PowerDAQ Thermocouple Rack TM

PD-TCR User Manual

Isolated thermocouple rack for the PowerDAQ boards

November 1998 Edition

© Copyright 1998 Omega Engineering, Inc. All rights reserved

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written permission.

First Edition

November 1998 Printing

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility is assumed for its use, or for any infringements of patents or other rights of third parties that may result from its use.

Contacting Omega Engineering

Address:

OMEGA Engineering, Inc.

One Omega Drive

Stamford, Connecticut 06907-0047

U.S.A.

🖀 Support:

Telephone: 1-800-622-2378

Fax: 1-800-848-4271

□Internet Access:

Support <u>support@omega.com</u>

Web site <u>http://www.omega.com</u>

FTP site ftp://ftp.omega.com

Table of Contents

How to Use This Manual	iv
Introduction	
Who Should Read This Book?	iv
Organization of This Manual	
Conventions Used in This Manual	
Feedback	v
Introduction	
About the PowerDAQ [™] TCR	2
Features	
PowerDAQ [™] TCR Models	
Getting Started	
Installation and Configuration	6
Unpacking	
Hardware	
Installing Multiple Boards	
Software	
Installation	
Cables	
J1 Connector	
5B Mounting Panels	
Architecture	Error! Bookmark not defined.
Functional Overview	
Analog Input Subsystem (A/D)	Error! Bookmark not defined.
Interconnections	
Connectors	
J1 Connector	
J2 Connector to PD-5BCONN	
J3 External Power Connector	
Figure 2: PD-TCR External Powe	
J20 Header Connector	
Calibration	
Overview	
When to calibrate	
Equipment required	21
Calibration Procedure	
Appendix A: Specifications	
PD-TCR-xx	
Analog Input	
Appendix B: Common Questions	and Support26

Calibration Questions	Error! Bookmark not defined.
Service and Support	
Appendix D: Warranty	
Glossary	Error! Bookmark not defined.
Index	

List of Figures

Figure	e 2: PD-TCR External Power Cor	nector J37
		plication showing two boards8
Figure 4:	PD-5BCONN wiring diagram	
Figure 6:	Block Diagram of the PowerDA	Q [™] boards . Error! Bookmark not
define	ed.	
Figure 7:	Single-ended Inputs	Error! Bookmark not defined.
Figure 8:	Differential Inputs	Error! Bookmark not defined.
Figure 11:	PowerDAQ [™] Connectors	Error! Bookmark not defined.
Figure 2:	PD-TCR External Power Con	nector J317
Figure 9:	PD-TCR J20 connector	

List of Tables

Table 1:	PowerDAQ [™] Models	4
Table 2:	PD-TCR Power Requirements	
Table 3:	PD-TCR Cabling Options	7
Table 2:	Polarity settings for PowerDAQ board	Error! Bookmark not
defin	ed.	
Table 4:	Connector Pin Assignments for J1	
Table 5:	Connector Pin Assignments for J2	16
Table 5.	Connector Fin Assignments for J2	
Table 3: Table 2:	PD-TCR Power Requirements	

How to Use This Manual

Introduction

This manual describes the hardware of the PowerDAQ Thermocouple Rack (PD-TCR). The following PD-TCR's are supported:

- PD-TCR-16-J
- PD-TCR-16-K

Who Should Read This Book?

This manual has been designed to benefit the users of PowerDAQTM PD-TCR. To use the PowerDAQTM TCR, it is assumed that you have basic PC skills, and that you are familiar with Microsoft Windows NT and 95/98 operating environments.

Organization of This Manual

The PowerDAQ[™] User Manual is organized as follows:

Chapter 1 - Introduction

This chapter gives you an overview of PowerDAQ[™] TCR features, the various models available and lists what you need to get started.

Chapter 2 - Installation and Configuration

This chapter explains how to install and configure your PowerDAQ[™] TCR.

Chapter 3 - Interconnections

This chapter describes the I/O connections to your PowerDAQTM TCR.

