

USA Promitics

Shop online at

omega.com e-mail: info@omega.com For latest product manuals: omegamanual.info

OMET-USB SERIES 8, 16 and 32 Channel Thermocouple Measurement Systems for the USB Bus

OMEGAnet[®] Online Service omega.com

Internet e-mail info@omega.com

Servicing North America:

	••••••••••••••••••••••••••••••••••••••	
U.S.A.: ISO 9001 Certified	One Omega Drive, P.O. Box 4047 Stamford, CT 06907-0047 TEL: (203) 359-1660 e-mail: info@omega.com	FAX: (203) 359-7700
Canada:	976 Bergar Laval (Quebec) H7L 5A1, Canada TEL: (514) 856-6928 e-mail: info@omega.ca	FAX: (514) 856-6886
For imme	ediate technical or applica	tion assistance:
U.S.A. and Canada:	Sales Service: 1-800-826-6342 / 1-800-T Customer Service: 1-800-622-2378 / 1-8 Engineering Service: 1-800-872-9436 /	300-622-BEST®
Mexico:	En Español: (001) 203-359-7803 FAX: (001) 203-359-7807	e-mail: espanol@omega.com info@omega.com.mx
	Servicing Europe:	
Benelux:	Postbus 8034, 1180 LA Amstelveen, Th TEL: +31 (0)20 3472121 Toll Free in Benelux: 0800 0993344 e-mail: sales@omegaeng.nl	e Netherlands FAX: +31 (0)20 6434643
Czech Republic:	Frystatska 184, 733 01 Karviná, Czech l TEL: +420 (0)59 6311899 Toll Free: 0800-1-66342	Republic FAX: +420 (0)59 6311114 e-mail: info@omegashop.cz
France:	11, rue Jacques Cartier, 78280 Guyancourt, France TEL: +33 (0)1 61 37 2900 FAX: +33 (0)1 30 57 5427 Toll Free in France: 0800 466 342 e-mail: sales@omega.fr	
Germany/Austria:	Daimlerstrasse 26, D-75392 Deckenpfronn, Germany TEL: +49 (0)7056 9398-0 FAX: +49 (0)7056 9398-29 Toll Free in Germany: 0800 639 7678 e-mail: info@omega.de	
United Kingdom: ISO 9002 Certified	One Omega Drive, River Bend Techno Northbank, Irlam, Manchester M44 5BD United Kingdom TEL: +44 (0)161 777 6611 Toll Free in United Kingdom: 0800-488 e-mail: sales@omega.co.uk	FAX: +44 (0)161 777 6622

It is the policy of OMEGA Engineering, Inc. to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification. The information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains, and reserves the right to alter specifications without notice. **WARNING:** These products are not designed for use in, and should not be used for, human applications.

Table of Contents

1	Introduction	1-1
1.1	Features – OMET-USB-73 Commercial Version	1-2
1.2	Operating Systems and API Software	1-2
1.3 1.3	USB 73 Versions 3.1 Temperature Input Series	
1.4	Software Support	1-3
1.5	Contact Details	1-3
2	Getting Started	2-1
2.1	Package Items	2-1
2.2	Operating Systems for Specific Devices	2-2
2.3	Installation	
2.3	 Microsoft Windows PnP Installation (Windows ME, 2000, XP) Linux Installation (Kernel 2.4 and later) - Overview. 	
2.4	Application Software - OmegaLog	2-3
3	Hardware Interface	3-1
3.1	OMET-USB-73 External Application Connectors	3-1
3.2	Pin Assignments	3-3
	 OMET-USB-73 DIO Connector – DB25 (M) OMET-USB-73 Temperature Input – DB25 (M) 	
J.2		3-3
3.3	Pin Descriptions	
3.3 3.3		
3.3		
3.3 3.3		
3.3	5.5 Temperature inputs (TCHO-7)+	3-4
3.4	Bus Connectors	3-4
3.5	Power Supplies, Power Connectors	3-5
3.6	Application Modules & Accessories	3-5
3.6 3.6	J	3-5
5.0		
4	Software	4-1
4.1	EDR Enhanced Application Program Interface (EDRE API)	4-1
4.2	The Query Command – EDRE_Query	4-3
4.3	Digital Inputs/Outputs	4-5

i

USB Data Acquisition

4.3 4.3 4.3	.2 Writing to the Digital Outputs – EDRE_DioWrite	4-6
4.4 4.4 4.4 4.4 4.4 4.4 4.4	 Reading CJC Channel	4-9 4-9 4-10 4-10 4-10
5 5.1 5.1 5.1	.2 Equipment	5-13 5-13
А	Specifications	I
A.1	Digital Input/Output Characteristics	I
A.2	Temperature Input Characteristics	1
A.3 A.3 A.3		II
A.4 A.4	Power Requirements 1 USB Devices	
A.5 A.5	Environmental / Physical	
A.6	Power Supplies	
В	Related Products and Accessories	IV
B.1	General Adapters	IV
B.2	Digital I/O Application Modules	IV
С	Configuration Constants	V
C.1	Query Codes	V
C.2	Error Codes	VI
C.3	Digital I/O Return Query Codes	VI
D	Ordering Information	VII

List of Figures

Figure 3-1 OMET-USB-73 Front Side 2-Tier	3-1
Figure 3-2 OMET-USB-73 Front Side 3-Tier	3-1
Figure 3-3 OMET-USB-73 Rear Side 2-Tier	3-1
Figure 3-4 OMET-USB-73 Rear Side 3-Tier	3-1
Figure 3-5 OMET-USB-73 DB25 Male Connector	3-3
Figure 3-6 OMET-USB-73 Connectors	3-4
Figure 3-7 µDAQ Power Connector Pin Assignment	3-5
Figure 3-8 µDAQ Power Socket	3-5
Figure 3-9 OMET-PC43A2 Digital I/O Adapter	
Figure 3-10 Thermocouple Adapter	
Figure 4-1 EDR Enhanced API Design	

List of Tables

Table 1-1 µDAQ Temperature Versions	
Table 2-1 USB Operating System Support	
Table 3-1 µDAQ Connectors	
Table 3-2 OMET-USB-73 DIO Connector – DB25 (M)	
Table 3-3 OMET-USB-73 Input – DB25 (M)	
Table 4-1 Digital I/O Assigned Ports	
Table 4-2 CJC Channels Assigned	
Table 4-3 Thermocouple Type Table	4-10
Table 5-1 Analog Source Requirements	5-13
Table 5-2 General Adapters	IV
Table 5-4 Digital I/O Application Modules	IV
Table D-1 OMET-USB-73 Ordering Information	VII

Data Acquisition

1 Introduction

The OMET-USB-73 products consist of two main types, a 'T' and 'R' version. The 'T' version is designed for reading thermocouples and the 'R' for reading RTDs. The main difference between the two are the fact that the 'T' version can only read voltage levels between ± 80 mV and the 'R version inputs between ± 2.5 V.

The OMET-USB-73 Temperature Input series supports 8, 16 and 32 temperature inputs. The units come with external adaptors that serve as the connection point for the sensors.

