-801.dat";

/***** Open the DAQ-801. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 330

G.3.3 Using the DAQ-801/802 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a DAQ-801/802, the DLL_name variable must specify the DAQ-801/802
dynamic link library (DAQ800.DLL) and the device_type variable must be defined as
"DAQ-801" for a DAQ-801 adapter or "DAQ-802" for a DAQ-802 adapter.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQ-802";
char *config_file = "DAQ-802.dat";
char *DLL_name = "DAQ800.dll";

/***** Open the DAQ802. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 331

G.4 Analog Input

The DAQ-801/802 supports analog input requests with the following restrictions:

channel_array_ptr - In the channel array, the channel numbers must be in sequential order
from start channel to stop channel. If the start channel number is greater
than stop channel number, it will wrap from channel 7 to channel 0 and
continue to the end channel. For example, both {2,3,4,5,6} and {6,7,0,1,2}
are valid channel lists.

trigger_source - INTERNAL_TRIGGER, TTL_TRIGGER, and ANALOG_TRIGGER
sources are supported.

trigger_channel - trigger_channel MUST equal the first channel in the channel list.

trigger_voltage - The trigger voltage must be within the valid analog input range of
trigger_channel.

IO_mode - Only the FOREGROUND_CPU and BACKGROUND_IRQ data transfer
modes are supported.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - sample_rate must be in the range 5.82e-4 Hz to 40 KHz (4e4).

G.5 Analog Output

The DAQ-801/802 supports analog output requests with the following restrictions:

array_length - only single channel operations are supported. Therefore array_length
must equal 1.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU and BACKGROUND_IRQ data transfer
modes are supported.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - The minimum value of sample_rate is 38.15Hz. The maximum value of
sample_rate is depending on the speed of the computer used.

calibration - Only the NO_CALIBRATION selection is supported.

DAQDRIVE Users Manual 332

G.6 Digital Input

The DAQ-801/802 supports digital input requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

G.7 Digital Output

The DAQ-801/802 supports digital output requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

DAQDRIVE Users Manual 333

Appendix H: DAQ-1201/1202

H.1 Distribution Software

H.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQ-1201/1202s, the application must
be linked with the appropriate DAQDRIVE library and one of the following DAQ-1201/1202
libraries:

For Microsoft Visual C/C++

y DQ1200MS.LIB - small model DAQ-1200 library
y DQ1200MM.LIB - medium model DAQ-1200 library
y DQ1200MC.LIB - compact model DAQ-1200 library
y DQ1200ML.LIB - large model DAQ-1200 library

For Borland C/C++

y DQ1200BS.LIB - small model DAQ-1200 library
y DQ1200BM.LIB - medium model DAQ-1200 library
y DQ1200BC.LIB - compact model DAQ-1200 library
y DQ1200BL.LIB - large model DAQ-1200 library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file DAQ1200.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the DAQ-1200 driver.

H.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DAQ-1201/1202 application that uses the TSR drivers, the user must first
load the DAQDRIVE TSR as discussed in section 2.4. Once the DAQDRIVE TSR is installed,
the user can install the DAQ-1200 TSR with the command line:

DAQ-1200

This file, DAQ-1200.EXE, is installed into the DAQDRIVE\TSR directory by teh DAQDRIVE
installation program.

When the DAQ-1200 TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the DAQ-1200 driver will not be installed.

DAQDRIVE Users Manual 334

H.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more DAQ-1201/1202s is
executed, it must be able to dynamically link to the DAQDRIVE and DAQ-1200 series
Dynamic Link Libraries (DLLs). 32-bit Windows 95/98 applications must also be able to link
to the DAQDRIVE and DAQ-1200 series virtual device drivers (VxDs). Windows searches for
any required DLL and/or VxD files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 335

H.2 Configuring The DAQ-1201/1202

Before DAQDRIVE can operate the DAQ-1201/1202, a configuration data file must be
generated by the DAQDRIVE configuration utility program DAQCFGW.EXE for Microsoft
Windows. The DAQDRIVE configuration utility is discussed in section 2.2.

H.2.1 General Configuration

The DAQ-1201/1202's base address, interrupt level and DMA channels must be defined in the
general configuration window of the configuration utility. The base address range is from 0 to
7FF0H with 10H interval. The base address value should reflect the DIP switch setting of SW1
and SW2 (refer to the DAQ-1201/1202 Hardware Manual).

H.2.2 A/D Converter Configuration

The A/D converter parameters in DAQ-1201/1202 are device type (Bipolar or Unipolar),
differential or single-ended.

H.2.3 D/A Converter Configuration

The DAQ-1201/1202's D/A converter parameters are device type (bipolar or unipolar),
reference source (internal or external), reference voltage, and gain (gain of 1 or 2). These
parameters should reflect the jumper settings of J4 and J5 of the board (refer to the
DAQ-1201/1202 Hardware Manual).

