
Using the MODBUS
 Protocol with Omega

 CN8200, CN8240, and CN8260
Controllers
�

�

Omega� and Multi-Comm� are trademarks of Omega.

MODBUS� is a trademark of AEG Schneider Automation, Inc.

Platinel� is a trademark of Engelhard Minerals & Chemical Corporation.

� 2000. Omega. All rights reserved.

900M062U00 � Omega. i

Table of Contents
1. Introduction.. 2-1

1.1 About This Manual .. 2-1
1.2 About Omega’s Implementation of the MODBUS Protocol 2-2

1.2.1 MODBUS Function Codes Supported ... 2-2
1.2.1.1 Functions to Access the Controller Databases 2-2
1.2.1.2 What Happens if the Controller Can Do What the MODBUS Master
 Tells It to Do.. 2-2
1.2.1.3 What Happens if the Controller Cannot Do What the MODBUS Master
 Tells It to Do.. 2-3
1.2.1.4 Diagnostic Function.. 2-3

1.2.2 MODBUS Transmission Mode Supported ... 2-3
1.2.3 Baud Rates Supported... 2-4
1.2.4 Serial Data Formats Supported by the Controllers.................................... 2-4
1.2.5 Addresses Supported by the Controllers ... 2-4
1.2.6 Data Types Used by Controllers.. 2-5

1.2.6.1 Principle.. 2-5
1.2.6.2 Examples.. 2-5
1.2.6.3 How These Data Types Are Transmitted in MODBUS Registers 2-5

1.2.7 IEEE Register Ordering ... 2-6
1.2.7.1 Principle.. 2-6
1.2.7.2 Example ... 2-6

1.2.8 Timing and Latency Issues .. 2-7
1.2.8.1 Separating Messages... 2-7
1.2.8.2 Allowing the Controller Time to Process a Request............................... 2-7
1.2.8.3 Applying the Timing Requirements .. 2-7
1.2.8.4 Example ... 2-8

1.3 Preparing Controllers for Use with MODBUS ... 2-9
1.3.1 Introduction .. 2-9
1.3.2 MODBUS Communication Option ... 2-9
1.3.3 Assigning a Unique Controller ID... 2-9
1.3.4 Configuring the Controller Communication Parameters to Match the
 MODBUS Master... 2-10

1.3.4.1 Communication Defaults .. 2-10
1.3.4.2 Methods of Changing the Controller Configuration Parameters 2-11
1.3.4.3 Example of Changing the Controllers’ Communication Parameter
 Values Using MODBUS Messages .. 2-11

1.4 Importance of Sequence in Which Configuration Parameters Are Written..... 2-13
1.5 Numbering Conventions Used in This Manual ... 2-14

Using MODBUS with Series C Controllers

ii � Omega. 900M062U00

2. MODBUS Functions Supported .. 3-1
2.1 Overview ... 3-1
2.2 Function 03 ($03): Read One or More Holding Registers 3-2

2.2.1 Introduction .. 3-2
2.2.2 Allowable Number of Words to Be Read in a Function 03 Request.......... 3-2
2.2.3 Function 03 Request.. 3-3
2.2.4 Function 03 Examples ... 3-3
2.2.5 Function 03 Normal Reply ... 3-3
2.2.6 Reply to Function 03 Request Containing Illegal Register Address:
 02 ($02) Error Code .. 3-4
2.2.7 Circumstances Under Which No Reply Is Sent in Response to a
 Function 03 Message.. 3-5

2.3 Function 06 ($06): Write to a Single Holding Register...................................... 3-5
2.3.1 Introduction .. 3-5
2.3.2 Function 06 Request.. 3-5
2.3.3 Examples ... 3-6
2.3.4 Function 06 Normal Reply ... 3-6
2.3.5 Reply to Function 06 Request Containing Illegal Register Address:
 02 ($02) Error Code ... 3-6
2.3.6 Reply to Function 06 Request Containing Illegal Value in Data Field:
 03 ($03) Error Code ... 3-7
2.3.7 Circumstances Under Which No Reply Is Sent in Response to a
 Function 06 Message... 3-7

2.4 Function 16 ($10): Write to Multiple Registers.. 3-8
2.4.1 Introduction .. 3-8
2.4.2 Function 16 ($10) Request .. 3-8
2.4.3 Allowable Number of Words to Be Written in Function 16 ($10)
 Request ... 3-8
2.4.4 Function 16 ($10) Examples.. 3-9
2.4.5 Function 16 ($10) Normal Reply.. 3-10
2.4.6 Reply to Function 16 ($10) Request Containing Illegal Register
 Address: 02 ($02) Error Code .. 3-10
2.4.7 Reply to Function 16 ($10) Request Containing Illegal Value in Data
 Field: 03 ($03) Error Code ... 3-11
2.4.8 Circumstances Under Which No Reply Is Sent in Response to a
 Function 16 ($10) Request... 3-11

2.5 Function 08 ($08): Loopback Test .. 3-12
2.5.1 Introduction .. 3-12
2.5.2 Function 08 Request.. 3-12
2.5.3 Function 08 Example ... 3-12
2.5.4 Function 08 Normal Reply ... 3-13
2.5.5 Circumstances Under Which No Reply Is Sent in Response to a
 Function 08 Request ... 3-13

Table of Contents

900M062U00 � Omega. iii

3. MODBUS Register Ranges and Data Types Used by Omega 4-1
3.1 Introduction ... 4-1
3.2 Types of Values Used by the Controllers ... 4-1

3.2.1 Overview .. 4-1
3.2.2 Examples ... 4-1

3.3 How the Controller Stores Values That Are Always Integers 4-2
3.3.1 Principle ... 4-2
3.3.2 What Is Displayed on the Controller Front Panel 4-2

3.4 How the Controller Stores Values That Can Include Fractional Values 4-3
3.4.1 Principles ... 4-3
3.4.2 What Is Displayed on the Controller Front Panel 4-3

3.5 Using MODBUS to Transmit Controller Values That Are Always Integers:
 Register Addresses 4000 to 4999 ... 4-5

3.5.1 Principles ... 4-5
3.5.2 Examples ... 4-5

3.6 Overview of Using MODBUS to Transmit Controller Values That Can Include
 Fractional Values ... 4-6

3.6.1 Three Register Ranges Available .. 4-6
3.6.2 Which Region to Use ... 4-6

3.6.2.1 First Choice for All Parameters and All Input Types: IEEE Floating
 Point Region 8000 to 9999.. 4-6
3.6.2.2 Second Choice with Temperature Inputs: 10X Region 1000 to 1999.... 4-7
3.6.2.3 Second Choice with Linear Inputs: Base Region 0000 to 0999............. 4-7

3.7 Base Fractional Value Region: Register Addresses 0000 to 0999................... 4-8
3.7.1 General Principles.. 4-8

3.7.1.1 Introduction... 4-8
3.7.1.2 Base Region Uses One Register Per Value Transmitted 4-8
3.7.1.3 Range of Values That Can Be Transmitted in Base Region.................. 4-8
3.7.1.4 If Controller Is Configured to Support Decimal Places, Then the
 Controller’s Storage Method for a Parameter Affects Values Read
 and Written .. 4-8

3.7.2 Interpreting Fractional Values Stored with the Decimal Point
 Transmitted in Base Region 0000 to 0999.. 4-9

3.7.2.1 Principles.. 4-9
3.7.2.2 Examples.. 4-9

3.7.3 Interpreting Fractional Values Stored Without Decimal Point
 Transmitted in Base Region 0000 to 0999.. 4-9

3.7.3.1 Principles.. 4-9
3.7.3.2 Examples.. 4-10

3.8 10X Mirror of Base Fractional Value Region: Register Addresses
 1000 to 1999 .. 4-11

3.8.1 Introduction .. 4-11
3.8.2 General Principles.. 4-11

3.8.2.1 10X Region Uses One Register Per Value Transmitted 4-11

Using MODBUS with Series C Controllers

iv � Omega. 900M062U00

3.8.2.2 If Controller Is Configured to Support Decimal Places, Then the
 Controller’s Storage Method for a Parameter Affects Values Read
 and Written .. 4-11
3.8.2.3 Relative Addresses in 10X Region Are 1000 More Than the
 Corresponding Address in the Base Region 4-12
3.8.2.4 Because of Range Limits, the 10X Region Not Recommended
 for FV� Parameters When a Linear Input Is Used 4-12

3.8.3 Interpreting Fractional Controller Values Stored With Decimal Point
 Transmitted in the 10X Region 1000 to 1999 ... 4-12

3.8.3.1 Principles.. 4-12
3.8.3.2 Examples.. 4-13

3.8.3.2.1 Reading an FV� Parameter with Temperature Input....................... 4-13
3.8.3.2.2 Reading an FV Parameter ... 4-13
3.8.3.2.3 Writing to an FV Parameter ... 4-14

3.8.4 Interpreting Fractional Controller Values Stored Without Decimal
 Point Transmitted in the 10X Region 1000 to 1999 4-15

3.8.4.1 Principles.. 4-15
3.8.4.2 Examples.. 4-16

3.8.4.2.1 Reading an FV� Parameter from a Controller with a Linear Input –
 Range Not Exceeded.. 4-16
3.8.4.2.2 Writing an FV� Parameter to a Controller with a Linear Input –
 Range Not Exceeded.. 4-16
3.8.4.2.3 Reading an FV� Parameter from a Controller with a Linear Input –
 Range Exceeded .. 4-17

3.9 32-bit IEEE Mirror of Base Fractional Value Region: Register Addresses
 8000 to 9999 .. 4-18

3.9.1 General Principles.. 4-18
3.9.1.1 Introduction... 4-18
3.9.1.2 32-Bit IEEE Region Uses Two Registers Per Value Transmitted........ 4-18
3.9.1.3 Range of Values That Can Be Transmitted in the 32-Bit IEEE Region 4-18
3.9.1.4 If the Controller Is Configured to Use Decimal Places, Then the
 Controller’s Storage Method for a Parameter Affects Values Read
 and Written .. 4-18
3.9.1.5 32-Bit IEEE Region Allows You to Configure the Controller to Use
 Values with More Than Four Digits ... 4-19
3.9.1.6 Relative Addresses in 32-Bit IEEE Region Can Be Calculated from
 the Relative Address of a Parameter in the Base Region................. 4-19
3.9.1.7 A MODBUS Command to Transmit a Value Using the 8000 to 9999
 Region Always Addresses an Even-Numbered Relative Address 4-19
3.9.1.8 Sequence in Which the Two Registers for a 32-Bit IEEE Value
 Will Be Transmitted .. 4-20

3.9.2 Interpreting Fractional Controller Values Stored With Decimal Point
 Transmitted in the 32-Bit IEEE Region 8000 to 9999 4-20

3.9.2.1 Principles.. 4-20
3.9.2.2 Examples.. 4-20

3.9.2.2.1 Reading an FV� Parameter with Temperature Input...................... 4-20
3.9.2.2.2 Reading an FV Parameter .. 4-21

Table of Contents

900M062U00 � Omega. v

3.9.2.2.3 Writing to an FV Parameter .. 4-21
3.9.3 Interpreting Fractional Controller Values Stored Without Decimal
 Point Transmitted in the 32-Bit IEEE Region 8000 to 9999................... 4-21

3.9.3.1 Principles.. 4-21
3.9.3.2 Examples.. 4-22

3.9.3.2.1 Reading an FV� Parameter from a Controller with a Linear Input . 4-22
3.9.3.2.2 Writing an FV� Parameter to a Controller with a Linear Input........ 4-23

3.10 Summary... 4-24
3.10.1.1 Regions of the MODBUS Register Map Used to Transmit Controller
 Values.. 4-24

3.10.2 Parameters That Use Integer Values Only.. 4-25
3.10.3 Parameters for Which the Controller Can Use a Fractional Value 4-25

3.10.3.1 Three Regions Available .. 4-25
3.10.3.2 Special Cases: the Significance of the FV and FV� Notations 4-26

4. Omega MODBUS Register Addresses Arranged by Parameter
 Function.. 5-1

4.1 Introduction ... 5-1
4.1.1 Importance of Writing Configuration Parameters in Correct Sequence 5-1
4.1.2 Arrangement of the Parameters and Other Values in This Section 5-2
4.1.3 Information Provided in Each Subsection.. 5-3

4.1.3.1 Subsection Introduction.. 5-3
4.1.3.2 Register Table .. 5-3
4.1.3.3 Linear Inputs Affect Range of Valid Values.. 5-4

4.1.3.3.1 If Range Is “Sensor Low to Sensor High”, Input Scaling
 Limits Apply... 5-4
4.1.3.3.2 If Decimal Position Is Non-Zero, Range Is Reduced........................ 5-5

4.1.4 Calculating Register Addresses for Parameters That Use Fractional
 Values .. 5-6

4.1.4.1 Principles.. 5-6
4.1.4.2 Example ... 5-6

4.2 Communication Parameters ... 5-7
4.2.1 Overview .. 5-7
4.2.2 Communication Parameter Registers.. 5-7

4.3 Input Parameters .. 5-8
4.3.1 Overview .. 5-8
4.3.2 Input Parameter Registers ... 5-8

4.4 Display Parameters... 5-10
4.4.1 Overview .. 5-10
4.4.2 Display Parameter Registers ... 5-10

4.5 Output Parameters.. 5-11
4.5.1 Overview .. 5-11
4.5.2 Output Parameter Registers .. 5-12

4.6 Control Parameters... 5-15
4.6.1 Overview .. 5-15
4.6.2 Control Parameter Registers ... 5-15

Using MODBUS with Series C Controllers

vi � Omega. 900M062U00

4.7 Alarm Parameters ... 5-17
4.7.1 Overview .. 5-17
4.7.2 Alarm Parameter Registers ... 5-17

4.8 Autotune Damping Parameter .. 5-19
4.8.1 Overview .. 5-19
4.8.2 Autotune Damping Parameter Register... 5-19

4.9 Ramp/Soak Parameters.. 5-20
4.9.1 Overview .. 5-20
4.9.2 Ramp/Soak Parameter Registers .. 5-21

4.10 Parameters for Options... 5-23
4.10.1 Overview .. 5-23
4.10.2 Option Parameters... 5-23

4.11 Supervisor Parameters ... 5-25
4.11.1 Overview .. 5-25
4.11.2 Supervisor Parameter Registers.. 5-25

4.12 Calibration Function .. 5-26
4.12.1 Overview .. 5-26
4.12.2 Calibration Zero Offset and Span Adjustment Registers......................... 5-27

4.13 Security Parameter ... 5-29
4.13.1 Overview .. 5-29
4.13.2 Security Parameter Register.. 5-29

4.14 Process Value and Setpoints.. 5-30
4.14.1 Overview .. 5-30

4.14.1.1 Introduction ... 5-30
4.14.1.2 Where Setpoints Are Stored in the Controller 5-30
4.14.1.3 Purpose of Second Setpoint... 5-30
4.14.1.4 Purpose of Remote Analog Setpoint .. 5-30
4.14.1.5 Purpose of Recipe Setpoint.. 5-31
4.14.1.6 Purpose of Active Setpoint ... 5-31

4.14.2 PV and SV Registers ... 5-32
4.15 Controller Information and Status Values ... 5-33

4.15.1 Overview .. 5-33
4.15.1.1 Introduction ... 5-33
4.15.1.2 Purpose of Contact/Digital Input State ... 5-33
4.15.1.3 Purpose of Resume Exhaustion Flag ... 5-33
4.15.1.4 Interpreting the Status Byte and the LED Status Indicator Byte 5-33

4.15.2 Controller Information and Status Parameter Registers.......................... 5-35

5. Controller Parameters Arranged by Register Address 6-1
5.1 Overview ... 6-1
5.2 Integer Registers... 6-1

5.2.1 Introduction .. 6-1
5.2.2 Register List ... 6-1

Table of Contents

900M062U00 � Omega. vii

5.3 Registers for Parameters That Can Use Fractional Values.............................. 6-5
5.3.1 Introduction .. 6-5
5.3.2 Register List ... 6-5

6. Troubleshooting .. 7-1
6.1 Introduction ... 7-1
6.2 No Reply from Controller .. 7-1
6.3 Controller Sends an Error Code $02 Message... 7-2
6.4 Controller Sends an Error Code $03 Message... 7-2
6.5 Controller Reply to a Function 16 ($10) Write Message Indicates Too
 Few Words Were Written.. 7-3
6.6 Controller Reply to a Function 03 ($03) Read Message Starts with
 Good Data, But Garbage Follows... 7-3
6.7 Master Receives Reply from More Than One Controller, or the Reply
 Is Scrambled ... 7-3

7. Factory Commands ... 8-1
7.1 Introduction ... 8-1
7.2 Load All Parameter Defaults ... 8-2

7.2.1 Principles ... 8-2
7.2.2 Example ... 8-2

7.3 Perform Zero and Span Calibration .. 8-3
7.3.1 Introduction .. 8-3
7.3.2 Principles ... 8-4
7.3.3 Example ... 8-4

7.3.3.1 Zero (Low) Cal.. 8-4
7.3.3.2 Span (High) Cal.. 8-4

7.3.4 Confirming That the Calibration Was Performed....................................... 8-5
7.4 Clear All Latched Alarms .. 8-6

7.4.1 Principles ... 8-6
7.4.2 Example ... 8-6

8. Index ... 12-1

Using MODBUS with Series C Controllers

viii � Omega. 900M062U00

1.

900M062U00 � Omega 2-1

2. Introduction

2.1 About This Manual
This manual describes the Omega implementation of the MODBUS protocol for the
controllers: CN8200, CN8240, and CN8260. The Omega MODBUS implementation
enables a MODBUS master to read every configuration parameter, setpoint, and status
value stored in the controllers’ databases, as well as to write to every configuration
parameter and setpoint in the controllers.1 This manual contains information about the
MODBUS functions used to read and write these values, as well as the addresses in the
MODBUS register map used to read and write values to the controllers’ databases.

Although this manual contains some general information about how the MODBUS
protocol is used, the focus of this manual is the Omega implementation of the MODBUS
protocol with controllers. When writing this manual we have assumed that you are
familiar with the MODBUS protocol.

This manual contains tables that list every parameter, setpoint, and status value stored in
the controllers and the valid values for each.

Information about the purpose of every configuration parameter, about the relationships
between parameters, and about the effects of setting specific values, is in the (CN8200,
CN8240, and CN8260) Controller Configuration and Operation Manual.

Diagrams that show the terminals to use when wiring the controllers to a MODBUS
network are in the installation manual supplied with each Omega controller.

1 To be able to communicate with a MODBUS master, an Omega controller must contain an RS-485
communication option card and the Omega MODBUS communication firmware.

Using MODBUS with Series C Controllers

2-2 � Omega 900M062U00

2.2 About Omega’s Implementation of the MODBUS Protocol

2.2.1 MODBUS Function Codes Supported

2.2.1.1 Functions to Access the Controller Databases
The MODBUS protocol provides a means for a master (host) device to communicate with
slave devices (in this case controllers) on the network. The network can contain other
MODBUS-compliant devices in addition to Omega controllers.2

Every message sent from a MODBUS master to a slave on the network contains a
function code that represents the action the slave device should take in response to the
message. So that a MODBUS master can read and write all configuration parameters,
setpoints, and status values stored in an Omega controller, the Omega implementation
of the MODBUS protocol supports the following function codes:

� function 03 ($03)3 – This function is used to read to one or more contiguous
“holding registers” (database locations that are next to one another in the register
map). See 2.2 for more information.

� function 06 ($06) – This function is used to write to a single holding register. A
message containing function 06 can be broadcast to all controllers on the
network simultaneously by sending the message to the controller ID of 0 (zero),
instead of the controller ID of a specific device. See 2.3 for more information.

� function 16 ($010) – This function is used to write to a single register or to
multiple contiguous holding registers, that is, to two or more registers that are
next to one another in the register map. A message containing function 16 ($10)
can be broadcast to all controllers on the network simultaneously by sending the
message with the controller ID of 0 (zero), instead of the controller ID of a
specific device. See 2.4 for more information.

2.2.1.2 What Happens if the Controller Can Do What the MODBUS Master Tells It to Do
If the MODBUS slave device (controller) is able to act on a message (sent to a single
controller) that contains a 03 read function, or a 06 or 16 ($10) write function, then the
controller will send a reply to the master.

� In the case of the 03 read function, this reply will contain the requested
information.

� If a write function 06 or 16 ($10) message is sent to a specific controller, this
reply will consist of a confirmation of the quantity of holding registers to which
data was written in response to the message.

2 Peer-to-peer communications are not supported by the MODBUS protocol. This means that the
controllers cannot communicate with one another, nor with other MODBUS slave devices. The MODBUS
protocol does not allow slave devices to initiate data exchanges. The slave devices can only respond to
messages from the MODBUS master.
3 Throughout this manual hexadecimal numbers are preceded by the $ symbol. (All the numbers in a
MODBUS message are expressed in hexadecimal format.) Any number in this manual without the $
symbol is a decimal number.

Introduction

900M062U00 � Omega. 2-3

If a message containing a 06 or 16 ($10) write function is broadcast to all devices on the
network, then the controllers will write the data to their databases as requested, but the
controllers will not send a confirmation message to the master.

2.2.1.3 What Happens if the Controller Cannot Do What the MODBUS Master Tells It to Do
Sometimes a controller cannot act on a message because communication between the
master and the controller is not possible (for example, because of a fault in the network
or because the controller has not been powered up). However, in some cases the
controller will not act on a message sent by the master because the master sent a faulty
message to the controller; the result depends on the type of fault.

� If a read or write message from the master contains the address of an
invalid register, the controller will send a MODBUS error code 03 message
back to the master. See 2.2.6, 2.3.5 and 2.4.6.

� If a write message from the master instructs a controller to write invalid
(out of range) data to a valid register, or to write to a read-only register, the
controller will send a MODBUS error code 02 message back to the master. See
2.3.6 and 2.4.7.

� If a 03 read message or a 16 ($10) write message from the master instructs
the controller to read or write too many words, the message will be ignored
and no error message will be sent to the master. The maximum number of
words supported by MODBUS functions 03 and 16 ($10) consists of 24 registers.
Depending on the type of value being handled, this can equate with 24 or 12
values. See 1.2.6 and Section 3 for information about the types of values, which
can be read from and written to the controllers.

� If the message contains a MODBUS function code other than 03, 06, 08
subfunction 00 (see 1.2.1.4), or 16 ($10), then the controllers will not act on the
message from the MODBUS. The controller receiving a message that contains
an unsupported function code will not send an error message back to the master.

2.2.1.4 Diagnostic Function
So that you can test communication over the MODBUS network, Omega also supports
the diagnostic function 08 ($08), subfunction 00 ($00) to perform a loopback test; see
2.5 for more information. When a loopback test is performed, the MODBUS master
sends a message to a controller and the controller sends the same message back to the
master. (No changes are made to the controller database as a result of processing the
message.) If the master does not receive a reply, it is time to troubleshoot the network
or the controller’s communication setup.

2.2.2 MODBUS Transmission Mode Supported
The Omega Implementation of the MODBUS protocol supports RTU (Remote Terminal
Mode) only. RTU mode permits faster data throughput than does ASCII mode at the
same baud rate.

Using MODBUS with Series C Controllers

2-4 � Omega 900M062U00

2.2.3 Baud Rates Supported
The Omega controllers can communicate with the MODBUS master at the following baud
rates:

� 300

� 600

� 1200

� 2400

� 4800

� 9600; this is the default rate for all Omega controllers equipped with Omega
MODBUS communication firmware.

The baud rate used by a controller can be changed using a MODBUS message (see
1.3). The baud rate of a CN8200, CN8240, or CN8260 controller can also be changed
using the front panel to access and change the value of the SerL (serial) menu bAud
item.4

2.2.4 Serial Data Formats Supported by the Controllers
Every Omega controller that is equipped with MODBUS communication firmware
supports the following serial data formats:

� 1 start bit, 8 data bits, no parity (0 bits), 1 stop bit; this is the default

� 1 start bit, 8 data bits, even parity (1 bit), 1 stop bit

� 1 start bit, 8 data bits, odd parity (1 bit), 1 stop bit

The data format used by a controller can be changed using a MODBUS message (see
1.3.4.3). The data format for a CN8200, CN8240, CN8260 controller can also be
changed using the front panel to access and change the value of the SerL (serial) menu
PAr (parity) item. The menu selections are none (the default), EuEn (even), and odd.

2.2.5 Addresses Supported by the Controllers
Each controller on the MODBUS network must be assigned a unique ID number used as
the device address when the master sends out a message. Valid addresses for Omega
controllers using the MODBUS protocol are 1 to 247.

The address of a CN8200, CN8260, or CN8260 controller can be set using the front
panel as described in the (CN8200, CN8240, and CN8260) Controller Configuration and
Operation Manual. The address of a controller is set using the DIP switches as
described in the installation manual supplied with the controller. (The address of 255 has
a special meaning for a controller. Setting the DIP switches to 255 returns the
controller’s communication parameters to their defaults.)

4 The controller does not have a display and keypad. Instructions for using the CN8200, CN8240 and
CN8260 controllers’ front panel to change a configuration parameter setting are in the (, CN8200,
CN8240, and CN8260) Controller Configuration and Operation Manual.

Introduction

900M062U00 � Omega. 2-5

2.2.6 Data Types Used by Controllers

2.2.6.1 Principle
Two types of values are used by Omega controllers as configuration parameter values,
setpoints, statuses, etc.:

� values that can be only integers

� values that can include fractional values, that is, numbers that can include
decimal places (such as 123.6, 9.75, and –3.6)

2.2.6.2 Examples
Examples of values used by the controller that can be only integers are the configuration
parameter value that represents the input type (0 = B thermocouple, 1 = C
thermocouple, 2 = E thermocouple, etc.) and the value that represents the controller
mode (1 = manual, 2 = standby, 3 = automatic, etc.).

Examples of values that can include decimal values are the setpoint, process value, and
proportional band.

2.2.6.3 How These Data Types Are Transmitted in MODBUS Registers
Because each MODBUS register contains a 16-bit value, reading or writing a parameter
value for which the controller always uses an integer is straightforward. The integer can
be transmitted in a single register. (Negative integers are transmitted in two’s
complement format.)

Transmitting a value that can include a fractional value is a greater challenge. The
Omega MODBUS implementation provides three methods of transmitting each controller
value that can include decimal places.

� in a single register as an integer. Sometimes the fractional part of the number
stored in the controller’s database is rounded off; sometimes the fractional part of
the number is included without the decimal point. See 3.7 for information about
the circumstances that determine how the fractional value is handled. (Negative
integers are transmitted in two’s complement format.)

� in a single register as an integer that is 10 times the value stored in the
controller’s database. This is called the “10X mirror”. Using the 10X mirror
enables you to access a fractional value rounded to the nearest tenth, as
described in 3.8. (Negative integers are transmitted in two’s complement format.)