Each unit also has three DIO ports of eight bits.

1.1 Features – OMET-USB-73 Commercial Version

The OMET-USB-73 series has some very unique features and are listed below:

- USB Revision 1.1 @ full speed and 2.0 compliant @ high speed
- Powered externally
- Intel 8255 compatible digital I/O ports
- 14-bit Analog resolution temperature inputs
- Quick and effortlessly to install
- ABS plastic housing

1.2 Operating Systems and API Software

The OMET-USB-73 has a complete SDK, EDR Enhanced Software Development Kit. This kit contains a driver for Microsoft® Windows[™] and the Linux kernel. Please consult OMEGA Engineering for the latest information on which specific operating systems are supported.

Current Supported Operating System:

- Microsoft® Windows[™] 2000
- Microsoft® Windows[™] Millennium Edition
- Microsoft® Windows[™] XP
- Microsoft® Windows™ Pocket PC 2003
- Linux Kernel 2.4 and later

The EDR Enhanced SDK serves as a common application and programming interface for all the units, no matter what the communications protocol. This single property makes the units easy to program because no knowledge is needed about the specific type of interface. It also means that the units can be controlled from the same application without any redevelopment when installing a different device. It also increases the life expectancy of the software application. The EDR Enhanced SDK comes with complete documentation and examples programs. For custom software the API is easy to learn shortening the learning curve. It also means that it's quicker to go into production.

1.3 USB 73 Versions

The tables below list the various versions that are available.

1.3.1 Temperature Input Series

- R is RTD
- T is Thermocouple

Feature	OMET-USB 73R/T8	OMET-USB 73R/T16	OMET-USB 73R/T 32
Number of digital I/O channels	24	24	24
Number of 8255 compatible ports (8-bit)	3	3	3
Number of temperature channels	8	16	32
Number of CJC channels	1	2	4
Analog input resolution	14-bit	14-bit	14-bit
Maximum sampling speed	100 Hz	100 Hz	100 Hz

Table 1-1 µDAQ Temperature Versions

1.4 Software Support

The OMET-USB-73 series is supported by EDR Enhanced and has an extensive range of examples. The software will help you to get your hardware going very quickly. It also makes it easy to develop complicated control applications. All operating system drivers, utility and test software are supplied on the EDR Enhanced CD-Rom. The latest drivers can also be downloaded from the Eagle Technology website. For further support information see the Contact Details section.

1.5 Contact Details

Omega Engineering Inc.

1 Omega Drive P.O. Box 4047 Stamford, CT 06907 USA Telephone (800)-848-4286 Fax (203)-359-7700 -E-Mail das@omega.com Website http://www.omega.com

Data Acquisition

2 Getting Started

This chapter describes how to install and configure the OMET-USB-73 device for the first time. Minimal configuration is necessary; almost all settings are done through software.

2.1 Package Items

The package of items differs by device type. Depending on the device type accessories will be included like power supplies, USB cable and third party devices.

- 1. OMET-USB-73 unit
- 2. USB 2.0 compliant peripheral cable
- 3. Universal power supply
- 4. Software CD Rom
- 5. RTD or Thermocouple adaptor unit
- 6. Software CD Rom

2.2 Operating Systems for Specific Devices

The USB driver for Windows is a Windows Driver Model (WDM) type that will run on all modern Windows platforms. Linux has it's own driver which is exported as a character device.

OS Type	Driver Type
Windows ME/2000/XP	WDM Plug and Play
Linux 2.4 and later	Linux Character Device

Table 2-1 USB Operating System Support

2.3 Installation

The USB installation is different on each operating system type. The installation procedure for each operating system will be discussed separately for Windows Desktop, Windows Mobile and Linux.

2.3.1 Microsoft Windows PnP Installation (Windows ME, 2000, XP)

For the Windows PnP installation you will need a PC that can accept a USB device and that is configured to work with USB devices. Depending on the version you will need either USB 1.1 or USB 2.0.

1		Find an open USB port and connect your device with the provide USB cable. Also provide power to your device if it is externally powered. Only use the provide power cable or power supply.
2	USBuDAQ Installing	Windows will now detect that a new USB device was attached and request driver to be supplied.
3	Welcome to the Add/Remove Hardware Wizard This wizard helps you add, remove, unplug, and troubleshoot your hardware.	Click on the <i>next</i> button to start the process.
4	This wizard will complete the installation for this device:	The wizard will now need to be supplied with driver files to for your USB device.
5	What do you want the wizard to do? Search for a suitable driver for my device (recommended)	Select the option as indicated and then the next button.
6	Specify a location	Only select to specification the location of the driver files.
7	OMEGA CD	The driver is located at <i>OMEGACD>\EDRE\Drivers\WDM\USB</i> . Select the next button to install the driver.

8

Data Acquisition

Completing the Found New Hardware Wizard		
	USB 30 - Analog Input/Output Device	

Depending on the model the last screen will show that the installation was completed successfully for your particular device.

2.3.2 Linux Installation (Kernel 2.4 and later) - Overview

The Linux installation can be a bit tricky sometimes. Make sure that the kernel supports USB devices and that the necessary modules are already loaded or can load on demand. Also make sure that all kernel source and header files are installed. The Linux driver is available with complete source and it will be best if it is recompiled to be compatible with the current kernel version. The source listing on the <OMEGACD>\EDRE\Linux should match the directory structure on the target system. Drivers can be copied manually to */usr/src/<linux kernel source>/drivers/edredaq*. The USB driver will also be located here. Copy the driver and read the documentation in the same directory to install the driver.

Also copy the EDR Enhanced shared object and examples. This should be located at */usr/src/edre*. The EDRE source directory contains the source for the API and examples. The examples directory has samples program specifically for each device. Make sure to install the EDR Enhanced before trying to build the source code. The header files are located at *usr/include/edre*. The header files is also necessary when building the drivers. Please consult the Linux documentation for complete instructions.

2.4 Application Software- OmegaLog

The EDR Enhanced Software Development Kit CD-Rom comes with OMEGALog OMET for Windows[™]. OMEGALog OMET has support for Analog Inputs, Analog Outputs, Digital I/O and Counter-Timers. It has an oscilloscope function to continuously display incoming analog data, a signal generator, a power supply, temperature logger and a multifunctional chart recorder to sample and control signals, analog and digital, at preset intervals.

WaveView can be found on the EDR Enhanced CD-Rom at <OMEGACD>\EDRE\APPS\WVFW.

Data Acquisition

3 Hardware Interface

The Hardware Interface chapter will discuss all connectors located on the OMET-USB-73 products. The pin assignments for each connector will also be listed.

The OMET-USB-73 series has connectors for digital I/O and temperature I/O. The OMET-USB-73s make use of only one connector type, a DB25 male. To inter-connect to application modules there are adapters modules available. A cable is used to connect to these modules. Screw terminal modules are also available for quick installations. This chapter will also discuss method of hardware operation, optional accessories and connectable application modules.