H.2.4 Digital I/O Configuration

The DAQ-1201/1202 has 32 bits of digital I/O. The first 24 bits are Port A, Port B, and Port C
which are 8255A mode 0 equivalent. In the I/O port portion of the configuration window, the
first 4 bits are fixed output and last 4 bits are fixed input. The 32 bits of digital I/O may be
grouped into any combination of logical channels as long as the channels are in the same
group type. The group type are Port A, Port B, Port C bit 0 to 3, Port C bit 4 to 7, 4-bit fixed
input and 4-bit fixed output. The logical channel assignments begin with digital I/O bit 0 and
continue through digital I/O bit 31.

H.2.5 Timer Configuration

The DAQ-1201/1202 does not have any user-definable timer parameters.

DAQDRIVE Users Manual 336

H.3 Opening The DAQ-1201/1202

H.3.1 Using the DAQ-1201/1202 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
DAQ-1201/1202, the application program must include DAQ1200.H. In addition, the constant
PROCEDURE must be replaced by the DAQ1200 (exactly and without quotes) and the
device_type variable must be defined as "DAQ-1201" for a DAQ-1201 adapter or "DAQ-1202"
for a DAQ-1202 adapter.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "daq-1201";
char *config_file = "daq-1201.dat";

/***** Open the daq-1201. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 337

H.3.2 Using the DAQ-1201/1202 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The TSR version of
DaqOpenDevice is intended for DOS applications that interface to the memory resident (TSR)
version of the DAQDRIVE drivers.

unsigned short DaqOpenDevice (unsinged short TSR_number,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a unique TSR_number
value to be used with the DaqOpenDevice procedure. In order to open a DAQ-1201/1202, the
TSR_number variable must be set to the value F004 hexadecimal (61, 444 decimal) and the
device_type variable must be defined as "DAQ1201" for a DAQ-1201 adapter or "DAQ1202"
for a DAQ-1202 adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf004;
char *device_type = "daq-1201";
char *config_file = "daq-1201.dat";

/***** Open the daq-1201. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 338

H.3.3 Using the DAQ-1201/1202 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a DAQ-1201/1202, the DLL_name variable must specify the DAQ-1201/1202
dynamic link library (DAQ1200.DLL) and the device_type variable must be defined as
"DAQ-1201" for a DAQ-1201 adapter or "DAQ-1202" for a DAQ-1202 adapter.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQ-1202";
char *config_file = "DAQ-1202.dat";
char *DLL_name = "DAQ1200.dll";

/***** Open the DAQ1202. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 339

H.4 Analog Input

The DAQ-1201/1202 supports analog input requests with the following restrictions:

channel_array_ptr - Up to 512 channels array is supported.

trigger_source - INTERNAL_TRIGGER, TTL_TRIGGER, and ANALOG_TRIGGER
sources are supported.

trigger_channel - trigger_channel MUST equal the first channel in the channel list.

trigger_voltage - The trigger voltage must be within the valid analog input range of
trigger_channel.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - sample_rate must be in the range 2.33e-5 Hz to 400 KHz (4e5).

calibration - Only the NO_CALIBRATION selection is supported.

H.5 Analog Output

The DAQ-1201/1202 supports analog output requests with the following restrictions:

array_length - only single channel operations are supported. Therefore array_length
must equal 1.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - The minimum value of sample_rate is 38.15Hz. The maximum value of
sample_rate is depending on the speed of the computer used.

calibration - Only the NO_CALIBRATION selection is supported.

DAQDRIVE Users Manual 340

H.6 Digital Input

The DAQ-1201/1202 supports digital input requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

H.7 Digital Output

The DAQ-1201/1202 supports digital output requests with the following restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported, therefore, number_of_scans
must equal 1.

DAQDRIVE Users Manual 341

Appendix I: DAQP-12 / DAQP-12H / DAQP-16

I.1 Distribution Software

I.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQP-12, DAQP-12H, or DAQP-16
cards, the application must be linked with the appropriate DAQDRIVE library and one of the
following DAQP libraries:

For Microsoft Visual C/C++

y DAQP_CS.LIB - small model DAQP library
y DAQP_CM.LIB - medium model DAQP library
y DAQP_CC.LIB - compact model DAQP library
y DAQP_CL.LIB - large model DAQP library

For Borland C/C++

y DAQP_BS.LIB - small model DAQP library
y DAQP_BM.LIB - medium model DAQP library
y DAQP_BC.LIB - compact model DAQP library
y DAQP_BL.LIB - large model DAQP library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file DAQP.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the DAQP driver.