� in two registers as a true 32-bit IEEE floating point value that includes the
fractional value (if any) stored in the controller’s database. This is called the
“32-bit IEEE mirror” (see 3.9).

The register region you choose to use to transmit a parameter value that can contain a
fractional value usually depends on the type of values the MODBUS master can handle,
but is also affected by the type of input the controller uses (see 3.6.2). The subject of
transmitting integers and values that can include decimal places is covered in greater
detail in Section 3. That section also describes the regions of the MODBUS register map
used for each type of value.

Using MODBUS with Series C Controllers

2-6 � Omega 900M062U00

2.2.7 IEEE Register Ordering

2.2.7.1 Principle
Each value read from and written to the 32-bit IEEE mirror region of the MODBUS
register map uses two 16-bit registers to transmit the value. The default for all Omega
controllers using MODBUS is to transmit the lower order register before the higher order
register, which is the MODBUS standard. However, to accommodate masters that
cannot use this standard sequence, the sequence in which these two register values are
transmitted is configurable.

The IEEE register sequence used by a controller can be changed using a MODBUS
message (see 1.3). The IEEE register sequence for a CN8200, CN8240, or CN8260
controller can also be changed using the instrument’s front panel to access and change
the value of the SerL (serial) menu nnOd (MODBUS) item. The menu selections are
yes for MODBUS standard sequence (the default: low order register before high order)
and no for non-standard sequence (high order register before low order).

2.2.7.2 Example
The 32-bit IEEE representation of 250.0 (expressed in hex) is $437A 0000. Using the
MODBUS standard sequence, the registers will be transmitted in this order: $0000
437A. If the non-standard sequence is used, the registers will be transmitted in this
order: $437A 0000.

Note that the IEEE register ordering does not affect the sequence in which the bytes
within the register are transmitted. Within the register, the most significant (high order)
byte is always transmitted before the least significant (low order) byte.

Introduction

900M062U00 � Omega. 2-7

2.2.8 Timing and Latency Issues
2.2.8.1 Separating Messages

The MODBUS specification requires that all MODBUS messages be separated by an idle
time (lull in the transmission) that has a duration that is at least 3.5 character times (that
is, the time needed to transmit one character multiplied by 3.5). This necessary idle time
is easily implemented at the host end by waiting at least four character times prior to
sending any request. (This timing is automatically implemented on the controller side.)

2.2.8.2 Allowing the Controller Time to Process a Request
The master must wait sufficient time for a controller to process a request. This time is
called “latency time”. The time needed by the controllers to process a request depends
on the function code in the message and on the number of registers to be read or written.
The table below shows the minimum and maximum latency time for each function.

Function
Code

Minimum
Latency Time

Maximum
Latency Time

03 ($03) 5 milliseconds per register 100 milliseconds per register

06 ($06) 25 milliseconds 180 milliseconds

08 ($08) 0 milliseconds 100 milliseconds

16 ($10) 25 milliseconds per register 180 milliseconds per register

2.2.8.3 Applying the Timing Requirements
The following diagram illustrates timing relationships in Omega MODBUS transactions.

T1T2T3T4 Request T1T2T3T4 T5 Response T1T2T3T4 Request

T1T2T3T4 are the 4 characters of idle time required by the MODBUS protocol. Request
and Response are the request messages sent by the host and the response message
returned by the controllers.

T5 is the latency time required by each controller to process each request.

The master should expect the start of the acknowledgement after the minimum T5 has
elapsed, but should time out and assume an error if the maximum T5 has elapsed and
the start of the acknowledgement has not been received. Following this guideline will
yield the fastest system possible.

T1T2T3T4 is dependent on the BAUD rate and data format used. The formula for
calculating T1T2T3T4 follows.

T1T2T3T4 = 4 X ((X CharBits) milliseconds

where:

CharBits = 10 if the data format is 8 data bits, no parity, 1 stop bit
11 if the data format is 8 data bits, even parity, 1 stop bit
11 if the data format is 8 data bits, odd parity, 1 stop bit

1000
baud

Using MODBUS with Series C Controllers

2-8 � Omega 900M062U00

2.2.8.4 Example
Suppose the network is operating at 9600 baud and 8, N, 1, and you want to read two
registers (in a single message). In this case, T1T2T3T4, the delay needed to separate
messages, is:

4 x (1000/9600 x 10) = 4.17 milliseconds

If the master sends a request to read two registers, then the minimum T5, the minimum
time required for the controller to respond is:

5 milliseconds x 2 = 10 milliseconds

Therefore, the host should wait at least T1T2T3T4 plus the minimum T5 before it
expects the start of the response from the controllers:

4.17 milliseconds + 10 milliseconds = 14.17 milliseconds

However, if the master does not receive the start of the response by the time T1T2T3T4
plus the maximum T5 has elapsed, the master should assume an error. In this case, the
maximum T5 is:

100 milliseconds x 2 = 200 milliseconds

Therefore the master should assume an error if it has not received the start of the
response in:

4.17 milliseconds + 200 milliseconds = 204.17 milliseconds

Introduction

900M062U00 � Omega. 2-9

2.3 Preparing Controllers for Use with MODBUS
2.3.1 Introduction

The controllers should be installed and networked in accordance with the instructions in
the installation manual supplied with the controllers.

Warning All wiring should be done by an experienced technician and be
installed in accordance with national and local electrical codes.
To avoid serious personal injury and damage to equipment, follow
all warnings and cautions provided in the controller installation
manuals.

In addition, to respond to messages from a MODBUS master, the controller must satisfy
three requirements.

� It must contain an RS-485 communication option card and the appropriate
communication firmware; see 1.3.2.

� It must be configured to have a unique controller ID between 1 and 247; see
1.3.3.

� Its communication parameter settings must match those of the MODBUS master
(host); see 1.3.4.

2.3.2 MODBUS Communication Option
To see if a new controller contains an RS-485 communication option card and the
MODBUS communication firmware on its processor board, compare the model number
on the controller’s label with the model number information in the installation manual
supplied with the controller.

2.3.3 Assigning a Unique Controller ID
With the exception of special orders, every Omega controller is shipped with its controller
ID set to 1. If your MODBUS network will contain more than one controller, you must
assign each device on the network a unique ID number.

� For CN8200, CN8240, and CN8260 models the controller ID is configured using
the SerL (serial) menu Id.no (ID number) item. Instructions for using the front
panel display and keypad to access and change parameter values are in the (,
CN8200, CN8240, and CN8260) Controller Configuration and Operation Manual.
5

5 If the controller is not new, you have one more task to perform with the front panel. Every new
controller is configured at the factory to be ready to accept parameter values for the options its hardware
supports. However, if you have used the procedure in 8.2 to load all parameter defaults, then you must
use the front panel of the controller to configure the Card parameter in the Optn (option) menu. This
prepares the controller to receive the appropriate option parameter values. The only exception is in the
case of an CN8240 or CN8260 equipped with only the serial communication option. The CN8240 and
CN8260 models are always ready to receive serial communication parameter values.

Using MODBUS with Series C Controllers

2-10 � Omega 900M062U00

� For controllers the controller ID is configured using the same set of DIP switches
that are used to set the communication parameters to the defaults. Instructions
for setting the DIP switches are in the installation manual supplied with the
controller.

 Warning
Be sure to remove power from the controller before removing the
chassis from the case to access the DIP switches. Do not power up
the controller while the chassis is out of the case. Failure to observe
this precaution can result in exposure to a potentially lethal shock
hazard.

2.3.4 Configuring the Controller Communication Parameters to Match the
 MODBUS Master

2.3.4.1 Communication Defaults
Any Omega controller that contains MODBUS communication firmware is shipped with its
communication defaults set to:

Baud Rate = 9600
Parity = none
Controller ID = 1
MODBUS standard register sequence for 32-bit IEEE values = yes

If the configuration settings in a used controller have been changed from these defaults,
you can change the communication parameter values using a MODBUS message as
described below. The communication settings in a CN8200, CN8240, or CN8260
controller can also be changed using the front panel to access and change the value of
the SerL (serial) menu parameters. Instructions for accessing configuration menus and
changing parameter values are in the (CN8200, CN8240, and CN8260) Controller
Configuration and Operation Manual.

The communication parameters in a controller can be returned to their defaults using DIP
switches as described in the installation manual supplied with the controller.

Be aware that the CN8200, CN8240, and CN8260 controllers do not have a function that
will return only the communication parameters to their defaults. Using the supr
(supervisor) menu Ld.dp (load defaults) item in one of these controllers will return all
configuration parameters and setpoints to their defaults.

Introduction

900M062U00 � Omega. 2-11

2.3.4.2 Methods of Changing the Controller Configuration Parameters
If you plan to operate your network with communication characteristics that are different
from the default settings, you have two choices for changing the communication settings
in the CN8200, CN8240, and CN8260 controllers:

� You can use the controller front panel and the SerL (serial) menu to change the
communication settings in each controller.

� You can use serial communications to change the communication parameters
settings in the controllers.

Because the communication parameters in a can be set to the defaults, but not set to
other values, using the DIP switches, the second method (using serial communications)
is the only way to change the communication parameter values in a unit.

Of course, if the MODBUS master can operate only with communication characteristics
that are different from the controller defaults, then you must use the front panel to change
the communication parameter settings for the CN8200, CN8240, and CN8260 models.6

However, if the MODBUS master can operate with communication characteristics that
are different from the controller defaults, then you can set the master to match these
defaults temporarily, change the communication parameters in the controllers by means
of MODBUS messages containing write functions, then set the master to use the
communication settings you actually want to use for the network.

It is possible to change all the controllers’ communication parameter values from the
defaults, even if the master does not use the standard MODBUS register sequence for
32-bit IEEE values, because all the communication parameters are stored as integers in
the controllers. Therefore, the parameter values can be written to the controllers using
MODBUS integer registers. As a result, the temporary incompatibility between the host’s
register sequence for 32-bit IEEE values and the sequence used by the controllers will
not prevent you from making the necessary changes to the controllers’ configuration
parameter values.

2.3.4.3 Example of Changing the Controllers’ Communication Parameter Values Using
MODBUS Messages

Here is a scenario where the master can communicate at the defaults of 9600 baud, 1
start bit, 8 data bits, no parity (0 bits), 1 stop bit and standard register order for 32-bit
IEEE values. However, other non-Omega devices on the network cannot use these
settings. Therefore, you want to operate your network at 300 baud, 1 start bit, 8 data
bits, even parity (1 bit), 1 stop bit, and non-standard sequencing of 32-bit IEEE values.

To change the new Omega controllers’ communication parameters from their defaults,
you could use the following procedure.

1) Configure the MODBUS master for 9600, 8, N, 1. (The master’s setting for 32-bit
IEEE ordering does not matter, because you use only integer registers to
transmit new configuration parameter values to the controllers.)

6 If your MODBUS host cannot use the Omega communication defaults, contact your Omega sales
representative or a member of the Omega Technical Support team for assistance in changing the
communication parameter values in a controller.

Using MODBUS with Series C Controllers

2-12 � Omega 900M062U00

2) To change the controllers’ IEEE register ordering, write a value of 0 (zero) to the
register at relative address 4084 in each controller.7 Communication with the
controllers will be maintained. Your ability to write to the other communication
parameters will not be affected because they are transmitted using integer
registers.

3) To change the parity to even, write a value of 1 to the register at relative address
4083 in the first controller. You can broadcast the message to all the devices on
the network if you take the non-Omega devices out of service temporarily. (You
should not allow the non-Omega devices to receive the broadcast of the change
to relative register 4083 because that register is probably used for a different
purpose in the register mapping of non-Omega devices.)

4) Wait 150 milliseconds.

5) Ignore the reply from the controller because it will most likely be garbage due to
the parity change. If you did not broadcast the message in step 3, repeat steps 3
and 4 for each controller to be changed.

6) Configure the MODBUS master for 9600, 8, E, 1.

7) To change the baud rate to 300, write a value of 2 to the register at relative
address 4082 in the controllers.

8) Wait 1 second; it takes longer to transmit at 300 baud.

9) Ignore the reply. If you did not broadcast the message in step 7, repeat steps 7
and 8 for each controller to be changed.

10) Configure the MODBUS master for 300, 8, E, 1. You are now ready to configure
the other parameters in the controllers’ databases.

7 See the table in 5.2 for the register addresses of all the communication parameters, as well as all valid
values for these registers.

Introduction

900M062U00 � Omega. 2-13

2.4 Importance of Sequence in Which Configuration
 Parameters Are Written

The Omega of controllers are versatile instruments that are capable of using many types
of input values and implementing several types of control strategies. To support this
versatility, the controllers are capable of storing values for many configuration
parameters. Interrelationships exist between the parameters. Therefore,
it is important that you specify values for the configuration parameters in the correct
sequence.

Once you have your MODBUS network up and running, if you plan to use a
thermocouple or RTD input and if you do not plan to use degrees Fahrenheit (the default
unit of measure), the first step is always to specify the unit to be used (Celsius or Kelvin).
The controller uses this unit of measure for internal operations, as well as for external
communications. When you change the units of measure for temperature inputs, the
controller recalculates any values that have already been specified. For example, if you
want the setpoint to be 100 �C, then you must change the units from the default F to C
before you write the setpoint of 100 to the controller. If you change the units after you
write the setpoint of 100 to the controller, the controller will convert the 100 �F setpoint to
37.8 �C. In this case, you would have to reconfigure the setpoint to 100 �C to implement
the control needed by your process.

After the unit of measure has been changed, if necessary, from degrees Fahrenheit to
your choice of Celsius or Kelvin, the next step is always to specify the type of input that
each controller will receive. That means that you must specify the type of thermocouple
or RTD that will provide the input to the controller, or, in the case of a linear input, the
range and units of the input (0 to 20 mA, 0 to 5 V, 1 to 5 V, etc.) The type of input
specified affects how the controller processes the input signal and calculates the output
needed to achieve the setpoint.

Generally, the parameters should be configured in the sequence in which they are
presented in Section 4. See 4.1.2 for more information about configuration sequence.

In addition to being aware of the sequence in which parameters should be configured,
you should also remember that not all parameters apply to all applications. For example,
if you specify that the input type is a thermocouple or RTD, then you do not have to write
a value to the low scale and high scale parameters. (You can write the values, but the
controller will ignore them.) However, if you use a linear input, then you must specify
scaling values, or accept the factory defaults.8

For more information about the interrelationships between parameters and about the
effects of setting specific values, see the (CN8200, CN8240, and CN8260) Controller
Configuration and Operation Manual.

8 The database values in new (“out of the box”) , CN8200, CN8240, and CN8260 controllers are always
the default values shown in the tables in Section 4. Instructions for using the controller front panel to
return all database values in the CN8200, CN8240, and CN8260 controllers to their default values are in
the (, CN8200, CN8240, and CN8260) Controller Configuration and Operation Manual. You can also
use MODBUS function 16 ($10) to write a command to special registers in the , CN8200, CN8240, and
CN8260 controllers to set all the database values to their defaults (excluding the address) as described
in Section 7.

Using MODBUS with Series C Controllers

2-14 � Omega 900M062U00

2.5 Numbering Conventions Used in This Manual
The decimal numbers in this manual are not identified with any special symbol. The
hexadecimal numbers are preceded by $. For example, the function to write to multiple
registers is function 16 ($10).

All the numbers in a MODBUS message are expressed in hexadecimal format because
they are transmitted as 16-bit words (each consisting of two bytes).

900M062U00 � Omega. 3-1

3. MODBUS Functions Supported

3.1 Overview
Every message sent from a MODBUS master to a slave on the network contains a
function code that represents the action the slave device should take in response to the
message. So that a MODBUS master can read and write all configuration parameters,
setpoints, and status values stored in an Omega , CN8200, CN8240, or CN8260
controller, the Omega implementation of the MODBUS protocol supports the following
function codes:

� function 03 ($03)9 – This function is used to read to one or more contiguous
“holding registers” (database locations that are next to one another in the register
map). See 2.2 for more information.

� function 06 ($06) – This function is used to write to a single holding register. A
message containing function 06 can be broadcast to all controllers on the
network simultaneously by sending the message to the controller ID of 0 (zero),
instead of to the controller ID of a specific device. See 2.3 for more information.

� function 16 ($010) – This function is used to write to a single register or to
multiple contiguous holding registers, that is, to two or more registers that are
next to one another in the register map. A message containing function 16 ($10)
can be broadcast to all controllers on the network simultaneously by sending the
message to the controller ID of 0 (zero), instead of to the controller ID of a
specific device. See 2.4 for more information.

So that you can test communication over the MODBUS network, Omega also supports
the diagnostic function 08 ($08), subfunction 00 ($00) to perform a loopback test; see
2.5 for more information. When a loopback test is performed, the MODBUS master
sends a message to a controller and the controller sends the same message back to the
master. (No changes are made to the controller database as a result of processing the
command.) If the master does not receive a reply, it is time to troubleshoot the network
or the controller’s communication setup.

The controllers will not take any action, nor will they reply in response to any messages
they cannot interpret. This includes any messages that contain a function code other
than 03, 06, 16 ($10), or 08 subfunction 00.

Throughout this section the following abbreviations are used:

9 Throughout this manual hexadecimal numbers are preceded by the $ symbol. (All the numbers in a
MODBUS message are expressed in hexadecimal format.) Any number in this manual without the $
symbol is a decimal number.

Using MODBUS with Series C Controllers

3-2 � Omega. 900M062U00

MSB = most significant byte (high byte)
LSB = least significant byte (low byte)
CRC = cyclical redundancy check10

3.2 Function 03 ($03): Read One or More Holding Registers

3.2.1 Introduction
This function is used to read the value of one or more contiguous holding registers (that
is, registers that are next to one another). Broadcasting a function 03 message is not
supported by the MODBUS protocol.

When using the 03 read function, you must specify the following data:

� the controller ID of the device containing the values to be read

� the function code $03

� the relative address of the first register to be read11

� the quantity of words to be read, beginning at the specified register address

The master must append a CRC value to the message.

The register address of every value that can be read from the Omega controllers is listed
in Section 4.

3.2.2 Allowable Number of Words to Be Read in a Function 03 Request
Each integer register (including the registers used to transmit a fractional value as an
integer) uses one word. Therefore, the value of the Number Of Words To Read field in
the request message should equal the number of registers requested for database values
that are transmitted as integers. (For convenience, we refer to these as “non-IEEE”
registers.)

Each 32-bit IEEE floating point register uses two words. Therefore, the value of the
Number of Words to Read field should equal the number of registers needed multiplied
by two. For example, to request a read of two 32-bit IEEE registers, the Number Of
Words To Read field must contain the value four.

IMPORTANT The maximum number of words allowed for function code $03 is
24. This equates to 24 non-IEEE registers and 12 of the 32-bit
IEEE registers. Thus, the value in the Number Of Words To Read
field cannot exceed 24 ($18).

10 If you are not familiar with the function of a CRC, refer to the MODBUS specification available at the
modicon.com web site.
11 All register relative addresses are offset from 40001. See Section 3 for more information about register
address regions used by the Omega implementation of the MODBUS protocol. See Sections 4 and 5 for
the relative address of specific configuration parameters and other values in the controller databases.

MODBUS Functions Supported

900M062U00 � Omega. 3-3

3.2.3 Function 03 Request
The format for a function 03 request is shown below.

Device
Address

Function Code
03

First Register
Relative
Address

Number Of
Words To Read CRC

1 byte 1 byte containing
$03

MSB LSB MSB LSB MSB LSB

3.2.4 Function 03 Examples
Suppose you want to read four non-IEEE registers starting at relative address 0 in the
controller with controller ID 1. The master should send the message shown below.

Device
Address

Function Code
03

First Register
Relative
Address

Number Of
Words To Read CRC

$01 $03 $00 $00 $00 $04 $44 $09

To read two 32-bit IEEE registers starting at relative address of 8000 ($1F40) in the same
controller, the master should send the message shown below.

Device
Address

Function Code
03

First Register
Relative
Address

Number Of
Words To Read CRC

$01 $03 $1F $40 $00 $04 $42 $09

3.2.5 Function 03 Normal Reply
If the controller is able to interpret the message and read the requested registers, the
device will respond to the master with a normal reply message.

The reply will consist of the following data:

� the controller ID of the device responding

� the function code $03

� the quantity of bytes read

� the value of the first word read

� the value of the second word read, and so on until

� the value of the last word read

The controller will append a CRC value to the message.

Using MODBUS with Series C Controllers

3-4 � Omega. 900M062U00

The format for a function 03 normal reply is shown below.

Device
Address

Function
Code 03

Number Of
Bytes
Read

Value Of
First Word

Read ….

Value Of
Last Word

Read CRC

1 byte 1 byte
containing

$03

1 byte MSB LSB …. MSB LSB MSB LSB

The block containing … represents the values between the first and last value. Each
2-byte word’s value must be included in the message.

3.2.6 Reply to Function 03 Request Containing Illegal Register Address:
 02 ($02) Error Code

The controllers will issue an error reply containing the MODBUS error code of $02 if
either of the following conditions is true:

� First Register Relative Address field does not point to a valid Omega
MODBUS register, or

� First Register Relative Address field contains an odd value that is located in
the 32-bit IEEE register address region. All 32-bit IEEE register addresses must
be even.

A code $02 error message will be returned only if the First Register Relative Address
field contains an address of an invalid register. Otherwise, reading will continue to the
last register even in the event of invalid register addresses occurring after the first
register. Garbage data will be returned for invalid register addresses.

The format for an error code $02 response to a function $03 message is shown below.
Note that the controller adds $80 to function code $03 in the reply.

Device Address Function Code Error Code CRC

1 byte $83 $02 MSB LSB

MODBUS Functions Supported

900M062U00 � Omega. 3-5

3.2.7 Circumstances Under Which No Reply Is Sent in Response to a
 Function 03 Message

The CN8200, CN8240, CN8260 will not send a reply to a function code $03 message if
any of the following conditions exist:

� The message was a broadcast.

� The value of the CRC field does not equal the CRC calculated by the controller
for the message received.

� The value in the Number of Words to Read field is greater than the maximum of
24 ($18).

� Value in Number of Words to Read field is not even when addressing 32-bit
IEEE registers. Each 32-bit IEEE register consists of two bytes; therefore their
byte counts must be even.

3.3 Function 06 ($06): Write to a Single Holding Register

3.3.1 Introduction
This function is used to set the value of a single holding register. The function 06 write
function can be broadcast.

When using the 06 write function, you must specify the following data:

� the controller ID of the device to which the value is to be written

� the function code $06

� the relative address of the register to be written

� the value to be written to the specified register

The master must append a CRC value to the message.

This function can be used to write to any integer register (including the registers used to
transmit a fractional value as an integer). Because each 32-bit IEEE value uses two
registers, the 06 write function cannot be used for 32-bit IEEE values. (Instead, use the
16 ($10) write function for 32-bit IEEE floating point values.) The controller will respond
with a $02 (illegal address) error message if you try to use function 06 to write to a 32-bit
IEEE register.

3.3.2 Function 06 Request
The format for a function 06 request is shown below.

Device
Address

Function Code
06

Register
Relative
Address Data CRC

1 byte 1 byte
containing

$06

MSB LSB MSB LSB MSB LSB

Using MODBUS with Series C Controllers

3-6 � Omega. 900M062U00

3.3.3 Examples
Suppose you want to write the value 50 ($32) to the non-IEEE register at relative address
4009 ($FA9) in the instrument with controller ID 156 ($9C). The master should send the
message shown below.

Device
Address

Function Code
06

Register
Relative
Address Data CRC

$9C $06 $0F $A9 $00 $32 $C7 $66

Suppose you want to write the value 5 ($05) to the non-IEEE register at relative address
4082 ($1E2) in all the controllers on the network (that is, broadcast the message). The
master should send the message shown below.

Device
Address

Function Code
06

Register
Relative
Address Data CRC

$00 $06 $01 $E2 $00 $05 $E9 $D2

3.3.4 Function 06 Normal Reply
If the controller is able to interpret the message and write the data as requested, the
device will respond to the master with a normal reply message if the message was not
broadcast. If the message was broadcast, then the controller will write the data to the
specified registers, but will not send a reply.

The reply to a message sent to a single device will be an echo of the write message.
That means that the format and content of the reply will be exactly the same as the
format and content of the message sent by the master.

Device
Address

Function Code
06

Register
Relative
Address Data CRC

1 byte 1 byte
containing

$06

MSB LSB MSB LSB MSB LSB

3.3.5 Reply to Function 06 Request Containing Illegal Register Address:
 02 ($02) Error Code

The controllers will issue an error reply containing the MODBUS error code of $02 if
either of the following conditions is true:

� Register Relative Address field does not point to a valid Omega MODBUS
register, or

� Register Relative Address field contains an address that is located in the 32-bit
IEEE register address region. The 06 write function can write to only one
register, and every 32-bit IEEE value requires two registers.

MODBUS Functions Supported

900M062U00 � Omega. 3-7

The format for an error code $02 response to a function $06 message is shown below.
Note that the controller adds $80 to function code $06 in the reply.

Device Address Function Code Error Code CRC

1 byte $86 $02 MSB LSB

3.3.6 Reply to Function 06 Request Containing Illegal Value in Data Field:
 03 ($03) Error Code

An error reply containing the MODBUS error code $03 will be issued by the controllers if
either of the following conditions is true:

� Data field contains a value that is not a valid value for the destination (target)
register, or

� Register Relative Address field contains an address that is a read-only value.

The format for an error code $03 response to a function $06 message is shown below.
Note that the controller adds $80 to function code $06 in the reply.

Device Address Function Code Error Code CRC

1 byte $86 $03 MSB LSB

3.3.7 Circumstances Under Which No Reply Is Sent in Response to a
 Function 06 Message

The controllers will not reply to a function code $06 message if the following condition
exists:

� The message was a broadcast. However, in this case the controllers do write the
value, even though they do not reply.

The controllers will not reply, nor act in response to a function code $06 message if the
condition listed below exists. If this condition exists, the controllers do not write the value
to their databases.

� The value of the CRC field does not equal the CRC calculated by the controller
based on the message received.

Using MODBUS with Series C Controllers

3-8 � Omega. 900M062U00

3.4 Function 16 ($10): Write to Multiple Registers

3.4.1 Introduction
This function is used to write specified values to a single register or to multiple contiguous
holding registers (that is, registers that are next to one another). Broadcasting a function
16 ($10) message is supported by the MODBUS protocol.

When using the 16 ($10) write function, you must specify the following data:

� the controller ID of the device to which the values are to be written

� the function code $10

� the relative address of the first register to be written

� the quantity of words to be written

� the quantity of bytes to be written

� the value of the first word to be written, followed by the second word, and so forth
until the last word of data to be written

The master must append a CRC value to the message.