Chapter 4 - Calibration

This chapter discusses the calibration system of your PowerDAQTM TCR.

Appendix A - Specifications

This chapter lists the PowerDAQ[™] TCR hardware specifications.

Appendix B - Common Questions and Support

This appendix contains a list of commonly asked questions and their answers relating to usage and special features of your PowerDAQ[™] TCR. Should you require assistance while installing or using PowerDAQ[™] TCR, support service details are also listed.

Appendix C - Warranty

This appendix contains a detailed explanation of PowerDAQ[™]'s TCR warranty.

Index

The Index alphabetically lists topics covered in this manual.

Conventions Used in This Manual

These are the main conventions used to help you get the most out of this manual:

Tips are designed to highlight quick ways to get the job done, or good ideas you might not discover on your own.

Note

Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss, or system crash.

Text formatted in **bold** typeface may also represent type that should be entered verbatim or a command, as in the following example:

You can instruct users how to run setup using a command such as **setup.exe**.

Feedback

We are interested in any feedback you might have concerning our products and manuals. A Reader Evaluation form is available on the last page of the manual.

Introduction

About the PowerDAQ [™] boardError! Bookmark not defined			
Features	Error! Bookmark not defined.		
PowerDAQ TM Models	Error! Bookmark not defined.		
Getting Started	Error! Bookmark not defined.		

Introduction

This chapter describes the basic features of the PowerDAQ[™] Thermocouple Rack (TCR).

About the PowerDAQ[™] TCR

Thank you for purchasing a PowerDAQ[™] TCR. The PowerDAQ[™] TCR board was designed to work with your PowerDAQ OCI data acquisition board.

The PowerDAQ Thermocouple Rack contains sixteen isolated inputs for J or K type thermocouples. It converts the thermocouple inputs to a voltage, and then it is fed as an input to a PowerDAQ PCI board, with an input range of 0-10V.

The PD-TCR is based on a complete instrumentation amplifier and includes a thermocouple cold junction compensator for each channel. It combines an ice point reference with a precalibrated amplifier to produce a high level (10 mV/C) output directly from a thermocouple signal.

Each PD-TCR channel is precalibrated by laser wafer trimming to match the characteristic of type J or K inputs.

The temperature transducer voltages (ZERO potentiometer) and gain control (GAIN potentiometer) can be used to recalibrate the PD-TCR in the field.

The PD-TCR channel accuracy for both the J and K type is $\pm 1\%$ is a working temperature environment of 0°C to +50°C.

Features

The major features of the PowerDAQ[™] TCR are:

- Each channel provides cold junction compensation
- Zero, and scale factor are all pre-calibrated by laser wafer trimming
- Calibrate ZERO and gain for each channel
- Differential input rejects common-mode noise voltage on the thermocouple leads
- Includes PowerDAQ SDK

- Data logging and display software with source code in Delphi
- LabVIEW for Windows VI's
- DASYLab, HP VEE and TestPoint support
- Up to 4 PD-TCR's can connect into one or more PowerDAQ 64 channel boards
- Up to 64 Non multiplexed inputs per system
- Uses PowerDAQ PCI bus DAQ boards
- Multiple PowerDAQ boards can be plugged into one PC. Only limited by PCI slots
- Can be mounted in 19" rack using PD-19RACKW
- Each PD-TCR-16-x requires an external universal power supply (PD-PSU-5/15)

Note For the full list of specifications, *see Appendix A: Specifications.*

PowerDAQ[™] TCR Models

- PD-TCR-16-J 16 Channel unit for type J thermocouple
- PD-TCR-16-K 16 Channel unit for type K thermocouple

Model	Thermocuple	Number of channels
PD-TCR-16-J	Type J (iron-constantan)	16 isolated
PD-TCR-16-K	Type K (chromel-alumel)	16 isolated

Table 1:	PowerDAQ [™] Models
----------	------------------------------

Getting Started

To get your PowerDAQ[™] TCR up and running, ensure that you have the following:

- A computer with a PowerDAQ PCI board installed.
- PowerDAQTM PCI board with user manual.
- PowerDAQ[™] Software for Windows 95/98 or Windows NT. (PowerDAQ Software Development Kit # PD-SDK)
- Minimum 16MB RAM for Windows95/98 and 32MB for Windows NT

2

Installation and Configuration

Unpacking	
Hardware	
Software	
Installation	
Base address, DMA, Interrupt settings	Error! Bookmark not defined.
Diagnostics	Error! Bookmark not defined.
Programming the board	8
Accessories	Error! Bookmark not defined.
Cables	Error! Bookmark not defined.
Screw Terminal Panels	Error! Bookmark not defined.
Complete kits	Error! Bookmark not defined.
J1 Connector	Error! Bookmark not defined.
5B and 7B Mounting Panels	
OEM Header Panel	

PowerDAQ PCI Board User Manual

Installation and Configuration

This chapter describes the hardware and software installation and configuration of the PowerDAQ[™] TCR.

Unpacking

Your PowerDAQ[™] TCR is wrapped in an antistatic bag to protect against electrostatic charges that might damage the board. To avoid damage, proceed as follows:

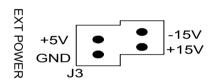
- 1. Ground yourself with a grounded wrist strap or grounded source.
- 2. Discharge the static electricity by taking the board in the antistatic bag and touching the metal part of your PC.
- 3. Remove the board from the antistatic bag. We suggest you save the bag.
- 4. Inspect the board for any damage. If any damage is found, notify your distributor to return the board to the manufacturer. *See Appendix B: Common Questions and Support.*

Note The PowerDAQ[™] TCR contain sensitive electronic components. Please make sure the proper grounding and electrostatic conditions are used.

Hardware

You can install your PowerDAQ[™] TCR as a stand-alone unit or in a 19" rack. We recommend you use the following instructions:

- 1. Turn the PC Off.
- 2. Refer to your PowerDAQ PCI board hardware manual for DAQ board installation instructions.
- 3. The PD-TCR requires external power to be wired at the J3 EXT POWER connector. (The manufacturer suggests using the PD-PSU-5/15 power supply unit. This PSU is switchable 110/220V and can support up to 4 PD-TCR's).

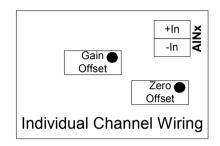


Input V	Rating
+ 5V	±0.2 Volts 1.5 Amps
+15V	+0.5/-3 Volts 0.2Amps
-15V	-0.5/+3 Volts 0.2Amps

Table 2: PD-TCR Power Requirements

CAUTION! Incorrect wiring can cause permanent damage to the PD-TCR.

4. Connecting the PD-TCR to the PowerDAQ board(s)


16 Channels	64 Channels
You will need a PD- CBL-96	You will need a PD- 5BCONN, PD-CBL-5B and PD-CBL-96.
Connect J1 on the PD-TCR to the PowerDAQ J1 connector	Using a PD-CBL-5B cable, connect J2 to a PD-5BCONN (rack input 1 through 4). Repeat this for each PD- TCR (up to 4)
	Connect J1 on the PD- 5BCONN to J1 on the PowerDAQ board.

3

5. Attach thermocouples to the screw terminal marked AIN0 through AIN15. Note the positive and negative positions.

6. Turn the PC on.

The PowerDAQ[™] TCR is now installed. All configuration requirements are set via software.

Installing Multiple Boards

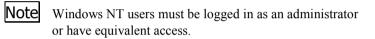
You can install multiple PowerDAQTM TCR's using one or more 64 channel PowerDAQ board. See item 4 above in the installation instructions.

Software

PowerDAQ[™] TCR software is supplied for Windows 95/98 and Windows NT 4.0 or greater. This is the PowerDAQ SDK (software development kit).

Installation

From the floppy disk or CD, run the **SETUP.exe** program. The setup program will take you through the installation process.



3

As the installation process modifies your Windows registry, you must only install or uninstall the software using the appropriate programs.