I.1.2 Creating DOS Applications Using the TSR Driver

Before running a DAQP-12, DAQP-12H, or DAQP-16 application that uses the TSR driver, the
user must first load the DAQDRIVE TSR as discussed in section 2.4. Once the DAQDRIVE
TSR installed, the user may then install the DAQP TSR driver with the command line:

DAQPTSR

This file, DAQPTSR.EXE, is installed into the DAQDRIVE\TSR directory by the DAQDRIVE
installation program.

When the DAQP TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the DAQP TSR driver will not be installed.

DAQDRIVE Users Manual 342

I.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more DAQP-12, DAQP-12H, or
DAQP-16 cards is executed, it must be able to dynamically link to the DAQDRIVE and DAQP
series Dynamic Link Libraries (DLLs). 32-bit Windows 95/98 applications must also be able
to link to the DAQDRIVE and DAQP series virtual device drivers (VxDs). Windows searches
for any required DLL and/or VxD files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 343

I.2 Configuring The DAQP-12 / DAQP-12H / DAQP-16

Before DAQDRIVE can operate the DAQP-12, DAQP-12H, or DAQP-16, a configuration data
file must be generated by the DAQDRIVE configuration utility program. The DAQDRIVE
configuration utility is discussed in section 2.2.

I.2.1 General Configuration

The DAQP-12's, DAQP-12H’s, or DAQP-16's base address and interrupt level must be defined
in the general configuration window of the configuration utility. If the base address is set to 0,
DAQDRIVE will obtain the adapter’s base address and interrupt level from the PCMCIA Card
and Socket Services software.

NOTE: To operate in auto-configuration mode, the system must have the DAQP Client
Driver and a version of Card and Socket Services software installed.

I.2.2 A/D Converter Configuration

The DAQP-12, DAQP-12H, and DAQP-16 analog input channels are bipolar only. A
differential or single-ended input option can be selected with the configuration utility. The
gains are fully programmable and selected at run-time.

I.2.3 Digital I/O Configuration

The DAQP-12, DAQP-12H, and DAQP-16 all have 4 bits of digital input and 4 bits of digital
output. The default channel grouping is using the 4 digital output bits as channel 0 and the 4
digital input bits as channel 1.

I.2.4 Timer Configuration

There are no user-definable timer parameters on DAQP-12, DAQP-12H, or DAQP-16.

DAQDRIVE Users Manual 344

I.3 Opening The DAQP-12 / DAQP-12H / DAQP-16

I.3.1 Using the DAQP-12 / DAQP-12H / DAQP-16 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
DAQP-12, DAQP-12H, or DAQP-16 the application program must include DAQP.H. In
addition, the constant PROCEDURE must be replaced by DAQP (exactly and without quotes)
and the device_type variable must be defined as "DAQP-12", "DAQP-12H", or "DAQP-16"
depending on the hardware in use.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

// for DAQP-12, set device_type to "DAQP-12"
// for DAQP-12H, set device_type to "DAQP-12H"
// for DAQP-16, set device_type to "DAQP-16"

char *device_type = "DAQP-12";
char *config_file = "daqp-12.dat";

/***** Open the DAQP-12. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 345

I.3.2 Using the DAQP-12 / DAQP-12H / DAQP-16 with the DOS TSR Driver

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The DOS TSR version of
DaqOpenDevice is intended for DOS applications that interface to the "Terminate & Stay
memory-Resident" (TSR) version of the DAQDRIVE libraries.

unsigned short DaqOpenDevice (unsigned short TSR_number ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each device supported by DAQDRIVE has been assigned a unique TSR_number value to be
used with the DaqOpenDevice procedure. In order to open a DAQP-12, DAQP-12H, or
DAQP-16 card, the TSR_number variable must be set to the value F005 hexadecimal (61,445
decimal). The device_type variable must be defined as "DAQP-12", "DAQP-12H", or
"DAQP-16" depending on the hardware in use.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

// for DAQP-12, set device_type to "DAQP-12"
// for DAQP-12H, set device_type to "DAQP-12H"
// for DAQP-16, set device_type to "DAQP-16"

unsigned short TSR_number = 0xf005;
char *device_type = "DAQP-16";
char *config_file = "daqp-16.dat";

/***** Open the DAQP-16. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 346

I.3.3 Using the DAQP-12 / DAQP-12H / DAQP-16 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a DAQP-12, DAQP-12H, or DAQP-16, the DLL_name variable must specify
the DAQP dynamic link library (DAQPWIN.DLL) and the device_type variable must be
defined as "DAQP-12", "DAQP-12H", or "DAQP-16" depending on the hardware in use.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