3.1 OMET-USB-73 External Application Connectors

The OMET-USB-73 is fitted with various DB25 male connectors. The illustrations below show the different box types. There are two-tier and three-tier models. Depending on the number of connectors required the box would be either one. The OMET-USB-73 devices use a standard USB type B connector. The side with the power connector is the rear side of the device. The pin assignments are the same for all models.



Figure 3-1 OMET-USB-73 Front Side 2-Tier

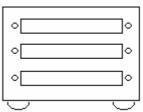


Figure 3-3 OMET-USB-73 Rear Side 2-Tier

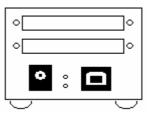


Figure 3-4 OMET-USB-73 Rear Side 3-Tier

r = rioin, R = Real				
Device Type	DB25 (M) Digital I/O Port Assignment	DB25(M) Analog I/O	Вох Туре	
OMET-USB-73T/R8	FB (0-2)	FT (CH0-7, CJC0)	ļļ	
OMET-73T/R16	FB (0-2)	FT (CH0-7, CJC0) RT (CH8-15, CJC1)	Ţ	
OMET-73T/R32	FB (0-2)	FM (CH0-7, CJC0) RM (CH8-15, CJC1) FT (CH16-23, CJC2) RT (CH24-31, CJC3)		

B = Bottom, M = Middle, T = TopF = Front, R = Rear

Table 3-1 µDAQ Connectors

Data Acquisition

3.2 Pin Assignments

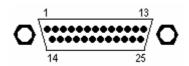


Figure 3-5 OMET-USB-73 DB25 Male Connector

3.2.1 OMET-USB-73 DIO Connector – DB25 (M)

The table below shows the pin assignments for the DB25(M) digital I/O connectors found on the OMET-USB-73 devices.

Pin	Name	Pin	Name
1	PA0	14	PA1
2	PA2	15	PA3
3	PA4	16	PA5
4	PA6	17	PA7
5	PB0	18	PB1
6	PB2	19	PB3
7	PB4	20	PB5
8	PB6	21	PB7
9	PC0	22	PC1
10	PC2	23	PC3
11	PC4	24	PC5
12	PC6	25	PC7
13	DGND		

Table 3-2 OMET-USB-73 DIO Connector – DB25 (M)

3.2.2 OMET-USB-73 Temperature Input – DB25 (M)

The table below shows the pin assignments for the DB25(M) temperature input connectors found on the OMET-USB-73 device.

Pin	Name	Pin	Name
1	AGND	14	+8.4V
2	AGND	15	+12V
3	AGND	16	CJC
4	AGND	17	-12V
5	AGND	18	TCH7-
6	TCH7+	19	TCH6-
7	TCH6+	20	TCH5-
8	TCH5+	21	TCH4-
9	TCH4+	22	TCH3-
10	TCH3+	23	TCH2-
11	TCH2+	24	TCH1-
12	TCH1+	25	TCH0-
13	TCH0+	26	SHELL – DGND

Table 3-3 OMET-USB-73 Input – DB25 (M)

3.3 Pin Descriptions

3.3.1 Digital Inputs/Outputs (PA0-7, PB0-7, PC0-7)

These lines are connected to the 3 ports of the 8255 PPI. Each port can be configured as either an input or an output.

3.3.2 Digital Ground (DGND)

All digital ground signals should be connected to this pin.

3.3.3 Analog Ground (AGND)

All analog inputs should be referenced to AGND. Do not connect AGND and DGND together. This will create ground loops and instability in the hardware.

3.3.4 Analog Inputs (ACH0-15)

The analog input channels are connected to the analog input sub-system and are used to measure analog voltages. These signals are referenced to analog ground (AGND).

3.3.5 Temperature Inputs (TCH0-7)+-

Each temperature channel has two input lines for positive and negative. However in all temperature applications there are always and external modules for thermocouple or RTD inputs. Their user never connects directly to these pins.

3.4 Bus Connectors

The OMET-USB-73 uses a standard USB Type B connector. The device is supplied with a USB 2.0 compliant cable. When viewing the OMET-USB-73 device from the rear the USB B Type connector is located on the right side. In the middle are the indicator light and the power connector on the left. When the USB device is connected to the PC the USB indicator light will light up, indicating that USB bus power is present.

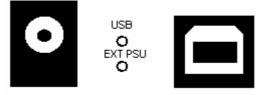


Figure 3-6 OMET-USB-73 Connectors

3.5 Power Supplies, Power Connectors

The commercial OMET-USB-73 units are supplied with an AC power supply.

The AC power supply is a wide AC input voltage range type, 110V to 250V. The AC power supply also contains a universal socket kit, which makes it possible to connect to any international power socket. The output voltage is 9V @ 1A maximum.

The polarity of the output connector must be positive on the outside and negative in the middle.

There is an indicator light to show of the power is present.

Figure 3-7 µDAQ Power Connector Pin Assignment

Figure 3-8 µDAQ Power Socket

3.6 Application Modules & Accessories

The OMET-USB-73 devices support a wide range of standard applications modules. These application modules can help to simply or easily duplicate installations that can save allot of time. Application modules and accessories come in many forms. It has support for digital output control and digital input monitoring for AC and DC.

3.6.1 Digital I/O Adapter Module – OMET-PC43A2

The digital I/O adapter module is used to map digital I/O ports to a usable form. The OMET-PC43A2 adapter module makes it possible to connect to application modules, such as solid relays modules and optical-isolated modules. The OMET-PC43A2 output the 3 x 8-bit ports (A,B,C) into a combination of port A and B and three separate ports A,B and C. To connect to the OMET-PC43A2 use a standard DB25M/F cable. Port AB is a standard IDC20 connecter and port A,B and C standard IDC10 connecters. The OMET-PC43A2 can also be used to provide external power to application modules. Connect +5V to the external power screw terminal and it will distribute it to all child models through the various connecters. The table below shows the pin mappings for the module. When externally powered the power indicator will light up.

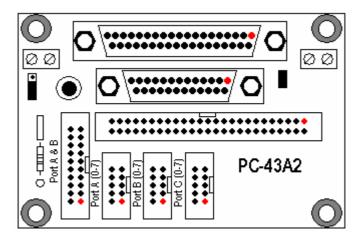


Figure 3-9 OMET-PC43A2 Digital I/O Adapter

3.6.2 Thermocouple Adapter

The thermocouple adapter is used to interconnect the OMET-USB-73 unit and thermocouple temperature sensors. The adapter has cold junction compensation (CJC) built-on, which is necessary to make thermocouple connections. The CJC needs to be calibrated before being used. The illustration below shows the thermocouple adapter. The adapter has DB25 female connector that connects directly to the OMET-USB-73 unit. Care must be taken to only connect to a temperature input connector.