Once the installation is complete, the PC must be rebooted for the proper operation.

TRACK software

The TRACK software is part of the PD-SDK. It is installed with the standard PowerDAQ software.

File Tools Help	ple rack			
D 🖸 ? 8 📇	0 1	2 3 👰 🎯	1.	
0 (J) 0.0000	V 4	(J) 0.0000 V	8 (J) 0.0000 V	12 (J) 0.0000 V
1 (J) 0.0000	V 5	(J) 0.0000 V	9 (J) 0.0000 V	13 (J) 0.0000 V
2 (J) 0.0000	V 6	(J) 0.0000 V	10 (J) 0.0000 V	14 (J) 0.0000 V
3 (J) 0.0000	V 7	(J) 0.0000 V	11 (J) 0.0000 V	15 (J) 0.0000 V
Chart channels	_	Thermoco	uple rack chart display	
1 0 🗘	°			Chart channel 1 Chart channel 2 Chart channel 3
2 1				- Chart channel 4
3 2 🔹	-1			
4 3 🖡				
Rate 1 s -	-2		00:00:00	

Figure 3: TRACK software- online help is included

3

3

Features of TRACK:

- Used for calibration of the PD-TCR
- Independent channel selection for Volts, Deg C or Deg F
- Can log data to text file
- Import log file into Excel

Thermocouple and board se	ttings	×	
Board Acquisition			57
Log file settings			3
c:\tcouple.log			0.400 400 400 400 400 400 400 400
Create log for C Not created C All channels O No change	 Include header info Append exist file 	ormation	
Couple type for all channels ¬	Measurement mode	- Input range	
No change	No change	No change	
C K thermocouple C J thermocouple	 Volts Celsius degrees Fahrenheit degrees 	C 0100 °C C 0200 °C C 0400 °C C Full range	
	OK Cancel		

PowerDAQ thermocouple rack					
Elle Iools Help	0	ĩ			
0 (J) 0. Vots 1 (J) 0° ¹ Cetsius Tahrenheit 2 (J) 0° ³² . 210 °F ³² . 210 °F		8 (J) 9 (J) 10 (J)	0.0000 V 0.0000 V 0.0000 V	13 (J) 14 (J)) 0.0000 V) 0.0000 V) 0.0000 V
Chart chamers		II (J) ble rack chart (0.0000 V		0.0000 V
					- Chart channel 2 - Chart channel 3 - Chart channel 4
3 3 4 -1 4 2 4					
Rate 1 s			//	00:00:05	
Change measurement mode of thermocouple to Volts					

Figure 5: Configuring individual channels

Individual channels can be set to display Volts, Celsius or Fahrenheit. This setup information is stored in a configuration .INI file. (File name: tcouple.ini Located: Windows system directory) This file can be retrieved to reset the system setup. 3

4

Interconnections

Connectors	
J1 Connector	15
J2 Digital Connector	16
Signal Descriptions	17

Interconnections

Connectors

Note The PowerDAQ[™] TCR are supplied with no cables

The PowerDAQ[™] TCR has four connectors:

- 96-contact pin-less main connector (J1) used to connector directly to 16 channel PowerDAQ boards.
- 24-way header connector (J2) used to connect to PD-5BCONN distribution panel
- 5 by 2 header connector (J20) triggering capabilities
- 4 header External power Connector (J3)