3.4.2 Function 16 ($10) Request
The format for a function 16 ($10) request is shown below.

Device
Address

Func-
tion

Code
16

First
Register
Relative
Address
(2 bytes)

Word
Count

(2 bytes)
Byte

Count

Value of
First

Word to
Be

Written
…

Value of
Last Word

to Be
Written

CRC

1 byte 1 byte
contain-
ing $10

MSB LSB MSB LSB 1 byte MSB LSB … MSB LSB MSB LSB

The block containing … represents the words between the first and last word of the
values to be written. Each byte of each word of the values to be written must be included
in the message.

3.4.3 Allowable Number of Words to Be Written in Function 16 ($10)
 Request

Each integer register (including the registers used to transmit a fractional value as an
integer) uses one word. Therefore, the value of the Word Count field in the request
message should equal the number of registers requested for database values that are
transmitted as integers.

Each 32-bit IEEE floating point register uses two words. Therefore, the value of the
Word Count field should be equal to the number of registers to be written multiplied by
two. For example, to request a write of two 32-bit IEEE registers, the Word Count field
must contain the value four.

The value in the Byte Count field must be two times the value in the Word Count field.

MODBUS Functions Supported

900M062U00 � Omega. 3-9

IMPORTANT The maximum number of words allowed for function code $10 is
24. This equates to 24 non-IEEE registers and 12 of the 32-bit
IEEE registers. Thus, the value in the Word Count field cannot
exceed 24 ($18).

3.4.4 Function 16 ($10) Examples
Suppose you want to write the following values to non-IEEE registers in controller 73
($49):

value of 2 ($02) to relative address 4076 ($FEC)
value of 1 ($01) to relative address 4077 ($FED)
value of 100 ($64) to relative address 4078 ($FEE)
value of 200 ($C8) to relative address 4079 ($FEF)

The master should send the message shown below.

Device
Address

Function
Code 16

First
Register
Relative
Address

Word
Count

Byte
Count

4 Words (8
Bytes) of

Data CRC

$49 $10 $0F $EC $00 $04 $08 $00 02
$00 01
$00 64
$00 C8

$26 $E4

Suppose you want to write the value 250.0 to one 32-bit IEEE holding register at relative
address of 8002 ($1F42) in controller 1. The master should send this message.

Device
Address

Function
Code 16

First
Register
Relative
Address

Word
Count

Byte
Count

2 Words (4
Bytes) of

Data CRC

$01 $10 $1F $42 $00 $02 $04 $43 7A
$00 00

$CE $2B

Using MODBUS with Series C Controllers

3-10 � Omega. 900M062U00

3.4.5 Function 16 ($10) Normal Reply
If the controller is able to interpret the message and write to the requested registers, the
device will respond to the master with a normal reply message.

The reply will consist of the following data:

� the controller ID of the device to which the values are to be written

� the function code $10

� the relative address of the first register that was written

� the quantity of words that were written

The controller will append a CRC value to the message.

Device
Address

Function Code
16

First Register
Relative
Address

Word Count
(Number of

Words Written) CRC

1 byte 1 byte
 containing $10

MSB LSB MSB LSB MSB LSB

The value in Word Count field will equal the actual number of words written. If a write
operation fails part way through the register list (either due to address or data error), then
the write operation will terminate at the point of failure and the number of words written
will be less than the number of words in the write command message. For example,
suppose that addresses $00, $01, and $03 are valid while address $02 is not. If the host
issues a request to write four non-IEEE registers starting at address $00, then the value
in the Word Count field in the reply message will be two instead of the requested four.

In this case the controller will not send an invalid address 02 error code, because the first
address in the write request was valid (see 2.4.6).

3.4.6 Reply to Function 16 ($10) Request Containing Illegal Register
 Address: 02 ($02) Error Code

The controllers will issue an error reply containing the MODBUS error code of $02 only if
the following condition is true:

� First Register Relative Address field does not point to a valid Omega
MODBUS register.

The format for an error code $02 response to a function $10 message is shown below.
Note that the controller adds $80 to function code $10 in the reply.

Device Address Function Code Error Code CRC

1 byte $90 $02 MSB LSB

A code $02 message will be returned only if the First Register Relative Address field
contains an address of an invalid register. When an invalid address occurs after the first
register, the write operation stops at the first invalid address and the actual number of
words written is sent to the host in the Word Count field of the normal reply.

MODBUS Functions Supported

900M062U00 � Omega. 3-11

3.4.7 Reply to Function 16 ($10) Request Containing Illegal Value in Data
 Field: 03 ($03) Error Code

An error reply containing the MODBUS error code $03 will be issued if either of the
following conditions is true:

� The Data for the first register to be written contains a value that is not a valid
value for the destination (target) register, or

� The First Register Relative Address field contains an address that is a read-
only value.

The format for an error code $03 response to a function $10 message is shown below.
Note that the controller adds $80 to function code $10 in the reply.

Device Address Function Code Error Code CRC

1 byte $90 $03 MSB LSB

A code $03 message will be returned only if the data to be written to the first register is
invalid. If the write operation fails after writing to the first register, the write operation
stops at the first invalid data and the actual number of words written is sent to the host in
the Word Count field of the normal reply.

When the Word Count field in a function code $10 reply message does not match the
Word Count in the request, it is an indication that a write failure occurred after writing to
the first register.

3.4.8 Circumstances Under Which No Reply Is Sent in Response to a
 Function 16 ($10) Request

The controllers will not reply in response to a function code $10 message if the following
condition exists:

� The message was a broadcast. However, in this case the controllers do write the
value, even though they do not reply.

The controllers will not reply, nor act in response to a function code $10 message if any
of the conditions listed below exist. If any of these conditions exist, the controller does
not write the values to its database.

� The value of the CRC field does not equal the CRC calculated by the controller
based on the message received, or

� The value in the Word Count field is greater than the maximum of 24 ($18), or

� The value in the Byte Count field is not equal to two multiplied by the value in
the Word Count field, or

� Number of data bytes in the request does not equal the number indicated in the
Byte Count field, or

� The value in the Word Count field is not an even value when addressing 32-bit
IEEE registers. Each 32-bit IEEE register is two words long and thus, the Word
Count field must contain an even value.

Using MODBUS with Series C Controllers

3-12 � Omega. 900M062U00

3.5 Function 08 ($08): Loopback Test

3.5.1 Introduction
So that you can test communication over the MODBUS network, Omega supports the
diagnostic function 08 ($08), subfunction 00 ($00) to perform a loopback test. When a
loopback test is performed, the MODBUS master sends a message to a controller and, if
the message is received without errors, the controller sends the same message back to
the master. (No changes are made to the controller database as a result of processing
the command.) If the master does not receive a reply, it is time to troubleshoot the
network or the controller’s communication setup.

The MODBUS specification does not support broadcasting function 08.

When using the 08 ($08) loopback diagnostic function, you must specify the following
data:

� the controller ID of the device to which the values are to be written

� the function code $08

� the diagnostic subfunction code $00

� any two bytes of data

The master must append a CRC value to the message.

3.5.2 Function 08 Request
The format for a function 08 subfunction 00 request is shown below.

Device
Address

Function Code
08

Diagnostic
Subfunction

Code 00
Loopback Data

(2 Bytes) CRC

1 byte 1 byte containing
$08

2 bytes containing
$00 $00

MSB LSB MSB LSB

The Diagnostic Subfunction Code field must contain the value of zero in both bytes.
The Loopback Data field can contain any value.

3.5.3 Function 08 Example
Here is an example of a loopback test message sent to controller 56 ($38).

Device
Address

Function Code
08

Diagnostic
Code 00
(2 bytes)

Loopback Data
(Two Bytes) CRC

$38 $08 $00 $00 $AA $BB DB B1

MODBUS Functions Supported

900M062U00 � Omega. 3-13

3.5.4 Function 08 Normal Reply
If the controller receives the message and the CRC is correct, the controller will reply by
sending back an echo of the request from the master. That means that the format and
content of the reply will be exactly the same as the format and content of the message
sent by the master.

Device
Address

Function Code
08

Diagnostic
Subfunction

Code 00
Loopback Data

(2 Bytes) CRC

1 byte 1 byte containing
$08

2 bytes containing
$00 $00

MSB LSB MSB LSB

3.5.5 Circumstances Under Which No Reply Is Sent in Response to a
 Function 08 Request

The controllers will not reply to a function code $08 message if any of the following
conditions exist:

� The message was a broadcast, or

� The value of the CRC field does not equal the CRC calculated by the controller
based on the message received, or

� The value in the Diagnostic Subfunction Code field does not equal 0.

Using MODBUS with Series C Controllers

3-14 � Omega. 900M062U00

900M062U00 � Omega. 4-1

4. MODBUS Register Ranges
and Data Types Used by Omega

4.1 Introduction
This section describes:

� the types of values used by the controllers for configuration parameter values,
setpoints, etc. (see 3.2)

� how the controllers store different types of values, depending on the type of input the
controller receives (see 3.3 and 3.4)

� what MODBUS register regions are available to transmit values to and from the
controllers (see 3.5 to the end of this section).

4.2 Types of Values Used by the Controllers

4.2.1 Overview
Two types of values are used by Omega controllers as configuration parameter values,
setpoints, etc.:

� values that can be only integers

� values that can include fractional values, that is, numbers that can include
decimal places (such as 123.6, 9.75, and –3.6); the number of decimal places
supported is configurable (see 4.4.2). If the controller receives its input from a
thermocouple or RTD, zero or one decimal place can be used. If the controller
receives a linear input, the controller can use zero, one, two, or three decimal
places.

4.2.2 Examples
Examples of values used by the controllers that can be only integers are the configuration
parameter values that represent the input type (0 = B thermocouple, 1 = C thermocouple,
2 = E thermocouple, etc.) and the values that represent the controller mode (1 = manual,
2 = standby, 3 = automatic, etc.).

Examples of values that can include decimal values are the setpoint, process value, and
proportional band.

Using MODBUS with Series C Controllers

4-2 � Omega. 900M062U00

4.3 How the Controller Stores Values That Are Always Integers

4.3.1 Principle
Controller values that are always used as integers are stored as integers. This makes
transmission of these values straightforward. Each value can be transmitted as a single
register as described in 3.5. Determining the value to write from the MODBUS host (or
interpreting the value read from the controller) is also uncomplicated: the value written (or
read) using a MODBUS register is the value used by the controller.

4.3.2 What Is Displayed on the Controller Front Panel
If the integer represents a numerical value, such as the fixed output percentage used in
manual mode, then the integer stored in the controller is the same as the value displayed
on the controller front panel.

However, in most cases, a parameter value that is always used and stored as an integer
represents something else. For example, consider the value stored for the input type.
If 0 is stored in the controller’s database as the value of the input parameter, the
controller will display b (B thermocouple) as the value of the input type parameter if the
configuration menus are accessed using the front panel of the controller. If the value
stored for the input parameter is 1, the controller will display C (C thermocouple), etc.

Register Ranges and Data Types

900M062U00 � Omega. 4-3

4.4 How the Controller Stores Values That Can Include
 Fractional Values

4.4.1 Principles
In the case of values that can include decimal places, such as the setpoint, process
value, or proportional band, the controller does not always store the value that it actually
uses.

When using a MODBUS register to write and read any value that can include a fractional
value, the value transmitted will be based on the stored value.12 If the stored value is not
the same as the value the controller uses, you must take that into account when writing
or reading the parameter using a MODBUS register.

The value stored depends on several factors that must be considered when determining
the value to write to one of these parameters (or when interpreting a value read from the
controller).

� Some parameters always store the decimal point as part of the value. These
parameters are marked FV in the Type column of the tables in Section 4. For
example, the tuning parameter used to store the rate (derivative action) in
Proportional-Integral-Derivative (PID) control is marked FV in the table in 4.6.2. This
means that if the controller uses a rate of 6.5, that is the value stored in the
controller’s database. The 6.5 will also be the value on which the value transmitted in
a MODBUS register is based.

� Some parameters store the decimal point if the input is a thermocouple or an RTD,
but not if the input is linear. These parameters (the majority) are marked FV� in the
tables in Section 4. For example, the setpoint is marked FV� in the Type column of
the table in 4.14.2. This means that if the controller uses a setpoint of 150.5 and the
input is from a thermocouple or RTD, the setpoint stored in the controller’s database
will be 150.5. However, if the controller uses a setpoint of 150.5 and the input is
linear, the value stored will be 1505.13 The controller interprets this stored value
correctly by inserting the decimal point in the correct position, based on the value of a
configuration parameter that specifies the decimal position.

4.4.2 What Is Displayed on the Controller Front Panel
The value displayed on the controller front panel for a parameter that can include a
fractional value is the value used by the controller, within the limits imposed by a four-
character display.

For example, if the rate tuning parameter used by the controller is 6.5, then that is the
value stored, as well as the value displayed.

12 The value transmitted will be based on the value stored in the controller. Depending on the register
range used, the value transmitted may be exactly the same as the value stored in the controller, or it may
be a calculated value based on the value stored. These concepts will be explained later in this section.
13 A “linear” input is a current, voltage, or millivolt input that varies in direct proportion to the measured
process variable.

Using MODBUS with Series C Controllers

4-4 � Omega. 900M062U00

If the setpoint is 150.5, then that is what is displayed, regardless of the type of input. If
the input is an RTD or thermocouple, the controller displays the value stored in its
database: 150.5. If the input is linear, the controller’s processor reads the 1505 stored in
its database, inserts the decimal point based on the configured maximum number of
decimal positions, and displays the value used by the controller: 150.5.

If the setpoint is 1200, then that is what is stored in the controller’s database, regardless
of the type of input. The 1200 is also the value displayed.

What about a setpoint of 1200.5? A five-digit value cannot be configured using the
controller front panel, because the display supports a maximum of four characters.
However, using a MODBUS host you can transmit a five-digit value and the controller can
store and use it, as described later in this section.

Register Ranges and Data Types

900M062U00 � Omega. 4-5

4.5 Using MODBUS to Transmit Controller Values That Are
 Always Integers: Register Addresses 4000 to 4999

4.5.1 Principles
Because each MODBUS register contains a 16-bit value, reading from (and writing to) a
parameter for which the controller can use only an integer is straightforward. The integer
can be transmitted in a single register as a 16-bit integer value. Negative integers are
transmitted in two’s complement format.

Parameters that are always integers are marked I in the Type column in the tables in
Section 4.

4.5.2 Examples
Examples of integer values that are used by the controller are the value that represents
the input type (0 = B thermocouple, 1 = C thermocouple, 2 = E thermocouple, etc.) and
the value that represents the controller mode (1 = manual, 2 = standby, 3 = automatic,
etc.).

To specify that the input type will be a C thermocouple, find the relative address for the
input type parameter in the table in 4.3. Use this relative address 4049 ($FD1) in a
function 06 ($06) or 16 ($10) request to write the value 1 ($01) to the controller.

Using MODBUS with Series C Controllers

4-6 � Omega. 900M062U00

4.6 Overview of Using MODBUS to Transmit Controller Values
 That Can Include Fractional Values

4.6.1 Three Register Ranges Available
Transmitting a value that can include a fractional value is a greater challenge than
transmitting a value that is always an integer. The Omega MODBUS implementation
provides three methods of transmitting each controller value that can include decimal
places.

� in a single register as an integer using the region 0000 to 0999; what happens to
the fractional value depends on how the value is stored in the controller; see 3.7
for details on using the 0000 to 0999 region

� in a single register as an integer that is 10X the value stored in the controller,
using the register region 1000 to 1999 as described in 3.8

� in two registers as a 32-bit IEEE representation of a floating point value in a
single read or write operation using the register region 8000 to 9999; when using
this region, you can transmit exactly the value stored in the controller as
described in 3.9

Regardless of the range used, the value transmitted is based on the value stored in the
controller. As mentioned earlier in this section, the value stored is not always the value
used by the controller in its calculations. If the controller does not store the decimal point
in its database, then the decimal point will not be included in the value read from the
controller, even if you read the value as a 32-bit IEEE floating point value.

4.6.2 Which Region to Use

4.6.2.1 First Choice for All Parameters and All Input Types: IEEE Floating Point Region
 8000 to 9999

If the MODBUS master can handle 32-bit floating point values, then use the 8000 to 9999
range.

If the controller stores the decimal point in the value, then the value transmitted using two
registers (per value) in the 32-bit IEEE region will not require any manipulation in the host
(other than interpreting the 32-bit IEEE representation of the value). The controller stores
the decimal point for parameters marked FV in the tables in Section 4 regardless of input
type, as well as for parameters marked FV� parameters, if a thermocouple or RTD input
is used.

Even if the controller does not store the decimal point in the value (which means that the
host must insert the decimal point in the correct position when interpreting a value read
from the controller), there is still an advantage to using the 32-bit IEEE floating point
region. If you use the 32-bit IEEE region to write a value to the controller, you are not
constrained by the four-character display.

For example, using the front panel of the controller, it is impossible to configure the
setpoint as 120.75, because the controller cannot display five characters. However,
using MODBUS and the 32-bit IEEE floating point region, you can write a setpoint to the
controller that contains a fractional value, and has more than four digits.

Use of the 32-bit IEEE floating point region is described in greater detail in 3.9.

Register Ranges and Data Types

900M062U00 � Omega. 4-7

4.6.2.2 Second Choice with Temperature Inputs: 10X Region 1000 to 1999
If the MODBUS master can only handle integers, then your best choice for transmitting
FV (regardless of input type) and FV� controller values when temperature inputs are
used is the 10X region 1000 to 1999.

When you use this region, the value transmitted is ten times the value stored in the
controller. This enables you to transmit a fractional value as an integer with greater
accuracy than you can using the base region 0000 to 0999.

For example, the setpoint is marked FV� in the table in 4.14.2. This means that if the
controller uses a temperature input (thermocouple or RTD), the decimal point is stored in
the controller’s database with the value. Therefore, if the controller uses a setpoint of
150.5, the setpoint stored in the controller’s database will be 150.5. When this value is
transmitted using the 10X region, the value is transmitted as 1505. (The maximum
number of decimal places allowed with temperature inputs is one.)

The 10X region is not recommended for FV� parameters when a linear input is used. In
the case of FV� parameters when a linear input is used, the controller does not store the
decimal point in its database, but the controller does store the digits in the fractional
value. If the controller uses a linear input, up to three decimal places are supported.
However, ten times a value with that many digits can exceed the range of values that can
be transmitted as an integer in a single register: –32768 to 32767.

Using the registers in the10X region (addresses 1000 to 1999) is described in greater
detail in 3.8.

4.6.2.3 Second Choice with Linear Inputs: Base Region 0000 to 0999
If the MODBUS master can handle only integers, then your best choice for transmitting
FV� controller values when a linear input is used is the base region 0000 to 0999.

For FV� parameters when a linear input is used, the controller does not store the decimal
point in its database, but the controller does store the digits in the fractional value. As a
result, a value such as 75.75 is stored in the controller’s database as an integer 7575.
When the controller uses this value, the controller checks the Decimal Position
parameter, sees that the decimal position is 2, and inserts the decimal point in the correct
position, manipulating 7575 into 75.75. Up to three decimal places are allowed if the
controller uses a linear input.14

The MODBUS master must parallel this operation. Using a register in the 0000 to 0999,
the master must be programmed to read the integer stored in the controller’s database,
then read the Decimal Position, and insert the decimal point in the correct place. When
writing values, the MODBUS master must be programmed to check the number of
decimal positions supported, then write the appropriate integer to the controller using the
0000 to 0999 region.

Using the base region 0000 to 0999 is described in greater detail in 3.7.

14 When a linear input is used and the Decimal Position is not 0 (zero), the range of permitted values is
reduced for both FV and FV� parameters. See 5.1.3.3 for more information.

Using MODBUS with Series C Controllers

4-8 � Omega. 900M062U00

4.7 Base Fractional Value Region: Register
 Addresses 0000 to 0999

4.7.1 General Principles

4.7.1.1 Introduction
The most convenient way to transmit any controller value that includes a fractional
value is using the registers in the 32-bit IEEE region (addresses 8000 to 9999).
If your process requires use of fractional values and the MODBUS master can
handle 32-bit IEEE values, skip to 3.9.

If your MODBUS master can handle only integers, then your options for transmitting
values that include decimal places are the registers in the 0000 to 0999 region described
here and the registers in the 1000 to 1999 10X mirror of the base region described in 3.8.
Read on.

4.7.1.2 Base Region Uses One Register Per Value Transmitted
When a controller value that includes a decimal value is transmitted in the 0000 to 0999
region, the value is transmitted in a single MODBUS register as an integer.

The ways the fractional portion of the value is handled when read as an integer using the
0000 to 0999 region depend on the type of parameter and, sometimes, the type of
controller input.

4.7.1.3 Range of Values That Can Be Transmitted in Base Region
The limits for a value transmitted as an integer are – 32768 to 32767. The controller
values that can be represented within that range depend on the number of decimal
places used and the value stored.

4.7.1.4 If Controller Is Configured to Support Decimal Places, Then the Controller’s
 Storage Method for a Parameter Affects Values Read and Written

Many parameters in the controllers can use fractional values. However, that does not
mean that you are forced to use fractional values. Every controller permits you to
configure a Decimal Position parameter. By default, the controllers are set to use zero
decimal places. For many temperature applications, fractional values are not needed.

However, if the controller is configured to use decimal places, the fractional value is not
stored the same way for every parameter that can use a fractional value. The value
stored by the controller is not always the value used by the controller.

When a configuration parameter (or other controller value that can include decimal
values) is read using the registers in the 0000 to 0999 base region, the value returned to
the MODBUS master in the controller’s reply message depends on how the controller
handles the fractional portion of the value for that particular parameter. If the controller is
configured to support decimal places for parameters that can use fractional values, then
the MODBUS master must also take into account how the controller stores a particular
parameter when attempting to read from or write to the controller using the registers in
the 0000 to 0999 region. See 3.7.2 and 3.7.3 for more information.

Register Ranges and Data Types

900M062U00 � Omega. 4-9

If your process does not require the precision of fractional values, then leave the
Display menu Decimal Places parameter (register 4068 for RTD and thermocouple
inputs; register 4069 for linear inputs) at the default 0 (zero). Use the base region
relative address provided for each parameter in Section 4 to transmit as integers
parameter values that can support fractional values. You can skip the rest of this
chapter (although the summary in 3.10 is useful).

4.7.2 Interpreting Fractional Values Stored with the Decimal Point
 Transmitted in Base Region 0000 to 0999

4.7.2.1 Principles

If the Type column for a parameter in the table in Section 4 contains FV�, and the input is
a thermocouple or an RTD, then the controller stores the decimal point, as well as the
digits in the fractional value for this parameter.

If the Type column for a parameter in the table in Section 4 contains FV, then the
controller always stores the decimal point, as well as the digits in the fractional value for
this parameter, regardless of input type.

If you read or write one of these parameter values using the registers in the 0000 to 0999
region, the value will be rounded to the nearest integer.

� Values of .1, .2, .3. and .4 are rounded downward.

� Values of .5, .6, .7, .8, and .9 are rounded upward.

4.7.2.2 Examples
For example, suppose the input is not linear, and the controller is configured to use one
decimal place (the maximum allowed for temperature input types). In this case, an Alarm
1 Process Alarm Setpoint (FV�) of 120.5 would be stored by the controller as 120.5. If
you used a MODBUS 03 ($03) function to read this alarm setpoint as an integer using
register 36, the read would return the value rounded to 121.

Similarly, if you tried to read the PID Derivative (Rate) FV value of 2.1 using register 11,
the read would return 2.

If the input is not linear and you use a MODBUS 06 ($06) or 16 ($10) write function to
configure an FV� parameter such as the Alarm 1 Process Alarm Setpoint (register 36),
then your only option when using the 0000 to 0999 region is to configure the parameter
with an integer value. Regardless of whether the input type is linear or temperature, your
only option when using the 0000 to 0999 region to write to an FV parameter is to
configure the parameter with an integer value.

4.7.3 Interpreting Fractional Values Stored Without Decimal Point
 Transmitted in Base Region 0000 to 0999

4.7.3.1 Principles
For some parameters if the input is linear the controller stores the value with the decimal
point removed, but the digits in the fractional value retained. When the controller uses
one of these values for controller operations, the controller inserts the decimal point as
appropriate.

Using MODBUS with Series C Controllers

4-10 � Omega. 900M062U00

The number of decimal places used by each controller is determined by the value
assigned to the Decimal Position parameter. The relative address for the Decimal
Position parameter is 4069 when the input is linear.

If the Type column for a parameter in the table in Section 4 contains FV�, then the
method used by the controller to store a fractional value for this parameter depends on
the type of input used by the controller. In the case of linear inputs, the controller drops
the decimal point, but retains the digits in the decimal value.

If you read one of these values using a register in the 0000 to 0999 region, you must
program the MODBUS master to also read the value assigned to the linear Decimal
Position parameter (register 4069) and use the information to insert the decimal in the
correct position before using the value read.

4.7.3.2 Examples
For example, suppose the controller is configured to use two decimal places and the
input is linear. In this case, an Alarm 1 Process Alarm Setpoint (FV�) of 95.75 would be
stored by the controller as 9575. Therefore, if you used a MODBUS 03 ($03) function to
read this alarm setpoint as an integer using register 36, you would have to program the
MODBUS master to insert the decimal point based on the Decimal Position parameter
value read using integer register 4069.

Similarly, if you used a MODBUS 06 ($06) or 16 ($10) write function to configure the
Alarm 1 Process Alarm Setpoint as 95.75 using register 36, you would have to write the
value as 9575.

Register Ranges and Data Types

900M062U00 � Omega. 4-11

4.8 10X Mirror of Base Fractional Value Region: Register
 Addresses 1000 to 1999

4.8.1 Introduction
The value of every parameter (or other controller value) that can include a decimal value
can be transmitted using any of three different regions.15 As described in 3.7, the
registers in the base region of 0000 to 0999 can be used to transmit the value actually
stored in the controller database only when a linear input is used and the parameter is
marked FV� in the tables in Section 4. In this special case, the controller actually stores
the entire value as an integer with the decimal point dropped, so reading (or writing) an
integer in a single register can transmit the entire value, including the fractional portion of
the value. (The controller inserts the decimal point at the appropriate location when the
controller uses such a value in its calculations. The MODBUS master must do the
same.)

In all other cases (FV� with non-linear input, or FV with either linear or temperature
input), the value transmitted using the registers in the 0000 to 0999 region will be
rounded to the nearest integer.

The 10X mirror region has been provided to enable you to transmit a fractional value for
an FV parameter or an FV� parameter with a temperature input as an integer with greater
accuracy.

If the MODBUS master can handle 32-bit IEEE floating point values, skip this sub-
section. Go directly to 3.9.

4.8.2 General Principles

4.8.2.1 10X Region Uses One Register Per Value Transmitted
Each of the 16-bit integer values transmitted using a single register in the 10X mirror
region is a rounded off value calculated by multiplying the value stored in the controller by
10, then rounding the result to the nearest integer.