// for DAQP-12, set device_type to "DAQP-12"
// for DAQP-12H, set device_type to "DAQP-12H"
// for DAQP-16, set device_type to "DAQP-16"

char *device_type = "DAQP-12";
char *config_file = "daqp-12.dat";
char *DLL_name = "daqpwin.dll";

/***** Open the DAQP-12. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 347

I.4 Analog Input

The DAQP-12, DAQP-12H, and DAQP-16 support analog input requests with the following
restrictions:

channel_array_ptr - requests operating on two or more analog input channels. There is no
restrictions on the number of times an analog input channel may appear
in the channel list.

trigger_source - only the INTERNAL_TRIGGER and TTL_TRIGGER sources are
supported. If the TTL_TRIGGER is selected, the trigger signal must be
applied on the external trigger (shared with digital input 0) input.

IO_mode - only the FOREGROUND_CPU and BACKGROUND_IRQ data transfer
modes are supported. DMA modes are NOT supported.

clock_source - both INTERNAL_CLOCK and EXTERNAL_CLOCK sources are
supported. If the external clock is selected, the clock input has to be
introduced from the external clock (shared with digital input bit 2) input.
The minimum clock pulse width is 200 ns (or the maximum clock
frequency is 5 MHz). There is no limit on the maximum clock width (or
the minimum clock frequency).

sample_rate - sample_rate must NOT be over 100 kHz (100e3). If the internal clock is
used, the minimum sampling rate is 0.06 Hz. The minimum sampling
rate will be the external clock frequency divided by 16,777,215.

calibration - only the NO_CALIBRATION selection is supported.

When the data acquisition is in background mode, the DAQDRIVE low
level driver will select EOS (end of scan) interrupt if the data flow is less
than 1000 samples per second (sampling rate times number of channels in
the scan list), otherwise it uses the FIFO threshold interrupt. The FIFO
thershold will always be set as an integer multiple of the scan length, as
close as possible to the half full level.

DAQDRIVE Users Manual 348

I.5 Analog Output

Neither the DAQP-12, DAQP-12H, nor the DAQP-16 have any analog output channels. All
analog output requests will return with a function not supported error.

I.6 Digital Input

The DAQP-12, DAQP-12H, and DAQP-16 only supports single scan digital input requests
with the following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is supported.

I.7 Digital Output

The DAQP-12, DAQP-12H, and DAQP-16 support single scan digital output requests with the
following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is supported.

DAQDRIVE Users Manual 349

Appendix J: DAQP-208 / DAQP-208H / DAQP-308

J.1 Distribution Software

J.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQP-208, DAQP-208H, or DAQP-308
cards, the application must be linked with the appropriate DAQDRIVE library and one of the
following DAQP libraries:

For Microsoft Visual C/C++

y DAQP_CS.LIB - small model DAQP library
y DAQP_CM.LIB - medium model DAQP library
y DAQP_CC.LIB - compact model DAQP library
y DAQP_CL.LIB - large model DAQP library

For Borland C/C++

y DAQP_BS.LIB - small model DAQP library
y DAQP_BM.LIB - medium model DAQP library
y DAQP_BC.LIB - compact model DAQP library
y DAQP_BL.LIB - large model DAQP library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file DAQP.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the DAQP driver.

J.1.2 Creating DOS Applications Using the TSR Driver

Before running a DAQP-208, DAQP-208H, or DAQP-308 application that uses the TSR driver,
the user must first load the DAQDRIVE TSR as discussed in section 2.4. Once the DAQDRIVE
TSR installed, the user may then install the DAQP TSR driver with the command line:

DAQPTSR

This file, DAQPTSR.EXE, is installed into the DAQDRIVE\TSR directory by the DAQDRIVE
installation program.

When the DAQP TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the DAQP TSR driver will not be installed.

DAQDRIVE Users Manual 350

J.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more DAQP-208, DAQP-208H, or
DAQP-308 cards is executed, it must be able to dynamically link to the DAQDRIVE and
DAQP series Dynamic Link Libraries (DLLs). 32-bit Windows 95/98 applications must also
be able to link to the DAQDRIVE and DAQP series virtual device drivers (VxDs). Windows
searches for any required DLL and/or VxD files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 351

J.2 Configuring The DAQP-208 / DAQP-308 / DAQP-308

Before DAQDRIVE can operate the DAQP-208, DAQP-208H, or DAQP-308, a configuration
data file must be generated by the DAQDRIVE configuration utility program. The
DAQDRIVE configuration utility is discussed in section 2.2.

J.2.1 General Configuration

The DAQP-208's, DAQP-208H’s, or DAQP-308's base address and interrupt level must be
defined in the general configuration window of the configuration utility. If the base address
is set to 0, DAQDRIVE will obtain the adapter’s base address and interrupt level from the
PCMCIA Card and Socket Services software.