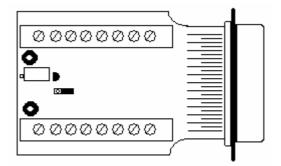


Figure 3-10 Thermocouple Adapter

Data Acquisition

4 Software

The OMET-USB-73 series are supplied with a complete software package called the EDR Enhanced Software Development Kit (EDRE SDK). The SDK is supplied with many operating system drivers, an application program interface (EDRE API), complete documentation and programming examples for most programming languages.

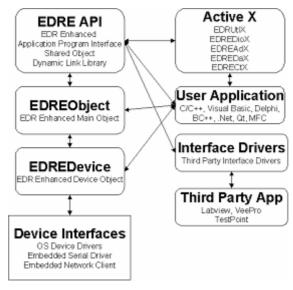
The software development kit also contains OMEGALog OMET to provide a generic application solution for data capturing and simple process control. Third party Interface drivers are also provided for Labview, TestPoint and Agilent VEE Pro.

The Software chapter serves as reference for the EDR Enhanced API exported functions. It explains how to do common operations to program and control the OMET-USB-73 hardware. Each supported function is listed for each type of interface. The parameters for each function are also listed. There are only a few functions, so make sure to have a thorough understanding of how to use them.

4.1 EDR Enhanced Application Program Interface (EDRE API)

The EDR Enhanced API consist of operating system drivers, Windows dynamic link libraries, Windows ActiveX controls, Windows .Net components and Linux shared objects. EDRE Enhanced API has support for Windows 2000/XP/.Net and the Linux kernel.

The EDR Enhanced SDK contains example code to use as reference or starting point for a custom application. The examples covers topics such as digital I/O reads and writes, and reading the analog inputs.


The EDRE API hides the complexity of the hardware and makes it really easy to program the OMET-USB-73 devices. It has functions for each basic sub-system and is real easy to learn.

The EDR Enhanced Application Programming Interface currently support four interface types:

- 1. Shared Object with exported functions via dynamic link library and shared object
- 2. EDR Enhanced ActiveX package for Windows platform
- 3. EDR Enhanced Object interface for Linux and .Net platform
- 4. EDR Enhanced Device Object interface for Linux and .Net platform

The illustration below shows the EDR Enhanced Application Program Interface design. The next sections will discuss each sub-system's functions separately. It will show which functions each type of interface supports and what parameters are used.

Data Acquisition

Omega Engineering Inc. © Copyright 2005 – www.omega.com

4.2 The Query Command – EDRE_Query

The query API function is used to retrieve useful information about your device. Appendix C has a list of query codes that will operate on the OMET-USB-73 devices. The query function is the most powerful function of the EDR Enhanced API and can tell a lot about your device, like manufacturing date, the serial number, bus type, revision and device driver version. The query function can also supply information about the API itself like release version and number of devices installed.

4.2.1.1 Shared Object and Linked Library Interface

Function Name Object	EDRE_Query Edrapi.dll / edrapi.so				
Platform		Microsoft Windows, Pocket	PC 2003		
Parameters	32-bi	t unsigned integer	Serial Number		
	32-bit unsigned integer Query Code				
	32-bit unsigned integer Parameter				
Return Error	32-bit	signed integer			
Error Codes	>=0 Query return value No error				
	-1 EDRE_FAIL General failure				
	-3 EDRE_BAD_SN Device with serial				
		number does not exist			
	-18	EDRE_BAD_QUERY	Invalid query code		

4.2.1.2 ActiveX Interface

Function Name Object Platform Bolated Broperty	Query EDREUTLX Microsoft Windows SocialNumber				
_Related Property _ Parameters	SerialNumber 32-bit unsigned integer Query Code				
	32-bit unsigned integer Parameter				
Return Value	32-bit	signed long			
Error Codes	>=0	Query return value	No error		
	-1	EDRE_FAIL	General failure		
	-3	EDRE_BAD_SN	Device with serial		
		number does not exist			
	-18	EDRE_BAD_QUERY	Invalid query code		

4.2.1.3 EDR Enhanced Main Object Interface

Function Name	Query	Object				
Platform	Linux	EDREObject Linux				
Parameters	32-bi	32-bit unsigned integer Serial Number				
		t unsigned integer	Query Code			
	32-bit unsigned integer Parameter					
Return Value	32-bit	signed integer				
Error Codes	>=0	Query return value	No error			
	-1	EDRE_FAIL	General failure			
	-3	EDRE_BAD_SN	Device with serial			
			number does not exist			
	-18	EDRE_BAD_QUERY	Invalid query code			

Data Acquisition

Function Name Object	EDRÉ	Query EDREDevice				
Platform	Linux					
Parameters	32-bi	t unsigned integer	Query Code			
	32-bit unsigned integer Parameter					
Return Value	32-bit	signed integer				
Error Codes	>=0 Query return value No error					
	-1	EDRE_FAIL	General failure			
	-3 EDRE_BAD_SN Device with serial					
			number does not exist			
	-18	EDRE_BAD_QUERY	Invalid query code			

4.2.1.4 EDR Enhanced Device Object Interface

4.2.1.5 Query example

This example queries the number of devices installed and the serial number of each device.

PSEUDO START

Define APINUMDEV = 5 "See appendix C for list of query codes" NumDevices of type 32-bit integer SerialNumber of type 32-bit integer NumDevices = EDRE_Query(0, APINUMDEV,0) For d = 0 to NumDevices-1 do SerialNumber = EDRE_Query(0, APIDEVSN,d) Next d **PSEUDO STOP**

4.3 Digital Inputs/Outputs

The table below shows all the assigned ports to each device. The digital port makes out an important part of any automated system. The digital I/O ports are used to control external equipment logically or to monitor logical conditions. The digital I/O port can be used to switch high voltage external equipment through controlling external relays and contactors. It can also be connected external monitoring circuit that indicates conditions logically.

XXX = USB T=TOP, M=MIDDLE, B=BOTTOM F=FRONT, R=REAR 2 = 2 TIER BOX, 3 = 3 TIER BOX

Port	PPI No	Assigned Number	Port Width	OMET- USB-73 Connector	Description
XXX 73R/T					
А	0	0	8-bits	FB2	Port A
В	0	1	8-bits	FB2	Port B
С	0	2	8-bits	FB2	Port C

Table 4-1 Digital I/O Assigned Ports

4.3.1 Reading the Digital Inputs – EDRE_DioRead

A single call is necessary to read a digital I/O port. Depending on the interface the result is either passed through a reference parameter or by the returned code. The digital I/O ports a self managed, meaning it will automatically configure as inputs when read from. Please note that due to the identity of the digital I/O devices the output ports will looses its output value when the a port is configured differently. It's very important to do the appropriate reads and writes to ensure the device is in proper configuration before using it. Each interface function is showed separately in the next section.