4.8.2.2 If Controller Is Configured to Support Decimal Places, Then the Controller’s
 Storage Method for a Parameter Affects Values Read and Written

Many parameters in the controllers can use fractional values. However, that does not
mean that you are forced to use fractional values. Every controller permits you to
configure a Decimal Position parameter. By default, the controllers are set to use zero
decimal places. For many temperature applications, fractional values are not needed.

15 There is no need to mirror the region used to read and write values that are stored in the controllers’
databases as integers.

Using MODBUS with Series C Controllers

4-12 � Omega. 900M062U00

However, if the controller is configured to use decimal places, the fractional value is not
stored the same way for every parameter that can use a fractional value. The value
stored by the controller is not always the value used by the controller. When a
configuration parameter (or other controller value that can include decimal values) is read
using the registers in the 1000 to 1999 10X region, the value returned to the MODBUS
master in the controller’s reply message depends on how the controller handles the
fractional portion of the value for that particular parameter. If the controller is configured
to support decimal places for parameters that can use fractional values, then the
MODBUS master must also take into account how the controller stores a particular
parameter when attempting to read from or write to the controller using the registers in
the 1000 to 1999 region. See 3.8.3 and 3.8.4 for more information.

4.8.2.3 Relative Addresses in 10X Region Are 1000 More Than the Corresponding Address
 in the Base Region

There is a one-to-one correspondence between the addresses in the 0000 to 0999 region
and the 1000 to 1999 region. The controller values are stored in the two regions in
precisely the same sequence. Therefore, the address of a 10X mirror register can be
calculated by adding 1000 to the address of a floating point register in the 0000 to 0999
region.

4.8.2.4 Because of Range Limits, the 10X Region Not Recommended for FV� Parameters
 When a Linear Input Is Used

The 10X region is not recommended for FV� parameters when a linear input is used. In
the case of FV� parameters when a linear input is used, the controller does not store the
decimal point in its database, but the controller does store the fractional value. If the
controller uses a linear input, up to three decimal places are supported. However, ten
times a value with that many digits can exceed the range of values that can be
transmitted as an integer in a single register: –32768 to 32767. If ten times the stored
value is outside of this range, the value returned by the read operation will be –32768 or
32767.

4.8.3 Interpreting Fractional Controller Values Stored With Decimal Point
 Transmitted in the 10X Region 1000 to 1999

4.8.3.1 Principles
For some parameters the controller stores the decimal point, as well as the digits in the
fractional value. The parameters that fall in this category are:

� parameters marked FV in the tables in Section 4 (regardless of input type), and

� parameters marked FV� when the input is a thermocouple or an RTD.

When reading one of these values using a register in the 10X region, the value returned
is 10 times the stored value. The product is rounded to the nearest integer.

The exception is when ten times the stored value exceeds the range of values that can
be transmitted as an integer in a single register: –32768 to 32767. If ten times the stored
value is outside of this range, the value returned by the read operation will be –32768 or
32767.

To determine the stored value (to the closest tenth):

Register Ranges and Data Types

900M062U00 � Omega. 4-13

1. Read the value using the appropriate register in the 10X region.

2. Divide the value read in Step 1 by 10.

When writing one of these values using the 10X mirror region, the MODBUS master must
be programmed to write a value that is ten times the desired value (rounded to the
nearest tenth). To do this:

1. Decide what value you want the controller to use.

2. Express that value to the closest tenth.

3. Multiply the value obtained in Step 2 by 10.

4. Write the product obtained in Step 3 using the appropriate register in the 10X
region.

4.8.3.2 Examples

4.8.3.2.1 Reading an FV� Parameter with Temperature Input

Suppose the controller uses a J thermocouple input and the alarm 1 process alarm
setpoint used by the controller is 150.5. To read this value using MODBUS and the 10X
region:

1. Check the table in Section 4. You will see that the alarm setpoint is designated
FV�. Therefore, you know that if the input comes from an RTD or thermocouple,
this value is stored in the controller’s database with its decimal point.

2. Read the input type from the integer register with the relative address 4049. The
value is 3, which represents a J thermocouple, so you know that the controller is
storing the value with the decimal point. Only one division will be necessary to
obtain the value (in contrast to values that are not stored with the decimal point;
see 3.8.4).

3. Read the alarm 1 process alarm setpoint value using the register with the relative
address of 1036 in the 10X region. This is 1505. (150.5 x 10 = 1505.)

4. Divide 1505 by 10 to get the value stored in the controller. This quotient is 150.5.

4.8.3.2.2 Reading an FV Parameter

Now suppose you want to read the Derivative (Rate) tuning parameter from this same
controller. The controller is currently configured to use a rate of 1.7. To read this value
using the 10X region:

1. Check the table in Section 4. You will see that the Derivative (Rate) is
designated FV. Therefore, you know that the type of input does not matter. The
value for this configuration parameter is always stored with its decimal point.

2. Read the Derivative (Rate) value using the register with the relative address of
1011 in the 10X region. This is 17. (1.7 x 10 = 17.)

3. Divide 17 by 10 to calculate the value stored in the controller. This quotient is
1.7.

Using MODBUS with Series C Controllers

4-14 � Omega. 900M062U00

4.8.3.2.3 Writing to an FV Parameter

Suppose you want to change the Derivative (Rate) tuning parameter in this controller to
2.2 using the 10X region.

1. Multiply 2.2 times 10. This is 22.

2. Because you remember that the Derivative (Rate) is designated FV, you do not
have to check the table in Section 4 again to know that the controller stores this
tuning parameter with the decimal point, so you know that no more multiplication
is needed to arrive at the value stored in the controller. Write 22 to the controller
using the register with the relative address of 1011 in the 10X region.

3. When the controller receives the write command, the controller will recognize that
the register is in the 10X region and divide 22 by 10.

4. The controller will store 2.2 as the new Derivative (Rate) tuning parameter value.

Register Ranges and Data Types

900M062U00 � Omega. 4-15

4.8.4 Interpreting Fractional Controller Values Stored Without Decimal
 Point Transmitted in the 10X Region 1000 to 1999

4.8.4.1 Principles

For some parameters (those marked FV� in the tables in Section 4) if the input is linear,
the controller stores the configuration value with the decimal point removed, but the digits
in the fractional value retained. When one of these parameter values is read using a
register in the 1000 to 1999 region, the value returned will be ten times the value stored
in the controller. Because the decimal point has been dropped, but the fractional value
retained, this is not the same as ten times the value actually used by the controller.

When the controller uses one of the FV� values for controller operations if the input is
linear, the controller inserts the decimal point as appropriate, based on the value
assigned to the linear Decimal Position parameter. The value displayed and used by the
controller is the correct value. For example, suppose the controller is configured to use
two decimal places and the input is linear. In this case, an Alarm 1 Process Alarm
Setpoint (FV�) stored by the controller as 9575 would be displayed correctly as 95.75.
The 95.75 value would also be used by the controller as the alarm setpoint.

When reading one of these values using the 10X mirror region, the MODBUS master
must be programmed to read the linear Decimal Position parameter (register 4069) and
to calculate the actual value used by the controller. To do this:

1. Read the value using the appropriate register in the 10X region.

2. Divide the value read in Step 1 by 10.

3. Read the decimal position using the 4069 integer register.

4. Insert the decimal point at the appropriate position in the quotient from Step 2
(that is, divide by the appropriate value: 1, 10, 100, or 1000).

When writing one of these values using the 10X mirror region, the MODBUS master must
be programmed to write a value that is ten times the desired value without its decimal
point. To do this:

1. Read the decimal position using the integer register at relative address 4069.

2. Decide what value you want the controller to use.

3. Express that value with the same number of decimal places the controller uses.

4. Drop the decimal point, but retain the digits after the decimal point (that is,
multiply by the appropriate value: 1, 10, 100, or 1000).

5. Multiply the value obtained in Step 4 by 10.

6. Write the product obtained in Step 5 using the appropriate register in the 10X
region.

Using MODBUS with Series C Controllers

4-16 � Omega. 900M062U00

However, the 10X region is not recommended for FV� parameters when a linear input is
used, because the decimal point is not stored as part of the value in the controller. If the
controller uses a linear input, up to three decimal places are supported. As a result, the
value stored in the controller’s database can be 1000 times the value actually used by the
controller. When multiplied by ten again to transmit the value in the 10X region, the
product can exceed the range of values that can be transmitted in a single integer
register. The transmitted value would be clipped to the limit (–32768 or 32767), but the
MODBUS host would not be aware that the value transmitted is not the correct value.
The example in 3.8.4.2.3 demonstrates this situation.

4.8.4.2 Examples

4.8.4.2.1 Reading an FV� Parameter from a Controller with a Linear Input – Range Not
 Exceeded

Suppose the controller uses a 4 to 20 mA input, the decimal position is 1, and the alarm 1
process alarm setpoint used by the controller is 150.5. To read this value using
MODBUS and the 10X region:

1. Check the table in Section 4. You will see that the alarm setpoint is designated
FV�. Therefore, you know that if the input is linear, this value is a special case.
The decimal point is not stored with the value.

2. Read the input type from the integer register with the relative address 4049. The
value is 14, which represents a 4 to 20 mA input, which is linear.

3. Read the alarm 1 process alarm setpoint value using the register with the relative
address of 1036 in the 10X region. This value is 15050.

4. Divide 15050 by 10 to get the value stored in the controller. This quotient is
1505.

5. Because you have determined that this is a special case (FV� parameter with a
linear input) you know that the value stored in the controller is missing its decimal
point. Read the decimal position value in the integer register with the relative
address of 4069. It is 1.

6. Because the controller is using one decimal place, you know that you must divide
1505, the quotient obtained in Step 4, by 10. The new quotient is 150.5. This is
the alarm 1 process alarm setpoint the controller is currently configured to use.

4.8.4.2.2 Writing an FV� Parameter to a Controller with a Linear Input – Range Not
 Exceeded

To change the alarm 1 setpoint to 175.90 using the 10X region in the same controller
(4 to 20 mA input; decimal position = 1):

1. Read the decimal position using the integer register at relative address 4069.

2. Express the new setpoint with the same number of decimal places the controller
uses. This is 175.9.

3. Drop the decimal point, but retain the digits after the decimal point (that is,
multiply by 10). This is 1759. This is the value you want the controller to store
for the alarm 1 setpoint parameter.

Register Ranges and Data Types

900M062U00 � Omega. 4-17

4. Multiply the 1759 (value obtained in Step 3) by 10. This is 17590.

5. Write 17590, the product obtained in Step 4, to the register in the10X region with
the relative address of 1036.

6. When the controller receives the write command, the controller will recognize that
the register used to transmit the value is in the 10X region, so the controller
divides 17590 by 10. The controller writes the quotient, 1759, to its database as
the new alarm 1 setpoint.

7. When the controller uses the setpoint, the controller will insert the decimal point
at the correct position, yielding 175.9.

4.8.4.2.3 Reading an FV� Parameter from a Controller with a Linear Input – Range
 Exceeded

In the examples above, we were able to use the 10X region to transmit integers that did
not exceed the 32767 limit. However, suppose the controller with a 4 to 20 mA input,
uses a decimal position of 3, which is permitted with linear inputs. If we try to read the
alarm 1 process alarm setpoint of 7.895 we run into trouble. Repeating the procedure to
read the value using MODBUS and the 10X region:

1. Check the table in Section 4. You will see that the alarm setpoint is designated
FV�. Therefore, you know that if the input is linear, this value is a special case.
The decimal point is not stored with the value.

2. Read the input type from the integer register with the relative address 4049. The
value is 14, which represents a 4 to 20 mA input, which is linear.

3. Read the alarm 1 process alarm setpoint value using the register with the relative
address of 1036 in the 10X region. The stored setpoint is 7895. When multiplied
by 10, the product 78950 exceeds 32767, the top of the range of values that can
be transmitted as an integer in a single register. Therefore, the read will return
32767. From here to the end of the procedure, the results of the MODBUS
master’s manipulation of the returned value yield false results, but the MODBUS
master has no way of recognizing that the values are bad.

4. Divide the returned value 32767 by 10 to get the value stored in the controller.
This quotient is 3276.7. However, it is obviously not the actual value stored in
the controller, because the actual product of multiplying 10 times the stored value
exceeded the range of values transmittable in a single register.

5. Because you have determined that this is a special case (FV� parameter with a
linear input) you know that the value stored in the controller is missing its decimal
point. Read the decimal position value in the integer register with the relative
address of 4069. It is 3.

6. Because the controller is using three decimal places, you know that you must
divide 3276.7, the quotient obtained in Step 4, by 1000. The new quotient is
3.277.

Although the MODBUS master has performed its calculations correctly, the result is not
the alarm 1 process alarm setpoint the controller is currently configured to use, because
the range has been exceeded. This example illustrates our reason for recommending
that you not use the 10X region for FV� parameters when the input in linear.

Using MODBUS with Series C Controllers

4-18 � Omega. 900M062U00

4.9 32-bit IEEE Mirror of Base Fractional Value Region:
 Register Addresses 8000 to 9999

4.9.1 General Principles

4.9.1.1 Introduction
The third region used to transmit the value of configuration parameters (or other
controller values) that can include a decimal value is the 32-bit IEEE mirror in region
8000 to 9999.

If the MODBUS master can interpret 32-bit IEEE floating point values, then the 8000 to
9999 region is the most convenient to use.

4.9.1.2 32-Bit IEEE Region Uses Two Registers Per Value Transmitted
Each 32-bit floating point value transmitted in two registers in the 32-bit IEEE region is
the 32-bit IEEE representation of the value of the parameter stored by the controller. The
value stored is not always the value used by the controller; see 3.9.1.4.

4.9.1.3 Range of Values That Can Be Transmitted in the 32-Bit IEEE Region
The registers in the 32-bit IEEE region can transmit any value that the controller can
store.

4.9.1.4 If the Controller Is Configured to Use Decimal Places, Then the Controller’s
 Storage Method for a Parameter Affects Values Read and Written

Many parameters in the controllers can use fractional values. However, that does not
mean that you are forced to use fractional values. Every controller permits you to
configure a Decimal Position parameter. By default, the controllers are set to use zero
decimal places. For many temperature applications, fractional values are not needed.

However, if the controller is configured to use decimal places, the fractional value is not
stored the same way for every parameter that can use a fractional value. The value
stored by the controller is not always the value used by the controller.

When a configuration parameter (or other controller value that can include decimal
values) is read using the registers in the 8000 to 9999 32-bit IEEE region, the value
returned to the MODBUS master in the controller’s reply message depends on how the
controller handles the fractional portion of the value for that particular parameter. If the
controller is configured to support decimal places for parameters that can use fractional
values, then the MODBUS master must also take into account how the controller stores a
particular parameter when attempting to read from or write to the controller using the
registers in the 8000 to 9999 region.

If the controller stores the decimal point in the value, then the value transmitted using two
registers (per value) in the 32-bit IEEE region will not require any manipulation in the host
(other than the interpretation of the 32-bit IEEE representation of the value). The
controller stores the decimal point for parameters marked FV in the Type column of the
tables in Section 4 regardless of input type, as well as for parameters marked FV�, if a
thermocouple or RTD input is used.

Register Ranges and Data Types

900M062U00 � Omega. 4-19

If a linear input is used, then the value of a parameter marked FV�in the Type column of
the tables in Section 4 is stored in the controller’s database without the decimal point, but
with the digits in the fractional value (that is, the stored value is 10, 100 or 1000 times the
value used by the controller, depending on how many decimal places the controller is
configured to use).

4.9.1.5 32-Bit IEEE Region Allows You to Configure the Controller to Use Values with More
 Than Four Digits

Even if the controller does not store the decimal point in the value (which means that the
host must insert the decimal point in the correct position), there is still an advantage to
using the 32-bit IEEE floating point region. If you use the 32-bit IEEE region to write a
value to the controller, you are not constrained by the four-character display. You can
use the 32-bit IEEE region to transmit a five-digit value for any parameter marked FV or
FV� in Section 4, as long as the five-digit value is within the range of permitted values for
the parameter.

For example, using the front panel of the controller, it is impossible to configure the
setpoint as 120.75, because the controller cannot display five characters. However,
using MODBUS and the 32-bit IEEE floating point region, you can write this five-digit
setpoint value to the controller.

4.9.1.6 Relative Addresses in 32-Bit IEEE Region Can Be Calculated from the Relative
 Address of a Parameter in the Base Region

Because each IEEE value requires two registers, there cannot be a one-to-one
correspondence between the addresses in the 0000 to 0999 region and the 8000 to 9999
region. However, the controller values are stored in the two regions in precisely the
same sequence. Therefore, the address of the first 32-bit IEEE mirror register for each
value can be determined by multiplying the address of a register in the 0000 to 0999
base region by two, then adding 8000 to the product. The address of the second of the
pair of registers for the IEEE representation is the next register.

For example, the relative address of the Recipe Setpoint in the base region is 6. To
calculate the relative address of the first register used to read the Recipe Setpoint in the
8000 to 9999 region, multiply 6 times 2, then add 8000 to the product. In this case,
6 x 2 = 12. 8000 + 12 = 8012. The relative address of the first register used to read the
Recipe Setpoint is 8012; the second register in the pair needed to transmit the 32-bit
IEEE representation of the Recipe Setpoint is 8013.

4.9.1.7 A MODBUS Command to Transmit a Value Using the 8000 to 9999 Region Always
 Addresses an Even-Numbered Relative Address

A 32-bit IEEE value is always addressed at the first of the two registers that are needed
to store the value. Therefore, every request from the MODBUS master to read or write a
32-bit IEEE value must address an even-numbered register. Using an odd-numbered
relative address in a request to read or write a 32-bit IEEE value will cause the controller
to send a MODBUS error code 02 message back to the master.

Using MODBUS with Series C Controllers

4-20 � Omega. 900M062U00

4.9.1.8 Sequence in Which the Two Registers for a 32-Bit IEEE Value Will Be Transmitted
The two registers will be transmitted in the order of Least Significant Register first if
standard MODBUS floating point sequence is used and Most Significant Register first if
non-standard ordering is used. Note that the IEEE register ordering does not affect the
sequence in which the bytes within the register are transmitted. Within the register, the
most significant (high order) byte is always transmitted before the least significant (low
order) byte.

The IEEE register ordering used by the controllers is configurable; see 1.2.7 for more
information about register ordering for 32-bit IEEE floating point representation of values.

4.9.2 Interpreting Fractional Controller Values Stored With Decimal Point
 Transmitted in the 32-Bit IEEE Region 8000 to 9999

4.9.2.1 Principles
For some parameters the controller stores the decimal point, as well as the fractional
value. The parameters that fall in this category are:

� parameters marked FV in the tables in Section 4 (regardless of input type), and

� parameters marked FV� when the input is a thermocouple or an RTD.

When reading one of these values using two registers in the 32-bit IEEE region, the value
returned is the stored value, which is also the value used by the controller.

To determine the stored value:

Read the 32-bit IEEE representation of the value using the appropriate two
registers in the 32-bit IEEE region.

When writing one of these values using the 32-bit IEEE region, the MODBUS master
must be programmed to write a value that is the same as the value you want the
controller to use. To do this:

1. Read the value of the Decimal Position parameter (register 4068 for temperature
inputs; 4069 for linear inputs) to determine the number of decimal positions
supported by the controller.

2. Decide what value you want the controller to use. Remember that when using the
32-bit IEEE region, you can exceed the four digits supported by the controller display.

3. Express that value with the appropriate number of decimal positions.

4. Write the value from Step 3 using the appropriate pair of registers in the 8000 to 9999
region.

4.9.2.2 Examples

4.9.2.2.1 Reading an FV� Parameter with Temperature Input

Suppose the controller uses a J thermocouple input and the alarm 1 process alarm
setpoint used by the controller is 150.5. To read this value using MODBUS and the
32-bit IEEE region:

Register Ranges and Data Types

900M062U00 � Omega. 4-21

1. Check the table in Section 4. You will see that the alarm setpoint is designated FV�.
Therefore, you know that if the input comes from an RTD or thermocouple, this value
is stored in the controller’s database with its decimal point.

2. Read the input type from the integer register with the relative address 4049. The
value is 3, which represents a J thermocouple, so you know that the controller is
storing the value with the decimal point. No division will be necessary to obtain the
value used by the controller (in contrast to values that are not stored with the decimal
point; see 3.9.3).

3. Read the alarm 1 process alarm setpoint value using the registers with the relative
addresses of 8072 and 8073. (The two registers must be read in a single
command.) The value returned will be the 32-bit IEEE representation of 150.5.

4.9.2.2.2 Reading an FV Parameter

Now suppose you want to read the Derivative (Rate) tuning parameter from this same
controller. The controller is currently configured to use a rate of 1.7. To read this value
using the 8000 to 9999 region:

1. Check the table in Section 4. You will see that the Derivative (Rate) is designated
FV. Therefore, you know that the type of input does not matter. The value for this
configuration parameter is always stored with its decimal point.

2. In a single read command, read the Derivative (Rate) value using the registers with
the relative addresses of 8022 and 8023. This will return the 32-bit IEEE
representation of 1.7.

4.9.2.2.3 Writing to an FV Parameter

Suppose you want to change the Derivative (Rate) tuning parameter in this controller to
2.2 using the 8000 to 9999 region.

1. Because you remember that the Derivative (Rate) is designated FV, you do not have
to check the table in Section 4 again to know that the controller stores this tuning
parameter with the decimal point. Therefore, you know that no multiplication is
needed to arrive at the value stored in the controller. Write the 32-bit IEEE
representation of 2.2 to the controller using the registers with the relative addresses
of 8022 and 8023.

2. The controller will store 2.2 as the Derivative (Rate) tuning parameter.

4.9.3 Interpreting Fractional Controller Values Stored Without Decimal
 Point Transmitted in the 32-Bit IEEE Region 8000 to 9999

4.9.3.1 Principles

For some parameters (those marked FV� in the tables in Section 4) if the input is linear,
the controller stores the configuration value with the decimal point removed, but the digits
in the fractional value retained. When one of these parameter values is read using a pair
of registers in the 8000 to 9999 region, the value returned will be the 32-bit IEEE
representation of the value stored in the controller. Because the decimal point has been
dropped, but the fractional value retained, this stored value is not the same as the value
actually used by the controller. The MODBUS master must manipulate the value to
determine the value actually used by the controller.

Using MODBUS with Series C Controllers

4-22 � Omega. 900M062U00

When the controller uses one of the FV� values for controller operations if the input is
linear, the controller inserts the decimal point as appropriate, based on the value
assigned to the linear Decimal Position parameter. The value used by the controller is
the correct value. For example, suppose the controller is configured to use two decimal
places and the input is linear. In this case, an Alarm 1 Process Alarm Setpoint (FV�)
stored by the controller as 9575 would be displayed correctly as 95.75. The 95.75 value
would also be used by the controller as the alarm setpoint.

When reading one of these values using the 32-bit IEEE region, the MODBUS master
must be programmed to read the linear Decimal Position parameter (register 4069) and
to calculate the actual value used by the controller. To do this:

1. Read the 32-bit IEEE representation of the value using the appropriate two
registers in the 8000 to 9999 region.

2. Read the decimal position using the 4069 integer register.

3. Insert the decimal point at the appropriate position in the value read in Step 1
(that is, divide by the appropriate value: 1, 10, 100, or 1000).

When writing one of these values using the 32-bit IEEE region, the MODBUS master
must be programmed to write a value that is the desired value without its decimal point.
To do this:

1. Read the decimal position using the integer register at relative address 4069.

2. Decide what value you want the controller to use.

3. Express that value with the same number of decimal places the controller uses.

4. Drop the decimal point, but retain the digits after the decimal point (that is,
multiply by the appropriate value: 1, 10, 100, or 1000)

5. Write the 32-bit IEEE representation of the value from Step 4 to the appropriate
two registers in the 8000 to 9999 region.

4.9.3.2 Examples

4.9.3.2.1 Reading an FV� Parameter from a Controller with a Linear Input

Suppose the controller uses a 4 to 20 mA input, the decimal position is 1, and the alarm 1
process alarm setpoint used by the controller is 150.5. To read this value using
MODBUS and the 32-bit IEEE region:

1. Check the table in Section 4. You will see that the alarm setpoint is designated
FV�. Therefore, you know that if the input is linear, this value is a special case.
The decimal point is not stored with the value.

2. Read the input type from the integer register with the relative address 4049. The
value is 14, which represents a 4 to 20 mA input, which is linear.

3. Read the 32-bit IEEE representation of the alarm 1 process alarm setpoint value
using the registers with the relative addresses 8072 and 8073. This returns the
32-bit IEEE representation of 1505.

Register Ranges and Data Types

900M062U00 � Omega. 4-23

4. Because you have determined that this is a special case (FV� parameter with a
linear input) you know that the value stored in the controller is missing its decimal
point. Read the decimal position value in the integer register with the relative
address of 4069. It is 1.

5. Because the controller is using one decimal place, you know that you must divide
1505, the value read in Step 3, by 10. The quotient is 150.5. This is the alarm 1
process alarm setpoint the controller is currently configured to use.

4.9.3.2.2 Writing an FV� Parameter to a Controller with a Linear Input

To change the alarm 1 setpoint to 175.90 using the 10X region in the same controller
(4 to 20 mA input; decimal position = 1):

1. Read the decimal position using the integer register at relative address 4069.

2. Express the new setpoint with the same number of decimal places the controller
uses. This is 175.9.

3. Drop the decimal point, but retain the digits after the decimal point (that is,
multiply the desired setpoint by 10). This is 1759. This is the value you want the
controller to store for the alarm 1 setpoint parameter.

4. Write the 32-bit IEEE representation of 1759 to the registers with the relative
addresses of 8072 and 8073.

5. The controller writes 1759 to its database as the new alarm 1 setpoint.

6. When the controller uses the setpoint, the controller will insert the decimal point
at the correct position, yielding 175.9.

Using MODBUS with Series C Controllers

4-24 � Omega. 900M062U00

4.10 Summary

4.10.1.1 Regions of the MODBUS Register Map Used to Transmit Controller Values
The regions (ranges) of register relative addresses used for the various types of
representations of controller values are shown in the table below. Each register type
used to transmit controller values was described in more detail earlier in this section (see
the cross-references in the table). The “factory commands” that use the 7000 to 7999
range are described in Section 7.

Register
Address
Range Region

Quantity of
MODBUS

Registers to
Store One

Value

Type of
Value Used

by the
Controller

How Data Is
Transmitted

in the
Register

See
Subsection

0000 to 0999 base region for
controller
values that can
include decimal
values

1 can include
fractional
values

16-bit Integer 3.7

1000 to 1999 10X mirror of
0000 to 0999
base region

1 can include
fractional
values

16-bit Integer 3.8

2000 to 3999 unused N/A N/A N/A ---

4000 to 4999 integer 1 integer 16-bit Integer 3.5

5000 to 6999 unused N/A N/A N/A ---

7000 to 7999 factory 2 Custom Custom Section 7

8000 to 9999 32-bit IEEE
mirror of 0000
to 0999 base
region

2 (Register
addresses

must be even.)

can include
fractional
values

32-bit IEEE
Floating Point

3.9

Register Ranges and Data Types

900M062U00 � Omega. 4-25

4.10.2 Parameters That Use Integer Values Only
If a configuration parameter value stored and used by the controller is always an integer
(Type I in the tables in Section 4), then it is possible to accurately transmit the value in a
single 16-bit register. For integers, you always read from and write to the 4000 to 4999
region of the MODBUS register map.