NOTE: To operate in auto-configuration mode, the system must have the DAQP Client
Driver and a version of Card and Socket Services software installed.

J.2.2 A/D Converter Configuration

The DAQP-208, DAQP-208H, and DAQP-308 analog input channels are bipolar only. A
differential or single-ended input option can be selected with the configuration utility. The
gains are fully programmable and selected at run-time.

J.2.3 D/A Converter Configuration

There are no user-definable D/A parameters on DAQP-208, DAQP-208H, or DAQP-308.

J.2.4 Digital I/O Configuration

The DAQP-208, DAQP-208H, and DAQP-308 all have 4 bits of digital input and 4 bits of
digital output. The default channel grouping is using the 4 digital output bits as channel 0
and the 4 digital input bits as channel 1.

J.2.5 Timer Configuration

There are no user-definable timer parameters on DAQP-208, DAQP-208H, or DAQP-308.

DAQDRIVE Users Manual 352

J.3 Opening The DAQP-208 / DAQP-308

J.3.1 Using the DAQP-208 / DAQP-308 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
DAQP-208, DAQP-208H, or DAQP-308 the application program must include DAQP.H. In
addition, the constant PROCEDURE must be replaced by DAQP (exactly and without quotes)
and the device_type variable must be defined as "DAQP-208", "DAQP-208H", or "DAQP-308"
depending on the hardware in use.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

// for DAQP-208, set device_type to "DAQP-208"
// for DAQP-208H, set device_type to "DAQP-208H"
// for DAQP-308, set device_type to "DAQP-308"

char *device_type = "DAQP-208";
char *config_file = "daqp-208.dat";

/***** Open the DAQP-208. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 353

J.3.2 Using the DAQP-208 / DAQP-308 with the DOS TSR Driver

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The DOS TSR version of
DaqOpenDevice is intended for DOS applications that interface to the "Terminate & Stay
memory-Resident" (TSR) version of the DAQDRIVE libraries.

unsigned short DaqOpenDevice (unsigned short TSR_number ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each device supported by DAQDRIVE has been assigned a unique TSR_number value to be
used with the DaqOpenDevice procedure. In order to open a DAQP-208, DAQP-208H, or
DAQP-308 card, the TSR_number variable must be set to the value F005 hexadecimal (61,452
decimal) and the device_type variable must be defined as "DAQP-208", "DAQP-208H", or
"DAQP-308" depending on the hardware in use.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

// for DAQP-208, set device_type to "DAQP-208"
// for DAQP-208H, set device_type to "DAQP-208H"
// for DAQP-308, set device_type to "DAQP-308"

unsigned short TSR_number = 0xf00C;
char *device_type = "DAQP-308";
char *config_file = "daqp-308.dat";

/***** Open the DAQP-308. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 354

J.3.3 Using the DAQP-208 / DAQP-208H / DAQP-308 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a DAQP-208, DAQP-208H, or DAQP-308, the DLL_name variable must
specify the DAQP dynamic link library (DAQPWIN.DLL) and the device_type variable must
be defined as "DAQP-208", "DAQP-208H", or "DAQP-308" depending on the hardware in use.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

// for DAQP-208, set device_type to "DAQP-208"
// for DAQP-208H, set device_type to "DAQP-208H"
// for DAQP-308, set device_type to "DAQP-308"

char *device_type = "DAQP-208H";
char *config_file = "daqp208h.dat";
char *DLL_name = "daqpwin.dll";

/***** Open the DAQP-208H. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 355

J.4 Analog Input

The DAQP-208, DAQP-208H, and DAQP-308 support analog input requests with the
following restrictions:

channel_array_ptr - requests operating on two or more analog input channels. There is no
restrictions on the number of times an analog input channel may appear
in the channel list.

trigger_source - only the INTERNAL_TRIGGER, TTL_TRIGGER and
ANALOG_TRIGGER sources are supported.

trigger_channel - trigger_channel MUST be the first channel in the channel list.

trigger_voltage - The trigger voltage must be within the valid analog input range of the
trigger_channel.

IO_mode - only the FOREGROUND_CPU and BACKGROUND_IRQ data transfer
modes are supported. DMA modes are NOT supported

clock_source - both INTERNAL_CLOCK and EXTERNAL_CLOCK sources are
supported. If the external clock is selected, the clock input has to be
introduced from the external clock (shared with digital input bit 2)
input. The minimum clock pulse width is 200 ns (or the maximum clock
frequency is 5 MHz). There is no limit on the maximum clock width (or
the minimum clock frequency).

sample_rate - sample_rate must NOT exceed 100 kHz (100e3). If the internal clock is
used, the minimum sampling rate is 0.06 Hz. The minimum sampling
rate is the clock source frequency divided by 16,777,215.

calibration - only the NO_CALIBRATION selection is supported.