4.3.1.1 Shared Object and Linked Library Interface

Function Name		_DioRead		
Object	Edrapi	.dll / edrapi.so		
Platform	Linux,	Microsoft Windows, Pocket F	PC 2003	
Parameters	32-bi	t unsigned integer	Serial Number	
		t unsigned integer	Port	
	Point	er to 32-bit unsigned integer	Value	
Return Error	32-bit	signed integer		
Error Codes	0	EDRE_OK	No error	
	-1	EDRE_FAIL	General failure	
	-3 EDRE_BAD_SN Device with serial			
	number does not exist			
	-14	EDRE_BAD_PARAMTER	Port value is incorrect	

4.3.1.2 ActiveX Interface

Function Name	Read			
Object	EDRE	DioX		
Platform	Micros	soft Windows		
Related Property	Serial	Number		
Parameters	32-bit signed integer Port			
Return Value	32-bit	signed long		
Error Codes	>=0	Value read from port	No error	
	-1	EDRE_FAIL	General failure	
	-3	EDRE_BAD_SN	Device with serial	
			number does not exist	

Data Acquisition

-14 EDRE_BAD_PARAMTER Port value is incorrect

	D : D	-			
Function Name	DioRe	ad			
Object	EDRE	Object			
Platform	Linux				
Parameters	32-bi	t unsigned integer		Serial Number	
		t unsigned integer		Port	
	Pointer to 32-bit unsigned integer Value				
Return Value	32-bit	signed integer			
Error Codes	0	Value read from port	N	lo error	
	-1	EDRE_FAIL	G	eneral failure	
	-3	EDRE_BAD_SN	D	evice with serial	
			n	umber does not exist	
	-14	EDRE_BAD_PARAMTER	P	ort value is incorrect	

4.3.1.3 EDR Enhanced Main Object Interface

4.3.1.4 EDR Enhanced Device Object Interface

Function Name	DioRe	ad		٦
Object	EDRE	Device		
Platform	Linux			
Parameters	32-bi	t unsigned integer	Port	
	Point	er to 32-bit unsigned integer	· Value	
Return Value	32-bit	signed integer		-
Error Codes	0	Value read from port	No error	
	-1	EDRE_FAIL	General failure	
	-3	EDRE_BAD_SN	Device with serial	
			number does not exist	
	-14	EDRE_BAD_PARAMTER	Port value is incorrect	

4.3.2 Writing to the Digital Outputs – EDRE_DioWrite

A single call is necessary to write to a digital I/O port. Depending on the interface type a port number and value is passed to the function. A returned error code will tell if the function passed or not. Please note that due to the identity of the digital I/O devices the output ports will looses its output value when the a port is configured differently. It's very important to do the appropriate reads and writes to ensure the device is in proper configuration before using it. Each interface function is showed separately in the next section.

4.3.2.1 Shared Object and Linked Library Interface

Function Name	EDRE_DioWrite				
Object	Edrapi	.dll / edrapi.so			
Platform	Linux,	Microsoft Windows, Pock	et I	PC 2003	
Parameters	32-bi	t unsigned integer	Se	erial Number	
	32-bi	t unsigned integer	P	ort	
	32-bi	t unsigned integer	Va	alue	
Return Error	32-bit	signed integer			
Error Codes	0	EDRE_OK		No error	
	-1	EDRE_FAIL		General failure	
	-3	EDRE_BAD_SN		Device with serial	
	number does not exist				
	-14 EDRE_BAD_PARAMTER Either the port or				
				value is incorrect	

Function Name Object	Write EDREDioX			
Platform Related Property	Micros	oft Windows Number		
Parameters	·····	t signed integer	P	ort
	32-bi	t signed integer	Va	alue
Return Value	32-bit	signed integer		
Error Codes	0	EDRE_OK		No error
	-1	EDRE_FAIL		General failure
	-3	EDRE_BAD_SN		Device with serial
				number does not exist
	-14	EDRE_BAD_PARAMTE	ER	Either the port or
				value is incorrect

4.3.2.2 ActiveX Interface

4.3.2.3 EDR Enhanced Main Object Interface

Function Name Object	DioWrite EDREObject			
Platform	Linux	-		
Parameters		t unsigned integer	S	erial Number
	32-bi	t unsigned integer	P	ort
	32-bit unsigned integer Value			
Return Value	32-bit	signed integer		
Error Codes	0	EDRE_OK		No error
	-1	EDRE_FAIL		General failure
	-3	EDRE_BAD_SN		Device with serial
	number does not exist			
	-14	EDRE_BAD_PARAMTE	ER	Either the port or
				value is incorrect

4.3.2.4 EDR Enhanced Device Object Interface

_Function Name _ Object Platform	DioWr EDRE Linux	ite Device		
Parameters	32-bi	t unsigned integer	Po	ort
	32-bit unsigned integer Value			
Return Value	32-bit signed integer			
Error Codes	0	EDRE_OK		No error
	-1	EDRE_FAIL		General failure
	-3	EDRE_BAD_SN		Device with serial
		ļ		number does not exist
	-14	EDRE_BAD_PARAMTE	R	Either the port or
				value is incorrect

4.3.3 Query Codes

The digital I/O sub-system can be queried for the number of ports available and the property of each port. The following query codes are relevant to the digital I/O system.

Name	Value	Descr	ription
DIONUMPORT	400	Query the number of digital I/O ports installed	
DIOQRYPORT	401	Query a specific port for its properties. Use PARAM to specify the port.	
		0	DIOOUTPUT
			Port is output only
		1	DIOINPUT
			Port is input only
		2	DIOINOROUT
			Port is either in or out
		3	DIOINANDOUT
			Port is in and out
DIOPORTWIDTH	402	Query a specific port width. Use PARAM to specify the port. The value returned is the bit width of the port.	

4.3.3.1 Query number of ports

PSEUDO START

Dioports of type 32-bit integer Dioport = EDRE_Query(serialnumber, DIONUMPORT,0) PSEUDO STOP

4.3.3.2 Query port type

"Port type can be output, input, in-and-out, in-or-out **PSEUDO START** Port_type of type 32-bit integer For p = 0 to Dioports-1 do Port_type = EDRE_Query(serialnumber, DIOQRYPORT,p) Next p **PSEUDO STOP**

4.3.3.3 Query port width in bits

PSEUDO START

Port_width of type 32-bit integer For p = 0 to Dioports-1 do Port_width = EDRE_Query(serialnumber, DIOPORTWIDTH,p) Next p **PSEUDO STOP**

4.4 Temperature Input – 73 Model

The OMET-USB-73 has three different basic temperature models. The OMET-USB-73 is available in an 8, 16, and 32-channel model.

There are eight channels available on a single DB25 male connector and one cold junction compensation (CJC) channel. Only a genuine Eagle Technology thermocouple adapter can be used to interface to the thermocouple inputs. This adapter has a build CJC device and is necessary to read thermocouple temperatures.

The OMET-USB-73 temperature units also support RTD inputs. If RTDs are used a RTD adapter must be connected. The RTD adapter has build in support for a 1mA and 10mA current source. It supports both the two wire and four wire system.

A Note that the OMET-USB-73 units are manufactured for either thermocouples or RTD and cannot be changed by swapping the adapter modules.

4.4.1 Thermocouple Procedure

To read a thermocouple channel a sequence needs to be followed. The steps below shows what steps to follow the read a thermocouple channel.