J1 Connector

AIN0	48	96	AIN32
AIN1	47	95	AIN33
AIN2	46	94	AIN34
AIN3	45	93	AGND
AIN4	44	92	AIN35
AIN5	43	91	AIN36
AGND	42	90	AIN37
AIN6	41	89	AIN38
AIN7	40	88	AIN39
AIN8	39	87	AIN40
AIN9	38	86	AGND
AIN10	37	85	AIN41
AIN11	36	84	AIN42
AGND	35	83	AIN43
AIN12	34	82	AIN44
AIN13	33	81	AIN45
AIN14	32	80	AIN46
AIN15	31	79	AGND
AIN16	30	78	AIN47
AIN17	29	77	AIN48
AGND	28	76	AIN49
AIN18	27	75	AIN50
AIN19	26	74	AIN51
AIN20	25	73	AIN52
AIN21	24	72	AIN53
AIN22	23	71	AGND
AIN23	22	70	AIN54
AGND	21	69	AIN55
AIN24	20	68	AIN56
AIN25	19	67	AIN57
AIN26	18	66	AIN58
AIN27	17	65	AIN59
AIN28	16	64	AGND
AIN29	15	63	AIN60
AIN30	14	62	AIN61
AIN31	13	61	AIN62
DGND	12	60	AIN63
AGND	11	59	ADC Channel List Start Input / Burst Clock
AGND	10	58	+12V
DGND	9	57	AGND
AOUT1	8	56	AGND
AGND	7	55	-12V
AGND	6	54	ADC Conversion Start Input / Pacer Clock
AGND	5	53	ADC Conversion Start Output / Pacer Clock out
AOUT0	4	52	+5V
AGND	3	51	DSP Trigger Input / External Clock
AGND	2	50	AGND
AGND	1	49	AGND
		-	

Table 4: Connector Pin Assignments for J1	Table 4:	Connector Pi	in Assignments	s for J1
---	----------	---------------------	----------------	----------

J2 Connector to PD-5BCONN

AIN0	1	2	AIN8
AGND	3	4	AIN9
AIN1	5	6	AGND
AIN2	7	8	AIN10
AGND	9	10	AIN11
AIN3	11	12	AGND
AIN4	13	14	AIN12
AGND	15	16	AIN13
AIN5	17	18	AGND
AIN6	19	20	AIN14
AGND	21	22	AIN15
AIN7	23	24	AGND

This connector is compatible with the 5B type 42-way IDC header.

Table 5: Con	nector Pin	Assignments	for	J2
--------------	------------	-------------	-----	----

J3 External Power Connector

Input V	Rating
+ 5V	±0.2 Volts 1.5 Amps
+ 12V or +15V	+0.5/-1.5 Volts 0.2Amps
- 12 or -15V	-0.5/+1.5 Volts 0.2Amps

Table 6: PD-TCR Power Requirements

CAUTION! Incorrect wiring can cause permanent damage to the PD-TCR.

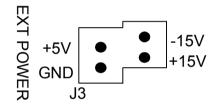


Figure 6: PD-TCR External Power Connector J3

J20 Header Connector

This connector supports:

- Clocking and triggering
- Analog Output (AOut0 and AOut1)

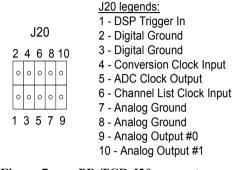


Figure 7: PD-TCR J20 connector

For complete information on using this connector, please refer to the PowerDAQ hardware users manual.

5B Mounting Panels (PD-5BCONN)

To accommodate popular 5B type signal conditioning panels, we offer a simple but practical breakout terminal panel. (PN PD-5BCONN). These panels connect the PowerDAQTM board J1 connector to the breakout panel. The connections are then distributed in four groups of 16 channels to the header connector (5B).

The PD-5BCONN can be mounted in a 19" rack (PN PD-19RACK) or used standalone.

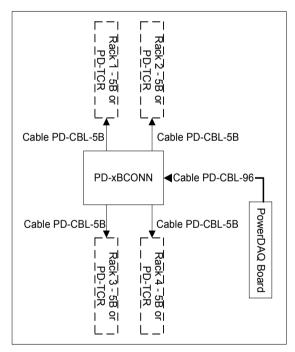


Figure 8: PD-5BCONN wiring diagram

5

Calibration

Overview	
When to calibrate	
Requirements	Error! Bookmark not defined.
Equipment required	
Auto Calibration	
Manual Calibration	Error! Bookmark not defined.
Manual Analog Input Calibration	Error! Bookmark not defined.
Manual Analog Output Calibration	Error! Bookmark not defined.