4.10.3 Parameters for Which the Controller Can Use a Fractional Value

4.10.3.1 Three Regions Available
There are three methods of reading from or writing to a parameter for which the controller
can use a fractional value (FV and FV� Types in the tables in Section 4).

� You can transmit the value, rounded to an integer, using the 0000 to 0999 base
region.

� You can transmit an integer that is equal to ten times the desired controller value
(that includes one digit to the right of the decimal) using the 1000 to 1999 10X
mirror region.

� You can transmit a 32-bit IEEE floating point representation of the entire value to
the 8000 to 9999 32-bit IEEE mirror region.

All of the following examples will set the Derivative (Rate) tuning parameter to 3.

� Writing the value of 3 to relative address 11.

� Writing the value of 30 to relative address 1011 (value 30 = 3 x 10 and address
1011 = 11 + 1000).

� Writing the 4-byte IEEE floating point representation of 3.0 to address 8022
(address 8022 = (2 x 11) + 8000).

If you want to write the Derivative (Rate) tuning parameter as 3.5, then you can use either
the 10X or 32-bit IEEE mirror regions.

However, if you want to write the Derivative (Rate) as 3.55, you must use the 32-bit IEEE
mirror region.

Using MODBUS with Series C Controllers

4-26 � Omega. 900M062U00

4.10.3.2 Special Cases: the Significance of the FV and FV� Notations
In the case of Derivative (Rate), a parameter marked FV in the table in Section 4, the
controller stores the decimal point with the value (assuming the controller is configured to
use one or more decimal places).

However, the controller does not always store the same parameter value that the
controller uses. If a parameter is marked FV� in the tables in Section 4, the way the
controller stores the value is affected by the input type (assuming that the controller is
configured to use one or more decimal places).

� If the input is from an RTD or thermocouple, the controller stores the decimal
point with the value for the FV� parameter, as the controller does with for the
parameters marked FV. A configuration value of 3.5 is stored in the controller’s
database as 3.5.

� If the input is linear, then the controller does not store the decimal point for the
value of the FV� parameter, but the controller does store the digits to the right of
the decimal point in a fractional value. A value of 3.5 is stored in the controller’s
database as 35 if the controller is configured to use one decimal place, 350 if the
controller is configured to use two decimal places, 3500 if the controller is
configured to use three decimal places. When the controller applies the value,
the controller inserts the decimal point based on the value assigned to the
Decimal Position parameter.

In the case of parameters marked FV�, if the controller is configured to use one or more
decimal places, then you must consider the type of input used and take into consideration
the way the controller stores fractional values for these parameters.

Because FV� parameter values in controllers with linear inputs are stored without the
decimal point, you must take into consideration the number of decimal positions the
controller is configured to support. When using the base 0000 to 0999 region or 8000 to
9999 region, you may have to write a value that is 10, 100, or even 1000 times larger
than the configuration value you want the controller to use. If you use the 10X region
1000 to 1999, you will have to multiply the value by 10 again.

900M062U00 � Omega. 5-1

5. Omega MODBUS Register Addresses
Arranged by Parameter Function

5.1 Introduction

5.1.1 Importance of Writing Configuration Parameters in Correct Sequence
The Omega, CN8200, CN8240, and CN8260 controllers are versatile instruments that
are capable of using many types of input values and implementing several types of
control strategies. To support this versatility, the controllers are capable of storing values
for many configuration parameters. Interrelationships exist between the parameters.
Therefore, it is important that you specify values for the configuration parameters in the
correct sequence.

Once you have your MODBUS network up and running, if you plan to use a
thermocouple or RTD input, then the first step is to configure the units of measure (unless
you plan to use the default, Fahrenheit).16 Units of measure are not used with linear
inputs.

Next, specify the type of input that each controller will receive. That means that you must
specify the type of thermocouple or RTD that will provide the input to the controller, or, in
the case of a linear input, the range and units of the input (0 to 20 mA, 0 to 5 V, 1 to 5 V,
etc.) The type of input specified affects how the controller processes the input signal and
calculates the output needed to achieve the setpoint.

The rest of the configuration sequence is outlined in 4.1.2.

In addition to being aware of the sequence in which parameters should be configured,
you should also remember that not all parameters apply to all applications. For example,
if you specify that the input type is a thermocouple or RTD, then you do not have to write
a value to the low scale and high scale parameters. (You can write the values, but the
controller will ignore them.) However, if you use a linear input, then you must specify
scaling values, or accept the factory defaults.17

16 When you change the units of measure for temperature inputs, the controller recalculates any values
that have already been specified. For example, if you want the setpoint to be 100 �C, then you must
change the units from the default F to C before you write the setpoint of 100 to the controller. If you
change the units after you write the setpoint of 100 to the controller, the controller will convert the 100 �F
setpoint to 37.8 �C. In this case, you would have to reconfigure the setpoint to 100 �C to implement the
control needed by your process.
17 The database values in new (“out of the box”) CN8200, CN8240, and CN8260 controllers are always
the default values shown in the tables in this section. Instructions for using the controller front panel to
return all database values in the CN8200, CN8240, and CN8260 controllers to their default values are in
the (CN8200, CN8240, and CN8260) Controller Configuration and Operation Manual. You can also use
MODBUS function 16 ($10) to write a command to special registers in any of the controllers to set all the
database (excluding the address) values to their defaults as described in Section 7.

Using MODBUS with Series C Controllers

5-2 � Omega. 900M062U00

For more information about the interrelationships between parameters and about the
effects of setting specific values, see the (, CN8200, CN8240, and CN8260) Controller
Configuration and Operation Manual.

5.1.2 Arrangement of the Parameters and Other Values in This Section
To make it easy for you to configure the controller parameters in the correct sequence,
the controller parameters are grouped by function in this section. With the exception of
changing the units of measure (display parameter; see 4.4) first if Fahrenheit is not
appropriate, the configuration parameter functional groups should be configured in the
sequence in which they are presented in this section:

1st) communication parameters (if these were not already configured using the
 controller front panel); see 4.2

2nd) unit of measure for temperature inputs that do not use Fahrenheit (the
 default), then input parameters; see 4.3

3rd) display parameters (some of these parameters apply to the , even
 though it has no display); see 4.4

4th) output parameters; see 4.5

5th) control parameters; see 4.6

6th) alarm parameters; see 4.7

7th) Autotune damping parameter; see 4.8

8th) ramp/soak parameters; see 4.9

9th) parameters for options other than communications; see 4.10

10th) supervisory parameters; see 4.11

The register addresses for the special calibration parameters are in 4.12.

In addition to configuration and calibration parameters, every, CN8200, CN8240, and
CN8260 controller can store setpoint values in RAM and on the EEPROM, as well as
various status values. The setpoint can be written using the MODBUS 06 ($06) or 16
($10) function. The process value and status values can be read using the MODBUS 03
($03) function. The setpoint register addresses follow the configuration parameters in
this section; see 4.14. The controller status register addresses are in 4.15.

For your convenience when interpreting messages received from the controllers, all the
controller configuration and calibration parameters, as well as all other accessible values
stored by the controllers in their databases, are listed in Section 5 arranged by MODBUS
register address.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-3

5.1.3 Information Provided in Each Subsection
5.1.3.1 Subsection Introduction

Each subsection provides a brief introduction to the purpose of the controller values,
statuses, or configuration parameters in its functional group. More information about the
purpose of individual configuration parameters is in the (, CN8200, CN8240, and
CN8260) Controller Configuration and Operation Manual.

5.1.3.2 Register Table
Each subsection contains a table that lists all the parameters in the subsection’s
functional group. The following information is provided for each parameter:

Parameter (or Value) – Configuration parameter or other value name

Type – Type of value used for this parameter by the controller. There are three
categories represented by codes in the Type column:

� FV = value controller uses can include fractional value, stored in the controller
database with the decimal point. If read using the 0000 to 0999 region, the
fractional portion of this value will always be rounded off (250.4 returned as 250
and 250.5 returned as 251) regardless of input used. If 250.4 is read using the
8000 to 9999 region, the value returned will be the 32-bit IEEE representation of
250.4. See Section 3 for more information and more examples.

� FV� = value controller uses can include fractional value, and how the value is
stored in the controller’s database is affected by input type.

� If the input is an RTD or thermocouple, then the value is stored in the
controller database with the decimal point. Therefore, if the value is read
from the 0000 to 0999 region as an integer, the fractional value will be
rounded. For example, 250.4 will be returned as 250, and 250.5 will returned
as 251. If 250.4 is read using the 10X region, 2504 will be returned. If 250.4
is read using the 8000 to 9999 region, the value returned will be the 32-bit
IEEE representation of 250.4.

� If a linear input is used, then the value stored in the controller database does
not include the decimal point, but the digits in the fractional value are
retained. Therefore, when the value is read, it will be 1, 10, 100, or 1000
times the value used by the controller (depending on whether the controller is
configured to use zero, one, two, or three decimal places). For example,
30.5 will be returned as 305 using the 0000 to 1999 region or 8000 to 9999
region; 305.0 will be returned as 3050, etc. See Section 3 for more
information and more examples.18

� I = integer: This notation indicates that the controller uses (and stores) only an
integer as the value for this parameter. Reading from the 4000 to 4999 region
returns the same integer value that the controller uses for this configuration
parameter. Frequently, this integer represents something else. For example,
consider the value stored for the input type. A value of 0 for the input type
parameter represents a B thermocouple, a value of 1 represents a C
thermocouple, etc.

18 The 10X region is not recommended for transmission of FV�parameters when a linear input is used.

Using MODBUS with Series C Controllers

5-4 � Omega. 900M062U00

Register Number – Relative register assigned to this parameter or value, and the
absolute address assigned; all addresses are offset from 40000. In the case of
parameters that are stored as integers in the controller (Type I), the register (relative and
absolute) shown in the table is the only register that can be addressed for that parameter.
In the case of a value that can include a fractional value (Types FV and FV�), the relative
and absolute register address shown is for the base range (0000 to 0999). However, this
range is mirrored in two additional ranges so that you can more accurately retrieve
fractional values. See 4.1.4 for guidelines for calculating the address of registers in the
10X mirror of the 0000 to 0999 range and the 32-bit IEEE mirror of the 0000 to 0999
range.19

R/W – Indicates whether the value stored in the controller can be read (R) and written
(W) using the MODBUS protocol.

Supported By – Types of controllers that use this parameter; all indicates that the
parameter or value applies to the, CN8200, CN8240, and CN8260 controllers, all the
controllers that support the MODBUS protocol.

Valid Data Field Value – In the case of parameters that take a numerical input, the
range of valid values is indicated. (See 4.1.3.3 for special information about the ranges
that apply if the controller uses a linear input.)

In the case of parameters for which a specific value has a particular meaning to the
controller, all the valid values are listed.

The default value for each configuration parameter is also shown in this column. The
value shown is the value actually used by the controller.

� In the case of integers, reading this value will always return the value listed.

� In the case of configuration parameters that can use fractional values, the value
shown in the table is the value read from the base region (0000 to 0999) when
the Decimal Position is at the default, 0 (zero). With the Decimal Position set at
0, the value read from the base region is the same as the value used by the
controller, regardless of whether the parameter is marked FV or FV�. Default
values read from the 10X region may be affected by integer overflow, that is, ten
times the default value may be outside the range of values that can be
transmitted in a single register –32768 to 32767.

Some values (such as statuses, setpoints, process value) have no default, so none is
listed in the table.

5.1.3.3 Linear Inputs Affect Range of Valid Values

5.1.3.3.1 If Range Is “Sensor Low to Sensor High”, Input Scaling Limits Apply

If the Valid Data Field Value column indicates that the range for a parameter is “sensor
low to sensor high”, that range applies to a controller using a thermocouple or RTD input
only. If a linear input is used, the range of valid values for the parameter is bound by the
input scaling limit values transmitted using registers 26 and 27.

19 The table in 6.3 lists the relative address of each fractional value type parameter in all three regions.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-5

5.1.3.3.2 If Decimal Position Is Non-Zero, Range Is Reduced

If the controller uses a linear input and the Decimal Position (transmitted in register 4069)
is not set to 0 (zero), the number of decimal places specified is always imposed on the
parameter’s value. This has the effect of reducing the range of valid values for every FV
and FV� parameter when a linear input is used.

For example, suppose the range of valid values for a parameter is –1999 to 9999.

� If a linear input is used and the Decimal Position is 1, then the range for the
parameter is reduced to –199.9 to 999.9.

� If a linear input is used and the Decimal Position is 2, then the range is –19.99 to
99.99.

� If a linear input is used and the Decimal Position is 3 (the maximum for linear inputs),
then the range is –1.999 to 9.999.

In contrast, when a thermocouple or RTD input is used, the Decimal Position specified is
a maximum. This means that the controller applies the specified number of decimal
places only if doing so does not limit the value of the parameter. For example, suppose
the range of valid values for a parameter is –1999 to 9999.

� If an RTD or thermocouple input is used and the Decimal Position is 1, then the
range for the parameter is still –1999 to 9999. If you configure a value of 8000, no
decimal places will be stored and displayed, despite the Decimal Position setting of 1.

� If an RTD or thermocouple input is used and the Decimal Position is 2 (the maximum
for temperature inputs), then the range for the parameter is still –1999 to 9999. If you
configure a value of 8000, no decimal places will be stored and displayed, despite
the Decimal Position setting of 2.

Using MODBUS with Series C Controllers

5-6 � Omega. 900M062U00

5.1.4 Calculating Register Addresses for Parameters That Use Fractional
 Values

5.1.4.1 Principles

If the Type column in one of the tables in this section contains FV or FV� opposite the
name of a parameter or other value, that means that the controller can use a fractional
value for this parameter. The table provides the relative address for the base 0000 to
0999 range for each parameter (or other value) for which the controller can use a value
that includes decimal values. The table also lists the absolute address for these values.
(All addresses are offset from 40000.)

However, a parameter for which the controller can use a fractional value can be read
and/or written from any of three regions of the register map:

� as an integer (values that include fractional values are rounded to the nearest
integer) in the base range 0000 to 0999 for controller fractional values, or

� as an integer in the 1000 to 1999 region, which is the 10X mirror of the base
range, or

� as a true 32-bit IEEE floating point value in 8000 to 9999, which is the 32-bit
IEEE mirror of the base range.

Remember, however, that the value read is not necessarily the value used by the
controller. Review Section 3 if this concept is not clear.

To calculate a register address in the 10X mirror region: add 1000 to the address in
the table in this section (or refer to the table in 5.3, which lists all three relative addresses
for each parameter).

To calculate a register address in the 32-bit IEEE mirror region: multiply the address
in the table in this section by two, then add 8000 to the result. (Alternatively, refer to the
table in 5.3, which lists all three relative addresses for each parameter.)

5.1.4.2 Example
The process value has been assigned relative address 0 in the Omega implementation of
MODBUS. Therefore, to read the process value, you have a choice. You can send the
controller a request to read the PV from any of the following registers:

� as an integer from a single register in the base range for fractional values at the
relative address shown in the table in this section, which is 0 (zero), or

� as an integer from a single register in the 10X mirror of the base range at the
address calculated by adding 1000 to the relative address shown in the table in
this section: 0 + 1000 = 1000, or

� as a floating point value in a single read from two registers in the 32-bit IEEE
mirror of the base range; the first of the two registers has an address that is two
times the relative address shown in the table in this section, plus 8000:
(0 x 2) + 8000 = 8000. (To get the complete 32-bit value the single request must
read both 8000 and 8001; by definition a 32-bit IEEE value consists of two 16-bit
register values.)

Because the process value is a FV� type, the value returned will be affected by the type
of input to the controller (temperature or linear) as described in Section 3.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-7

5.2 Communication Parameters

5.2.1 Overview
As described in 1.3.4, you can use MODBUS functions to read and write the
communication parameter values stored in the controllers’ databases.

These parameters are accessible in the serL (serial) menu on the CN8200, CN8240,
and CN8260 display.

5.2.2 Communication Parameter Registers
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Communication
Protocol

I 4080 44081 R all 1 = Omega Plus
2 = SPI
3 = Arburg
4 = MODBUS

Controller ID I 4081 44082 R/W all 1 to 247

default = 1

Baud Rate I 4082 44083 R/W all 2 = 300 baud
3 = 600 baud
4 = 1200 baud
5 = 2400 baud
6 = 4800 baud
7 = 9600 baud

default = 7 (see Note 1 below)

Parity I 4083 44084 R/W all 0 = none
1 = even
2 = odd

default = 0

IEEE Register Ordering I 4084 44085 R/W all 0 = non-standard sequence (most
 significant register transmitted
 first)
1 = standard MODBUS sequence
 (least significant register
 transmitted first)

default = 1

Note 1: Different default baud rates may apply to protocols other than MODBUS. See
the (, CN8200, CN8240, CN8260) Configuration and Operation Manual for details.

Using MODBUS with Series C Controllers

5-8 � Omega. 900M062U00

5.3 Input Parameters
5.3.1 Overview

As described in 4.1.1, once communication parameters have been set up (and the units
of measure for temperature inputs have been changed, if necessary, from the default
Fahrenheit), the next step in configuring a controller is specifying the type of input the
controller will receive. You can use MODBUS functions to read and write the input
parameter values stored in the controllers’ databases.

The scaling limits apply only to linear inputs. All the other input parameters apply to all
input types. These parameters are accessible in the Inp (input) menu on the CN8200,
CN8240, and CN8260 display.

5.3.2 Input Parameter Registers
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table. Subsection 4.1.3.3 contains information about the effect of a
linear input on the range of valid values for FV and FV� parameters.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Input Type I 4049 44050 R/W all 0 = B thermocouple
1 = C thermocouple
2 = E thermocouple
3 = J thermocouple
4 = K thermocouple
5 = N thermocouple
6 = NNM thermocouple
7 = R thermocouple
8 = S thermocouple
9 = T thermocouple
10 = Platinel II thermocouple
11 = RTD
12 = RTD Decimal
13 = 0 to 20 mA linear
14 = 4 to 20 mA linear
15 = 0 to 10 mV linear
16 = 0 to 50 mV linear
17 = 0 to 100 mV linear
18 = 10 to 50 mV linear
19 = 0 to 1 V linear
20 = 0 to 5 V linear
21 = 0 to 10 V linear
22 = 1 to 5 V linear

default = 3 (J thermocouple) See
Note 1 below.

Input Bias FV� 25 40026 R/W all thermocouple or RTD input types:
–1000 to 1000 �F
–556 to 556 �C and �K

default = 0

linear input types:
–1000 to 1000

default = 0

Register Addresses Arranged by Function

900M062U00 � Omega. 5-9

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Linear Input Scaling
Low Limit

FV� 26 40027 R/W all –1999 to 9999

default = –1999

Linear Input Scaling
High Limit

FV� 27 40028 R/W all –1999 to 9999

default = 9999

Setpoint Low Limit FV� 28 40029 R/W all sensor low limit to sensor high limit

default = –328

Setpoint High Limit FV� 29 40030 R/W all sensor low limit to sensor high limit

default = 1400

Input Filter FV 30 40031 R/W all 1 to 100; each unit (1) represents
0.1 second of filter time

default = 5

Note 1: The input type is configured at the factory. The type configured depends on the input
calibration type ordered. To determine the input calibration ordered for the controller in hand,
check the model number on its label. The significance of each character in the model number is
in the installation manual supplied with the controller. The table below shows the correlation
between the input character and the factory input setting. Not every input calibration character
applies to every model.

Input Calibration Model
Number Character

Factory Configuration for
Input Type (4049)

A 3 (J thermocouple; calibrated for
all input types)

B 3 (J thermocouple); calibrated for
thermocouple and RTD

C 13 (0 to 20 mA linear)

M 16 (0 to 50 mV linear)

R 11 (RTD)

S 12 (RTD Decimal)

T 3 (J thermocouple)

V 20 (0 to 5 V linear)

Using MODBUS with Series C Controllers

5-10 � Omega. 900M062U00

5.4 Display Parameters
5.4.1 Overview

You can use MODBUS functions to read and write the input parameter values stored in
the controllers’ databases. Most are stored as integers; the display filter is stored as a
value that can be fractional.

These parameters are accessible in the dSPL (display) menu on the CN8200, CN8240,
and CN8260 display.

5.4.2 Display Parameter Registers
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table. Subsection 4.1.3.3 contains information about the effect of a
linear input on the range of valid values for FV and FV� parameters.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Decimal Position for
Thermocouple or RTD
Input (see Notes 1 and 5
below)

I 4068 44069 R/W all (see
note 2
below

0, 1

default = 0

Maximum Decimal
Position for Linear Input
(see Notes 1 and 4 below)

I 4069 44070 R/W all (see
Note 2
below

0 to 3

default = 0

Display Filter FV 35 40036 R/W all except 1 to 100 (each unit represents 0.1
second of filter time)

default = 1

Display Unit of Measure I 4070 44071 R/W all (see
Note 3)

1 = Fahrenheit
2 = Celsius
3 = Kelvin

default = 1

Setpoint Display
Blanking

I 4071 44072 R/W all except 9 = off
10 to 9999 seconds

default = 9 (off)

Note 1: These two registers (4068 and 4069) correspond to a single parameter dEC.P on the
controller display.

Note 2: Even though the has no display, you must configure the appropriate decimal position
parameter (or accept the default) because the controller uses this parameter value to determine
how many decimal places to store for the PV and SV values.

Note 3: Even though the has no display, if you use a temperature input, you must configure the
unit of measure. The controller uses the unit of measure internally and for external communication.

Note 4: The Decimal Position is always imposed on all FV and FV� parameter values if the
controller uses a linear input. This has the effect of reducing the range of valid values for the FV
and FV� parameters if a linear input is used. See 4.1.3.3.2 for more information.

Note 5: The Decimal Position is a maximum that is not always used if the controller uses an RTD
or thermocouple input. The Decimal Position does not reduce the range of valid values when a
temperature input is used. See 4.1.3.3.2 for more information.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-11

5.5 Output Parameters

5.5.1 Overview
You can use MODBUS functions to read and write the parameters used to specify the
type of output (function of the output, not the hardware type) and the parameters
associated with each type of output. Not all parameters apply to every type of output.

Also, not all parameters and choices apply to every controller model. Standard outputs
can be used for alarm annunciation only on CN8200 and controllers. Use of standard
outputs for alarm annunciation on these compact models is allowed because their cases
cannot accommodate a supplementary alarm output card if a serial communications card
is installed. The larger CN8240 and CN8260 controllers can contain both an optional
alarm output card and a serial communications card. Therefore, use of standard outputs
for alarm annunciation in the CN8240 and CN8260 is not necessary. (See 4.7 for alarm
parameters that control alarm annunciation using the front panel LEDs on CN8200,
CN8240, and CN8260 models, and that also control alarm annunciation using the
optional output card in CN8240 and CN8260 units.20)

See the (, CN8200, CN8240, and CN8260) Controller Configuration and Operation
Manual for details about the purpose of each parameter, and the model and control
strategy to which they apply.

The controllers store some output parameter values as integers, others can use fractional
values.

These parameters are accessible in the OutP (output) menu on the CN8200, CN8240,
and CN8260 display.

20 The alarm output card can be ordered for CN8200 controllers that do not contain a serial
communications card.

Using MODBUS with Series C Controllers

5-12 � Omega. 900M062U00

5.5.2 Output Parameter Registers
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table. Subsection 4.1.3.3 contains information about the effect of a
linear input on the range of valid values for FV and FV� parameters.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Output 1 Type I 4050 44051 R/W all CN8200/:
1 = inactive (disabled)
2 = PID
3 = (invalid value)
4 = on/off
5 = alarm

default = 2 (PID)

CN8240/CN8260:
1 = inactive (disabled)
2 = PID
3 = (invalid value)
4 = on/off
5 = (invalid value)

default = 2 (PID)

Output 1 Action I 4051 44052 R/W all 1 = direct
2 = reverse

default = 2 (reverse)

Output 1 Cycle Time I 4056 44057 R/W all 0 = 0.2 seconds
1 to 120 seconds

default = 5 (See Note 3 below.)

Output 1 Low Limit I 4057 44058 R/W all 0 to 100 percent

default = 0

Output 1 High Limit I 4058 44059 R/W all 0 to 100 percent

default = 100

Output 1 Alarm Action I 4052 44053 R/W /CN8200 1 = off
2 = normal
3 = latched

default = 1 (off)

Output 1 Alarm
Operation

I 4053 44054 R/W /CN8200 1 = process high
2 = process low
3 = deviation high
4 = deviation low
5 = normal band
6 = inverse band

default = 2 (process low)

Output 1 Alarm Delay I 4054 44055 R/W /CN8200 0 to 9999 seconds

default = 0

Output 1 Alarm Inhibit I 4055 44056 R/W /CN8200 0 to 9999 seconds

default = 0

Register Addresses Arranged by Function

900M062U00 � Omega. 5-13

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Output 1 Process Alarm
Setpoint (see Note 1
below)

FV� 31 40032 R/W /CN8200 sensor low limit to sensor high limit

default = 77

Output 1 Deviation,
Normal Band, or Inverse
Band Alarm Setpoint
(see Note 1 below)

FV� 32 40033 R/W /CN8200 1 to span of sensor

default = 1728

Output 2 Type I 4059 44060 R/W all CN8200/:

1 = Inactive/Disabled
2 = PID
3 = (invalid value)
4 = On/Off
5 = Alarm

default = 2 (PID)

CN8240/CN8260:

1 = Inactive/Disabled
2 = PID
3 = (invalid value)
4 = On/Off
5 = (invalid value)

default = 2 (PID)

Output 2 Action I 4060 44061 R/W all 1 = direct
2 = reverse

default = 1

Output 2 Cycle Time I 4065 44066 R/W all 0 = 0.2 seconds
1 to 120 seconds

default = 5 (See Note 3 below.)