- 1. Read CJC channel
- 2. Calculate ambient temperature
- 3. Read thermocouple channel
- 4. Calculate temperature

4.4.2 Reading CJC Channel

To be able to read and calculate a thermocouple voltage the CJC channel need to be read. This value is used to calculate the cold-junction-compensation for a thermocouple channel. A thermocouple adapter's CJC channel has a circuit that will supply a voltage of 10mV per 1 degree Celsius. The CJC channel is read in the same way as a normal analog channel. The index of the channel is very important as for a unit can have more than one CJC channel. The CJC channel must always be read before reading a number of channels on a thermocouple adapter. The table below shows the CJC channel index for a particular type of device.

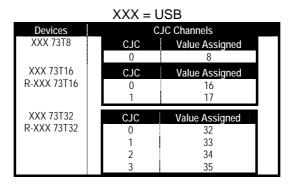


Table 4-2 CJC Channels Assigned

4.4.2.1 Query the CJC channel index

The index of each CJC channel can be queried

PSEUDO START

CJC_channel of type 32-bit integer Do CJC_channel = EDRE_Query(serialnumber, ADAMBCHAN,0) Until CJC_channel < 0

PSEUDO STOP

4.4.2.2 Read CJC channel

To read a CJC channel use the EDRE_ADSingle command. For further reference on this command see the analog input section. The channel must be the CJC channel index. The Gain and Range parameter are not used.

PSEUDO START

CJC_value of type 32-bit signed integer CJC_channel of type 32-bit unsigned integer CJC_channel = 8 error = EDRE_ADSingle(serialnumber, CJC_channel,0,0,pointer of CJC_value) if error = 0 print CJC_value else print "Error reading CJC channel" **PSEUDO STOP**

4.4.3 Types of Thermocouples

The EDR Enhanced application program interface supports the conversion of many thermocouple types. The table below lists all the supported types. Each type has its purpose like wide temperature range or very accurate in a certain range. The constant value is used when calculating the temperature.

Value	Thermocouple Type
0	Type J
1	Туре К
2	Туре Е
3	Туре Т
4	Type S
5	Type R
6	Туре В
7	Type N
8	Туре С

Table 4-3 Thermocouple Type Table

4.4.4 Reading a Thermocouple Channel

Reading the thermocouple channel is the same as reading an analog channel or CJC channel. The channels on the OMET-USB-73models are zero indexed. If the device is a hybrid that has normal analog channels and temperature channels, the temperature channels will follow the analog channels. As with the reading of the CJC channel the range and gain parameter of the EDRE_ADSingle command is not used.

The example below will read thermocouple channel 0. **PSEUDO START** TC_value of type 32-bit signed integer error = EDRE_ADSingle(serialnumber, 0,0,0,pointer of TC_value) if error = 0 print TC_value else print "Error reading termocpuple channel" **PSEUDO STOP**

4.4.5 Calculating Ambient Temperature

After reading the CJC channel the ambient temperature can be calculated. The voltage read from the CJC channel must be passed to this conversion function. The returned value will be the temperature in millidegrees.

Data Acquisition

4.4.5.1 Shared Object and Linked Library Interface

Function Name	EDRE_CalcCJCmC	
Object	Edrapi.dll	
Platform	Microsoft Windows	
Parameters	32-bit signed integer	CJC microvolt
Return Value	32-bit signed integer	
Value	Millidegrees	

4.4.5.2 ActiveX Interface

Function Name	CalcCJCmC EDREADX		
Object			
_Platform	Microsoft Windows		
Related Property	None		
Parameters	32-bit signed integer	CJC microvolt	
Return Value	32-bit signed integer		
Value	Millidegrees		

4.4.5.3 EDR Enhanced Main Object Interface

Function Name	CalcCJCmC		
Object	EDREObject		
Platform	No support		
Parameters	32-bit signed integer	CJC microvolt	
Return Value	32-bit signed integer		
Value	Millidegrees		

4.4.5.4 EDR Enhanced Device Object Interface

Function Name	CalcCJCmC	
Object	EDREDevice	
Platform	No support	
Parameters	32-bit signed integer	CJC microvolt
Return Value	32-bit signed integer	
Value	Millidegrees	

4.4.6 Calculating Temperature for Thermocouples

After the CJC channel and thermocouple channel was read and the CJC value converted to millidegrees, the thermocouple temperature can be calculated. The thermocouple type, thermocouple channel voltage and ambient temperature need to be supplied in order to do this. The returned value will be in millidegrees.

4.4.6.1 Shared Object and Linked Library Interface

Function Name Object	EDRE_CalcTCmC Edrapi.dll	
Platform	Microsoft Windows	
Parameters	32-bit signed integer array	Thermocouple type
	32-bit signed integer array	Thermocouple channel
	32-bit signed integer array	voltage Ambient temperature in millidegrees
Return Value	32-bit signed integer	
Value	Millidegrees	

Data Acquisition

4.4.6.2 ActiveX Interface

Function Name Object Platform Related Property	CalcTCmC EDREADX Microsoft Windows None	
Parameters	32-bit signed integer	Thermocouple type
	32-bit signed integer	Thermocouple channel voltage
	32-bit signed integer	Ambient temperature in millidegrees
Return Value	32-bit signed integer	
Value	Millidegrees	

4.4.6.3 EDR Enhanced Main Object Interface

Function Name Object Platform	CalcTCmC EDREObject No support	
Parameters	32-bit signed integer32-bit signed integer32-bit signed integer	Thermocouple type Thermocouple channel voltage Ambient temperature in millidegrees
Return Value Value	32-bit signed integer Millidegrees	

4.4.6.4 EDR Enhanced Device Object Interface

Function Name Object Platform	CalcTCmC EDREDevice No support	
Parameters	32-bit signed integer	Thermocouple type
	32-bit signed integer	Thermocouple channel
	32-bit signed integer	voltage Ambient temperature in millidegrees
Return Value	32-bit signed integer	
Value	Millidegrees	

4.4.6.5 Example of calculating a thermocouple temperature

The temperature **PSEUDO START** Define TYPE_K 1 CJC_millideg of type 32 signed integer TC_value of type 32-bit signed integer TC_millideg of type 32-bit signed integer

TC_millideg = EDRE_CalcTCmC(TYPE_K, TC_value, CJC_millideg) Print TC_millideg **PSEUDO STOP**

Data Acquisition

5 Calibration Procedure

This chapter deals with calibrating your hardware. Please follow the instruction carefully to properly calibrate your device.

5.1.1 Calibration - USB 73

If the USB device needs to be calibrated, the software can be found on the EDR Enhanced SDK CD-Rom. This application provides step-by-step information of how to calibrate your device. Make sure that you have a high precision calibration voltage source. This will help to configure your device more accurately.

5.1.2 Equipment

The following calibration equipment is required to calibrate the analog OMET-USB-73 device. If the calibration equipment does conform to these specifications it will not be possible to calibrate the device accurately.