Calibration

Overview

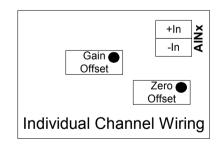
This chapter contains information on the calibration procedures for the PowerDAQ TCR

When to calibrate

The PD-TCR is calibrated for 0 to 200 Celsius degrees, but for best precision, you should recalibrate the board in the actual working environment.

Allow the host PC and the board to warm up for at least one hour before calibration.

Equipment required


Thermocouple calibrator for the type of thermocouples you with to use.

Α

Calibration Procedure

- 1. Install and connect PowerDAQ board and Thermocouple Rack
- 2. Run TRack.exe program located in the PowerDAQ group
- 3. Open Tools/Settings dialog and select "Acquisition"
- 4. Set the temperature range , thermocouple type and **Volts** measurement mode
- 5. Run acquisition
- 6. Connect calibration device for each channel that requires calibration
- 7. Set 0 Deg. C on calibration device
- 8. Starting with **ZERO** on the potentiometer(blue) on the rack, set voltage input range to 0.0001-0.003 Volts (0.0001-0.0008 recommended) to calibrate each channel.

Α

- 9. Stop acquisition
- 10. Open Tools/Settings dialogue and select "Acquisition" and change measurement mode to **Celsius degrees**.
- 11. Set calibration device to most useful temperature
- 12. Run acquisition
- 13. Using the **GAIN** potentiometer (gray) for calibrated channel on the rack, set temperature in accordance with settings in step 11.
- 14. Repeat steps 2-13 for each channel or connect calibration device to all channels before calibration (only iron wires allowed)

Appendix A: Specifications

PD-TCR-xx

Isolated thermocouple rack

Number of channels	16 single ended
Channel isolation	1000 V per channel
Calibration Error @ 25 °C.	± 3°C
Stability vs. Temperature	$\pm 0.05^{\circ}$ C./ °C
Gain error	± 1.5%
Operating Temperature Range	-55 to +125 °C
Input range to PowerDAQ	0 - 10V
Dimensions (with feet, No rack)	17.4" L x 1.87" H x 7.00" W
19" rack option available	PD-19RACKW
PD-19RACKW dimensions	17.6" L x 3.62" H x 7.00" W

PD-PSU-5/15

External power supply

Number of PD-TCR that can be powered	4
DC output voltage	<i>CH1:</i> +5V, <i>CH2:</i> +15V, <i>CH3:</i> -15V
Output current	<i>CH1:</i> 10A, <i>CH2:</i> 2.5A, <i>CH3:</i> 1A

Input voltage range

Dimensions

Weight

Safety Standards

EMC Standards

85 ~ 132 VAC / 170 ~ 254 VAC Selected by swtich 190 x 110 x 50 mm

0.83 Kg

Meets UL10112

Meets FCC Part 15 J Class B

В

Appendix B: Common Questions and Support

THERMOCOUPLE BASICS

A Thermocouples are economical and rugged; they have reason-ably good long-term stability. Because of their small size, they respond quickly and are good choices where fast response is important. They function over temperature ranges from cryogenics to jet-engine exhaust and have reasonable linearity and accuracy.

Because the number of free electrons in a piece of metal depends on both temperature and composition of the metal, two pieces of dissimilar metal in isothermal and contact will exhibit a potential difference that is a repeatable function of temperature. The resulting voltage depends on the temperatures, T1 (unknown temperature) and T2 (ice point reference), in a repeatable way.

Since the thermocouple is basically a differential rather than absolute measuring device, a known reference temperature is required for one of the junctions if the temperature of the other is to be inferred from the output voltage. Thermocouples made of specially selected materials have been exhaustively characterized in terms of voltage versus temperature compared to primary temperature standards. Most notably the water-ice point of $0^{\circ}C$ is used for tables of standard thermocouple performance.