Output 2 Low Limit I 4066 44067 R/W all 0 to 100 percent

default = 0

Output 2 High Limit I 4067 44068 R/W all 0 to 100 percent

default = 100

Output 2 Alarm Action I 4061 44062 R/W /CN8200 1 = off
2 = normal
3 = latched

default = 1 (off)

Output 2 Alarm
Operation

I 4062 44063 R/W /CN8200 1 = process high
2 = process low
3 = deviation high
4 = deviation low
5 = normal band
6 = inverse band

default = 1 (process high)

Output 2 Alarm Delay I 4063 44064 R/W /CN8200 0 to 9999 seconds

default = 0

Using MODBUS with Series C Controllers

5-14 � Omega. 900M062U00

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Output 2 Alarm Inhibit I 4064 44065 R/W /CN8200 0 to 9999 seconds

default = 0

Output 2 Process Alarm
Setpoint (see Note 2
below)

FV� 33 40034 R/W /CN8200 sensor low limit to sensor high limit

default = 77

Output 2 Deviation,
Normal Band, or Inverse
Band Alarm Setpoint
(see Note 2 below)

FV� 34 40035 R/W /CN8200 1 to span of sensor

default = 1728

Note 1: These two registers (31 and 32) correspond to a single parameter O1SP on the
controller display.
Note 2: These two registers (33 and 34) correspond to a single parameter 02SP on the
controller display.
Note 3: The cycle time is configured at the factory. The cycle time configured depends
on the output hardware in the controller. To determine the output hardware in the
controller in hand, check the model number on its label. The significance of each
character in the model number is in the installation manual supplied with the controller.
The table below shows the correlation between the output character and the factory cycle
time setting. Not every output character applies to every model.

Output Model Number
Character

Factory Configuration for
Cycle Time

(4056 for Output 1;
4065 for Output 2)

0 not used; no output

B 5 seconds

C 5 seconds

D 0 (0.2 seconds)

E 0 (0.2 seconds)

F 0 (0.2 seconds)

G 0 (0.2 seconds)

P 0 (0.2 seconds)

S 0 (0.2 seconds)

T 5 seconds

U 5 seconds

V 0 (0.2 seconds)

X 0 (0.2 seconds)

Y 5 seconds

Register Addresses Arranged by Function

900M062U00 � Omega. 5-15

5.6 Control Parameters
5.6.1 Overview

You can use MODBUS functions to read and write the parameter values that tune the
control algorithm used when Proportional-Integral-Derivative (PID) is the output type, or
the parameter values that prevent “chattering” of on/off outputs.

However, the values of the PID tuning parameters are automatically adjusted during the
Autotune procedure. Unless you want to tune the controller manually, do not alter the
PID tuning parameters Proportional Band 1, Proportional Band 2, Derivative Action, and
Manual Reset or Integral Action Auto Reset (whichever will be used). Consult the (,
CN8200, CN8240, and CN8260) Controller Configuration and Operation Manual for more
information about tuning PID control, including the use of Autotune.

The controllers use only integers for some control parameters, others can include
fractional values.

These parameters are accessible in the CtrL (control) menu on the CN8200, CN8240,
and CN8260 display.

5.6.2 Control Parameter Registers
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table. Subsection 4.1.3.3 contains information about the effect of a
linear input on the range of valid values for FV and FV� parameters.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

PID Proportional Band
for Output 1

FV� 9 40010 R/W all

PID Proportional Band
for Output 2

FV� 10 40011 R/W all

thermocouple and RTD input types:
0.6 to span of sensor

default = 100

linear input types:
1 to sensor span (max at 9999)

default = 100

PID Derivative (Rate)
Action (See Note 1
below)

FV 11 40012 R/W all 0.0 to 0.9, 1 to 2400

default = 0.0

PID Integral Action:
Auto Reset (See Note 1
below)

FV 12 40013 R/W all 0.0 to 0.9, 1 to 9600

default = 0.0

PID Integral Action:
Manual Reset

FV 13 40014 R/W all –100 to 100

default = 0

On/Off Control
Deadband for Output 1

FV� 7 40008 R/W all thermocouple and RTD input types:
negative sensor span to positive
sensor span

default = 1

linear input types:
–1999 to 9999

default = 1

Using MODBUS with Series C Controllers

5-16 � Omega. 900M062U00

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

On/Off Control
Hysteresis for Output 1

FV� 8 40009 R/W all thermocouple and RTD input types:

1 to span of sensor

default = 1

linear input types:

1 to 9999

default = 1

On/Off Control
Deadband for Output 2

FV� 14 40015 R/W all thermocouple and RTD input types:

negative sensor span to positive
sensor span

default = 1

linear input types:

–1999 to 9999

default = 1

On/Off Control
Hysteresis for Output 2

FV� 15 40016 R/W all thermocouple and RTD input types:

1 to span of sensor

default = 1

linear input types:

1 to 9999

default = 1

Note 1: These parameters are special cases. Even if the Linear Decimal Position
Parameter (register 4069) is set to 2 or 3, the maximum number of decimal places
applied to the PID Derivative (Rate) Action and PID Integral Action (Auto Reset) is 1 (the
tenths position).

Register Addresses Arranged by Function

900M062U00 � Omega. 5-17

5.7 Alarm Parameters
5.7.1 Overview

You can use MODBUS functions to read and write the parameters used to control alarm
annunciation using the front panel LEDs on the CN8200, CN8240, and CN8260 models,
and that also control alarm annunciation using the optional alarm output card in CN8240
and CN8260 units. (See 4.5 in this manual and the (, CN8200, CN8240, and CN8260)
Controller Configuration and Operation Manual for more information about the use of
various parameters to control alarm annunciation.)

The controllers store some alarm parameter values as integers, others can include
fractional values.

These parameters are accessible in the ALr (alarm) menu on the CN8200, CN8240, and
CN8260.

5.7.2 Alarm Parameter Registers
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table. Subsection 4.1.3.3 contains information about the effect of a
linear input on the range of valid values for FV and FV� parameters.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Alarm 1 Action I 4072 44073 R/W all except 1 = off
2 = normal
3 = latched
4 = event

default = 1 (off)

Alarm 1 Operation I 4073 44074 R/W all except 1 = process high
2 = process low
3 = deviation high
4 = deviation low
5 = normal band
6 = inverse band

default = 1 (process high)

Alarm 1 Delay I 4074 44075 R/W all except 0 to 9999 seconds

default = 0

Alarm 1 Inhibit I 4075 44076 R/W all except 0 to 9999 seconds

default = 0

Alarm 1 Process
Setpoint (see Note 1
below)

FV� 36 40037 R/W all except sensor low limit to sensor high
limit

default = 77

Alarm 1 Deviation,
Normal Band, or Inverse
Band Setpoint (see Note
1 below)

FV� 37 40038 R/W all except 1 to span of sensor

default = 1728

Alarm 2 Action I 4076 44077 R/W all except 1 = off
2 = normal
3 = latched
4 = event

Using MODBUS with Series C Controllers

5-18 � Omega. 900M062U00

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

default = 1 (off)

Alarm 2 Operation I 4077 44078 R/W all except 1 = process high
2 = process low
3 = deviation high
4 = deviation low
5 = normal band
6 = inverse band

default = 2 (process low)

Alarm 2 Delay I 4078 44079 R/W all except 0 to 9999 seconds

default = 0

Alarm 2 Inhibit I 4079 44080 R/W all except 0 to 9999 seconds

default = 0

Alarm 2 Process
Setpoint (see Note 2
below)

FV� 38 40039 R/W all except sensor low limit to sensor high
limit

default = 77

Alarm 2 Deviation,
Normal Band, or Inverse
Band Setpoint (see Note
2 below)

FV� 39 40040 R/W all except 1 to span of sensor

default = 1728

Note 1: These two registers (36 and 37) correspond to a single parameter A1.SP on the
controller display.
Note 2: These two registers (38 and 39) correspond to a single parameter A2.SP on the
controller display.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-19

5.8 Autotune Damping Parameter

5.8.1 Overview
You can use MODBUS functions to read and write the parameter used to control how
aggressively the controller performs its Autotuning operation. This value is stored as an
integer in the controller.

This parameter is accessible in the tunE (Autotune damping) menu on the CN8200,
CN8240, and CN8260 display.

5.8.2 Autotune Damping Parameter Register
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Autotune Damping I 4011 44012 R/W all 1 = low
2 = normal
3 = high

default = 2 (normal)

Using MODBUS with Series C Controllers

5-20 � Omega. 900M062U00

5.9 Ramp/Soak Parameters

5.9.1 Overview
The CN8200, CN8240, and CN8260 controllers can be configured to execute a single-
step controlled gradual ramp up to desired setpoint when the controller is powered up, or
to execute upon demand a recipe consisting of up to eight ramp and soak segments.

Each segment consists of a ramp time, a soak level, and a soak time. As the controller
executes a segment, the controller gradually (over the period of the ramp time) changes
the currently used setpoint up or down until the soak level is reached. During the
duration of the soak time, the controller maintains the setpoint at the specified soak level.
When the soak time has elapsed, the controller executes the next segment of the recipe.
If at least one front panel alarm was configured for “events”, then you can activate and
deactivate the alarm based on the recipe reaching particular events in its execution, such
as the start of a numbered soak period. (More details concerning the parameters
affecting recipe execution are in the (CN8200, CN8240, and CN8260) Controller
Configuration and Operation Manual.)

You can use MODBUS functions to read and write to the recipe parameters in the table
below. You can also use the MODBUS read function to see the currently used recipe
setpoint and segment using registers listed in 4.15.2. Subsection 4.15.2 also lists the
register used with the write function to change the controller mode to start running (or to
resume running) a recipe and to hold (pause) recipe execution.

The controllers use only integers for some recipe parameters, others can include
fractional values.

These parameters are accessible in the r-S (ramp/soak) menu on the CN8200,
CN8240, and CN8260 display.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-21

5.9.2 Ramp/Soak Parameter Registers
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table. Subsection 4.1.3.3 contains information about the effect of a
linear input on the range of valid values for FV and FV� parameters.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Recipe Option I 4012 44013 R/W all 0 = disabled
1 = single-step ramp
2 = multi-step ramp

default = 0 (disabled)

Single-Step Ramp Time I 4013 44014 R/W all 1 to 9999

default = 1

Holdback FV� 24 40025 R/W all thermocouple and RTD input types:

0 = off
0.1 to 100 �F
0.1 to 55.6 �C or �K

default = 10

linear input types:

0 = off
1 to 100

default = 10

Termination State I 4047 44048 R/W all 0 = last setpoint
1 = default setpoint
2 = recipe to standby mode

default = 2 (recipe to standby)

Recycle Number I 4046 44047 R/W all 0 to 99
100 = continuous

default = 0

Resume from Power
Failure

I 4048 44049 R/W all 1 = resume off
2 = resume on

default = 1

Ramp Times 1 to 8 I 4014
to
4021

44015
to
44022

R/W all 0 to 9999 minutes

default = 0 (disabled)

Ramp Events 1 to 8 I 4022
to
4029

44023
to
44030

R/W all except 0 = disabled
1 = event 1 (alarm 1) on
2 = event 1 (alarm 1) off
3 = event 2 (alarm 2) on
4 = event 2 (alarm 2) off

default = 0 (disabled)

Soak Levels 1 to 8 FV� 16
to
23

40017
to
40024

R/W all setpoint low limit to setpoint high
limit (see Note 1 below)

default = 77

Using MODBUS with Series C Controllers

5-22 � Omega. 900M062U00

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Soak Times 1 to 8 I 4030
to
4037

44031
to
44038

R/W all 0 to 9999 minutes

default = 0 (disabled)

Soak Events 1 through 8 I 4038
to
4045

44039
to
44046

R/W all except 0 = disabled
1 = event 1 (alarm 1) on
2 = event 1 (alarm 1) off
3 = event 2 (alarm 2) on
4 = event 2 (alarm 2) off

default = 0 (disabled)

Note 1: These limits are specified using input parameters; see 4.3.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-23

5.10 Parameters for Options
5.10.1 Overview

You can use MODBUS functions to read the parameter that stores the type of option card
installed in an CN8240 and CN8260 controller (in addition to the special serial
communications card that makes it possible for the controllers to communicate with the
MODBUS master).

You can read and write the parameters used to specify how the options are used. No
controller supports all of these options simultaneously. This section includes all the
option parameters, except the communication parameters, which are in 4.2.

5.10.2 Option Parameters
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table. Subsection 4.1.3.3 contains information about the effect of a
linear input on the range of valid values for FV and FV� parameters.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

on Optn (option) menu on CN8200, CN8240, CN8260

Installed Option Card
(See Note 1 below)

I 4088 44089 R/W all except 0 = No Option Card
1 = Communication Option
2 = Communication with
 Contact/Digital Input Option
3 = Remote Analog Setpoint Option
4 = Auxiliary Analog Output Option
5 = Alarm Output Option
6 = Alarm with Contact/Digital Input
 Option

default for CN8240, CN8260 = 0
default for CN8200 = 1

on Aout (auxiliary output) menu on CN8200, CN8240, CN8260 – used only when the auxiliary output option card is
installed

Auxiliary Output
Variable

I 4089 44090 R/W all except 1 = process value
2 = setpoint

default = 1 (process value)

Auxiliary Output Scale
Low

FV 52 40053 R/W all except sensor low limit to sensor high limit

default = –328

Auxiliary Output Scale
High

FV 53 40054 R/W all except sensor low limit to sensor high limit

default = 1400

on C-dl(contact/digital input) menu on CN8200, CN8240, CN8260 – used only if an option card that supports the
contact/digital input is installed

Contact/Digital Input
Function

I 4090 44091 R/W all except 1 = disabled
2 = select use of second setpoint
 (see Note 2 below)
3 = toggle in and out of standby
 mode
4 = toggle recipe execution
 between run and hold

Using MODBUS with Series C Controllers

5-24 � Omega. 900M062U00

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

default = 1 (disabled)

on rAS (remote analog setpoint) menu on CN8200, CN8240, CN8260 – used only if the remote analog setpoint
option card is installed (see Note 3 below)

Remote Analog Setpoint
Scale Low

FV� 54 40055 R/W all except –1999 to 9999

default = –1999

Remote Analog Setpoint
High

FV� 55 40056 R/W all except –1999 to 9999

default = 9999

Note 1: This parameter is configured at the factory. However, if you use the procedure
in 7.2 to load all parameter defaults, then you must use the front panel of the controller to
configure the Card parameter in the Optn (option) menu. This prepares the controller
to receive the appropriate option parameter values. The only exception is in the case of
an CN8240 or CN8260 equipped with only the serial communication option. The CN8240
and CN8260 models are always ready to receive serial communication parameter values.
Note 2: The second setpoint can be read from and written to RAM using the register with
relative address 4, and read from and written to the EEPROM and RAM using register 3
(see 4.14.1.3).
Note 3: The setpoint received from the remote device can be read from the register at
relative address 5.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-25

5.11 Supervisor Parameters

5.11.1 Overview
You can use MODBUS functions to read and write to the parameters used to specify
what output percentages should be used if the controller detects a problem with the
process input (failsafe values), and the length of the time period during which the input
should change in response to output action if the input is working normally (loop break
time).

You can also use the MODBUS read function to see the highest and lowest process
value received by the controller since the readings were reset.

These parameters are accessible in the SUPr (Supervisor) menu on the CN8200,
CN8240, and CN8260 display.21

5.11.2 Supervisor Parameter Registers
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table. Subsection 4.1.3.3 contains information about the effect of a
linear input on the range of valid values for FV and FV� parameters.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Output 1 Failsafe Output
Percentage

I 4085 44086 R/W all 0 to 100 percent

default = 0

Ouput 2 Failsafe Output
Percentage

I 4086 44087 R/W all 0 to 100 percent

default = 0

Loop Break Time I 4087 44088 R/W all 3 = off
4 to 9600 seconds

default = 3 (off)

Highest Reading FV� 40 40041 R/W all sensor low limit to sensor high limit

default = –3566

See Note 1 below.

Lowest Reading FV� 41 40042 R/W all sensor low limit to sensor high limit

default = 18030

See Note 2 below.

Note 1: This highest reading can be reset by writing –1999 to register 40.
Note 2: This lowest reading can be reset by writing 9999 to register 41.

21 The other function that appears on the SUPr menu, Lddp (load default parameters), is accomplished
using the MODBUS 16 ($10) write function and factory registers as described in Section 7.

Using MODBUS with Series C Controllers

5-26 � Omega. 900M062U00

5.12 Calibration Function

5.12.1 Overview
You do not have to calibrate every new controller. When a controller was ordered, you
specified an input type for which the unit was calibrated at the factory. This is not the
specific type written to the input type register at relative address 4049, such as J
thermocouple, or 0 to 20 mA linear. In the context of ordering the controller, “type” refers
to these choices: RTD, compressed RTD, thermocouple, millivolt linear, volt linear, or
current linear input. The controller was calibrated at the factory for the type of input
specified. If you use the controller with a different type of input, you must recalibrate as
described in the (, CN8200, CN8240, and CN8260) Controller Configuration and
Operation Manual unless you ordered the “Calibrate All” input option.22

For example, if you specified when you ordered the controller that you planned to use a
thermocouple as the sensor, then you can use the input type register to specify any
thermocouple type: B, C, E, J, K, N, NNM, R, S, T, or Platinel II. The controller will be
calibrated appropriately at the factory. However, if you ordered thermocouple calibration,
but decide to use the controller with an RTD sensor, then you should recalibrate before
using the controller.

When calibrating the controller, you can use MODBUS commands to write to special
registers in the factory region as described in Section 7 of this manual. (Do not use the
factory calibration commands before you have read the calibration instructions in the (,
CN8200, CN8240, and CN8260) Controller Configuration and Operation Manual.).

The values calculated by the controller for the zero offset and the span adjustment are
stored in the registers listed in the table below and can be read and written using
MODBUS. Different registers are available for each type of input. However, the
controller calibrates only for the type of input specified using the input type parameter.

The values in the calibration zero offset and span adjustment registers should not be
changed using MODBUS write functions. The zero offset and span adjustment should be
changed only by the controller’s calibration procedure. However, if you have used the
MODBUS master to back up your controller’s database, including the zero offset and
span adjustment, you can safely restore the values using MODBUS write functions.

22 To determine whether the controller in hand was calibrated at the factory for all input types, check the
model number on the label on the controller. The meaning of each character in the model number is in
the installation manual supplied with the controller.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-27

5.12.2 Calibration Zero Offset and Span Adjustment Registers

See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table.

Register
Number

Value Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Thermocouple Zero
Offset

FV 42 40043 R/W all –25000 to 25000

default = 2600

Thermocouple Span
Adjustment

FV 43 40044 R/W all 0.001 to 2.0

default = 1

RTD Zero Offset FV 44 40045 R/W all –25000 to 25000

default = 9000

RTD Span Adjustment FV 45 40046 R/W all 0.001 to 2.0

default = 1

Low-Voltage Zero Offset
(See Note 1 below.)

FV 46 40047 R/W all –25000 to 25000

default = 0

Low-Voltage Span
Adjustment
(See Note 1 below.)

FV 47 40048 R/W all 0.001 to 2.0

default = 1

High-Voltage Zero Offset
(see Note 2 below.)

FV 48 40049 R/W all –25000 to 25000

default = 0

High-Voltage Span
Adjustment
(see Note 2 below.)

FV 49 40050 R/W all 0.001 to 2.0

default = 1

Current (mA) Zero Offset FV 50 40051 R/W all –25000 to 25000

default = 0

Current (mA) Span
Adjustment

FV 51 40052 R/W all 0.001 to 2.0

default = 1

RTD Decimal Zero Offset FV 57 40058 R/W all –25000 to 25000

default = 9000

RTD Decimal Span Cal FV 58 40059 R/W all 0.001 to 2.0

default = 1

2nd High-Voltage Zero
Cal
(see Note 3 below.)

FV 59 40060 R/W all –25000 to 25000

default = 0

2nd High-Voltage Span
Cal
(see Note 3 below.)

FV 60 40061 R/W all 0.001 to 2.0

default = 1

0 to 100 mV Zero Cal FV 61 40062 R/W all –25000 to 25000

default = 0

Using MODBUS with Series C Controllers

5-28 � Omega. 900M062U00

Register
Number

Value Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

0 to 100 mV Span Cal FV 62 40063 R/W all 0.001 to 2.0

 default = 1
CN8200, CN8240, CN8260 default
= 0

Note 1: This “low voltage” register stores a calibration value for the following inputs:
0 to 10 mV, 0 to 50 mV, and 10 to 50 mV inputs.
Note 2: This “high voltage” register stores a calibration value for the following inputs:
0 to 1 V and 0 to 5 V.
Note 3: This “2nd high-voltage” register stores a calibration value for the following inputs:
0 to 10 V and 1 to 5 V.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-29

5.13 Security Parameter

5.13.1 Overview
The CN8200, CN8240, and CN8260 controllers can be configured so that access to their
databases by means of the front panel is limited. You can use MODBUS functions to
read and write the parameter that controls this access.

5.13.2 Security Parameter Register
See 4.1.3.2 for a description of the types of information and the meanings of the
abbreviations in this table.

Register
Number

Parameter Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Access Level I 4005 44006 R/W all except 1 = lockout
2 = setpoint and output percentage
 (manual mode) only
3 = setpoint plus mode
4 = user (setpoint, manual output
 percentage, mode, plus
 Autotune and control menus)
5 = configuration (all privileges
 above plus all configuration
 menus except calibration)
6 = factory (all of above plus
 calibration)

default = 6 (factory); this is the
value that will be written to the
register if you use the procedure in
7.2 to load all parameter defaults.
However, controllers are shipped
from the factory set to 5
(configuration).

Using MODBUS with Series C Controllers

5-30 � Omega. 900M062U00

5.14 Process Value and Setpoints

5.14.1 Overview

5.14.1.1 Introduction
You can use MODBUS functions to read the process value and all setpoints stored in a ,
CN8200, CN8240, or CN8260 controller. You can use MODBUS functions to change the
setpoint in the controller (and the second setpoint, if supported by the controller
hardware.)

The PV and setpoints can include fractional values.

The value of the PV and the setpoint currently being used (“active setpoint”) are always
displayed when a CN8200, CN8240, or CN8260 controller is operating in normal mode.

5.14.1.2 Where Setpoints Are Stored in the Controller
When writing a new setpoint to the controller, you can specify that the setpoint will be
stored only in RAM, or in both RAM and on the EEPROM. The controller uses the
setpoint stored in RAM. If the setpoint is also stored on the EEPROM, the setpoint will be
retained, even when power to the controller is turned off. The setpoint stored on the
EEPROM will be written to RAM when the controller is powered up.

However, you can wear out the EEPROM by writing to it too many times. Do not write
the setpoint to the EEPROM when you are writing a temporary setpoint to the controller,
such as when you are ramping to a final setpoint under the direction of the MODBUS
master.

5.14.1.3 Purpose of Second Setpoint
The table below refers to a second setpoint. This second setpoint is not supported by all
controllers. Only controllers with optional contact/digital input hardware support the
second setpoint. If a controller is equipped with the optional contact/digital input, then
you can use the integer register at relative address 4090 to specify what happens when
an external device changes the state of this optional contact. One of the choices is to
use the second setpoint. Like the primary setpoint, the second setpoint can be written
only to RAM, or to both RAM and the EEPROM. Do not write temporary setpoints to the
EEPROM.

5.14.1.4 Purpose of Remote Analog Setpoint
The table below also refers to a remote analog setpoint. Use of a remote analog setpoint
(RAS) is supported by only controllers that contain the optional RAS card. If use of the
remote analog setpoint is enabled (by the contact on the RAS card being closed by an
external signal), then the RAS value currently being received by the controller can be
read from the register with relative address 5.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-31

5.14.1.5 Purpose of Recipe Setpoint
The , CN8200, CN8240, and CN8260 controllers can each be configured to execute a
single ramp to setpoint, or a multi-step ramp and soak recipe. As execution of the ramp
or recipe progresses, the setpoint is changed by the controller to achieve the process
values specified in the recipe. The value of the setpoint currently being used while the
recipe is running can be read from the register at relative address 6. (See 4.9 for
information about the registers used to configure the ramp/soak recipes. The recipe
segment currently being executed and the recipe state can be read; see 4.15.)

5.14.1.6 Purpose of Active Setpoint
The active setpoint is the setpoint value currently being used for control. This is also the
setpoint currently being displayed. This setpoint can come from several sources. The
logic flow that determines which setpoint value is displayed is shown below.

If a single setpoint ramp or multi-step ramp/soak recipe is active,

then the active setpoint equals the recipe setpoint.

Else if using the remote analog setpoint is enabled,

then the active setpoint equals the remote analog setpoint.

Else if using the second setpoint is enabled,

then the active setpoint equals the second setpoint.

Else active setpoint equals setpoint.

Using MODBUS with Series C Controllers

5-32 � Omega. 900M062U00

5.14.2 PV and SV Registers
See 4.1.3.2 for a description of the types of information and the meanings of the abbreviations in
this table.

Register
Number

Value Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Process Value FV� 0 40001 R all range is determined by sensor
span

-32768 = Low Error

+32767 = High Error

Setpoint (EEPROM and
RAM)

FV� 1 40002 R/W all setpoint low limit to setpoint high
limit (see Note 1 below)

default = 77

Setpoint (RAM) FV� 2 40003 R/W all setpoint low limit to setpoint high
limit (see Note 1 below)

default = 77

Second Setpoint
(EEPROM and RAM)

FV� 3 40004 R/W all except setpoint low limit to setpoint high
limit (see Note 1 below)

default = 77

Second Setpoint (RAM) FV� 4 40005 R/W all except setpoint low limit to setpoint high
limit (see Note 1 below)

default = 77

Remote Analog Setpoint FV� 5 40006 R all except remote setpoint limits (see Note 2
below)

Recipe Setpoint FV� 6 40007 R all setpoint low limit to setpoint high
limit (see Note 1 below)

Active Setpoint FV� 56 40057 R/W all setpoint low limit to setpoint high
limit (see Note 1 below)

or

–1999 to 9999 when remote analog
setpoint is being used

Note 1: Setpoint low limit and setpoint high limit are specified using input parameters;
see 4.3.
Note 2: Remote analog setpoint low and high limits are specified using option
parameters; see 4.10.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-33

5.15 Controller Information and Status Values

5.15.1 Overview

5.15.1.1 Introduction
You can use the MODBUS read function to read information about the controller (such as
firmware version number) and status values (such as the state of the recipe being
executed or the recipe segment that is active). You can also use MODBUS write
functions to change the controller’s operating mode (such as switching from normal to
standby, or from recipe run to recipe hold).

The PV and setpoints are stored in the controller as fractional values.

The purpose and function of most of the information and status register in the table below
are self-explanatory. However, the following paragraphs explain concepts that may be
new to you.

5.15.1.2 Purpose of Contact/Digital Input State
The table below refers to a contact/digital input state. A contact/digital input is not
supported by all controllers. Some controllers can accept a discrete input (in addition to
the standard analog inputs). This discrete input can be used to trigger use of the second
setpoint stored in the controller, to switch the controller to standby mode, or to toggle
recipe run and hold. (See 4.10 for the parameter used to specify the function of the
discrete input.)

5.15.1.3 Purpose of Resume Exhaustion Flag
A controller can be configured to resume recipe execution after a power failure (see
4.9.2). To be able to resume execution of a recipe after a power failure, the controller
must store information about the current state of the recipe on the EEPROM, assuming
sufficient space is available on the EEPROM. A MODBUS register can be used to
determine whether the controller still has enough storage space on the EEPROM for
information about the currently executing recipe.