5.1.2.1 High Precision Voltage Source

A high precision voltage source is required to generate input analog voltages. The Burster Digistant Typ 4405 is am example of such a device. The device is used as standard test equipment to calibrate the μ DAQ and Rugged μ DAQ device. Make sure the device conform to its own calibration requirements and that it is serviced regularly. The device requirements are the following.

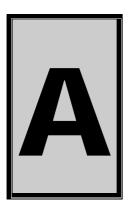

Item	Specification
Voltage Range	0V to 10V
Туре	Analog Output
Relative Accuracy	0.1 % of 1 bit in 16384
Accuracy	< 1.2 μV

Table 5-1 Analog Source Requirements

5.1.3 Calibration Procedure – USB 73

- 1. Install the USB Calibration Software <EDRECD>\EDRE\APPS\OMET-USB-73 CAL
- 2. Run the USB Calibration Software.
- 3. Follow the step-by-step information on screen to tune your device.
- 4. Make sure to save the data to your device.

Data Acquisition

A Specifications

A.1 Digital Input/Output Characteristics

Number of Digital Channels: Models are: USB

Device	Channels
73	24

Number of Grouped Channels: Models are: USB

Device	PPI Channels
73	3

Intel® 82C55/TTL

Compatibility:

D.C Characteristics – PPI 8255 Compatible Ports

Level	Min	Max
Input Low Voltage	-0.5V	0.8V
Input High Voltage	2.0V	5.0V
Output High Voltage	2.4V	
Output Low Voltage		0.45V
Output Current		2mA

A.2 Temperature Input Characteristics

Number of Channels Models are: USB, SRL, BT and Rugged

Resolution

Maximum Update Rate - USB 1.1 & USB 2.0

Data Transfer - USB 1.1 & USB 2.0

Input Programmable Ranges

Device	Differential Channels
73T8	8
73T16	16
73T32	32

14-bits

2 milliseconds

Programmed I/O – USB Bulk Transfer

Channel Gain	Model	Bipolar Range
1	R	±2.5V
30	Т	±83mV

DC

Input Coupling	DC
Relative Accuracy	±1 LSB
Gain x 1 Offset Error	± 0.305 millivolts
Gain x 30 Offset Error	±0.011 millivolts

L

Data Acquisition

A.3 Bus Interface

A.3.1 USB 1.1	
Bus Type	Universal Serial Bus Revision 1.1
Bus Speed	USB Full Speed – 12 Mega bit per second.
Controller	USB Serial Interface Endpoint Compliant
Voltage	5V
Endpoints	1 x Control Transfer Endpoint 1 x Bulk Transfer Endpoint 1 x Interrupt Transfer Endpoint 1 x Isochronous Transfer Endpoint @ 512kB/s
A.3.2 USB 2.0	
Bus Type	Universal Serial Bus Revision 2.0
Bus Speed	USB High Speed – 480 Mega bit per second.
Controller	USB Serial Interface Endpoint Compliant
Voltage	5V
Endpoints	1 x Control Transfer Endpoint

A.4 Power Requirements

A.4.1 USB Devices

Minimum	Typical 400 mA 420 mA 820 mA	Maximum 450 mA 470 mA 870 mA	Power Source External PSU External PSU External PSU
	020 111/1	0101111	External 1 66
	Minimum	400 mA 420 mA	400 mA 450 mA 420 mA 470 mA

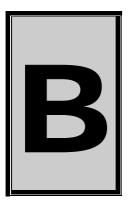
A.5 Environmental / Physical

A.5.1 USB

Relative Humidity Operating Temperature Storage Temperature Housing Type Weight – OMET-USB-73T8, OMET-USB-73T16 Weight – OMET-USB73-T32 Dimensions – OMET-USB73-T8, OMET-USB-73T16

Dimensions – OMET-USB-73T32

0% to 90% (non-condensing) 0°C to 70°C -25°C to 120°C Plastic Casing 280g 400g Height: 45mm Width: 80mm Length: 148mm Height: 60mm Width: 80mm Length: 148mm


Data Acquisition

A.6 Power Supplies

Input Type Input Range Input Connector Type Power Output Type Output Voltage Maximum Output Current Output Connector Type Regulator Type Location Indicators

AC 110V – 240V Multiple to comply with all international wall sockets DC DC 9V 1A 5mm DC plug Switch Mode External/Separate Power

Data Acquisition

B Related Products and Accessories

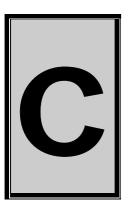
A whole range of external connectable accessories and application modules supports the OMET-USB-73 series. These modules are easy to connect too and support DINRAIL installations. Below is a list of products that are compatible with the OMET-USB-73 devices. They are broken up sub-sections to cover each type of application.

B.1 General Adapters

There are general adapters that can be used with the OMET-USB-73 devices. These modules simple map a cable-connector to a screw terminal block.

Adapter	Entry Connector	Cable	Possible Usage
OMET- ADPT-2526	DB25 Female	DB25M/F	To map the main connector to a screw terminal clock. This adapter is used to make simple
OMET- ADPT-20	IDC 20	IDC 20	connections to the unit. To connect to digital I/O port A-B on the OMET- PC43A2.
OMET- ADPT-910	IDC 10 DB9 Female	IDC 10 DB9 Female	To connect 8 channels on the PC52A2 For connecting to digital I/O ports or analog channels on the OMET-PC43A2 and PC52A2.
			Also for connecting to the DB9 on the serial units.

Table 5-2 General Adapters


B.2 Digital I/O Application Modules

All Digital I/O application modules are DINRAIL mountable. They are supplied with standard cables and are easy to connect too. Wide variety is available and care must be taken to select the correct module for the application.

Adapter	Entry Connector	Cable	Application
PC-37 Series	IDC10	IDC10	Opto 22 solid state relay modules
	IDC20	IDC20	
	DB25	DB25M/F	
PC-51-8	IDC10	IDC10	8CH Opto 22 G4 Carrier module
PC-38G	IDC10	IDC10	8CH Electro-Mechanical relay module
PC-38H	IDC10	IDC10	8CH Reed relay module
PC-38V	IDC10	IDC10	8CH TTL Driver module
PC-38W	IDC20	IDC20	16CH TTL Driver module
PC-38X	DB25	DB25M/F	24CH TTL Driver module
PC-43B	IDC20	IDC20	16CH Opto-Isolated inputs
PC-43C	DB25	DB25F/M	24CH Opto-Isolated inputs
PC-43E	IDC10	IDC10	8CH Opto-Isolated inputs