DAQDRIVE Users Manual 356

J.5 Analog Output

Both D/A channels of the DAQP-208, DAQP-208H, and DAQP-308 support analog output
requests with the following restrictions:

channel_array_ptr - If there are two channels in the list, they MUST be different from each
other.

trigger_source - only the INTERNAL_TRIGGER and TTL_TRIGGER sources are
supported.

trigger_slope - only the RISING_EDGE TTL trigger is supported.

IO_mode - only the FOREGROUNG_CPU and BACKGROUNG_IRQ data transfer
modes are supported.

clock_source - both INTERNAL_CLOCK and EXTERNAL_CLOCK sources are
supported. If the external clock is selected, the clock input has to be
introduced from the external clock (shared with digital input bit 2)
input. The minimum clock pulse width is 200 ns (or the maximum clock
frequency is 5 MHz). There is no limit on the maximum clock width (or
the minimum clock frequency).

sample_rate - sample_rate must NOT exceed 100 kHz (100e3). If the internal clock is
used, the minimum sampling rate is 15.3 Hz. The minimum sampling
rate is the clock source frequency divided by 65,535.

calibration - only the NO_CALIBRATION selection is supported.

DAQDRIVE Users Manual 357

J.6 Digital Input

Both DAQP-208 and DAQP-308 only support single scan digital input requests with the
following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is supported.

J.7 Digital Output

Both DAQP-208 and DAQP-308 only support single scan digital output requests with the
following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is supported.

DAQDRIVE Users Manual 358

Appendix K: DA8P-12

K.1 Distribution Software

K.1.1 Creating DOS Applications Using The C Libraries

To generate an application that controls one or more DA8P-12s, the application must be linked
with the appropriate DAQDRIVE library and one of the following DA8P-12 libraries:

For Microsoft Visual C/C++

y DA8P12CS.LIB - small model DA8P-12 library
y DA8P12CM.LIB - medium model DA8P-12 library
y DA8P12CC.LIB - compact model DA8P-12 library
y DA8P12CL.LIB - large model DA8P-12 library

For Borland C/C++

y DA8P12BS.LIB - small model DA8P-12 library
y DA8P12BM.LIB - medium model DA8P-12 library
y DA8P12BC.LIB - compact model DA8P-12 library
y DA8P12BL.LIB - large model DA8P-12 library

The selected libraries MUST match the compiler and memory model specified for the
application program. These libraries are installed into the DAQDRIVE\C_LIBS directory by
the DAQDRIVE installation program.

The application program must also include the file DA8P-12.H installed into the
DAQDRIVE\C_LIBS directory. This file defines the "open" procedure for the C library
version of the DA8P-12 driver.

K.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DA8P-12 application that uses the TSR drivers, the user must first load the
DAQDRIVE TSR as discussed in the DAQDRIVE User's Manual. Once the DAQDRIVE TSR is
installed, the user can install the DA8P-12 TSR with the command line:

DA8P-12

This file, DA8P-12.EXE, is installed into the DAQDRIVE\TSR directory by the DAQDRIVE
installation program.

When the DA8P-12 TSR driver is executed, it will search for the DAQDRIVE TSR in memory
and install itself on the same software interrupt. If the DAQDRIVE TSR is not loaded in
memory, an error will be reported and the DA8P-12 driver will not be installed.

DAQDRIVE Users Manual 359

K.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more DA8P-12s is executed, it
must be able to dynamically link to the DAQDRIVE and DA8P-12 Dynamic Link Libraries
(DLLs). 32-bit Windows 95/98 applications must also be able to link to the DAQDRIVE and
DA8P-12 virtual device drivers (VxDs). Windows searches for any required DLL and/or VxD
files in the following locations:

1. the current directory

2. the Windows directory

3. the Windows\System directory

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The DAQDRIVE installation program copies all of the necessary DLLs and/or VxDs into the
WINDOWS\SYSTEM directory.

DAQDRIVE Users Manual 360

K.2 Configuring The DA8P-12

Before DAQDRIVE can operate the DA8P-12, a configuration data file must be generated by
the DAQDRIVE configuration utility. The DAQDRIVE configuration utility is discussed in
section 2.2.

K.2.1 General Configuration

The DA8P-12's base address and interrupt level must be defined in the general configuration
window of the configuration utility. If the base address is set to 0, DAQDRIVE will obtain the
DA8P-12's base address and interrupt level from the PCMCIA Card and Socket Services
software.

NOTE: To operate in auto-configuration mode, the system must have the DA8P-12's Client
Driver and a version of Card and Socket Services software installed.