The integer register at relative address 4094 can be used to read the status of the
“resume exhaustion flag”. If this register contains a value of 1 (true), then the controller
cannot resume recipe execution after a power failure.23 If the value in register 4094 is 0
(false), then the controller still has storage space available on the EEPROM for recipe
status information.

5.15.1.4 Interpreting the Status Byte and the LED Status Indicator Byte
The integer register at relative address 4003 can be used to read a status byte that
provides information such as the fact that the controller has detected a possible loop
break or that an alarm state has been detected. Similarly, the integer register at relative
address 4095 can be used to read a status byte that indicates which LEDs on the
controller front panel are lit.

23 Under normal circumstances, it is not likely that you will consume all the storage space on the
EEPROM. However, it is possible if your a site experiences frequent power failures during execution of
recipes.

Using MODBUS with Series C Controllers

5-34 � Omega. 900M062U00

Each status byte consists of eight bits. Each bit has been assigned a meaning. If a bit is
set (value is 1), then the condition associated with this bit is true. If a bit is not set (0),
then the condition is FALSE.

For example, the following meanings have been assigned to the bits in the LED status
byte:

0 unused, always 0
1 unused, always 0
2 F2 on (excluding serial communication activities; always zero for)
3 F1 on (excluding serial communication activities; always zero for)
4 A2 on (CN8200, CN8240, CN8260 only; always zero for)
5 A1 on (CN8200, CN8240, CN8260 only; always zero for)
6 O2 active
7 O1 active

Suppose that LEDs F1 and F2 are lit, and all the other LEDs on the front of a CN8200
controller are not lit. In this case, the bits in positions 2 and 3 are set (value = 1) and all
the others are not set (value = 0). Envision the bits as a binary number: 00001100 = 12.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 1 1 0 0

If you read the LED status register and the controller returns the value 12, then you know
which two bits are set. The set bits must be the bits that represent 4 and 8 in the binary
system.

If the controller returns a value of 28, you know that bits 2, 3, and 4 are set, the bits that
represent 16, 8, and 4 in the binary system: 00011100 = 28, so F1 and F2 are both lit, as
well as A2.

Register Addresses Arranged by Function

900M062U00 � Omega. 5-35

5.15.2 Controller Information and Status Parameter Registers
See 4.1.3.2 for a description of the types of information and the meanings of the abbreviations in
this table.

Register
Number

Value Type
Rel. Abs.

R/W
Supported

By Valid Data Field Value

Controller Type I 4000 44001 R all 2 = CN8200
3 = CN8240/CN8260 (paired
because
 these two models support the
 same hardware options)
4 =

Software Version I 4001 44002 R all Six-digit integer value representing
controller firmware version in the
form nn.nn.nn. For example,
013100 means version 01.31.00.

Communications
Version

I 4002 44003 R all Six-digit integer value representing
communication firmware version in
the form nn.nn.nn. For example,
013100 means version 01.31.00.

Status Byte I 4003 44004 R all Data is an 8-bit value of which the
bit assignments are as follows:

Bit # Assignment

0 output 2 active

1 output 1 active

2 alarm 2 active (LED lit)
3 alarm 1 active (LED lit)

4 possible loop break detected

5 unused (always zero)

6 remote analog setpoint error

7 process input error

If a bit is set (1), then the condition
is TRUE.
If a bit is not set (0), then the
condition is FALSE.
For example, a value of 12 in the
data field means that both alarm1
and alarm 2 are active and
everything else is inactive. See
4.15.1.4 for detailed instructions for
interpreting a status byte.

Using MODBUS with Series C Controllers

5-36 � Omega. 900M062U00

Value Type

Register
Number

R/W
Supported

By Valid Data Field Value

Operating Mode I 4004 44005 R/W all 1 = manual
2 = standby
3 = normal (automatic)
4 = autotune
5 = recipe run/resume
6 = recipe hold
(See Note 1 below.)

default =3 (normal/auto mode)

Contact/Digital Input
State

I 4006 44007 R all except 0 = switch inactive
1 = switch active

Output 1 Output Percent I 4007 44008 R all 0 to 100

Output 2 Output Percent I 4008 44009 R all 0 to 100

Manual Control Output 1
Percent

I 4009 44010 R/W all 0 to 100 (See Note 2 below.)

Manual Control Output 2
Percent

I 4010 44011 R/W all 0 to 100 (See Note 2 below.)

Autotune State I 4091 44092 R all 0 = success
1 = aborted
2 = error: no PID output
3 = error: no deviation
4 = error: no output
5 = error: timed out
6 = error: bad tune
7 = waiting for PV to settle
8 = reverse tune in progress
9 = direct tune in progress

Recipe State I 4092 44093 R all 0 = done
1 = aborted
2 = error: empty recipe
3 = error: no deviation
4 = recipe on hold
5 = ramping
6 = soaking
7 = ramp holdback
8 = soak holdback

Current Recipe Segment I 4093 44094 R all 0 to 8

default = 0

Resume Exhaustion
Flag

I 4094 44095 R all 0 = false (resume block available)
1 = true (resume block exhausted)

default = 0

Register Addresses Arranged by Function

900M062U00 � Omega. 5-37

Value Type

Register
Number

R/W
Supported

By Valid Data Field Value

LED Status Indicator
Byte

I 4095 44096 R all Data is an 8-bit value. The bit
assignments follows:

Bit # Assignment

0 Unused, always 0

1 Unused, always 0

2 F2 On (excluding serial
 communication activities;
 always zero for)

3 F1 On (excluding serial
 communication activities;
 always zero for)

4 A2 On (CN8200, CN8240,
CN8260 only;
 always zero for)

5 A1 On (CN8200, CN8240,
CN8260 only;
 always zero for)

6 O2 Active

7 O1 Active

If a bit is set (1), then the condition
is TRUE.
If a bit is not set (0), then the
condition is FALSE.
For example, a value of 48 in the
data field means that the F1 and F2
LEDs are lit and all others are not
lit. See 4.15.1.4 for detailed
instructions for interpreting a status
byte.

Watchdog Disable FV 63 40064 R/W Write to this register only if a
member of the Omega technical
support team tells you to write to it.
Writing 3.1415 to this register will
disable the controller’s watchdog
circuit temporarily so that the
controller can reset itself.

Controller Ambient
Temperature

FV 64 40065 R Read the controller’s ambient
temperature in the unit of measure
specified using the display units of
measure parameter (see 4.4.2).

Note 1: To terminate execution of a recipe before all segments of all cycles have been
run, change the mode to normal, manual, or standby.
Note 2: There is no default for this value. The controllers are designed to provide
“bumpless transfer” from auto to manual mode. That means that when a controller is
switched to manual, initially it uses the output percentages used most recently in normal
(auto) mode.

Using MODBUS with Series C Controllers

5-38 � Omega. 900M062U00

900M062U00 � Omega. 6-1

6. Controller Parameters Arranged by
Register Address

6.1 Overview
For your convenience when interpreting messages returned by controllers to the
MODBUS master, this section includes two tables, each in numerical order by register.

� The first table lists all the registers for parameters for which the controller can
use only integer values (marked I in Section 4).

� The second table lists all the registers used for controller values that can include
fractional values (parameters marked FV and FV� in Section 4). This table lists
the relative address of each parameter in all three regions that can be used to
access a fractional value in the controllers.

To see the ranges for the FV and FV� parameters and the meaning of specific values for
the integers, see the appropriate subsections in Section 4.

6.2 Integer Registers

6.2.1 Introduction
The table in 5.2.2 lists the MODBUS registers used to transmit values for configuration
parameters for which the controller can use only integers.

6.2.2 Register List

Register
Relative
Address

Parameter
or Value R/W

Supported
By See Subsection

4000 Controller Type R all 4.15 Controller Information
and Status Values

4001 Software Version R all 4.15 Controller Information
and Status Values

4002 Communications
Version

R all 4.15 Controller Information
and Status Values

4003 Status Byte R all 4.15 Controller Information
and Status Values

4004 Operating Mode R/W all 4.15 Controller Information
and Status Values

4005 Access Level R/W all except 4.13 Security Parameter

Using MODBUS with Series C Controllers

6-2 � Omega. 900M062U00

Register
Relative
Address

Parameter
or Value R/W

Supported
By See Subsection

4006 Contact/Digital Input
State

R all except 4.15 Controller Information
and Status Values

4007 Output 1 Output
Percent

R all 4.15 Controller Information
and Status Values

4008 Output 2 Output
Percent

R all 4.15 Controller Information
and Status Values

4009 Manual Control
Output 1 %

R/W all 4.15 Controller Information
and Status Values

4010 Manual Control
Output 2 %

R/W all 4.15 Controller Information
and Status Values

4011 Autotune Damping R/W all 4.8 Autotune Damping
Parameter

4012 Recipe Option R/W all 4.9 Ramp/Soak Parameters

4013 Single Setpoint Ramp
Time

R/W all 4.9 Ramp/Soak Parameters

4014
to

4021

Ramp Time 1 to
Ramp Time 8

R/W all 4.9 Ramp/Soak Parameters

4022
to

4029

Ramp Event 1 to
Ramp Event 8

R/W all except 4.9 Ramp/Soak Parameters

4030
to

4037

Soak Time 1 to Soak
Time 8

R/W all 4.9 Ramp/Soak Parameters

4038
to

4045

Soak Event 1 to Soak
Event 8

R/W all except 4.9 Ramp/Soak Parameters

4046 Recycle Number R/W all 4.9 Ramp/Soak Parameters

4047 Termination State R/W all 4.9 Ramp/Soak Parameters

4048 Power Fail Resume
Enable

R/W all 4.9 Ramp/Soak Parameters

4049 Input Type R/W all 4.3 Input Parameters

4050 Output 1 Type R/W all 4.5 Output Parameters

4051 Output 1 Action R/W all 4.5 Output Parameters

4052 Output 1 Alarm Action R/W /CN8200 4.5 Output Parameters

4053 Output 1 Alarm
Operation

R/W /CN8200 4.5 Output Parameters

4054 Output 1 Alarm Delay R/W /CN8200 4.5 Output Parameters

4055 Output 1 Alarm Inhibit R/W /CN8200 4.5 Output Parameters

4056 Output 1 Cycle Time R/W all 4.5 Output Parameters

4057 Output 1 Low Limit R/W all 4.5 Output Parameters

Parameters Arranged by Register Address

900M062U00 � Omega. 6-3

Register
Relative
Address

Parameter
or Value R/W

Supported
By See Subsection

4058 Output 1 High Limit R/W all 4.5 Output Parameters

4059 Output 2 Type R/W all 4.5 Output Parameters

4060 Output 2 Action R/W all 4.5 Output Parameters

4061 Output 2 Alarm Action R/W /CN8200 4.5 Output Parameters

4062 Output 2 Alarm
Operation

R/W /CN8200 4.5 Output Parameters

4063 Output 2 Alarm Delay R/W /CN8200 4.5 Output Parameters

4064 Output 2 Alarm Inhibit R/W /CN8200 4.5 Output Parameters

4065 Output 2 Cycle Time R/W all 4.5 Output Parameters

4066 Output 2 Low Limit R/W all 4.5 Output Parameters

4067 Output 2 High Limit R/W all 4.5 Output Parameters

4068 TC/RTD Decimal
Position

R/W all 4.4 Display Parameters

4069 Linear Decimal
Position

R/W all 4.4 Display Parameters

4070 Display Unit R/W all 4.4 Display Parameters

4071 Display Blanking R/W all 4.4 Display Parameters

4072 Alarm 1 Action R/W all except 4.7 Alarm Parameters

4073 Alarm 1 Operation R/W all except 4.7 Alarm Parameters

4074 Alarm 1 Delay R/W all except 4.7 Alarm Parameters

4075 Alarm 1 Inhibit R/W all except 4.7 Alarm Parameters

4076 Alarm 2 Action R/W all except 4.7 Alarm Parameters

4077 Alarm 2 Operation R/W all except 4.7 Alarm Parameters

4078 Alarm 2 Delay R/W all except 4.7 Alarm Parameters

4079 Alarm 2 Inhibit R/W all except 4.7 Alarm Parameters

4080 Communication
Protocol

R all 4.2 Communication
Parameters

4081 Controller ID R/W all 4.2 Communication
Parameters

4082 Baud Rate R/W all 4.2 Communication
Parameters

4083 Parity R/W all 4.2 Communication
Parameters

4084 IEEE Register
Ordering

R/W all 4.2 Communication
Parameters

4085 Output 1 Failsafe
Output Percent

R/W all 4.11 Supervisor Parameters

4086 Output 2 Failsafe
Output Percent

R/W all 4.11 Supervisor Parameters

Using MODBUS with Series C Controllers

6-4 � Omega. 900M062U00

Register
Relative
Address

Parameter
or Value R/W

Supported
By See Subsection

4087 Loop Break Time R/W all 4.11 Supervisor Parameters

4088 Installed Option Card R all except 4.10 Parameters for
Options

4089 Auxiliary Output
Variable

R/W all except 4.10 Parameters for
Options

4090 Contact/Digital Switch
Function

R/W all except 4.10 Parameters for
Options

4091 Autotune State R all 4.15 Controller Information
and Status Values

4092 Recipe State R all 4.15 Controller Information
and Status Values

4093 Current Recipe
Segment

R all 4.15 Controller Information
and Status Values

4094 Resume Exhaustion
Flag

R all 4.15 Controller Information
and Status Values

4095 LED Status Indicator R all 4.15 Controller Information
and Status Values

Parameters Arranged by Register Address

900M062U00 � Omega. 6-5

6.3 Registers for Parameters That Can Use Fractional Values

6.3.1 Introduction
The table in 5.2.2 lists the MODBUS registers used to access all parameters for which
the controller can use a fractional value. The relative address in all three regions is given
for each parameter.

6.3.2 Register List
The table below contains the relative address in the base region, 10X region, and 32-bit
IEEE region (two registers per value) that can be used to transmit a controller value that
can include a fractional value.

The � symbol following the names of some parameters or values indicates that the type
of input used by the controller affects the way the controller stores the fractional value,
and, thus the way you must read and write the value in the base region and 10X region.
See 3.7 and 3.8 for information and examples.

Relative Address Parameter
or Value R/W

Supported
By

See
Subsection

Base 10X IEEE

0 1000 8000
8001

Process Value� R all 4.14 Process
Value and
Setpoints

1 1001 8002
8003

Setpoint (EEPROM) � R/W all 4.14 Process
Value and
Setpoints

2 1002 8004
8005

Setpoint (RAM) � R/W all 4.14 Process
Value and
Setpoints

3 1003 8006
8007

Second Setpoint (EEPROM) � R/W all except 4.14 Process
Value and
Setpoints

4 1004 8008
8009

Second Setpoint (RAM) � R/W all except 4.14 Process
Value and
Setpoints

5 1005 8010
8011

Remote Analog Setpoint� R all except 4.14 Process
Value and
Setpoints

6 1006 8012
8013

Recipe Setpoint� R all 4.14 Process
Value and
Setpoints

7 1007 8014
8015

Output 1 Deadband � R/W all 4.6 Control
Parameters

8 1008 8016
8017

Output 1 Hysteresis � R/W all 4.6 Control
Parameters

9 1009 8018
8019

Output 1 Proportional Band � R/W all 4.6 Control
Parameters

Using MODBUS with Series C Controllers

6-6 � Omega. 900M062U00

Relative Address Parameter
or Value R/W

Supported
By

See
Subsection

Base 10X IEEE

10 1010 8020
8021

Output 2 Proportional Band � R/W all 4.6 Control
Parameters

11 1011 8022
8023

Rate/Derivative Action R/W all 4.6 Control
Parameters

12 1012 8024
8025

Reset/Integral Action R/W all 4.6 Control
Parameters

13 1013 8026
8027

Manual Reset/Integral Action R/W all 4.6 Control
Parameters

14 1014 8028
8029

Output 2 Deadband� R/W all 4.6 Control
Parameters

15 1015 8030
8031

Output 2 Hysteresis� R/W all 4.6 Control
Parameters

16
to
23

1016
to

1023

8032/8033
to

8046/8047

Soak Level 1 to Soak Level 8� R/W all 4.9 Ramp/Soak
Parameters

24 1024 8048
8049

Holdback Band R/W all 4.9 Ramp/Soak
Parameters

25 1025 8050
8051

Input Bias� R/W all 4.3 Input
Parameters

26 1026 8052
8053

Linear Input Low Scale� R/W all 4.3 Input
Parameters

27 1027 8054
8055

Linear Input High Scale� R/W all 4.3 Input
Parameters

28 1028 8056
8057

Lower Setpoint Limit � R/W all 4.3 Input
Parameters

29 1029 8058
8059

Upper Setpoint Limit � R/W all 4.3 Input
Parameters

30 1030 8060
8061

Input Filter R/W all 4.3 Input
Parameters

31 1031 8062
8063

Output 1 Process Alarm
Setpoint �

R/W /CN8200 4.5 Output
Parameters

32 1032 8064
8065

Output 1 Deviation, Normal
Band, or Inverse Band Alarm
Setpoint �

R/W /CN8200 4.5 Output
Parameters

33 1033 8066
8067

Output 2 Process Alarm
Setpoint �

R/W /CN8200 4.5 Output
Parameters

34 1034 8068
8069

Output 2 Deviation, Normal
Band, or Inverse Band Alarm
Setpoint �

R/W /CN8200 4.5 Output
Parameters

35 1035 8070
8071

Display Filter R/W all 4.4 Display
Parameters

Parameters Arranged by Register Address

900M062U00 � Omega. 6-7

Relative Address Parameter
or Value R/W

Supported
By

See
Subsection

Base 10X IEEE

36 1036 8072
8073

Alarm 1 Process Setpoint� R/W all except 4.7 Alarm
Parameters

37 1037 8074
8075

Alarm 1 Deviation, Normal
Band, or Inverse Band
Setpoint�

R/W all except 4.7 Alarm
Parameters

38 1038 8076
8077

Alarm 2 Process Setpoint� R/W all except 4.7 Alarm
Parameters

39 1039 8078
8079

Alarm 2 Deviation, Normal
Band, or Inverse Band
Setpoint�

R/W all except 4.7 Alarm
Parameters

40 1040 8080
8081

Highest Reading � R/W all 4.11 Supervisor
Parameters

41 1041 8082
8083

Lowest Reading � R/W all 4.11 Supervisor
Parameters

42 1042 8084
8085

T/C Zero Offset R/W all 4.12 Calibration
Function

43 1043 8086
8087

T/C Span Adjustment R/W all 4.12 Calibration
Function

44 1044 8088
8089

RTD Zero Offset R/W all 4.12 Calibration
Function

45 1045 8090
8091

RTD Span Adjustment R/W all 4.12 Calibration
Function

46 1046 8092
8093

Low-Voltage Zero Offset R/W all 4.12 Calibration
Function

47 1047 8094
8095

Low-Voltage Span Adjustment R/W all 4.12 Calibration
Function

48 1048 8096
8097

High-Voltage Zero Offset R/W all 4.12 Calibration
Function

49 1049 8098
8099

High-Voltage Span Adjustment R/W all 4.12 Calibration
Function

50 1050 8100
8101

Current Zero Offset R/W all 4.12 Calibration
Function

51 1051 8102
8103

Current Span Adjustment R/W all 4.12 Calibration
Function

52 1052 8104
8105

Auxiliary Output Scale Low R/W all except 4.10
Parameters for
Options

53 1053 8106
8107

Auxiliary Output Scale High R/W all except 4.10
Parameters for
Options

54 1054 8108
8109

RAS Scale Low � R/W all except 4.10
Parameters for
Options

Using MODBUS with Series C Controllers

6-8 � Omega. 900M062U00

Relative Address Parameter
or Value R/W

Supported
By

See
Subsection

Base 10X IEEE

55 1055 8110
8111

RAS Scale High � R/W all except 4.10
Parameters for
Options

56 1056 8112
8113

Active Setpoint � R/W all 4.14 Process
Value and
Setpoints

57 1057 8114
8115

RTD Decimal Zero Cal R/W all 4.12 Calibration
Function

58 1058 8116
8117

RTD Decimal Span Cal R/W all 4.12 Calibration
Function

59 1059 8118
8119

2nd Hi Volt Zero Cal R/W all 4.12 Calibration
Function

60 1060 8120
8121

2nd Hi Volt Span Cal R/W all 4.12 Calibration
Function

61 1061 8122
8123

0 to 100 mV Zero Cal R/W all 4.12 Calibration
Function

62 1062 8124
8125

0 to 100 mV Span Cal R/W all 4.12 Calibration
Function

63 1063 8126
8127

Watchdog Disable R/W 4.15 Controller
Information and
Status Values

64 1064 8128
8129

 Ambient Temperature R 4.15 Controller
Information and
Status Values

900M062U00 � Omega. 7-1

7. Troubleshooting

7.1 Introduction
This section identifies some of the potential mistakes or misunderstandings that can
occur when you use MODBUS functions with the controllers.

The symptoms of these mistakes or misunderstandings are:

� The controller does not reply to a MODBUS request; see 6.2.

� The controller sends an error code 02 ($02) message to the MODBUS master; see
6.3.

� The controller sends an error code 03 ($03) message to the MODBUS master; see
6.4.

� The controller reply to a function 16 ($10) write message indicates that not as many
words were written as the command specified; see 6.5.

� The controller reply to a function 03 ($03) read message starts with good data, but
the good data is followed by garbage; see 6.6.

� The master receives a reply from more than one controller, or the reply is scrambled;
see 6.7.

7.2 No Reply from Controller
When the host does not receive a reply from a controller in response to a request, it is not
necessarily a sign that there is a problem. Controllers do not reply to every broadcast
message. However, in the case of a broadcast function 06 ($06) or 16 ($10) message.
the controllers do write the specified value(s) to their databases.

If a controller does not reply to a message addressed to only that one controller, check
the following:

� Does the message contain a function code not supported by the Omega
implementation of MODBUS? The message must contain one of the following
functions: 03 ($03), 06 ($06), 16 ($10), or 08 ($08) subfunction 00 ($00).

� Is the master appending an accurate CRC to the message? The controller will not
respond if the CRC calculated for the message by the controller does not equal the
CRC appended to the message by the MODBUS master.

� Are you trying to read or write more than 24 words to a non-IEEE register in a single
message? More than 12 words to 32-bit IEEE registers in a single message? The
controller will ignore messages that exceed these limits.

� In a function 16 ($10) message, did you use a byte count that is not two times the
number of words specified in the message? The controller recognizes that this is an
invalid request.

Using MODBUS with Series C Controllers

7-2 � Omega. 900M062U00

� Are you trying to read or write an odd number of words when addressing a 32-bit
IEEE register? Because every 32-bit IEEE value requires two registers, all
addresses in the IEEE region of the register map are even.

� Did you send a function 08 ($08) message that included a subfunction code other
than 00 (in both bytes)?

� Can the MODBUS master communicate with the controller? Test communications by
issuing a function 08 ($08) subfunction 00 ($00) loopback message. If a return
message that is an echo of the query is not received by the master, make sure the
controller is powered up and in an operating mode. Check the integrity of the
network.

� Is the master waiting long enough for a reply? See 1.2.8 for guidelines for calculating
the length of time the master should wait before assuming that the controller has not
sent a reply.

7.3 Controller Sends an Error Code $02 Message
The controller sends an error code 02 $02 (invalid address) message to the MODBUS
master in the following situations.

� The register relative address in a function 06 ($06) message or the first register
relative address in a function 03 ($03) or 16 ($10) message is not a valid register in
the Omega MODBUS register map, or

� The register relative address in a function 06 ($06) message contains an address in
the 32-bit IEEE region of the register map. Because every 32-bit IEEE floating point
values requires two registers to write, the 06 function (writing to a single register)
cannot be used for this region.

7.4 Controller Sends an Error Code $03 Message
The controller sends an error code 03 ($03) (invalid data) message to the MODBUS
master in the following situations.

� The register relative address in a function 06 ($06) or the first register relative
address in a 16 ($10) message contains a read-only value, or

� The data in a function 06 ($06) message contains a value that is not valid for the
destination (target) register, or

� The data for the first register to be written by a function 16 ($10) message is not valid
for the destination (target) register.

Troubleshooting

900M062U00 � Omega. 7-3

7.5 Controller Reply to a Function 16 ($10) Write Message
 Indicates Too Few Words Were Written

If a controller sends the master a reply to a function 16 ($10) write message that
indicates that fewer words were written than the master’s message specified, this is an
indication that the write function encountered a problem after the first register was written.
When the controller encounters a problem writing the specified data, the controller stops
trying and sends a reply that indicates how many words the controller was able to write
before the problem was encountered.

7.6 Controller Reply to a Function 03 ($03) Read Message
 Starts with Good Data, But Garbage Follows

Sometimes a controller sends the master a reply to a function 03 ($03) read message (for
multiple registers) that starts out with good data, but the good data is followed by
garbage. This is a sign that the first register the master asked the controller to read was
the address of a valid register, but that one or more invalid register addresses followed.
If the first register had been invalid (that is if the First Register Relative Address field
contained an address of an invalid register), then a code $02 error message would have
been returned.

7.7 Master Receives Reply from More Than One Controller, or
 the Reply Is Scrambled

If the master receives a reply from more than one controller, or the reply is scrambled, it
is possible that more than one MODBUS slave device is configured with the same
address. By default all CN8200, CN8240, and CN8260 controllers have a controller ID of
1. If you do not assign each device a unique address, communications will not work.

Using MODBUS with Series C Controllers

7-4 � Omega. 900M062U00

900M062U00 � Omega. 8-1

8. Factory Commands

8.1 Introduction
There are a few commands that are rarely used in the field. These “factory commands”
are issued to a controller by writing special values to special registers using function 16
($10) write messages.

The factory commands supported are:

� load all parameter defaults; see 7.2

� perform zero calibration; see 7.3

� perform span calibration; see 7.3

� clear all latched alarms; see 7.4

Using MODBUS with Series C Controllers

8-2 � Omega. 900M062U00

8.2 Load All Parameter Defaults

8.2.1 Principles
The purpose of the command is to return all database values in the controller (with the
exception of the controller ID) to the factory defaults.24

To execute this command, you must write the value 85 ($55) to register relative address
7000 ($1B58) and 92 ($5C) to register relative address 7001 ($1B59).

You must write these values in a single message using function 16 ($10).

If the controller receives the message and is able to write the values, the controller will
send a normal reply.

8.2.2 Example
To set all parameter values to the factory defaults, send the message shown below to the
appropriate controller. In this example, we have assumed that the controller address is
01 ($01). The command could be sent to any , CN8200, CN8240, or CN8260 controller
on the network.