Table 5-3 Digital I/O Application Modules

Data Acquisition

C Configuration Constants

C.1 Query Codes

-	Value	Description
Name	Value	Description
APIMAJOR	1	Query EDRE API major version number.
APIMINOR	2	Query EDRE API minor version number.
APIBUILD	3	Query EDRE API build version number.
APIOS	4	Query EDRE API OS type.
APINUMDEV	5	Query number of devices installed.
BRDTYPE	10	Query a board's type.
BRDREV	11	Query a board's revision.
BRDYEAR	12	Query a board's manufactured year.
BRDMONTH	13	Query a board's manufactured month.
BRDDAY	14	Query a board's manufactured day.
BRDSERIALNO	15	Query a board's serial number.
DRVMAJOR	20	Query a driver's major version number.
DRVMINOR	21	Query a driver's minor version number.
DRVBUILD	22	Query a driver's build version number.
ADNUMCHAN	100	Query number of ADC channel.
ADNUMSH	101	Query number of samples-and-hold channels.
ADMAXFREQ	102	Query maximum sampling frequency.
ADBUSY	103	Check if ADC system is busy.
ADFIFOSIZE	104	Get ADC hardware FIFO size.
ADFIFOOVER	105	Check for FIFO overrun condition.
ADBUFFSIZE	106	Check software buffer size.
ADBUFFOVER	107	Check for circular buffer overrun.
ADBUFFALLOC	108	Check if software buffer is allocated.
ADUNREAD	109	Get number of samples available.
ADEXTCLK	110	Get status of external clock line – PCI30FG.
ADEXTTRIG	111	Get status of external trigger line – PCI30FG.
ADBURST	112	Check if burst mode is enabled.
ADRANGE	113	Get ADC range.
DANUMCHAN	200	Query number of DAC channels.
DAMAXFREQ	201	Query maximum DAC output frequency.
DABUSY	202	Check if DAC system is busy.
DAFIFOSZ	203	Get DAC FIFO size.
CTNUM	300	Query number of counter-timer channels.
CTBUSY	301	Check if counter-timer system is busy.
DIONUMPORT	400	Query number of digital I/O ports.
DIOQRYPORT	401	Query a specific port for capabilities.
DIOPORTWIDTH	402	Get a specific port's width.
INTNUMSRC	500	Query number of interrupts sources.
INTSTATUS	501	Queries interrupt system's status.
INTBUSCONNECT	502	Connect interrupt system to bus.
INTISAVAILABLE	503	Check if an interrupt is available.
INTNUMTRIG	504	Check number times interrupted
	1007	Chook humber times interrupted

Omega Engineering Inc. © Copyright 2005 – www.omega.com

C.2 Error Codes

Name	Value	Description
EDRE OK	0	Function successfully.
EDRE FAIL	-1	Function call failed.
EDRE BAD FN	-2	Invalid function call.
EDRE BAD SN	-3	Invalid serial number.
EDRE BAD DEVICE	-4	Invalid device.
EDRE_BAD_OS	-5	Function not supported by operating system.
EDRE_EVENT_FAILED	-6	Wait on event failed.
EDRE_EVENT_TIMEOUT	-7	Event timed out.
EDRE_INT_SET	-8	Interrupt in use.
EDRE_DA_BAD_RANGE	-9	DAC value out of range.
EDRE_AD_BAD_CHANLIST	-10	Channel list size out of range.
EDRE_BAD_FREQUECY	-11	Frequency out of range.
EDRE_BAD_BUFFER_SIZE	-12	Data passed by buffer incorrectly sized
EDRE_BAD_PORT	-13	Port value out of range.
EDRE_BAD_PARAMETER	-14	Invalid parameter value specified.
EDRE_BUSY	-15	System busy.
EDRE_IO_FAIL	-16	IO call failed.
EDRE_BAD_ADGAIN	-17	ADC-gain out of range.
EDRE_BAD_QUERY	-18	Query value not supported.
EDRE_BAD_CHAN	-19	Channel number out of range.
EDRE_BAD_VALUE	-20	Configuration value specified out of range.
EDRE_BAD_CT	-21	Counter-timer channel out of range.
EDRE_BAD_CHANLIST	-22	Channel list invalid.
EDRE_BAD_CONFIG	-23	Configuration invalid.
EDRE_BAD_MODE	-24	Mode not valid.
EDRE_HW_ERROR	-25	Hardware error occurred.
EDRE_HW_BUSY	-26	Hardware busy.
EDRE_BAD_BUFFER	-27	Buffer invalid.
EDRE_REG_ERROR	-28	Registry error occurred.
EDRE_OUT_RES	-29	Out of resources.
EDRE_IO_PENDING	-30	Waiting on I/O completion

C.3 Digital I/O Return Query Codes			
Name	Value	Description	
DIOOUT	0	Port is an output.	
DIOIN	1	Port is an input.	
DIOINOROUT	2	Port can be configured as in or out.	
DIOINANDOUT	3	Port is an input and an output.	

Data Acquisition

D Ordering Information

For ordering information please contact Omega Engineering directly or visit our website <u>www.omega.com</u>.

Device	USB 1.1	USB 2.0	Description
OMET-73T8	\checkmark	~	8 Channel Thermocouple input device
OMET-73T16	\checkmark	\checkmark	16 Channel Thermocouple input device
OMET-73T32	\checkmark	\checkmark	32 Channel Thermocouple input device
OMET-73R8	✓	\checkmark	8 Channel RTD input device
OMET-73R16	✓	\checkmark	16 Channel RTD input device
OMET-73R32	\checkmark	\checkmark	32 Channel RTD input device

Table D-1 OMET-USB-73 Ordering Information

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of **13 months** from date of purchase. OMEGA's WARRANTY adds an additional one (1) month grace period to the normal **one (1) year product warranty** to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR **WARRANTY** RETURNS, please have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number under which the product was PURCHASED,
- 2. Model and serial number of the product under warranty, and
- 3. Repair instructions and/or specific problems relative to the product.

FOR **NON-WARRANTY** REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

- 1. Purchase Order number to cover the COST of the repair,
- 2. Model and serial number of the product, and
- 3. Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2005 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course! Shop online at omega.com

TEMPERATURE

- 🗹 Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- ☑ Wire: Thermocouple, RTD & Thermistor
- Calibrators & Ice Point References
- 🗹 Recorders, Controllers & Process Monitors
- Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

- Transducers & Strain Gages
- ☑ Load Cells & Pressure Gages
- Displacement Transducers
- Instrumentation & Accessories

FLOW/LEVEL

- 🗹 Rotameters, Gas Mass Flowmeters & Flow Computers
- Air Velocity Indicators
- Turbine/Paddlewheel Systems
- Totalizers & Batch Controllers

pH/CONDUCTIVITY

- ☑ pH Electrodes, Testers & Accessories
- Benchtop/Laboratory Meters
- Controllers, Calibrators, Simulators & Pumps
- Industrial pH & Conductivity Equipment

DATA ACQUISITION

- ☑ Data Acquisition & Engineering Software
- Communications-Based Acquisition Systems
- Plug-in Cards for Apple, IBM & Compatibles
- Datalogging Systems
- Recorders, Printers & Plotters

HEATERS

- Heating Cable
- Cartridge & Strip Heaters
- Immersion & Band Heaters
- Flexible Heaters
- Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL

- Metering & Control Instrumentation
- Refractometers
- Pumps & Tubing
- Air, Soil & Water Monitors
- 🗹 Industrial Water & Wastewater Treatment
- PH, Conductivity & Dissolved Oxygen Instruments