An alternative measurement technique, is used in most practical applications where accuracy requirements do not warrant maintenance of primary standards. The reference junction temperature is allowed to change with the environment of the measurement system, but it is carefully measured by some type of absolute thermometer. A measurement of the thermocouple voltage combined with a knowledge of $\left(\right)$

the reference temperature can be used to calculate the measurement junction temperature. Usual practice, however, is to use a convenient thermoelectric method to measure the reference temperature and to arrange its output voltage so that it corresponds to a thermocouple referred to 0°C. This voltage is simply added to the thermocouple voltage and the sum then corresponds to the standard voltage tabulated for an ice-point referenced thermocouple.

The temperature sensitivity of silicon integrated circuit transistors is quite predictable and repeatable. This sensitivity is exploited in the PD-TCR to produce a temperature related voltage to compensate the reference of "cold" junction of a thermocouple.

${oldsymbol Q}$ using type t thermocouples with the PD-tcr

Because of the similarity of thermal EMFs in the $0 \,^{\circ}$ to $+50 \,^{\circ}$ range between type K and type T thermocouples, the PD-TCR can be directly used with both types of inputs. Within this temperature range the PD-TCR should exhibit no more than an additional $0.2 \,^{\circ}$ output calibration error when used with type T inputs. The error arises because the ice point is trimmed to type K characteristics at 25 $^{\circ}$ C.

 \mathbf{A} The PD-TCR software will detect open thermocouple channels. This occurs when the value read by the software is random.

${\it \varrho}$ thermal environment effects

The inherent low power dissipation of the PD-TCR and the low thermal resistance of the channel make self-heating errors almost negligible. For example, in still air the channel to ambient thermal resistance is about 80 C/watt. At the nominal dissipation of 800 W the self-heating in free air is less than.065 C. Submerged in fluorinert liquid (unstirred) the thermal resistance is about 40 C/watt, resulting in a self+T heating error of about 0.032 C.

${\it Q}$ stability over temperature

Each PD-TCR is tested for error over temperature with the measuring thermocouple at 0 C. The combined effects of cold junction compensation error, amplifier offset drift and gain determine the stability of the PD-TCR output over the rated ambient temperature range.

Service and Support

If you have technical problems using PowerDAQ[™], our Technical Support department can be reached by:

Telephone:	(617) 924 1155
Fax:	(617) 924 1441
Email:	support@Omegadaq.com
Web Site:	www.Omegadaq.com

For the most efficient service, please be available at your computer and be prepared to answer several questions listed on the following page when you call for technical support. This information helps us identify specific system and configuration-related problems.

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware. Completing this form accurately before contacting us for technical support helps our application engineers answer your questions more efficiently.

What is the name and version number of the product?

What version of Windows are you using? ______ What programming language and version?

Is the board set at factory configuration?

Have you run the board diagnostics? What were the results?

Did the system ever work ? If so, what changed (moved location, installed other boards, software etc..)

Have you run the sample programs? What were the results?

Have you verified that all your connections are made properly and are secure?

Have you been able to isolate the source of your problem: input or output device, board, software?

What other boards or applications are installed in your system?

How much RAM do you have? ______ What size hard disk are you using? ______ How fast is your CPU? ______ How fast is your host data bus?

If you are on a network, what type of network are you using and approximately how many users are on the network?

Please specify whether or not the problem occurred more than once

D

Appendix D: Warranty

Overview

IBM, IBM PC/XT/AT and IBM PS/2 are trademarks of International Business Machine Corporation.

BASIC is a trademark of Dartmouth College.

Microsoft is a trademark of Microsoft Corporation.

LabVIEW, LabWindows/CVI is a trademark of National Instruments Corporation

All PowerDAQ[™] boards have received CE Mark certification according to the following:

- EN55011
- EN50082-1

Life Support Policy

OMEGA ENGINEERING' PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE LEGAL AFFAIRS DEPARTMENT OF OMEGA ENGINEERING CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can reasonably be expected to result in a significant injury to the user or (c) should the device or system fail to perform, may reasonably be expected to result in a significant hazard to human life, or a significant potential for injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to effect its safety or effectiveness.