Device
Address

Function
Code 16

First
Register
Relative
Address

Word
Count

Byte
Count

2 Words (4
Bytes) of

Data CRC

$01 $10 $1B $58 $00 $02 $04 $00 55
$00 5C

$59 $EC

24 The address must be configured using DIP switches.

Factory Commands

900M062U00 � Omega. 8-3

8.3 Perform Zero and Span Calibration

8.3.1 Introduction
You do not have to calibrate every new controller. When a controller was ordered, you
specified an input type for which the unit was calibrated at the factory. This is not the
specific type written to the input type register at relative address 4049, such as J
thermocouple, or 0 to 20 mA linear. In the context of ordering the controller, “type” refers
to these choices: RTD, compressed RTD, thermocouple, millivolt linear, volt linear, or
current linear input. The controller was calibrated at the factory for the type of input
specified. If you use the controller with a different type of input, you must recalibrate as
described in the (, CN8200, CN8240, and CN8260) Controller Configuration and
Operation Manual unless you ordered the “Calibrate All” input option.25

For example, if you specified when you ordered the controller that you planned to use a
thermocouple as the sensor, then you can use the input type register to specify any
thermocouple type: B, C, E, J, K, N, NNM, R, S, T, or Platinel II. The controller will be
calibrated appropriately at the factory. However, if you ordered thermocouple calibration,
but decide to use the controller with an RTD sensor, then you should recalibrate before
using the controller.

When calibrating the controller, you can use MODBUS commands to write to special
registers in the factory region as described in this section. (Do not use the factory
calibration commands before you have read the calibration instructions in the (, CN8200,
CN8240, CN8260) Controller Configuration and Operation Manual.).

The values calculated by the controller for the zero offset and the span adjustment are
stored in the registers listed in the table in 4.12.2, and can be read and written using
MODBUS. Different registers are available for various types of input. However, the
controller calibrates only for the type of input specified using the input type parameter.

The values in the calibration zero offset and span adjustment registers should not be
changed using MODBUS write functions. The zero offset and span adjustment should be
changed only by the controller’s calibration procedure. However, if you have used the
MODBUS master to back up your controller’s database, including the zero offset and
span adjustment, you can safely restore the values using MODBUS write functions.

Before issuing the commands described below, you must prepare the controller as
described in the configuration and operation manual. This includes providing a simulated
input at the appropriate value for the type of input used, and for the operation to be
performed (that is, different values for zero calibration and span calibration). The
appropriate simulated input values are in the configuration and operation manual.

25 To determine whether the controller in hand was calibrated at the factory for all input types, check the
model number on the label on the controller. The meaning of each character in the model number is in
the installation manual supplied with the controller.

Using MODBUS with Series C Controllers

8-4 � Omega. 900M062U00

8.3.2 Principles
The purposes of the commands to perform zero and span calibration are to clear the
existing zero offset and span adjustment values stored in the controller for the type of
input used, and then initiate the low cal (zero) and high cal (span) operations.

To execute the low cal command, you must write the value 85 ($55) to register relative
address 7002 ($1B5A) and 92 ($5C) to register relative address 7003 ($1B5B).

To execute the high cal command, you must write the value 85 ($55) to register relative
address 7004 ($1B5C) and 92 ($5C) to register relative address 7005 ($1B5D).

When the controller has been prepared, you must write the low cal command values in a
single message using function 16 ($10). When the controller has been prepared for the
high cal operation, send another function 16 ($10) message.

If the controller receives the message and is able to write the values, the controller will
send a normal reply in response to each message. This does not necessarily mean that
the calibration will be valid. A normal reply indicates that the controller did its part of the
calibration procedure. However, if you did not prepare the controller properly, the new
calibration values will not be valid. See 7.3.4 for guidelines for confirming that the
calibration was done.

8.3.3 Example

8.3.3.1 Zero (Low) Cal
To initiate the zero (low) cal operation, send the message shown below to the appropriate
controller. In this example, we have assumed that the controller address is 01 ($01).
The command could be sent to any , CN8200, CN8240, or CN8260 controller on the
network.

Device
Address

Function
Code 16

First
Register
Relative
Address

Word
Count

Byte
Count

2 Words (4
Bytes) of

Data CRC

$01 $10 $1B $5A $00 $02 $04 $00 55
$00 5C

$D8 $35

8.3.3.2 Span (High) Cal
To initiate the span (high) cal operation, send the message shown below to the
appropriate controller. In this example, we have assumed that the controller address is
01 ($01). The command could be sent to any , CN8200, CN8240, or CN8260 controller
on the network.

Device
Address

Function
Code 16

First
Register
Relative
Address

Word
Count

Byte
Count

2 Words (4
Bytes) of

Data CRC

$01 $10 $1B $5C $00 $02 $04 $00 55
$00 5C

$58 $1F

Factory Commands

900M062U00 � Omega. 8-5

8.3.4 Confirming That the Calibration Was Performed
A normal reply message from the controller in response to the write function messages
containing the low cal and high cal commands does not mean that the calibration
procedure was carried out successfully. It simply indicates that the calibration request
message was received in good form and that the controller will try to do the calibration
procedure. For the calibration to be successful, you must prepare the controller as
described in the (, CN8200, CN8240, and CN8260) Controller Configuration and
Operation Manual.

You can confirm that the low cal and high cal operations were done. The calibration
procedure takes about two seconds to complete. If the zero offset register (in the 32-bit
IEEE region of the register map) contains a non-zero value at least two seconds after the
master sent the low cal command, then the calibration procedure took place. Assuming
that you prepared the controller correctly, then the zero calibration was successful.

Similarly, if the value of the span adjustment value in the 32-bit IEEE region is not exactly
1.000 at least two seconds after the master sent the high cal command, then the
calibration procedure was carried out.

For example, suppose the currently selected input type is a thermocouple. In this case,
two seconds after the low cal command message is sent, the register at relative address
of 8084 (the IEEE mirror for relative address 42) will contain a non-zero value if
calibration was done and zero if the calibration was not performed.

Using MODBUS with Series C Controllers

11-6 � Omega. 900M062U00

8.4 Clear All Latched Alarms

8.4.1 Principles
The purpose of the command is to clear latched alarms (LEDs and alarm outputs).

To execute this command, you must write the value 85 ($55) to register relative address
7006 ($1B5E) and 92 ($5C) to register relative address 7007 ($1B5F).

You must write these values in a single message using function 16 ($10).

If the controller receives the message and is able to write the values, the controller will
send a normal reply.

8.4.2 Example
To clear the latched alarm outputs, send the message shown below to the appropriate
controller. In this example, we have assumed that the controller address is 01 ($01).
The command could be sent to any , CN8200, CN8240, or CN8260 controller on the
network.

Device
Address

Function
Code 16

First
Register
Relative
Address

Word
Count

Byte
Count

2 Words (4
Bytes) of

Data CRC

$01 $10 $1B $5E $00 $02 $04 $00 55
$00 5C

$D9 $C6

9.

10.

11.

900M062U00 � Omega. 12-1

12. Index

1
10X mirror region, 1-5
 controllers

DIP switches, 1-10, 1-11
need for display parameters, 4-10

3
32-bit IEEE floating point values

register ordering, 1-6, 1-10, 1-11, 4-7
registers, 1-5

32-bit IEEE mirror region, 1-5

A
access level, 4-29
active setpoint, 4-31, 4-32
addresses. See controller addresses and

registers
alarm menu, 4-17
alarm output option, 4-17
alarms

clearing latched, 7-6
configuration, 4-12, 4-17
parameters, 4-17

ALr menu. See alarm menu
ambient temperature, 4-37
Aout menu. See auxiliary output menu
ASCII mode, 1-3
auto reset, 4-15
automatic mode, 4-30, 4-36
Autotune

detecting mode, 4-36
detecting state, 4-36
limiting access, 4-29

auxiliary analog output option, 4-23
auxiliary output menu, 4-23

B
baud rates

configuring, 1-11, 4-7
default, 1-10
specifying, 1-11
supported, 1-4

bias, 4-8
blanking, 4-10
broadcast messages

cause of error, 2-5, 2-13
functions supporting, 1-2, 2-1, 2-12

no reply, 1-3, 2-6, 2-7, 2-11
bumpless transfer, 4-38

Using MODBUS with Series C Controllers

12-2 � Omega. 900M062U00

C
CAL menu. See calibration menu
calibrate all (ordering option), 4-26
calibration

limiting access, 4-29
linked to input type, 4-26, 7-3
parameters, 4-26, 7-3

C-dI menu. See contact/digital input menu
changing

input type, 4-26, 7-3
clearing latched alarms, 7-6
communication

defaults, 1-10, 1-11, 4-7
firmware version, 4-35
option card, 4-23
parameters, 4-7
setup, 1-10, 1-11, 4-7

configuring controllers
importance of sequence, 1-13, 4-1
limiting access, 4-29

contact/digital input
menu, 4-23
option card, 4-30
state, 4-33

control menu, 4-15
control parameters, 4-15
controller addresses, 4-7

assigning, 1-9
configuring, 1-4
default, 1-10, 4-7
valid numbers, 1-4

controller type, 4-35
CRC

cause of error, 2-5, 2-7, 2-11, 2-13
defined, 2-1
use by controller, 2-3, 2-8, 2-10
use by host, 2-2, 2-5, 2-12

CtrL menu. See control menu
current inputs, 4-8, 4-26, 7-3
cycle time, 4-12

D
damping parameter, 4-19
data formats supported, 1-4
data types in controllers, 1-5
deadband for on/off control, 4-15
decimal notation, 1-2, 1-14
decimal position, 4-10
decimal values. See fractional values

Index

900M062U00 � Omega. 12-3

defaults
CN8200/CN8240/CN8260 controllers, 1-10
 controllers, 1-10
communication, 1-10, 1-11, 4-7
restoring, 1-10, 7-2
shown in manual, 4-4

derivative action, 4-15
diagnostic function, 1-3, 2-1, 2-12
digital input function, 4-23
direct output action, 4-12
display menu, 4-10
display parameters, 4-1, 4-10
dSPL menu. See display menu

E
EEPROM, writing setpoints, 4-24, 4-30, 4-32
error messages, 1-3, 2-4, 2-6, 2-7, 2-11, 6-1, 6-2
events for recipes, 4-17, 4-21

F
factory commands, 4-29, 7-1
factory defaults

CN8200/CN8240/CN8260 controllers, 1-10
 controllers, 1-10
communication, 1-10, 1-11, 4-7
restoring, 1-10, 7-2
shown in manual, 4-4

failsafe outputs, 4-25
filtering

display, 4-10
input, 4-9

firmware version, 4-35
floating point values

calculating register addresses, 3-12, 3-19, 4-6
methods of transmitting, 1-5, 3-6, 5-5
transmitting in 10X mirror region (1000 to

1999), 3-11, 3-25
transmitting in base region (0000 to 0999),

3-25
transmitting in IEEE mirror region (8000 to

9999), 3-18, 3-25
use by controllers, 1-5, 3-1

fractional values
calculating register addresses, 3-12, 3-19, 4-6
methods of transmitting, 1-5, 3-6, 5-5
transmitting in 10X mirror region (1000 to

1999), 3-11, 3-25
transmitting in base region (0000 to 0999), 3-8,

3-25
transmitting in IEEE mirror region (8000 to

9999), 3-18, 3-25
use by controllers, 1-5, 3-1

function code 03 ($03), 1-2, 2-1, 2-2
function code 06 ($06), 1-2, 2-1, 2-5
function code 08 ($08), 1-3, 2-1, 2-12
function code 16 ($10), 1-2, 2-1
FV notation, 3-3, 3-9, 3-12, 3-20, 4-3, 4-6
FV* notation, 3-3, 3-9, 3-10, 3-12, 3-15, 3-20,

3-21, 4-3, 4-6

H
hexadecimal notation, 1-2, 1-14
highest reading, 4-25
holdback parameter, 4-21
hysteresis for on/off control, 4-16

I
IEEE values. See 32-bit IEEE floating point

values
illegal register addresses, 2-4, 2-6, 2-10, 6-1, 6-2
illegal values, 2-7, 2-11, 6-1, 6-2
input error, 4-35
input failure, 4-25
input menu, 4-8
input parameters, 1-13, 4-1, 4-8
integers

method of transmitting, 1-5, 3-5, 5-1
transmitting in registers (region 4000 to 4999),

3-5, 3-25
use by controllers, 1-5, 3-1

integral action, 4-15

L
latched alarms, 4-17, 7-6
latency time, 1-7
LED status indicator byte, 4-33, 4-37
linear inputs

applicable input parameters, 1-13, 4-1, 4-8
calibration, 4-26, 7-3
effect on range of valid values, 4-4
effect on storage of decimal values, 3-3, 3-10,

3-15, 3-21
lockout, 4-29
loop break detected, 4-35
loop break time, 4-25
loopback tests, 1-3, 2-1, 2-12
lowest reading, 4-25
LSB defined, 2-1

M
manual mode, 4-36
manual outputs

limiting access, 4-29
reading and writing values, 4-36

manual reset, 4-15
milliamp inputs, 4-8, 4-26, 7-3
millivolt inputs, 4-8, 4-26, 7-3
mirror regions, 1-5
MODBUS error code 02 messages, 2-4, 2-6, 2-

10, 6-1, 6-2
MODBUS error code 03 messages, 1-3, 2-7, 2-

11, 6-1
MODBUS function code 03 ($03), 1-2, 2-1, 2-2
MODBUS function code 06 ($06), 1-2, 2-1, 2-5
MODBUS function code 08 ($08), 1-3, 2-1, 2-12
MODBUS function code 16 ($10), 1-2, 2-1

Using MODBUS with Series C Controllers

12-4 � Omega. 900M062U00

MODBUS option, 1-9
mode

limiting access, 4-29
reading and writing, 4-36

MSB defined, 2-1

N
negative integers, 3-5
no reply, 2-7, 2-11, 2-13, 6-1
normal mode, 4-30, 4-36
normal replies

to factory commands, 7-2, 7-4, 7-5, 7-6
to loopback test, 2-13
to read function, 1-2, 2-3
to write functions, 1-2, 2-6, 2-10, 2-11

numbering convention, 1-2, 1-14

O
on/off control, 4-12
on/off deadband, 4-15
on/off hysteresis, 4-16
operating mode, 4-36
option cards, 4-11, 4-23
option menu, 4-23
Optn menu. See option menu
OutP menu. See output menu
output failsafe values, 4-25
output LED state, 4-35
output menu, 4-11
output parameters, 4-11
outputs

changing in manual mode, 4-36
reading values, 4-36

P
parity

configuring, 1-11, 4-7
default setting, 1-10
settings supported, 1-4

peer-to-peer communications, 1-2
PID control, 4-12
power failure resume, 4-21
process value

highest, 4-25
lowest, 4-25
reading, 4-30, 4-32
retransmission, 4-23

proportional band, 4-15
PV. See process value

R
RAM, writing setpoints, 4-24, 4-30, 4-32
ramp events, 4-21
ramp times, 4-21
ramp/soak execution, 4-23
ramp/soak parameters, 4-20
rAS menu. See remote analog setpoint menu

rate, 4-15
read function, 1-2, 2-2
recipes

execution, 4-23
parameters, 4-20
reading status, 4-36
running and holding, 4-36
setpoint, 4-31, 4-32

recycle number, 4-21
register map, 3-24
registers

arranged by number, 5-1
arranged by parameter function, 4-1
calculating addresses for fractional values,

3-12, 3-19, 4-6
for floating point values, 5-5
for fractional values, 1-5, 3-6, 3-8, 3-11, 3-19
for integers, 1-5, 3-5, 5-1
offset, 4-4
sequence for IEEE floating point values, 1-6,

1-10, 4-7
summary of regions, 3-24

remote analog setpoint, 4-23, 4-30, 4-32
remote analog setpoint error, 4-35
remote analog setpoint menu, 4-24
Remote Terminal Mode, 1-3
resume exhaustion flag, 4-33
resume from power failure, 4-21
reverse output action, 4-12
rounding method, 3-9
r-S menu. See ramp/soak menu
RTD inputs, 1-13, 3-3, 3-9, 3-12, 3-20, 4-1, 4-8,

4-26, 7-3
RTU mode, 1-3

S
scaling

auxiliary output, 4-23
inputs, 1-13, 4-1, 4-9
remote analog setpoint, 4-24

second setpoint, 4-23, 4-30, 4-32
security access level, 4-29
sequence

of configuration parameters, 1-13, 4-1
of IEEE registers, 1-6, 1-10, 4-7

serial menu, 1-4, 1-6, 1-9, 1-11, 4-7
SErL menu. See serial menu
setpoint

at recipe temination, 4-21
retransmission, 4-23
specifying range, 4-9

setpoint display blanking, 4-10
setpoints

configuring, 4-30, 4-32
limiting access, 4-29

soak events, 4-22
soak levels, 4-21
soak times, 4-22
software version, 4-35
span adjustment, 4-26, 7-3
standby mode, 4-23, 4-36

Index

900M062U00 � Omega. 12-5

status byte, 4-33, 4-35, 4-37
supervisor menu, 1-10
supervisor parameters, 4-25
SUPr menu. See supervisor menu

T
termination state, 4-21
thermocouple inputs, 1-13, 3-3, 3-9, 3-12, 3-20,

4-1, 4-8, 4-26, 7-3
timing, 1-7
transmission mode, 1-3
troubleshooting, 6-1
tunE menu. See Autotune damping menu
tuning

limiting access, 4-29
parameters, 4-15

two's complement format, 3-5

U
units of measure, 1-13, 4-1, 4-10

V
voltage inputs, 4-8, 4-26, 7-3

W
watchdog disable, 4-37
write functions, 1-2, 2-5, 2-8

Z
zero offset, 4-26, 7-3

	Introduction
	About This Manual
	About Omega’s Implementation of the MODBUS Protoc
	MODBUS Function Codes Supported
	Functions to Access the Controller Databases
	What Happens if the Controller Can Do What the MODBUS Master Tells It to Do
	What Happens if the Controller Cannot Do What the MODBUS Master Tells It to Do
	Diagnostic Function

	MODBUS Transmission Mode Supported
	Baud Rates Supported
	Serial Data Formats Supported by the Controllers
	Addresses Supported by the Controllers
	Data Types Used by Controllers
	Principle
	Examples
	How These Data Types Are Transmitted in MODBUS Registers

	IEEE Register Ordering
	Principle
	Example

	Timing and Latency Issues
	Separating Messages
	Allowing the Controller Time to Process a Request
	Applying the Timing Requirements
	Example

	Preparing Controllers for Use with MODBUS
	Introduction
	MODBUS Communication Option
	Assigning a Unique Controller ID
	Configuring the Controller Communication Parameters to Match the � MODBUS Master
	Communication Defaults
	Methods of Changing the Controller Configuration Parameters
	Example of Changing the Controllers’ Communicatio

	Importance of Sequence in Which Configuration � Parameters Are Written
	Numbering Conventions Used in This Manual

	MODBUS Functions Supported
	Overview
	Function 03 ($03): Read One or More Holding Registers
	Introduction
	Allowable Number of Words to Be Read in a Function 03 Request
	Function 03 Request
	Function 03 Examples
	Function 03 Normal Reply
	Reply to Function 03 Request Containing Illegal Register Address: � 02 ($02) Error Code
	Circumstances Under Which No Reply Is Sent in Response to a � Function 03 Message

	Function 06 ($06): Write to a Single Holding Register
	Introduction
	Function 06 Request
	Examples
	Function 06 Normal Reply
	Reply to Function 06 Request Containing Illegal Register Address: � 02 ($02) Error Code
	Reply to Function 06 Request Containing Illegal Value in Data Field:� 03 ($03) Error Code
	Circumstances Under Which No Reply Is Sent in Response to a � Function 06 Message

	Function 16 ($10): Write to Multiple Registers
	Introduction
	Function 16 ($10) Request
	Allowable Number of Words to Be Written in Function 16 ($10) � Request
	Function 16 ($10) Examples
	Function 16 ($10) Normal Reply
	Reply to Function 16 ($10) Request Containing Illegal Register � Address: 02 ($02) Error Code
	Reply to Function 16 ($10) Request Containing Illegal Value in Data � Field: 03 ($03) Error Code
	Circumstances Under Which No Reply Is Sent in Response to a � Function 16 ($10) Request

	Function 08 ($08): Loopback Test
	Introduction
	Function 08 Request
	Function 08 Example
	Function 08 Normal Reply
	Circumstances Under Which No Reply Is Sent in Response to a � Function 08 Request

	MODBUS Register Ranges�and Data Types Used by Omega
	Introduction
	Types of Values Used by the Controllers
	Overview
	Examples

	How the Controller Stores Values That Are Always Integers
	Principle
	What Is Displayed on the Controller Front Panel

	How the Controller Stores Values That Can Include � Fractional Values
	Principles
	What Is Displayed on the Controller Front Panel

	Using MODBUS to Transmit Controller Values That Are � Always Integers: Register Addresses 4000 to 4999
	Principles
	Examples

	Overview of Using MODBUS to Transmit Controller Values � That Can Include Fractional Values
	Three Register Ranges Available
	Which Region to Use
	First Choice for All Parameters and All Input Types: IEEE Floating Point Region � 8000 to 9999
	Second Choice with Temperature Inputs: 10X Region 1000 to 1999
	Second Choice with Linear Inputs: Base Region 0000 to 0999

	Base Fractional Value Region: Register � Addresses 0000 to 0999
	General Principles
	Introduction
	Base Region Uses One Register Per Value Transmitted
	Range of Values That Can Be Transmitted in Base Region
	If Controller Is Configured to Support Decimal Pl

	Interpreting Fractional Values Stored with the Decimal Point � Transmitted in Base Region 0000 to 0999
	Principles
	Examples

	Interpreting Fractional Values Stored Without Decimal Point � Transmitted in Base Region 0000 to 0999
	Principles
	Examples

	10X Mirror of Base Fractional Value Region: Register � Addresses 1000 to 1999
	Introduction
	General Principles
	10X Region Uses One Register Per Value Transmitted
	If Controller Is Configured to Support Decimal Pl
	Relative Addresses in 10X Region Are 1000 More Than the Corresponding Address � in the Base Region
	Because of Range Limits, the 10X Region Not Recommended for FV(Parameters � When a Linear Input Is Used

	Interpreting Fractional Controller Values Stored With Decimal Point � Transmitted in the 10X Region 1000 to 1999
	Principles
	Examples
	Reading an FV(Parameter with Temperature Input
	Reading an FV Parameter
	Writing to an FV Parameter

	Interpreting Fractional Controller Values Stored Without Decimal � Point Transmitted in the 10X Region 1000 to 1999
	Principles
	Examples
	Reading an FV\(Parameter from a Controller with
	Writing an FV\(Parameter to a Controller with a
	Reading an FV\(Parameter from a Controller with

	32-bit IEEE Mirror of Base Fractional Value Region: � Register Addresses 8000 to 9999
	General Principles
	Introduction
	32-Bit IEEE Region Uses Two Registers Per Value Transmitted
	Range of Values That Can Be Transmitted in the 32-Bit IEEE Region
	If the Controller Is Configured to Use Decimal Pl
	32-Bit IEEE Region Allows You to Configure the Controller to Use Values with More � Than Four Digits
	Relative Addresses in 32-Bit IEEE Region Can Be Calculated from the Relative � Address of a Parameter in the Base Region
	A MODBUS Command to Transmit a Value Using the 8000 to 9999 Region Always � Addresses an Even-Numbered Relative Address
	Sequence in Which the Two Registers for a 32-Bit IEEE Value Will Be Transmitted

	Interpreting Fractional Controller Values Stored With Decimal Point � Transmitted in the 32-Bit IEEE Region 8000 to 9999
	Principles
	Examples
	Reading an FV(Parameter with Temperature Input
	Reading an FV Parameter
	Writing to an FV Parameter

	Interpreting Fractional Controller Values Stored Without Decimal � Point Transmitted in the 32-Bit IEEE Region 8000 to 9999
	Principles
	Examples
	Reading an FV(Parameter from a Controller with a Linear Input
	Writing an FV(Parameter to a Controller with a Linear Input

	Summary
	
	Regions of the MODBUS Register Map Used to Transmit Controller Values

	Parameters That Use Integer Values Only
	Parameters for Which the Controller Can Use a Fractional Value
	Three Regions Available
	Special Cases: the Significance of the FV and FV(Notations

	Omega MODBUS Register Addresses�Arranged by Parameter Function
	Introduction
	Importance of Writing Configuration Parameters in Correct Sequence
	Arrangement of the Parameters and Other Values in This Section
	Information Provided in Each Subsection
	Subsection Introduction
	Register Table
	Linear Inputs Affect Range of Valid Values
	If Range Is “Sensor Low to Sensor High”, Input Sc
	If Decimal Position Is Non-Zero, Range Is Reduced

	Calculating Register Addresses for Parameters That Use Fractional � Values
	Principles
	Example

	Communication Parameters
	Overview
	Communication Parameter Registers

	Input Parameters
	Overview
	Input Parameter Registers

	Display Parameters
	Overview
	Display Parameter Registers

	Output Parameters
	Overview
	Output Parameter Registers

	Control Parameters
	Overview
	Control Parameter Registers

	Alarm Parameters
	Overview
	Alarm Parameter Registers

	Autotune Damping Parameter
	Overview
	Autotune Damping Parameter Register

	Ramp/Soak Parameters
	Overview
	Ramp/Soak Parameter Registers

	Parameters for Options
	Overview
	Option Parameters

	Supervisor Parameters
	Overview
	Supervisor Parameter Registers

	Calibration Function
	Overview
	Calibration Zero Offset and Span Adjustment Registers

	Security Parameter
	Overview
	Security Parameter Register

	Process Value and Setpoints
	Overview
	Introduction
	Where Setpoints Are Stored in the Controller
	Purpose of Second Setpoint
	Purpose of Remote Analog Setpoint
	Purpose of Recipe Setpoint
	Purpose of Active Setpoint

	PV and SV Registers

	Controller Information and Status Values
	Overview
	Introduction
	Purpose of Contact/Digital Input State
	Purpose of Resume Exhaustion Flag
	Interpreting the Status Byte and the LED Status Indicator Byte

	Controller Information and Status Parameter Registers

	Controller Parameters Arranged by�Register Address
	Overview
	Integer Registers
	Introduction
	Register List

	Registers for Parameters That Can Use Fractional Values
	Introduction
	Register List

	Troubleshooting
	Introduction
	No Reply from Controller
	Controller Sends an Error Code $02 Message
	Controller Sends an Error Code $03 Message
	Controller Reply to a Function 16 ($10) Write Message � Indicates Too Few Words Were Written
	Controller Reply to a Function 03 ($03) Read Message � Starts with Good Data, But Garbage Follows
	Master Receives Reply from More Than One Controller, or � the Reply Is Scrambled

	Factory Commands
	Introduction
	Load All Parameter Defaults
	Principles
	Example

	Perform Zero and Span Calibration
	Introduction
	Principles
	Example
	Zero (Low) Cal
	Span (High) Cal

	Confirming That the Calibration Was Performed

	Clear All Latched Alarms
	Principles
	Example

	Index