K.2.2 D/A Converter Configuration

The DA8P-12 does not have any user-definable D/A converter parameters. The DA8P-12B is
factory configured for 8 bipolar outputs. The DA8P-12U is factory configured for 8 unipolar
outputs.

K.2.3 Digital I/O Configuration

The DA8P-12 has 8 bits of digital I/O which may be grouped into any combination of logical
channels. The logical channel assignments begin with digital I/O bit 0 and continue through
digital I/O bit 7. After all of the logical channels have been defined, each channel may be
individually configured for input, output, or input/output modes.

K.2.4 Timer Configuration

The DA8P-12 does not have any user-definable timer parameters.

DAQDRIVE Users Manual 361

K.3 Opening The DA8P-12

K.3.1 Using the DA8P-12 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The C library version of
DaqOpenDevice is intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice (PROCEDURE,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the token pasting
operator to create a unique "open" command for the desired adapter. In order to open a
DA8P-12, the application program must include DA8P-12.H. In addition, the constant
PROCEDURE must be replaced by DA8P12 (exactly and without quotes) and the device_type
variable must be defined as "DA8P-12B" for a bipolar adapter or "DA8P-12U" for a unipolar
adapter.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "da8p-12.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DA8P-12B";
char *config_file = "da8p-12b.dat";

/***** Open the DA8P-12. *****/

logical_device = 0;
status = DaqOpenDevice(DA8P12, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 362

K.3.2 Using the DA8P-12 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The TSR version of
DaqOpenDevice is intended for DOS applications that interface to the memory resident (TSR)
version of the DAQDRIVE drivers.

unsigned short DaqOpenDevice (unsigned short TSR_number,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a unique TSR_number
value to be used with the DaqOpenDevice procedure. In order to open a DA8P-12, the
TSR_number variable must be set to the value F006 hexadecimal (61, 446 decimal) and the
device_type variable must be defined as "DA8P-12B" for a bipolar adapter or "DA8P-12U" for
a unipolar adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf006;
char *device_type = "DA8P-12B";
char *config_file = "da8p-12b.dat";

/***** Open the DA8P-12. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 363

K.3.3 Using the DA8P-12 with Windows

DaqOpenDevice is the only procedure that is implemented differently depending upon the
type of interface between DAQDRIVE and the application program. The Windows version of
DaqOpenDevice is intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice (char *DLL_name ,
 unsigned short *logical_device ,
 char *device_type ,
 char *config_file)

In order to open a DA8P-12, the DLL_name variable must specify the DA8P-12 dynamic link
library (DA8P-12.DLL) and the device_type variable must be defined as "DA8P-12B" for a
bipolar adapter or "DA8P-12U" for a unipolar adapter.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DA8P-12B";
char *config_file = "da8p-12b.dat";
char *DLL_name = "da8p-12.dll";

/***** Open the DA8P-12. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE Users Manual 364

K.4 Analog Input

The DA8P-12 does not support any analog input functions. All analog input requests will
return with a function not supported error.

K.5 Analog Output

The DA8P-12 supports analog output requests with the following restrictions:

channel_array_ptr - requests operating on more than one analog output channel use the
DA8P-12's simultaneous output mode. This restricts channels to a single
appearance in the channel list.

trigger_source - only the INTERNAL_TRIGGER and TTL_TRIGGER sources are
supported. If the TTL_TRIGGER is selected for a single channel request,
the trigger signal must be applied on the DA8P-12's external event
input. If the TTL_TRIGGER is specified for a multiple channel request,
the trigger signal must be applied on the external load control input.

trigger_slope - only RISING_EDGE TTL triggers are supported.

IO_mode - only the FOREGROUND_CPU and BACKGROUND_IRQ data transfer
modes are supported.

clock_source - only the INTERNAL_CLOCK source is supported.

sample_rate - sample_rate must be in the range 500 nHz (500e-9) to 100 KHz (100e3).

calibration - only the NO_CALIBRATION selection is supported.

DAQDRIVE Users Manual 365

K.6 Digital Input

The DA8P-12 supports digital input requests with the following restrictions:

channel_array_ptr - a channel may appear only once in the channel list.

number_of_scans - only one value may be input from each channel per request. Therefore,
number_of_scans must equal 1.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU mode is supported.

K.7 Digital Output

The DA8P-12 supports digital output requests with the following restrictions:

channel_array_ptr - a channel may appear only once in the channel list.

number_of_scans - only one value may be output to each channel per request. Therefore,
number_of_scans must equal 1.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU mode is supported.

DAQDRIVE Users Manual 366

DAQDRIVE
Users Manual
Version 2.32
January 14, 1999
Part No. 940-0100-232

DAQDRIVE Users Manual 367

 DAQDRIVE User’s Manual Notes

README FIRST!