D

Omega Engineering, inc. warrants that the products furnished under this agreement will be free from material defects for a period of one year from the date of shipment. The customer shall provide notice to Omega Engineering of such defect within one week after the Customer's discovery of such defect. The sole obligation and liability of Untied Electronic Industries under this warranty shall be to repair or replace, at its option, without cost to the Customer, the product or part which is so defective and as to which such notice is given.

Upon request by Omega Engineering, the product or part claimed to be defective shall immediately be returned at the customer's expense to Omega Engineering.

There shall be no warranty or liability for any products or parts which have been subject to misuses, accident, negligence, failure or electrical power or modification by the Customer without Omega Engineering' approval. Final determination of warranty eligibility shall be made by Omega Engineering. If a warranty claim is considered invalid for any reason, the Customer will be charged for services performed and expenses incurred by Omega Engineering in handling and shipping the return item.

As to replacement parts supplied or repairs made during the original warranty period, the warranty period of the replacement or repaired part shall terminate with the termination of the warranty period with respect to the original product or part.

THE FOREGOING WARRANTY CONSTITUTES UNTIED ELECTRONICS INDUSTRIES SOLE LIABILITY AND THE CUSTOMER'S SOLE REMEDT WITH RESPECT TO THE PRODUCTS AND IS IN LIEU OF ALL OTHER WARRANTIES. LIABILITIES AND REMEDIES, EXCEPT AS THUS PROVIDED, OMEGA ENGINEERING DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Index

5B Backplanes, 13 7B Backplanes, 13 Accessories, 10 Analog Input Clocking, 26 Analog Input Subsystem, 18 Analog Output Clocking and Triggering, 28 Analog Output Subsystem, 21 Base address, 8 Board specifications, 41 Cables, 11 Calibration, 37 CE Mark CE Mark Certification, 53 **Control Panel**, 9 Counter/Timer Subsystem, 22 Diagnostics, 9 Differential Inputs, 19 Digital I/O Subsystem, 21 Dimensions for accessories, 46 DMA, 8 DSP Processor, 24 EXT TRIG IN, 27 Glossary, 56 Installation hardware and software, 7 Interrupts, 8 J1 Connector, 12 J1 Connector Pinouts, 32 J2 Digital Connector Pinouts, 33 Life Support Policy, 53 Mating connector, 45 Motorola 56301, 24 OEM Header Panel, 14 PCI Bus Interface, 25 PCI Specification, 47 PD-100HDR, 14 PD-19RACK, 44 PD-5BCONN, 13 PD-7BCONN, 13 PD-CBL-37, 11, 42 **PD-CBL-5B**, 42 **PD-CBL-7B**, 42 PD-CBL-96, 11, 42 PD-STP-96, 11

PD-STP-9616, 11 PD-STP-9616-KIT, 12 PD-STP-96-KIT, 12 Programming, 10 Screw Terminal Panels, 11 Service and Support, 50 Signal Descriptions, 34 Single Ended, 19 Synchronizing Analog Input and Analog Output, 29 Timing and Control, 26 Trigger EXT TRIG IN, 27 Types of boards PowerDAQTM boards supported, 3 Warranty, 53

Reader Evaluation

We are committed to improving the quality of our documentation, in order to serve you better. Your feedback will help us in the effort. Thanks for taking the time to fill out and return this form.

Is the manual well organized? (PD-TCR)	Yes	No No	
Can you find information easily?	Yes	No No	
Were you able to install the PowerDAQ [™] boards?	Yes	No No	
Were you able to connect the PowerDAQ [™] board to the accessories?	Yes	No No	
Did you find any technical errors?	Yes	No No	
Is the manual size appropriate?	Yes	No No	
Are the design, type style, and layout attractive?	Yes	No No	
Is the quality of illustrations satisfactory?	Yes	No No	
How would you rate this manual?	Good	Fair	Poor
Why?			
Suggested improvements:			
Other Comments:			
Your background (optional)			_
Your application:			