This manual uses WordPro 97 Document Fields extensively to create
different company specific versions of the document. The table on the
following page specifies the Document Field names and the values
used for each version of the manual. Document field values may be
edited by selecting File|Document Properties|Document off the
menu. However, macros to automatically switch all the fields for each
company have been written, which is much easier. See the
Edit|Scripts & Macros menu to run or edit one of these macros. The
macros are not linked to the table on the following page, so if you are
going to change any of the Document Field values, you must edit both
locations.

Current Document Field Settings:
Company Name: Omega Engineering, Inc.
Company Alias: Omega
Footer Name:
DAQDRIVE Name DAQDRIVE

Card1_Name DAQP-16
Card2_Name DAQ-1201
Card3_Name DAQP-208
Card4_Name DA8P-12B
Card5_Name IOP-241

Problems found with WordPro 97 using Divisions, why this is one huge
document.
1. BookMarks have problems spanning Divisions across multiple files.
2. BookMark power fields are broke if you rename a Division.
3. External files (documents) are referenced by a hard coded path to the external file(s). If

you move the project, must re-locate each external division file individually.

DAQDRIVE Users Manual 368

IOP-241KPIO24IOP-241Card5_TSR
IOP-241.DLLK-PIO24.DLLIOP-241.DLLCard5_DLL
IOP241KPIO24IOP241Card1_C_Open
IOP241.HKPIO24.HIOP241.HCard4_C_Hfile
IOP241KPIO24IOP241Card5_C_Libs

IOP-241.DATK-PIO24.DATIOP-241.DATCard5_Config_Fil
e

IOP-241K-PIO24IOP-241Card5_Dev_Type
IOP-241KPCMCIA-PIO24IOP-241Card5_Name

DA8P-12K8AODA8P-12Card4_TSR
DA8P-12.DLLKPC-8AO.DLLDA8P-12.DLLCard4_DLL
DAQPK8AODA8P-12Card4_C_Open
DA8P-12.HK8AO.HDA8P-12.HCard4_C_Hfile
DA8P12K8AODA8P12Card4_C_Libs

DA8P-12B.DATKPC-8AOB.DATDA8P-12B.DATCard4_Config_Fil
e

DA8P-12BKPC-8AOBDA8P-12BCard4_Dev_Type
DA8P-12BKPCMCIA-8AOBDA8P-12BCard4_Name

DAQPTSRKAITSRDAQPTSRCard3_TSR
DAQPWIN.DLLKPC-AI.DLLDAQPWIN.DLLCard3_DLL
DAQPKAIDAQPCard3_C_Open
DAQP.HKAI.HDAQP.HCard3_C_Hfile
DAQPKAIDAQPCard3_C_Libs

DAQP-208.DATK-12AIAO.DATDAQP-208.DATCard3_Config_Fil
e

DAQP-208K-12AIAODAQP-208Card3_Dev_Type
DAQP-208KPCMCIA-12AIAODAQP-208Card3_Name

DAQ-1200KAITSRDAQ-1200Card2_TSR
DAQ1200.DLLKPC-AI.DLLDAQ1200.DLLCard2_DLL
DAQ1200KAIDAQ1200Card2_C_Open
DAQ1200.HKAI.HDAQ1200.HCard2_C_Hfile
DQ1200KAIDQ1200Card2_C_Libs

DAQ-1201.DATK-12AIAO.DATDAQ-1201.DATCard2_Config_Fil
e

DAQ-1201K-12AIAODAQ-1201Card2_Dev_Type
DAQ-1201KPCMCIA-12AIAODAQ-1201Card2_Name

DAQPTSRKAITSRDAQPTSRCard1_TSR
DAQPWIN.DLLKPC-AI.DLLDAQPWIN.DLLCard1_DLL
DAQPKAIDAQPCard1_C_Open
DAQP.HKAI.HDAQP.HCard1_C_Hfile
DAQPKAIDAQPCard1_C_Libs

DAQP-16.DATKPC-16AI.DATDAQP-16.DATCard1_Config_Fil
e

DAQP-16KPC-16AIDAQP-16Card1_Dev_Type
DAQP-16KPCMCIA-16AIDAQP-16Card1_Name

DAQDRVDAQDRVDAQDRVxDAQDRV_C_Libs
DAQDRIVEDAQDRIVEDAQDRIVExDAQDRIVE_Files
DAQDRIVEDAQDRIVEDAQDRIVExDAQDRIVE Name

<blank>Keithley Instruments,
Inc.

Quatech Inc.xFooter Name
OmegaKeithleyQuatechxCompany Alias

Omega Engineering, Inc.Keithley Instruments,
Inc.

Quatech Inc.xCompany Name
OmegaKeithleyQuatechxDocument Field

DAQDRIVE Users Manual 369

